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Abstract 

 

Using first-principles electronic structure calculations, quantum-based atomistic simulations 

and atomistically informed dislocation dynamics (DD) simulations, we have studied 

individual dislocation behavior and the multiscale modeling of single-crystal plasticity in the 

prototype bcc transition metals Ta, Mo and V under both ambient and high pressure 

conditions.  The primary focus in this work is on the pressure-dependent structure, mobility 

and interaction of / 2 111a  screw dislocations, which dominate the plastic deformation 

properties of these materials.  At the electronic scale, first-principles calculations of elasticity, 

ideal strength and generalized stacking fault energy surfaces have been used to validate 

quantum-based multi-ion interatomic potentials.  At the atomistic scale, these potentials have 

been used in flexible Green’s function boundary condition simulations to study the core 

structure, Peierls stress 
P

, thermally activated kink-pair formation and mobility below 
P

, 

and phonon-drag mobility above 
P

.  These results have then been distilled into analytic 

velocity laws and used directly in predictive microscale DD simulations of flow stress and 

resolved yield stress over wide ranges of pressure, temperature and strain rate. 
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1. Introduction 

The intriguing possibility of modeling across length scales all the way from the atomic level 

to the continuum level to achieve a physics-based multiscale description of mechanical 

properties such as plasticity and strength has attracted widespread research interest in the last 

decade [1-8].  To be sure, the predictive multiscale materials modeling of plasticity and 

strength requires an in depth theoretical understanding and quantum-based calculation of 

fundamental dislocation and other defect processes at the atomic length scale [9-19] as 

essential input into higher-length-scale simulations such as 3D dislocation dynamics (DD) of 

single-crystal plasticity at the microscale [20-31].  Especially important is the accurate 

atomistic modeling of the structure, motion and interaction of individual dislocations, as well 

as the accurate modeling of the relevant aspects of elasticity, including elastic moduli and the 

limits of elastic stability.  To accomplish this task fully, one not only needs to understand the 

underlying qualitative mechanisms that control plastic deformation, but one also needs to be 

able to calculate the quantitative parameters that will allow a predictive description of 

plasticity and strength properties in real materials under various conditions.  The latter is 

particularly important in regimes where experimental data are scarce or nonexistent such as 

under the extreme conditions of pressure, temperature, strain and strain rate of current interest 

to many modern applications.  Especially interesting in this regard is the regime of high 

pressure, a regime in which dislocation-driven plasticity has been heretofore largely 

unexplored from a fundamental perspective.  The objective of the present paper is to help fill 

that void.  Specifically, we elaborate here a predictive multiscale description of dislocation 

behavior and single-crystal plasticity in bcc transition metals over a wide range of pressures, 

ranging from ambient all the way up to many hundreds of gigapascal (GPa).  In this process 

we build upon and greatly extend the multiscale dislocation work on these materials 

previously reported by the present authors and their collaborators [13,14,16,19]. 

 

In recent years since the mid 1990s, there has been considerable renewed interest in 

understanding dislocation behavior and plastic deformation in bcc metals [1-6,9-19,21-23,27-

32], where even at ambient pressure much remains unknown at the atomistic level about the 

fundamental mechanisms and quantitative parameters of dislocation motion.  The numerous 

studies published on these materials over the years, especially the pioneering papers by Vitek 

and Duesbery [32-36], have identified many of the basic characteristics of dislocation 

behavior in bcc metals and have laid the groundwork for our investigations.  In particular, at 

ambient pressure the low-temperature and high-strain-rate plastic behaviors of these metals 

are controlled by the intrinsic core properties of screw dislocations with Burgers vector b = 

/ 2 111a , where a is the bcc lattice constant.  Unlike the highly mobile edge dislocations 
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in bcc metals, the motion of the / 2 111a  screw dislocations is severely restricted by the 

non-planar atomic structure of its core, resulting in low intrinsic mobility, the formation of 

thermally activated kinks on the dislocation line at finite temperature, and a temperature-

dependent yield stress.  Since these unique qualitative characteristics are closely tied to the 

bcc structure itself, we expect them to remain in effect at high pressure as well.  We will, 

therefore, concentrate here on pressure-dependent / 2 111a  screw-dislocation behavior in 

the bcc lattice and the single-crystal plasticity that it drives. 

 

At the same time, an important general consideration is the identification and separation of 

purely generic behavior representative of bcc metals as a whole from materials-specific 

behavior representative of chemical differences and environmental factors such as high 

pressure.  The historical perspective has been to assume that bcc dislocation behavior and 

plasticity is highly generic in character.  The expectation of possible materials-specific 

behavior under high pressure, however, underscores the importance of chemical bonding, in 

addition to crystal symmetry, in elaborating dislocation and strength properties.  In bcc 

metals, chemical bonding ranges from non-directional, nearly-free-electron sp bonding in the 

alkali metals (e.g., Na, K) to directional d-electron bonding in transition metals (e.g., Ta, Mo, 

Fe).  The latter also depends strongly on pressure-sensitive d-electron occupation, which can 

vary significantly within nonmagnetic group-VB (e.g., V, Ta) and group-VIB (e.g., Mo, W) 

elements, as well as between these elements and magnetic group-VIII elements (e.g., Fe).  

Here we will focus on a small subset of the nonmagnetic materials as prototypes, namely V, 

Ta and Mo, and examine in detail how their mechanical properties vary under the influence 

of high pressure.  These materials have different ranges of bcc stability, as well as different 

high-pressure elastic behavior.  While Ta is predicted to remain stable in the bcc phase up to 

at least 1000 GPa [37], Mo and V undergo high-pressure phase transitions, which are 

predicted above 500 GPa in the case of Mo [38,39] and observed near 69 GPa in the case of 

V [40].  The latter transition has also been confirmed theoretically [41].  The phase 

transitions in Mo and V are closely coupled, respectively, with the elastic softening of the C′ 

and the C44 shear modulus in the compressed bcc lattice prior to the transitions. 

 

Large-scale computer simulation is the enabling tool of multiscale modeling and is at the 

heart of the present investigation.  This approach is not entirely unique, however, and 

involves a number of important strategic, physical and computational issues and choices.  

Here we have adopted an information passing strategy to the multiscale modeling of single-

crystal plasticity across three overlapping length scales: electronic, atomic and micro- or 

mesoscopic.  Crystal elastic moduli and the basic core properties of dislocations at the 
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electronic length scale are govern by the laws of quantum mechanics, which can be 

implemented from first principles via modern density functional theory (DFT) [42-44] in 

both full-potential (FP) and pseudopotential (PP) electronic-structure methods [37-39,44-47].  

We use DFT electronic-structure calculations to establish the pressure dependence of certain 

key mechanical properties, including the shear elastic moduli, the ideal shear strength and the 

generalized stacking-fault ( ) energy surface.  On the other hand, one can study the structure, 

motion and interaction of individual dislocations in much greater detail at the atomic length 

scale through static and dynamic atomistic simulations, using suitable quantum-based 

interatomic potentials that encode the necessary quantum information.  For transition metals, 

DFT-based generalized pseudopotential theory (GPT) [49] provides a rigorous approach to 

obtain the required potentials.  In our present multiscale strategy, we perform additional DFT 

electronic-structure calculations to establish a large data base of fundamental pressure-

dependent properties of the zero-temperature bcc phase of each metal of interest, and then use 

this data base to constrain and validate simplified model GPT or MGPT multi-ion potentials 

[50], which in turn permit efficient atomistic simulations with full quantum realism.  In 

particular, the MGPT potentials encode the fundamental directional bonding of central 

transition metals through explicit three- and four-ion angular-dependent terms, and can be 

used to make predictive calculations of high-pressure dislocation properties. 

 

Atomistic simulations of point and extended defects are performed on a specified finite 

collection of atoms contained within a chosen computational cell of variable shape and size 

to which specific boundary conditions and other constraints such as temperature, stress and 

strain rate are applied.  Both molecular statics (MS) techniques, which seek to minimize the 

total energy of the system at zero-temperature, and finite-temperature molecular dynamics 

(MD) techniques can be used.  The simulation of individual dislocations requires special 

treatment due to the long-ranged (~ 1/r) elastic field associated with them.  Traditionally, 

fixed boundary conditions have been most often used in such dislocation simulations, where 

exterior atoms are frozen at their bulk lattice positions and distant atomic positions in the 

computational cell are established by the conditions of linear anisotropic elasticity.  This 

requires very large simulation cells in practice, but this method is always problematic with 

respect to force build-up between fixed and relaxed atomic regions.  An elegant and practical 

solution to the latter problem is to use so-called flexible boundary conditions.  In particular, 

Rao et al. [51,52] have developed an advanced Green’s-function version of such conditions 

for both 2D and 3D dislocation simulations, denoted as Green’s function boundary conditions 

(GFBC).  In this method, a buffer layer is introduced between the fixed outer and inner 

relaxed atomistic regions of the simulation cell, allowing one to dynamically update the 



- 8 - 

boundary conditions of the simulation, while dramatically reducing the size of the atomistic 

region.  Using the GFBC approach, we subsequently developed a specialized Green’s 

function atomistic simulation method to implement multi-ion MGPT potentials and calculate 

the pressure-dependent properties of / 2 111a  screw dislocations through MS and MD 

simulations [13].  These properties include the core structure and energy, the kink pair 

formation energy, and the Peierls stress 
P

, as well as the full activation enthalpy below 
P

 

and the phonon drag mobility above 
P

 needed to describe dislocation motion in DD 

microscale simulations. 

 

At the microscale, dislocation dynamics simulations implement the equations of continuum 

elasticity theory to track the motion and interaction of individual dislocations under an 

applied stress, leading to the development of a dislocation microstructure and single-crystal 

plastic deformation.  In our multiscale modeling strategy for bcc transition metals, the 

primary atomistic input supplied to the DD simulations is the dislocation mobility of 

individual / 2 111a  screw dislocations.  For a given material, this input takes the form of 

an activation enthalpy versus shear stress curve and phonon drag coefficients calculated for 

each pressure under consideration.  Here full activation enthalpy curves have been calculated 

at selected pressures in Ta, Mo and V, and phonon drag has been studied as a function of 

pressure and temperature in the case of Ta.  These results have been fitted and modeled in 

suitable analytic forms to interface smoothly with the DD simulation codes.  Detailed DD 

simulations have then been carried out in Ta and Mo as a function of pressure, temperature 

and strain rate.  Our DD simulations have been performed in part with the pioneering lattice-

based serial code developed for bcc metals [21,22] but even more extensively with the 

general node-based parallel ParaDiS code recently developed at the Lawrence Livermore 

National Laboratory [27-30]. 
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2. Computational Approach 

We begin by introducing and briefly discussing the specific computational methods we have 

used in the present work to implement our multiscale modeling strategy for bcc transition 

metals. 

 

2.1 First-principles electronic structure methods 

 

The first-principles DFT electronic-structure results used below to constrain and validate 

MGPT potentials and to calculate basic high-pressure properties have been obtained with 

either the full-potential linear muffin-tin orbital (FP-LMTO) method [37-39,44,45,47] or the 

plane-wave pseudopotential (PP) method [44-46,48].  The FP-LMTO method was used 

previously to study basic structural and mechanical properties in Ta to 1000 GPa (10 Mbar) 

[37], as well as in Mo [38,39] and in V [47] to 600 GPa (6 Mbar).  These data are used here 

in establishing the zero-temperature equation of state (cold EOS or pressure versus volume 

curve) and the high-pressure shear elastic moduli.  The FP-LMTO and PP methods were also 

used previously to study vacancy formation in bcc metals, including Ta, Mo and V [45].  

Together with the cold EOS and shear elastic moduli, FP-LMTO and PP data on the vacancy 

formation energy are used to constrain the MGPT potentials.  To help further validate the 

potentials at high pressure for the present dislocations studies, entirely new PP results have 

been obtained here on the ideal shear strength and high-symmetry features of the {110} and 

{211}  surfaces to 400 GPa in Ta and Mo and to 140 GPa in V. 

 

The FP-LMTO and PP methods have been implemented from first-principles within the DFT 

and require only the atomic number and an assumed functional form for the exchange and 

correlation energy of the electrons as input.  Historically, the latter functional has been treated 

both within the standard local-density approximation (LDA) [43,44] and the more modern 

generalized gradient approximation (GGA) [44].  In general, the GGA is believed to provide 

the more accurate treatment for central transition metals and has been used in all of the FP-

LMTO and PP results discussed here.  In both the FP-LMTO and PP approaches, the electron 

charge density and potential are allowed to have any geometrical shape and are calculated 

self-consistently.  In the FP-LMTO method all electrons are treated, including tightly-bound 

inner-core, loosely bound outer-core and itinerate valence electrons, to ensure that their 

rapidly changing character under pressure is fully accommodated.  One incorporates non-

sphericity to the charge density and potential by representing the crystal with non-overlapping 

spheres (of a variable, optimum size) surrounding each atomic site and a general shaped 

interstitial region between the spheres.  Inside the spheres, the wave functions are represented 
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as Bloch sums of linear muffin-tin orbitals and are expanded by means of structure constants.  

The kinetic energy is not restricted to be zero in the interstitial region and the wave function 

expansion contains Hankel or Neumann functions (depending on sign of the kinetic energy) 

together with Bessel functions.  Also in the FP-LMTO method, all relativistic terms, 

including the spin-orbit coupling, can included in the Hamiltonian as necessary, and this has 

been done in the results used here in the case of Ta.  The metals V and Mo have been treated 

in a semi-relativistic fashion without the spin-orbit coupling. 

 

In the PP method applied to transition metals one normally treats only the valence s, p and d 

electrons, which total five per atom in V and Ta and six per atom in Mo.  Here special 

pseudopotentials in the Troullier-Martins form [48] have been constructed from scalar-

relativistic atomic calculations to be accurate in the pressure range below 400 GPa.  An 

important advantage of the PP method is that it provides accurate forces so that fully relaxed 

atomic configurations can be considered.  We have used this capability here to obtain 

accurate relaxed {110} and {211}  surfaces for Ta, Mo and V.  It is also possible to use 

relaxed PP configurations to perform validating FP-LMTO calculations on relaxed defects 

and  surfaces, as was done previously at ambient pressure [13,45]. 

 

2.2 Quantum-based interatomic potentials 

 

Within DFT quantum mechanics, first-principles generalized pseudopotential theory (GPT) 

provides a fundamental basis for ab initio interatomic potentials in metals and alloys.  In the 

GPT applied to transition metals [49], a mixed basis of plane waves and localized d-state 

orbitals is used to self-consistently expand the electron density and total energy of the system 

in terms of weak sp pseudopotential, d-d tight-binding, and sp-d hybridization matrix 

elements, which in turn are all directly calculable from first principles.  For a bulk transition 

metal, one obtains the real-space total-energy functional  

 

 
' ' '

1 2 3 4

, , , , , ,

1 1 1
( ) ( ) ( ; ) ( ; ) ( ; )

2 6 24
tot N vol

i j i j k i j k l

E R R NE v ij v ijk v ijkl                    (1) 

 

The leading volume term in this expansion, Evol, as well as the two-, three-, and four-ion 

interatomic potentials, v2, v3 and v4, are volume dependent, but structure independent 

quantities and thus transferable to arbitrary bulk ion configurations.  The angular-force multi-

ion potentials v3 and v4 reflect directional-bonding contributions from partially-filled d bands 

and are important for mid-period transition metals.  In the full GPT, however, these potentials 
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are multi-dimensional functions, so that v3 and v4 cannot be readily tabulated for application 

purposes.  This has led to the development of a simplified model GPT or MGPT, which 

achieves short-ranged, analytic potential forms that can be applied to large-scale atomistic 

simulations [50]. 

 

The MGPT is derived from the GPT through a series of systematic approximations applicable 

to central transition metals.  Canonical d bands are introduced to express the d-state 

components of v2 and the multi-ion potentials v3 and v4 analytically in terms of a single radial 

function and three universal angular functions that depend only on d symmetry and apply to 

all transition metals and all volumes.  To compensate for the approximations introduced into 

the MGPT, the d-state potential coefficients in v2, v3 and v4 together with Evol are constrained 

by fundamental theoretical and/or experimental data.  In our current preferred scheme for bcc 

metals, we fit a combination of first-principles DFT calculations and experimental data on the 

cold equation of state, shear elastic moduli, unrelaxed vacancy formation energy and Debye 

temperature over a prescribed volume or pressure range.  Advanced generation MGPT 

potentials have been so obtained in Ta to 1000 GPa [13,14], in Mo to 400 GPa [16,53] and in 

V to 230 GPa [53].  Representative results for these three metals are displayed in Fig. 1 at 

their respective equilibrium volumes. 

 

2.3 Green’s function atomistic simulation 

 

Previously, the flexible Green's function boundary condition (GFBC) method of Rao et al. 

[51,52] for dynamically updating the boundary conditions used in atomistic simulations was 

implemented for MGPT potentials and applied to study Ta dislocation properties at ambient  

 

 
 

Figure 1.  Present advanced generation MGPT multi-ion potentials v2, v3 and v4 for Ta, Mo and V 

calculated at their respective equilibrium volumes. 
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pressure [13].  This same approach has been used here to study / 2 111a  dislocation core 

structure and mobility at high pressure in Ta, Mo and V.  The GFBC approach extends the 

2D lattice Green's function boundary relaxation method originated by Sinclair et al. [57] for 

treating rigid, straight dislocations to 3D simulations, including kink and kink-pair formation.  

The boundary conditions for 2D and 3D defect simulations cells are evaluated using line [58] 

and point [59] force distributions, respectively.  In the flexible GFBC method, the simulation 

cell is divided into three regions, denoted as atomistic, Green's function (GF), and continuum.  

In the outer continuum region, the atomic positions are initially determined according to the 

anisotropic elastic displacement field [58] for a dislocation line defect at the center of the 

atomistic region, and then are relaxed by GF methods according to the forces in GF region.  

Complete atomistic relaxation is performed in the atomistic region according to the 

interatomic forces generated from Eq. (1).  Forces developed in the GF region, as relaxation 

is achieved in the atomistic region, are then used to relax those atoms in all three regions by 

the 2D or 3D elastic and lattice GF solutions for line or point forces.  The atomistic and GF 

relaxations are iterated until all force components on each atom are sufficiently small (10
-4

 

eV/Å or less), and the final few steps must also be performed by direct atomistic relaxation 

for the atomistic and GF regions to ensure there is no force build-up in these two regions. 

 

In our GFBC/MGPT simulation code, a spatial domain decomposition scheme is 

implemented for all three calculational regions, as illustrated schematically in Fig. 2.  The 

small domain cells defined in this scheme are connected via a cell-linked-list method such 

that each cell has a fixed number of neighboring cells.  This reduces the number of 

unnecessary interatomic separations considered in evaluating the MPGT potentials, which is 

crucial to their efficient application.  In general, there are three major computational issues 

that need to be addressed: (1) the geometry of the simulation cell, which is purely cylindrical 

for a straight dislocation and in the form of a series of displaced cylindrical disks for a kink; 

(2) the fact that there are three regions in the full simulation cell, so that a connectivity 

algorithm for information passing between different regions is therefore necessary; and (3) 

the large effective cutoff radius 4.25cut WSR R  for the MGPT potentials, which means there 

is a large overhead associated with the number of atoms per cell if the conventional domain-

cell partition is considered (i.e., if each cell covers a volume 3

cutR , which then contains about 

16 atoms).  To solve these problems, a so-called layered-cake decomposition is used to split 

the three regions in the full simulation cell, so that each region has it's own domain cell-

linked list.  To reduce the overhead associated with the number of atoms per cell, the cell 

sizes are reduced by a factor of eight, therefore the average number of atoms per cell is about  
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Figure 2.  Schematic representation of the domain decomposition scheme used to implement flexible 

Green’s function boundary conditions in our GFBC/MGPT atomistic simulation code for dislocation 

calculations.  (a) The three main computational regions separated into a layered-cake structure for a 

cylindrical coordinate system such that each region has its own domain decomposition.  (b) To 

ensure the connectivity between regions and compatibility with parallel computing platforms, the 

domain cells are mapped into three one-dimensional arrays with cell-linked pointers between the 

cells and overlap regions. 

 

two.  In addition, this approach allows a better description of the cylindrical geometry 

involved in the simulation when a cubic domain decomposition is used.  As shown 

previously [13], the performance of our GFBC/MGPT simulation code is thereby increased 

by an order of magnitude as compared to conventional domain decomposition methods. 

 

To take advantage of the scalable architectures of modern state-of-the-art computer 

platforms, a mapping algorithm was also developed for massively parallel computers.  A 3D 
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to 1D mapping list is built at the beginning of the simulation.  This mapping list ensures the 

connectivity between different regions, so that no information is lost during the simulation.  

The logic behind this algorithm is that our simulation is always performed in a 1D 

computational domain regardless of the physical geometry involved.  This is particular 

usefully when dealing with complicated geometries such as kinked dislocation structures or 

dislocation-dislocation interactions. 

 

2.4 Dislocation dynamics simulation 

 

Dislocation dynamics (DD) simulation methods provide a numerical tool to directly connect 

the physics of individual dislocations to the strength properties of a crystalline material.  

These methods simulate explicitly the motion, multiplication and interaction of collective 

dislocation lines in response to an applied load.  A number of DD simulation methods have 

been developed and reported over the past two decades [20-26].  Although they differ in their 

detailed approach, these methods share in common basic features of dislocation motion and 

interaction.  In this paper, we focus mainly on a general new node-based DD method 

developed at Lawrence Livermore National Laboratory called ParaDiS (Parallel Dislocation 

Simulator) that allows efficient large scale DD simulations on parallel computing platforms 

[27-30].  This approach complements the original lattice-based method for bcc metals of 

Tang et al. [21,22] and here we have performed DD simulations with atomistic input using 

both methods. 

 

In ParaDiS, the dislocation lines are discretized by an assembly of nodes with straight-line 

dislocation segments connecting individual nodes [30].  The driving force for dislocation 

motion is calculated at each node.  The force comes from various contributions including the 

dislocation self-energy change, dislocation-dislocation interaction forces, the external 

loading, and surface traction forces when applicable [31].  The dislocation-dislocation 

interactions are treated by isotropic linear elasticity theory and the latest development of non-

singular stress expressions [29] has been implemented.  A fast multiple method has also been 

implemented to gain computational efficiency for the force calculations.  A detailed 

description of the ParaDiS method can be found in Ref. 30. 

 

With the nodal forces determined, we calculate the nodal velocities by specifying the 

response of the nodes to the driving forces through the individual dislocation mobility 

functions.  These mobility functions are very material and environment specific.  They 

require specific parameters obtained from the lower length scale atomistic calculations 
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performed at the single dislocation level.  The mobility functions also depend on the 

character of the dislocations.  In the case of bcc transition metals, the screw and edge 

mobility functions are defined differently.  The screws move primarily by a thermally 

activated kink mechanism, and the edges move primarily by a phonon drag mechanism.  The 

specific functional forms and parameters of the mobility functions used in our DD 

simulations are discussed in Sec. 5.1.  In the earlier lattice-based DD method, only screw and 

edge dislocation segments are considered.  This method does not provide an accurate 

description of the dislocation line motion in general, and is only valid for conditions when the 

screws move much faster than the edges, as occurs in bcc metals at low and moderate 

temperature.  In the current ParaDiS method, on the other hand, we have general line 

segments connecting the nodes with segment character of all types including screw, edge and 

mixed segments.  The mobility of the mixed segments is derived from that of both screw and 

edge. 

 

The major material inputs to the DD simulations include the elastic constants and the burgers 

vector at the chosen pressure and temperature conditions, as well as the pressure-dependent 

parameters used in the mobility functions.  All of these quantities are explicitly calculated at 

the atomistic level, as described in Secs. 3 and 4 of this paper.  The loading conditions for the 

DD simulations are typically constant strain rate.  The major outputs are stress-strain 

response and the dislocation density changes.  In Sec. 5.2, we will discuss the details on the 

simulation of high pressure yield strengths for Ta and Mo single crystals.  



- 16 - 

3. Salient High-Pressure Mechanical Properties of bcc Transition Metals 

We next discuss some important basic high-pressure mechanical properties of bcc transition 

metals that both underpin our treatment of dislocations and plasticity and that can be obtained 

directly from first-principles electronic-structure calculations.  These properties includes the 

bulk and shear elastic moduli, the ideal shear strength, and generalized stacking fault or  

energy surfaces.  The pressure-dependent elastic moduli of a material establish the detailed 

character of the elasticity field in which individual dislocations move and interact, as well as 

serving as fundamental constraints on our MGPT interatomic potentials.  The ideal shear 

strength provides a fundamental upper bound on material strength in the absence of 

dislocations and is a basic validation test of the potentials.  The relevant low-energy  

surfaces for the {110} and {211} slip planes of interest in bcc plastic flow impose general 

constraints on dislocation character and are very useful validation tests for the MGPT 

potentials. 

 

3.1 Bulk and shear elastic moduli 

 

In our treatment of high-pressure mechanical properties, we assume that the bcc solid is 

subject to a stress tensor of the general form 

 

 ij ij ijS P  ,                                                                                                            (2) 

 

where P is the uniform isotropic pressure in the material and ij  is a small additional applied 

deviatoric stress.  In this regard, we assume that the loading path is such that the material is 

first uniformly compressed to pressure P through either static (e.g., diamond-anvil cell) or 

dynamic (e.g., shock) means and then ij  is applied in some unspecified manner.  In 

transition metals, the pressure ( , )P P T  has a strong dependence on the atomic volume  

of the metal, but a relatively weak dependence on temperature T.  For the purposes of this 

paper, it is adequate to replace P with the zero-temperature equation of state 
0 ( )P .  

Calculated MGPT results for 
0 ( )P  and the pressure dependence of the corresponding bulk 

modulus, 

 

 

0

0
0

( )

( )
( )

P P

P
B P  ,                                                                                        (3) 

 

for Ta, Mo and V up to 400 GPa are displayed in Fig. 3.  By construction, these results are 
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Figure 3.  Present calculated zero-temperature equations of state for Ta, Mo and V.  (a) Pressure 

versus atomic volume; (b) bulk modulus versus pressure. 

 

consistent with both room-temperature experimental data [40,54-56] and high-pressure FP-

LMTO calculations [37,38,47].  At the observed room-temperature equilibrium volume 
0
, 

0 0( )P  is necessarily slightly negative (~ -1 GPa), as indicated in Table 1 for Ta, Mo and V, 

since the compensating positive thermal pressure is neglected.  In some of our later results we 

will refer to 0 0( )P  as ambient pressure.  Also up to 400 GPa in Ta and Mo and 200 GPa  

 

 Table 1.  Observed equation of state (EOS) and elasticity properties in Ta, Mo 

and V at their respective equilibrium volumes [55], with volume in atomic 

units (a.u.) and stress values in GPa.  These data are fully reflected in the 

present MGPT potentials. 
 

 Quantity Ta Mo V 

EOS:     
 

0  121.6 105.1 93.23 

 
0 0( )P  -1.1 -1.2 -1.1 

 
0B  196 263 157 

 
0B  3.77 4.44 4.26 

Elasticity:     
 

44C  82.5 109.0 43.4 

 C  52.5 152.0 55.4 

 
111G  62.5 137.8 51.4 

 A  1.57 0.72 0.78 
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in V, the bulk modulus 
0B  is nearly linear in pressure, so that 

0 0 /B B P  is approximately 

constant over the pressure ranges of interest in this paper.  Consistent with the above 

assumptions and with the usual convention in high-pressure physics, we define individual 

elastic moduli ijC  as stress-strain relations relative to the current compressed state [60].  The 

corresponding MGPT calculated shear elastic moduli 
11 12( ) / 2C C C  and 

44C  are 

displayed in Fig. 4 for Ta to 1000 GPa, Mo to 400 GPa and V to 250 GPa together with 

constraining FP-LMTO and experimental data, with equilibrium values listed in Table 1.  

The experimental data includes ultrasonic measurements of the moduli and their pressure 

derivatives at ambient conditions [55] and high-resolution inelastic x-ray scattering (HRIXS) 

measurements at 37 GPa in Mo [56].  The shear moduli generally increase with increasing 

pressure, except for C in Mo above 300 GPa and 
44C in V above 20 GPa.  The latter 

behavior reflects nearby phase transitions: bcc to close-packed phases above 500 GPa in Mo 

[38,39] and bcc to a rhombohedral phase at 69 GPa in V [40].  In the case of V, 
44C becomes 

negative and the bcc structure is mechanically unstable above 120 GPa. 

 

Of special interest here to bcc screw dislocation motion is the effective shear modulus along 

the <111> slip direction, 

 

 44
111

2

3

C C
G  ,                                                                                                           (4) 

 

and the corresponding anisotropy ratio, 

 

 
 

Figure 4.  Present MGPT calculated high-pressure shear elastic moduli in Ta, Mo and V together 

with constraining FP-LMTO and experimental data. 
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Figure 5.  Present calculated high-pressure behavior of the <111> shear modulus 
111G  [panel (a)] and 

the anisotropic ratio A [panel (b)] for Ta, Mo and V. 

 

 44C
A

C
 ,                                                                                                                        (5) 

 

where a value of A = 1.0 would denote an elastically isotropic solid.  MGPT calculated 

results on the pressure dependence of these quantities for Ta, Mo and V up to 400 GPa are 

displayed in Fig. 5.  Over this pressure range, 
111G  is nearly linear in pressure for the case of 

Ta, but has a more complex behavior for Mo and V due to the proximity of the noted phase 

transitions in these metals.  The pressure dependence of A over the same range also shows 

somewhat complex behavior, with a minimum of about 1.2 in the case of Ta near 140 GPa, a 

substantial increase with pressure from a value of 0.72 at ambient to about 1.6 at 400 GPa in 

Mo, and a very rapid decrease with pressure from a value of 0.78 at ambient to zero near 120 

GPa in V. 

 

3.2 Ideal shear strength 

 

The next fundamental mechanical property we consider is the ideal shear strength of a bcc 

metal, as defined by Paxton et al. [61] and as previously discussed in the case of Ta [13, 37].  

At constant pressure, the ideal strength of the uniformly compressed perfect crystal is 

identified with the maximum shear stress 
c
 required for a continuous homogeneous 

deformation of the crystal into itself via the observed twinning mode.  For bcc metals, this 
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mode can be specified by a shear direction [111]  and a normal plane (112) .  In the 

absence of tensile relaxation normal to , which has been shown to be small for bcc 

transition metals [61,62], the atomic positions during the deformation can be directly related 

to the relative amount of shear /x s  along the twinning path, where 1/ 2s  is maximum 

shear displacement along  per unit length along the [112] direction.  In particular, the 

unrelaxed ideal strength calculation may be carried out entirely using a single atom per unit 

cell and periodic boundary conditions, allowing for easy application of full DFT electronic-

structure methods.  Previously for Ta, self-consistent FP-LMTO calculations of the unrelaxed 

ideal shear strength were performed at a few selected volumes in the 0-1000 GPa pressure 

range [37] and also later repeated at the observed equilibrium volume 
0
 for comparison 

with corresponding MGPT calculations [9].  In the present work we have supplemented these 

results with extensive PP and MGPT calculations as a function of pressure over the range of 

0-400 GPa in Ta and Mo and 0-100 GPa in V. 

 

In all cases we calculate a symmetric energy barrier along the twinning path at constant 

volume, 

 

 
[ , ] [0, ]

( , ) tot totE x E
W x

N
 ,                                                                                    (6) 

 

where the barrier height is 
cW  at / 2x s .  The corresponding stress along this path is given 

by 

 

 
1 ( , )

( , )
W x

x
x

 .                                                                                                  (7) 

 

The ideal shear strength is then defined as the maximum calculated stress along the twinning 

path, ( , )c cx , where 
cx  is the critical shear separating regimes of elastic and plastic 

deformation of the crystal.  In the present PP calculations, ( , )W x  has been calculated at 

intervals of / 0.025x s  in the range 0 / 2x s  and the curve extended to x s  by 

symmetry.  The result has then been fit and differentiated analytically to obtain ( , )x  via 

Eq. (7).  In the present MGPT calculations, ( , )W x  has been calculated at smaller intervals 

of 0.01 over the full range 0 x s , and then a smooth ( , )x  curve has been obtained 

directly from numerical differentiation.  The present PP and MGPT results for Ta at 0  

are plotted and compared in Fig. 6.  Present and previous calculated values of the barrier  
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Figure 6.  Ideal shear strength of Ta at its observed equilibrium volume 
0

, as calculated by the PP 

and MGPT methods.  (a) Symmetric energy barrier 
0( , )W x ; (b) corresponding shear stress 

0( , )x . 

 

height 
cW , critical stress 

c
, and relative critical shear /cx s  are listed and compared in Table 

2 at ambient pressure.  The overall agreement among the PP, FP-LMTO and MGPT results is  

 

 Table 2.  Calculated ideal shear strength properties of Ta, Mo and V at their 

observed equilibrium volumes, as obtained with the MGPT, FP-LMTO and PP 

methods. 
 

Metal Method cW  (eV) /cx s  c  (GPa) 

Ta:     
 MGPT 0.20 0.26 8.0 
 FP-LMTO 

(a)
 0.18 0.26 6.5 

 PP 0.17 0.30 6.9 
Mo:     
 MGPT 0.46 0.27 21.6 
 FP-LMTO 

(b)
 0.42 0.26 19.2 

 PP 0.34 0.25 16.0 
V:     
 MGPT 0.15 0.28 7.9 
 FP-LMTO 

(b)
 0.15 0.26 7.3 

 PP 0.09 0.30 5.0 
 

 (a)
 Reference 13 

 
(b)

 Reference 61 
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Figure 7.  Calculated ideal shear strength in bcc metals at high pressure.  (a) Critical stress 
c
 in Ta, 

as obtained with the MGPT, FP-LMTO and PP methods; (b) relative stress 
111/c G  for Ta, Mo and 

V, as obtained with the MGPT method. 

 

reasonable and adequate for the present purposes, although the MGPT values of 
cW  and 

c
 

are systematically larger than the corresponding DFT electronic-structure values and for Mo 

and V in better agreement with the FP-LMTO results than the PP results. 

 

Under high pressure, the MGPT potentials for Ta, Mo and V also fully capture the qualitative 

behavior of the ideal strength in these metals, with approximately the same level of 

quantitative agreement with the DFT electronic-structure calculations as at ambient pressure.  

In the left panel of Fig. 7, we compare MGPT, FP-LMTO and PP results for the critical stress 

c
 in Ta as a function of pressure to 400 GPa.  All three results show an approximate linear 

dependence of 
c
 on pressure, as one expects from the linear variation of 

111G  with pressure 

for Ta displayed in Fig. 5.  The MGPT-calculated scaling behavior of 
111/c G  with pressure 

for Ta and Mo to 400 GPa and V to 100 GPa is plotted in the right panel of Fig. 7.  In 

contrast to the case of Ta, where 111/c G  remains nearly constant at a value of about 0.12, 

111/c G  for Mo and V shows a noticeable decrease with increasing pressure.  In part this 

reflects the nonlinear variation of 111G  with pressure for these metals (Fig. 5), although in 

both Mo and V the variation with pressure is clearly somewhat different for c  and 111G .  At 

the same time, the variations in 111/c G  from one material to another as well as under high 
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pressure for a given material are confined to the small range from 0.12 to 0.16 for all three 

metals. 

 

3.3 Generalized stacking-fault ( ) energy surfaces 

 

For accurately modeling bcc screw dislocation behavior, an even more important validation 

test concerns the generalized stacking fault or  energy surfaces for the {110} and {211} slip 

planes.  As first defined by Vitek [33], the  surface is an energy profile of two semi-infinite 

blocks of bulk crystal rigidly displaced relative to each other by a vector u in a chosen fault 

plane, with atomic relaxation allowed only perpendicular to the plane.  One can calculate 

high-pressure -surface energies at constant atomic volume using an appropriate 

computational super-cell with periodic boundary conditions.  If desired, this can be done 

using two fault surfaces per super-cell, so that the full translational symmetry of the bulk 

crystal is preserved.  Alternately, one can use one fault surface per triclinic super-cell with 

two constant lattice translation vectors and a variable vector inclined along the displacement 

direction u.  In this way, the number of atoms needed to define the super-cell is reduced by 

half, making first-principles DFT electronic-structure calculations of high-symmetry features 

of the  surface much more tractable.  As previously done in the case of Ta at ambient 

pressure [13], we follow here the latter approach and use a super-cell consisting of at least 12 

atomic planes perpendicular to the fault surface and with one half of the cell shifted by the 

displacement vector u.  In the <111> direction, u =  b, where 0 1.0 .  The same 

approach can then be applied to MGPT, FP-LMTO or PP calculations at any pressure. 

 
Figure 8.  Calculated  surfaces for Ta at its equilibrium volume 0  obtained by the MGPT 

method.  Left panel: the {110} surface; right panel: the {211} surface. 
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Complete {110} and {211}  surfaces calculated for bcc Ta at its equilibrium volume with 

the present MGPT potentials are displayed in Fig. 8.  Super-cell size is not a limitation in the 

MGPT calculations, and larger cells consisting of 32 planes (96 atoms) for the {110} surface 

and 96 atomic planes (96 atoms) for the {211} surface were used to ensure full convergence.  

Qualitatively, the calculated  surfaces display the well known general features expected for 

bcc metals [33].  In particular, the {110} surface is fully symmetric, while the {211} surface 

reveals the well known twinning anti-twinning asymmetry along the <111> direction 

characteristic of bcc materials.  No stable stacking faults in the form of local minima are 

found on either surface, and all extrema are either maxima or saddle points.  These same 

qualitative features are also maintained in Ta at high pressure to at least 400 GPa, as well as 

in Mo to 400 GPa and V to 100 GPa. 

 

In order to validate the MGPT potentials quantitatively for high-pressure dislocation studies, 

we have calculated high-symmetry slices of the {110} and {211}  surfaces along the <111> 

direction in Ta, Mo and V using both the MGPT and PP methods.  In particular, such 

calculations along <111> provide a very sensitive test of the quality of the MGPT potentials 

because the stacking fault energies involved are small and similar in magnitude to those 

encountered in the formation and motion of / 2 111a  screw dislocations.  Calculated 

MGPT and PP results at selected pressures for Ta, Mo and V are shown in Figs. 9, 10 and 11,  

 

 
 

Figure 9.  Calculated slices of the {110} and {211}  surfaces in Ta at four selected pressures 

obtained using the MGPT (solid lines) and PP (solid points) methods.  (a) The {110} surface along 

the <111> direction; (b) {211} surface along <111>. 

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

(e
V

/A
2 )

Ta

Displacement x/b

(a) {110} / <111>

461 GPa

51 GPa

ambient

204 GPa

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

(e
V

/A
2 )

Displacement x/b

(b) {211} / <111>

461 GPa

51 GPa

ambient

204 GPa



- 25 - 

 

 
 

Figure 10.  Calculated slices of the {110} and {211}  surfaces in Mo at four selected pressures 

obtained using the MGPT (solid lines) and PP (solid points) methods.  (a) The {110} surface along 

the <111> direction; (b) {211} surface along <111>. 

 

 
 

Figure 11.  Calculated slices of the {110} and {211}  surfaces in V at two selected pressures 

obtained using the MGPT (solid lines) and PP (dashed lines and solid points) methods.  (a) The 

{110} surface along the <111> direction; (b) {211} surface along <111>. 

 

0.00

0.04

0.08

0.12

0.16

0.20

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

(e
V

/A
2 )

Mo

Displacement x/b

(a) {110} / <111>

407 GPa

17 GPa

ambient

192 GPa

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

(e
V

/A
2 )

Displacement x/b

(b) {211} / <111>

407 GPa

17 GPa

ambient

192 GPa

0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

(e
V

/A
2 )

V

Displacement x/b

(a) {110} / <111>

53 GPa

ambient

0.00

0.02

0.04

0.06

0.08

0.0 0.2 0.4 0.6 0.8 1.0

E
ne

rg
y 

(e
V

/A
2 )

Displacement x/b

(b) {211} / <111>

53 GPa

ambient



- 26 - 

respectively.  Here the displacement parameter  can be conveniently written as /x b , where 

b is the magnitude of the Burgers vector.  In the cases of Ta and Mo, the maxima in these 

curves at / 2x b , which is commonly defined as the unstable stacking fault energy 
us

, 

increase monotonically with pressure.  This is shown more directly in Fig. 12(a) where 

complete MGPT results for 110

us  and 211

us  are plotted as a function of pressure up to 400 GPa.  

At each of  the selected pressures in Figs. 9 and 10, the MGPT curves conform to the PP 

points very closely and the quantitative agreement is everywhere within 7%.  In this regard, 

on the {211}  surface of Mo the expected twinning anti-twining asymmetry is clearly 

evident in both the MGPT and PP results, and is very accurately predicted by the MGPT 

potentials.  We conclude, therefore, that the present MGPT potentials should be reliable for 

the calculation of the / 2 111a  screw dislocation properties for Ta and Mo up to at least 

400 GPa. 

 

The case of V shows somewhat more complicated behavior.  In this metal the calculated PP 

and MGPT stacking fault energies increase monotonically with pressure only up to about 80 

GPa such that above that point the  surface actually lies lower in energy than that at 53 GPa.  

This is shown more clearly in Fig. 12(a), where the complete set of MGPT unstable stacking 

fault energies 110

us  and 211

us  for V up to 230 GPa are plotted.  In addition, up to at least 53  

 

 
 

Figure 12.  Unstable stacking fault energies for Ta, Mo and V, as calculated with the MGPT method.  

(a) Energies 110

us
 and 211

us
 for the {110} and (211}  surfaces, respectively; (b) scaled 

energy 110

111/( )us G b  for the {110} surface. 
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GPa, the calculated PP stacking fault energies are systematically higher than those obtained 

with the MGPT potentials by 10-25%, as shown in Fig. 11.  This makes the MGPT 

calculation of / 2 111a  dislocation properties in V somewhat less certain quantitatively 

than in either Ta or Mo. 

 

Figure 12(a) further shows that the {110} unstable stacking fault energy 110

us  is systematically 

smaller than the {211} fault energy 211

us  for all pressures up to 400 GPa in Ta and Mo and up 

to 230 GPa in V.  This has important implications for the motion of / 2 111a  screw 

dislocations on {110} and {211} slip planes.  At all pressures considered here, the screw 

dislocations in Ta, Mo and V prefer to move on {110} planes for Ta, Mo and V, although, as 

previously discussed [13], this can happen in more than one way, such that at larger length 

scales slip may effectively appear to occur on either {110} or {211} planes.  Also the scaled 

fault energy 110

111/( )us G b  displays scaling properties similar to those found for the scaled 

ideal strength 
111/c G , except that the roles of Ta and Mo are reversed, as shown in Fig. 

12(b).  In particular, the scaled unstable stacking fault energy is nearly constant as a function 

of pressure in the case of Mo, but clearly decreases with pressure for Ta and V. 
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4. a/2 <111> Screw Dislocation Properties at High Pressure 

As first pointed out by Hirsch [63], the mobility of an / 2 111a  screw dislocation in a bcc 

lattice is severely restricted by the atomic structure of its core.  Around a given <111> 

direction, the bcc structure has three-fold symmetry.  Each such <111> zone contains three 

{110} and three {112} planes that are potential slip planes in the bcc structure, as well as 

admitting the possibility of a three-dimensional spreading of the core structure along <112> 

directions on the {110} planes when the screw dislocation is formed.  Detailed descriptions 

of extended core structures in bcc metals have been obtained from many previous atomistic 

studies [9-19,32-36,64] and have indicated a core extension of a few Burgers vectors in 

length and a high Peierls stress associated with its movement under an applied load.  In this 

section, we discuss our atomistic simulations of basic / 2 111a  screw dislocation core 

properties at both ambient and high pressure in bcc Ta, Mo and V, using the MGPT 

potentials and Green's-function methodology discussed above.  Our focus will be on the zero-

temperature calculation of core properties that are fundamental to an understanding of 

dislocation structure and mobility.  The properties considered include the atomic structure 

and energy of the equilibrium dislocation core in the absence of any additional shear stress, 

the nature and energetics of isolated kinks and mobile kink pairs that can be formed from this 

core in the low shear stress limit, and the magnitude and orientation dependence of the 

Peierls stress required to move the rigid dislocation in the high shear stress limit.  To link 

directly to corresponding DD simulations of plasticity, we also consider the full activation 

enthalpy associated with activated screw dislocation motion as a function of applied shear 

stress, as well as dislocation motion above the Peierls stress in the phonon drag regime. 

 

4.1 Equilibrium core structure and energy 

 

The / 2 111a  screw dislocation has one or more stable core configurations located at the 

center of gravity of three <111> atomic rows forming a triangular prism.  Around these three 

rows the near-neighbor atoms are located on a helix that winds up in a clockwise or counter-

clockwise manner, depending on the location of the elastic center and the sign of the Burgers 

vector, so that two different types of core configurations can be obtained [9].  One 

configuration is isotropic and of high energy and may or may not be stable. This is usually 

referred to as the “hard” core.  The other configuration is of low energy and is normally the 

stable ground-state structure.  This is the so-called “easy” core.  In general, the “easy” core 

can exhibit three-fold <112>/{110} directional spreading in two geometrically distinct, but 

energetically equivalent ways, resulting in a doubly degenerate ground-state core structure 

with two possible orientations.  Under certain circumstances, however, this directional 
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spreading may vanish and an isotropic non-degenerate core with a higher, but still three-fold, 

symmetry results.  In the present work, we have studied the pressure dependence of the 

“easy” core ground-state in bcc Ta, Mo and V up to very high pressure. 

 

As done previously [13,14,16,19], we have simulated the stable ground-state screw 

dislocation core structure using a two-dimensional GFBC/MGPT technique in cylindrical 

geometry, with periodic boundary conditions and a period of 3 / 2b a  along the z axis 

(<111> direction) at constant atomic volume 3 / 2a  in the bcc structure.  In this 

procedure, an infinite / 2 111a  screw dislocation is first introduced by displacing all 

atoms in the simulation according to anisotropic elasticity solutions using Stroh's sextic 

formalism [58].  The atomic positions of the core atoms are then allowed to relax within the 

GFBC simulation cell.  Radially outward from the cylinder axis, the inner atomistic region of 

the simulation cell is surrounded by GF and continuum regions (see Fig. 2) each with a shell 

thickness of 4.25cut WSR R , the effective cutoff radius for the MGPT potentials.  A radius for 

the atomistic region of about 20b is needed to accurately characterize the fully relaxed core 

structure. 

 

The qualitative aspects of the calculated core structures are most easily displayed and 

discussed using the standard differential displacement method of Vitek [33].  In this method, 

the <111> screw components of the relative displacement of neighboring atoms due to the 

dislocation (i.e., the total relative displacement in the z direction less than that in the perfect 

lattice) is represented by an arrow between the two atoms.  The calculated screw-component 

differential displacement maps for Ta at two widely different pressures are shown in Fig. 13.  

The left panel of that figure displays the nearly isotropic core structure of Ta that we calculate 

at ambient pressure, while the right panel shows the strong directional spreading obtained in 

the same metal at a pressure of 1000 GPa.  In both cases, the length of the arrows is 

normalized by / 3b , the magnitude of the separation of neighboring atoms along the <111> 

direction.  A corresponding differential displacement map can also be constructed for the 

edge components of the dislocation as well, but the magnitude of the edge displacements is 

found to be 10-100 times smaller than that of the screw components [13], and we do not 

consider these further in this paper. 

 

Qualitatively, the core structures displayed in Fig. 13 are representative of the isotropic and 

the spread core structures we have obtained for Ta, Mo and V.  The degree of three-fold 

directional spreading of the core can be directly quantified by its so-called polarization p, 

which measures the simultaneous translation of the three central atoms nearest to the core  
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Figure 13.  Differential displacement maps of the relaxed core structures of Ta at low and high 

pressure as calculated with GFBC/MGPT atomistic simulations.  Left panel: isotropic core structure 

at ambient pressure; right panel: spread core structure at 1000 GPa. 

 

center [64,65].  This translation is parallel to the dislocation line but in the opposite sense for 

the two different core orientations, usually denoted as positive p and negative n.  By 

symmetry, the magnitude of p can only vary zero to b/6.  At p = 0, the two core 

configurations coincide and a fully symmetric or isotropic core structure with a higher three-

fold symmetry is obtained.  At p = b/6, on the other hand, a fully polarized core is obtained 

with a maximum three-fold spreading along <211> directions.  Our calculated core 

polarization as function of atomic volume and pressure is plotted in Fig. 14 for Ta and Mo to 

400 GPa and in Fig. 15 for V to 75 GPa.  In the cases of Ta and Mo near equilibrium 

(
0
) and at expanded volumes corresponding to negative pressures, the calculated core 

polarization is less than 0.02b/6, the approximate level of accuracy of our results, and thus 

consistent with a non-degenerate isotropic core structure.  Under compression, however, the 

polarization rises rapidly in both cases and attains a value of 0.5b/6 near pressures of 400 

GPa.  In contrast to Ta and Mo, the dislocation core of V is already significantly polarized 

near equilibrium and p rises only to a maximum of about 0.275b/6 near 32 GPa and then 

descends rapidly toward zero close to the bcc  rhombohedral phase transition observed at 

69 GPa [40].  As in Ta and Mo, at sufficiently expanded volumes and negative pressure in V, 

the polarization p does tend toward zero.  In all three metals, the transition between an 

isotropic core with p = 0 and a spread core with finite p appears to be continuous and not a 

first-order phase transition.  Calculated values of p at 
0
 for Ta, Mo and V are listed in 

Table 3. 
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Figure 14.  Calculated volume and pressure dependence of the core polarization for Ta and Mo, as 

obtained from the present GFBC/MGPT atomistic simulations. 

 

The above results show clearly that the screw dislocation core structure in bcc metals is a 

materials specific property that depends both on chemical element and environmental factors  

 

 
 

Figure 15.  Calculated volume and pressure dependence of the core polarization for V, as obtained 

from the present GFBC/MGPT atomistic simulations. 
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 Table 3.  Basic / 2 111a  screw dislocation properties in bcc Ta, Mo and V 

at their respective equilibrium atomic volumes [55].  Included quantities are the 

atomic volume 0 ; bcc lattice constant a; magnitude of the Burgers vector b; 

core polarization p; core radius cR ; core energy f

coreE ; elastic energy elasticA ; 

kink-pair formation energy f

kpE ; and Peierls stress P . 
 

 Quantity Ta Mo V 

Structure:     
 

0  (Å
3
) 18.02 15.57 13.82 

 a (Å) 3.303 3.146 3.023 

 b (Å) 2.861 2.725 2.618 

 p (b/6) 0.007 0.018 0.144 

Energy:     
 /cR b  1.75 1.75 2.0 

 f

coreE  (eV/Å) 0.22 0.30 0.11 

 
elasticA  (eV/Å) 0.25 0.50 0.17 

Mobility:     
 f

kpE  (eV) 0.96 1.15 0.68 

 
P  (GPa) 0.577 0.860 0.360 

 
111/P G  0.00923 0.00625 0.00701 

 

such as pressure.  Near ambient pressure, our predictions of a nearly isotropic core structure 

in Ta and Mo are consistent with recent first-principles DFT electronic structure calculations 

of core structure using small computational cells and a variety of boundary conditions 

[10,11,17,66], as well as with quantum-based bond-order potential (BOP) calculations on Mo 

using fixed boundary conditions [18].  In contrast to our results for Mo and V, an earlier 

systematic study of the Group-VB and -VIB metals using empirical radial-force potentials 

[29] found isotropic cores for the VB metals, including V and Ta, and three-fold spread cores 

for the VIB metals, including Mo.  Our present result for Mo at ambient pressure is also in 

contrast to previous results [9,12] which found a strong three-fold spreading of the core 

structure using the earlier generation 1994 MGPT potentials for that metal [50]. 

 

In addition to its atomic structure, it is also of interest to calculate the effective size and 

energy associated with the equilibrium core, as done previously for Ta at ambient pressure 

[13].  In continuum elasticity theory, the formation energy f

screwE  of a screw dislocation (per 

unit length) in a cubic crystal is a linear function of ln( / )cR R , where R is the outer radius of 

a cylinder which contains the dislocation core at its center and cR  is the core radius.  The 

formation energy f

screwE  includes the core energy stored inside cR , f

coreE , plus the elastic 

energy stored in the region between cR  and R, such that 



- 33 - 

 

 lnf f

screw core elastic

c

R
E E A

R
 ,                                                                                     (8) 

 

where the elastic energy coefficient 
elasticA  can be directly calculated from the elastic moduli 

of the material [9].  The main unknown in Eq. (8) is the minimum core radius 
cR  that will 

satisfy that equation.  This can be found by iteration, starting with a trial value of 
cR  and 

calculating f

coreE and f

screwE  via atomistic simulation as a function of R.  An essentially 

equivalent procedure that is sometimes useful in the context of GFBC/MGPT simulations is 

to define 
cR  to be the minimum radius at which the 2D elastic and lattice Green’s functions 

become equal [13].  Either procedure results in some uncertainty in determining optimum 

values of
cR , but here we have used the former approach and thereby calculated f

coreE  for 

selected pressures in Ta, Mo and V.  In all three metals, we determine /cR b  to be in the 

range 1.75-3.0, with 
cR  increasing with increasing pressure up to 400 GPa.  Our calculated 

results for f

coreE  and 
elasticA  are plotted in Fig. 16 with the ambient pressure results for /cR b , 

f

coreE  and 
elasticA  given in Table 3.  As seen in Fig. 16, the uncertainty in 

cR  results in some 

fluctuations in the calculated values of f

coreE . 

 

4.2 Low shear stress limit: kink-pair formation energy 

 

At finite temperature, the motion of the screw dislocations in the bcc lattice normally occurs 

by the thermally assisted formation and migration of kink pairs.  For low shear stress 

conditions, the individual kinks in a kink pair are well separated and weakly interacting, so 

kink-pair formation can be modeled by just looking at isolated left and right kink formation.  

In this limit, the nature and atomic structure of the possible kinks is closely related to the 

unstressed dislocation core, which we assume here is of doubly degenerate form.  As we have 

discussed above, the doubly-degenerate core structure of the rigid / 2 111a  screw 

dislocation can have two energetically equivalent configurations with opposite polarizations 

denoted as positive p and negative n.  As a result, there are different possible kinks and kink-

pair configurations involving p and n segments that can be formed.  In addition, p and n 

segments can co-exist on the same dislocation line in the form of a so-called anti-phase 

defect (APD).  This further increases the multiplicity of possible kinks and kink pairs, as we 

have previously elaborated in the case of Ta [13]. 
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Figure 16.  Core and elastic contributions to the screw dislocation formation energy [Eq. (8)] in Ta, 

Mo and V as function of pressure.  (a) Core formation energy f

coreE  as obtained from GFBC/MGPT 

atomistic simulations; (b) elastic coefficient elasticA  determined from MGPT elastic moduli. 

 

Here we assume that an isolated left (l) or right (r) kink of a kink pair consists of two semi-

infinite segments of p or n orientation separated by a kink height h.  The symmetry of the bcc 

lattice allows six distinct and non-degenerate kinks [34].  These are of character nln 

(degenerate with plp), nrn (degenerate with prp), nlp, nrp, pln and prn.  As previously 

demonstrated in the case of Ta [13], the lowest energy kink pair in the absence of a pre-

existing APD has the character pln-nrp.  In Ta at ambient pressure and zero applied shear 

stress, this kink pair has a calculated formation energy 
f

kpE  of 0.96 eV, which is close 

agreement with the empirically derived zero-stress activation enthalpy of 1.02 eV used in 

microscale DD simulations to account for the observed yield stress [21].  For this reason, we 

have adopted the pln-nrp kink pair as the appropriate model for kink pair formation in bcc 

transition metals and used it here for Ta, Mo and V at both ambient and high pressure. 

 

To model an isolated pln or nrp kink accurately, we work at constant volume and set up the 

GFBC simulation cell in the form of a long compliant cylinder made up of unit disks of width 

b and radius 20b (for the atomistic region) and a total length 60-80b centered on the 

dislocation line.  A transition region of 10-15b is allowed across the kink height h, where the 

kink is fully relaxed in the GFBC/MGPT simulation.  To form a closed 3D cage, the two 

ends of the cylinder are capped with GF and continuum regions.  The z-axis of the compliant 

cylinder is taken parallel to a [111] dislocation line direction, while the y-axis is taken 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

C
or

e 
en

er
gy

 (e
V

/A
)

Mo

Pressure (GPa)

Ta

V

(a) Ef
core

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400

E
la

st
ic

 e
ne

rg
y 

(e
V

/A
)

Mo

Pressure (GPa)

Ta

V (b) A
elastic



- 35 - 

parallel to [110]  and the x-axis to [112] .  The smallest repeat translation vector for the rigid 

screw dislocation core in the bcc lattice is ( /3)[112]a  on a {110} plane, and this defines the 

elementary kink height h with magnitude 6 /3a .  We have considered only kinks formed 

within this geometry.  Kinks formed on other planes such as {211} have significantly larger 

kink heights and therefore are either unstable or have much larger kink formation energies 

[9,67]. 

 

We further assume that the process of kink-pair formation is limited by the isolated kink 

formation energies 
f

plnE  and 
f

nrpE , as opposed to the competing process of kink migration, 

which is controlled by the secondary Peierls stresses needed to move the left- and right-hand 

kinks.  As shown previously in the case of Ta at ambient pressure [13], the secondary Peierls 

stresses are one to two orders of magnitude smaller than the corresponding Peierls stress for 

the rigid screw dislocation itself, so both kinks are expected to be mobile with the left kink 

moving faster than the right kink.  Consequently, we expect the dislocation velocity at low 

shear stress  to be controlled by the kink-pair formation energy f

kpE  rather than any small 

kink migration barriers.  In the  = 0 limit, the former is calculated as a sum of left- and right-

kink formations energies: 

 

 
f f f

kp pln nrpE E E  .                                                                                                            (9) 

 

The individual left and right kink formation energies are most efficiently calculated by 

summing the unit disk contributions in our GFBC compliant cylinder across the transition 

region in the kink.  That is, in each unit disk we subtract from the atomistic total energy with 

the kink present the corresponding total energy for the perfect straight dislocation.  This 

procedure provides a cancellation of total-energy errors and leads to kink-formation energy 

values that are typically accurate to 0.05-0.10 eV or 5-10%.  We have so calculated f

kpE  at 

selected pressures in Ta, Mo and V.  These results are plotted in Fig. 17(a) with ambient-

pressure values listed in Table 3.  As expected, f

kpE  is monotonically increasing with 

pressure, but in a significantly nonlinear way in each case.  The scaled kink-formation energy 
3

111/( )f

kpE G b  displays a somewhat soother and slowly varying pressure dependence in the 

cases of Ta and Mo, as shown in Fig. 17(b).  In any case, the calculated values of 
f

kpE  

constrain the low shear stress limit of the full stress dependent activation enthalpy for 

dislocation motion, which is considered below in Sec. 4.4. 
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Figure 17.  Pressure dependence of the pln-nrp kink pair formation energy for Ta, Mo and V, as 

calculated from GFBC/MGPT atomistic simulations.  (a) Full energy f

kpE ; (b) scaled energy 
3

111/( )f

kpE G b . 

 

4.3 High shear stress limit: Peierls stress 

 

Next we turn to the high stress limit and the calculation of the Peierls stress 
P

 for the rigid 

/ 2 111a  screw dislocation.  Bcc metals are known to slip predominantly on {110} and/or 

{112} planes at low temperatures, but this slip does not follow the familiar Schmid law [68] 

and, in fact, a rather complex orientation dependence of the slip geometry and the yield stress 

is experimentally observed [69].  Consequently, one expects that there is a strong dependence 

of the critical resolved shear stress (CRSS) needed to move the rigid screw dislocation on the 

orientation of the applied stress.  In the context of GFBC/MGPT simulations, this orientation 

dependence was previously investigated in bcc Ta at ambient pressure [13] by applying both 

pure glide shear stresses and selected shears with a uniaxial stress component.  For applied 

stresses on either a {110} plane or in the twinning direction of a {112} plane, it was found 

that the addition of a uniaxial stress component in either compression or tension always raises 

the CRSS.  For this reason, we have confined our attention here to only applied shear stresses 

and have examined the CRSS in both Ta and Mo at ambient pressure.  For our present 

purposes we identify the Peierls stress P  with the minimum CRSS as a function of shear 

stress orientation and then calculate the pressure dependence of P  for that orientation. 
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In order to determine the Peierls stress in a self-consistent and accurate manner, our 

GFBC/MGPT simulations of the CRSS have been performed at conditions of constant stress, 

rather than at constant volume, and start from the relaxed equilibrium core structure as 

determined above.  The simulations do utilize periodic boundary conditions along the screw 

axis, however, so they are strictly 2D zero temperature calculations.  For a given applied 

stress orientation, the CRSS is assumed to be reached when the dislocation moves at least 

one lattice spacing on the maximum resolved shear stress plane.  In a bcc crystal along a 

given <111> direction, there are three {110} planes and three {112} planes, mutually 

intersecting every 30 .  Because of the twinning anti-twinning asymmetry in the bcc lattice, 

unique values of the CRSS can exist on different planes ranging in orientation from  = -30  

(twinning orientation on {211}) to  = 30  (anti-twinning orientation on {211}), with  being 

the angle measured from a given {110} slip plane.  The CRSS over this orientation range has 

been calculated in Ta and Mo at ambient pressure and the results are presented in Fig. 18.  In 

the case of Ta, these results are the same as those reported previously [13] except at  = 0, 

where the CRSS is calculated slightly lower in value.  Both Ta and Mo display a significant 

twinning anti-twinning asymmetry with the minimum CRSS occurring at  = 0 .  These 

latter results are our defined values of 
P

 at ambient pressure and are also listed in Table 3. 

 

 
 

Figure 18.  Orientation dependence of the critical resolved shear stress (CRSS) in Ta and Mo at 

ambient pressure, as calculated with the present MGPT potentials and compared with experimental 

estimates based on the observed yield stress [70-72]. 
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Also plotted for comparison in Fig. 18 are experimental estimates of the CRSS or Peierls 

stress based on the observed yield stress at the indicated stress orientations [70-72].  In the 

case of Ta at  = -10  and Mo at  = -30 , our calculated CRSS values are nearly a factor of 

two greater than the experimental estimates, while in Mo at  = 0  our result is only about 

20% higher.  However, experiment here does not represent a direct measurement of the 

Peierls stress, and consequently, the relationship between theory and experiment remains an 

open and somewhat controversial question [13,16].  Also is this regard, other recent 

quantum-based calculations of the same CRSS in Ta and Mo produce generally higher values 

than ours [15,16,18].  These include small-cell DFT calculations using Green’s function 

boundary conditions [15] as well as larger-cell BOP calculations with fixed boundary 

conditions [18].  Whether or not these differences represent a sensitivity of the calculations to 

cell size and/or boundary conditions also remains an open question. 

 

We have obtained the pressure dependence of the Peierls stress by performing GFBC/MGPT 

simulations of the  = 0  CRSS for selected pressures to 1000 GPa in Ta, to 400 GPa in Mo 

and to 53 GPa in V.  The resulting scaled Peierls stress 
111/P G  is plotted for Ta and Mo in  

 

 
 

Figure 19.  Pressure dependence of the scaled Peierls stress 111/P G  in Ta and Mo, as calculated 

from GFBC/MGPT atomistic simulations (solid square points) and compared with a constant average 

(solid line below).  Also shown for comparison is the corresponding scaled ideal strength 111/c G  

(solid circles and solid line above). 
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Figure 20.  Pressure dependence of the scaled Peierls stress 111/P G  in V, as calculated from 

GFBC/MGPT atomistic simulations (solid square points) and compared with a constant average 

(solid line below).  Also shown for comparison is the corresponding scaled ideal strength 111/c G  

(solid circles and solid line above). 

 

Fig. 19 and for V in Fig. 20.  Shown for comparison in these figures are the corresponding 

average values of 
111/P G , which are 0.0102 in Ta, 0.0059 in Mo and 0.0068 in V.  Although 

there are significant fluctuations from these constant values in Ta and Mo at pressures below 

150 GPa, overall they are fairly representative over the entire pressure range in each case.  

Also shown in Figs. 19 and 20 are the corresponding values of the scaled ideal strength 

111/c G , which is more than an order of magnitude larger for each metal. 

 

4.4 Activation enthalpy 

 

The pressure and shear-stress dependent activation enthalpy ( , )H P  for dislocation motion 

provides the necessary connection between the 0  kink-pair formation energy f

kpE  and the 

high shear-stress 
P

 limit where the rigid screw dislocation moves without kink 

formation.  The calculation of ( , )H P  requires an atomistic simulation of kink formation 

under both pressure and shear stress, which is convenient to perform at constant atomic 

volume rather than constant total stress.  To do so, we first consider the thermodynamic 

enthalpy of N simulation atoms at zero temperature, ( )H N E P , and manipulate the 

required enthalpy change into a useful form for constant-volume calculations.  In this regard, 

Hirth has argued [73] that at high pressure there should be an explicit contribution to the 
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activation enthalpy at constant pressure arising from the “P ” term in H, but as we show 

below such a contribution drops out in a constant-volume formulation. 

 

We begin in the 0  limit, where the change in enthalpy to form either a kinked or un-

kinked screw dislocation at constant pressure P can be written 

 

 
2 2 1 1( ) [ ( ) ( ) ]H P N E E P  ,                                                                     (10) 

 

with E the average energy per atom and 
2 1

.  Here the subscript “1” refers to the 

initial state and the subscript “2” to the final state.  While the total volume change N  may 

be significant if N is large, the average change in atomic volume  is small, so that one 

may perform a Taylor series expansion of the term 
2 2( )E  about the volume 

1
: 

 

 
2 1

2 2 2 1

2 1

( )
( ) ( )

( )

E
E E

E P




 ,                                                                      (11) 

 

To obtain the second line of Eq. (11), we have re-expanded the derivative term in the first 

line about 
2
 and noted that at constant pressure 

 

 1 1 2 2( ) ( )E E
P  .                                                                                    (12) 

 

Using Eq. (11) in Eq. (10), one finds that the pressure terms cancel and one is left with the 

result, correct to first order in , 

 

 
1 2 1 1 1( ) ( ) [ ( ) ( )]H P N E N E E  .                                                              (13) 

 

The leading correction to this result is of the order 2( )  and negligible. 

 

Equation (13) can be immediately connected with the two important limiting cases already 

considered above.  First, in the formation of the rigid screw dislocation from the perfect bcc 

lattice, we identify N E  with the formation energy at constant volume f

screwE  in Eq. (8).  

Second, in the formation of an isolated pair of kinks on the screw dislocation line, we identify 

N E  with the kink-pair formation energy at constant volume f

kpE  in Eq. (9).  In the latter 

case, we may generalize Eq. (13) to the case of two attractively interacting kinks separated by 
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a distance  and held in (unstable) equilibrium under an applied shear stress  to obtain the 

desired total activation enthalpy: 

 

 int( , ) ( ) ( ) ( )f

kpH P E E hb  ,                                                                  (14) 

 

where f

kpE  remains the constant-volume kink-pair formation energy at infinite separation and 

intE  is the additional interaction energy at separation .  In the small shear stress limit 

0.2 P
, the kink-kink separation  is larger than the kink width (~ 7b for Ta) and

int ( )E  

varies as 1  and ( )  varies as 1.5 [13], making it possible to evaluate the final two terms 

in Eq. (14). 

 

For larger shear stresses 0.2 P
, a special atomistic simulation procedure has been 

developed to evaluate ( , )H P .  In the procedure, a self-consistent 3D atomistic model of 

kink-pair formation and migration is constructed involving three new steps in our 

GFBC/MGPT simulations:  First, a straight a/2<111> screw dislocation is constructed and is 

then fully relaxed under a trial applied shear stress.  The straight screw dislocation line is 

lifted in energy above the valley of the Peierls potential, and the degree of lifting depends on 

the magnitude of the applied shear stress.  Next, a 3D kink-pair model is constructed from 

this reference configuration.  In this construction, the kink separation distance λ is treated as a 

fixed parameter, which is chosen to approximate the separation distance at which the kink 

pair is just balanced by the applied stress.  Under the constraint of fixed λ, the kink pair 

configuration is then fully relaxed.  The total energy is calculated by summing over the atom-

to-atom energy difference between the relaxed 3D configuration and the straight screw 

dislocation under the same applied shear stress.  This produces the sum of the first two terms 

on the right-hand side of Eq. (14).  Finally, the shear stress  for kink-pair formation at the 

separation λ and the work done by that stress is calculated using the trapezoid model of 

Koizumi et al. [74].  This gives the final term in Eq. (14).  This approach has been 

successfully applied here to calculate ( , )H P  for shear stresses up to 0.9 P
. 

 

Using this procedure, we have calculated a full kink-pair activation enthalpy curve at a total 

of four selected pressures in Ta and three pressures each in Mo and V.  Representative results 

for Ta and Mo are displayed in Figs. 21 and 22, respectively.  In these figures we have plotted 

both individual points obtained from GFBC/MGPT atomistic simulations and smooth 

analytic fits to the results.  The latter provide a means to directly input atomistic activation 

enthalpy data into DD plasticity and yield strength simulations and will be discussed further  
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Figure 21.  Activation enthalpy for Ta at two selected pressures, as calculated from GFBC/MGPT 

atomistic simulations (solid points) and from an analytic fit [Eq. (15)] to these data (solid lines).  (a) 

Ambient pressure; (b) P = 204 GPa. 

 

below in Sec. 5.2.  The individual simulation points at shear stresses above 0.2 P
 have 

significant error bars of up to 0.1 eV, but the high stress part of the curve is well constrained 

by the requirement that ( , )H P  vanish at 
P

, so quite regular fits can be obtained. 

 

4.5 Dislocation mobility near and above the Peierls stress 

 

At finite temperature, a dislocation moves under the influence of thermal fluctuations and as 

the temperature rises the possibility of forming double kinks is increased [75].  When the 

applied shear stress is high and approaches 
P

, multiple kinks begin to be formed and it 

actually becomes possible to see them in dynamic atomistic simulations.  To investigate this 

phenomenon in bcc transition metals, we have preformed a large scale finite-temperature MD 

GFBC/MGPT simulation of / 2 111a  screw dislocation motion in Ta under pure shear 

loading at a stress level about 10% below the Peierls stress.  Here the simulation cell was 

constructed in a cylindrical geometry with periodic boundary conditions along the 111  

dislocation line direction.  The atomistic region of the cell had a radius of 40b and was 200b  
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Figure 22.  Activation enthalpy for Mo at two selected pressures, as calculated from GFBC/MGPT 

atomistic simulations (solid points) and from an analytic fit [Eq. (15)] to these data (solid lines).  (a) 

Ambient pressure; (b) P = 225 GPa. 

 

in length, containing over 1.3 million atoms.  The simulation was performed at 300 K and 

ambient pressure with the shear stress applied on a (110)  plane in a 111  direction.  Our 

simulation results indeed reveal kink formation along the screw dislocation line, and a 

snapshot of the kink structure is displayed in Fig. 23. 

 

For shear stresses 
P

, the resistance to dislocation motion comes entirely from thermal 

vibrations and the screw dislocation velocity ( , , )sv P T  becomes linear in the applied stress 

with a phonon-drag mobility that depends on pressure and temperature.  To study dislocation 

motion above the Peierls stress at a given pressure and temperature, similar large scale MD 

GFBC/MGPT simulations have been performed in Ta as a function of applied shear stress.  

The cylindrical simulation cell geometry used was the same as just described above, except 

that the atomistic region of the cylinder was chosen to be somewhat larger with a radius of 

50b and length of 400b, so that about 4 million atoms were simulated in each case.  In these 

simulations the screw dislocation was initially placed at the center of the simulation box.  The 

simulation cell was then pre-strained at the plastic strain corresponding to the applied shear 

stress , so that the simulation could be run at constant volume rather than constant  
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Figure 23.  A snapshot of kink formation on a 111  screw dislocation along the 112  direction 

on the (110)  plane in Ta at 300 K, ambient pressure and an applied shear stress 0.9 P , as 

obtained with an MD GFBC/MGPT simulation. 

 

total stress [67].  The molecular dynamics was carried out by integrating Newton’s equations 

of motion for the atoms in the atomistic region using a time step of 1 fs at constant 

temperature, which was maintained using a Nose′-Hoover thermostat [76,77].  The 

displacements of the atoms in the Green’s function region of the simulation cell were updated 

every 10 MD time steps while the atoms in the continuum region were kept fixed. 

 

Using this computational scheme, we have focused our MD GFBC/MGPT simulations on 

bcc Ta within the applied stress range from 1.05 
P

 to 1.25 
P

 and the pressure range from 

ambient to 400 GPa.  Within these ranges we found that the phonon-drag mobility was 

approximately linear in the scaled temperature, / ( )mT T P , where ( )mT P  is the pressure-

dependent melt temperature as determined from previous MGPT calculations on Ta [14].  

Consequently, at each pressure treated we considered only temperatures of approximately 0.3 

( )mT P  and 0.6 ( )mT P  in our MD simulations.  The actual temperature values were 900 and 

1800 K at ambient pressure, 1545 and 3090 K at 50 GPa, and 2580 and 5200 K at 230 GPa.  

The results of these simulations for ( , , )sv P T  are plotted in Fig. 24 together with least 

squared linear analytic fits to the simulation data.  In these simulations the screw dislocation 

was found to glide on a {110} plane at all pressures, temperatures and applied stress levels  
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Figure 24.  Screw dislocation velocity above the Peierls stress in the phonon drag regime for Ta, as 

calculated by MD GFBC/MGPT simulations (points) with linear analytic fits [Eqs. (18)-(20)] to the 

simulation data (lines).  (a) Temperature 0.3 ( )mT P ; (b) 0.6 ( )mT P . 

 

considered.  The analytic fits in Fig. 24 show that the velocity data is well represented by a 

form that is linear in the pressure P as well as in / ( )mT T P and / P
.  These fits will be 

discussed further in Sec. 5.1 below and used to provide an analytic form of the phonon-drag 

mobility suitable for DD simulations. 

600

700

800

900

1000

1100

1200

1.05 1.10 1.15 1.20 1.25

V
el

oc
ity

 (m
/s

)

Shear stress ( /
P
)

(a) T = 0.3 T
m

Ta

ambient
50 GPa
230 GPa

500

600

700

800

900

1000

1100

1200

1.05 1.10 1.15 1.20 1.25

V
el

oc
ity

 (m
/s

)

Shear stress ( /
P
)

(b) T = 0.6 T
m

ambient
50 GPa
230 GPa



- 46 - 

5. Multiscale Modeling of Single-Crystal Plasticity 

As a practical matter, all computational dislocation dynamics methods require a robust 

analytic representation of the mobility of individual dislocation segments.  In this section we 

first consider appropriate analytic forms to represent the atomistic results for / 2 111a  

screw dislocations discussed above in Sec. 4 within both the legacy lattice-based DD code 

[21,22] and the modern node-based ParaDiS code [27-30].  Using these analytic functions, 

we then discuss atomistically informed DD simulations of yield stress and plasticity for Ta 

and Mo as a function of pressure, temperature and strain rate to complete our multiscale 

modeling of these materials. 

 

5.1 Analytic representations of dislocation velocity 

 

As shown in Fig. 21 for Ta and Fig. 22 for Mo, the activation enthalpy for / 2 111a  screw 

dislocation motion below the Peierls stress in the thermally activated regime is accurately 

represented by following well known analytic form: 

 

 
0( , ) ( ) 1

q
p

P

H P H P  ,                                                                               (15) 

 

where here 
0( )H P  and 

P
 are calculated atomistic quantities and p and q are additional 

parameters that have been determined by a least-squares fit to the atomistic simulation data 

for ( , )H P .  As can be inferred from Eq. (14), 
0( )H P  is just the kink-pair formation 

energy at  = 0: 

 

 
0

0 ( )
( ) ( )f

kp P P
H P E  .                                                                                          (16) 

 

Values of the parameters 
0( )H P , 

P
, p and q are listed in Table 4 for the ten cases for 

which full activation enthalpy curves for Ta, Mo and V have been calculated. 

 

Equation (15) is used in both the lattice-based and ParaDiS DD codes although with different 

treatments of the internal parameters 0( )H P , P , p and q.  In the lattice-based code, the 

parameters in Table 4 have been used directly, except for P  in Ta, which has been scaled by 

a factor of 0.5 to account for the apparent overestimate of the Peierls stress relative to 

experiment noted in Fig. 18.  In ParaDiS, however, additional modeling has been introduced  
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 Table 4.  Calculated ( 0H , P ) and fitted ( p , q ) parameters entering the 

activation enthalpy ( , )H P  of Ta, Mo and V, as represented by Eq. (15). 
 

Metal P (GPa) 0H  (eV) p  q  
P  (GPa) 

Ta:      
 ambient 0.96 0.71 1.10 0.577 
 51 1.22 0.85 1.34 1.283 
 204 1.43 0.81 1.27 2.158 
 354 1.89 0.84 1.31 3.139 
Mo:      
 ambient 1.15 0.84 1.06 0.860 
 55 1.69 0.93 1.14 1.349 
 225 2.10 0.97 1.23 2.035 
V:      
 ambient 0.68 0.74 1.12 0.360 
 9.7 0.90 0.78 1.10 0.369 
 53 1.06 0.82 1.14 0.633 

 

 

to smooth the pressure dependence of the internal parameters.  First, p and q are assumed to 

be universal constants, which have been fixed in our ParaDiS simulations at p = 0.50 and q = 

1.23.  In addition, 
0( )H P  and

P
 are assumed to obey the high pressure scaling laws 

 

 3

0 0 111( ) ( )[ ( )]H P a G P b P                                                                                        (17) 

 

and  

 

 
0 111( )P b G P  ,                                                                                                         (18) 

 

where the constants 
0a  and 

0b  are determined at ambient pressure from our atomistic results, 

with the caveat that 
P

 in Ta is again scaled by a factor of 0.5.  Specifically, we have taken 

0a  to be 0.11 eV/GPa-Å
3
 in Ta and 0.066 eV/GPa-Å

3
 in Mo, and 

0b  to be 0.0051 in Ta and 

0.0062 in Mo. 

 

In the lattice-based DD code, the screw dislocation velocity below the Peierls stress in the 

thermally activated regime is calculated as 

 

 0

( , )
( , , ) ( )exps

B

H P
v P T v P

k T
 ,                                                                       (19) 
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where 
0 ( )v P  is a constant velocity computed in terms of the pressure-dependent Debye 

frequency and burgers vector of the bcc lattice and the length of the screw dislocation [21].  

In this case, dislocation motion above the Peierls stress is not treated explicitly, so for 
P

 

one takes 
0sv v . 

 

In the ParaDiS code, on the other hand, a modified form of Eq. (19) is used in the thermal 

activation regime, as described below, and above the Peierls stress in the phonon drag 

regime, the screw dislocation velocity is modeled by the linear equations used to fit the Ta 

data in Fig. 24, which have the form 

 

 ( , , ) ( , )s s

P

v P T M P T A B  ,                                                                           (20) 

 

where 

 

 0( , ) (1 )s

m

T
M P T C C DP

T
 .                                                                                (21) 

 

Here 
0C  is the shear sound speed at ambient pressure and A, B, C and D are constants 

determined by the least-squares fit to the Ta data.  The latter have values A = 1.525, B = 

1.28625, C = 0.20323 and D = 1.627  10
-4

 GPa
-1

, and here these values have been used for 

both the Ta and Mo DD simulations with ParaDiS discussed in Sec. 5.2.  Regarding the 

material dependent shear sound speed, in Ta we have used 
0C  = 2048 m/s and in Mo we have 

used 
0C  = 3496 m/s. 

 

The modified form of Eq (19) used in ParaDiS for the screw dislocation velocity in the 

thermally activated regime below 
P

 is of the form 

 

 
( , )

( , , ) ( , )( ) exps s

P B

H P
v P T M P T A B

k T
 ,                                                (22) 

 

where the pre-exponential terms have been chosen to provide approximate continuity of 
sv  

and its first stress derivative across the Peierls stress 
P

 with Eq. (20) for the phonon-drag 

contribution.  The choice  = 1 in Eq. (22) gives continuity of 
sv  at 

P
, but a 

discontinuity in the first derivative.  However, by matching Eqs. (20) and (22) at a shear 
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stress   slightly below 
P

, one can maintain continuity of both 
sv  and its first derivative for 

a value of   near 1. 

 

In addition to a velocity function for the screw dislocations, a velocity function for the edge 

dislocations is also required in the DD codes.  Here simplifying assumptions are made 

without any specific guidance from atomistic calculations [21,22,27-30].  In the lattice-based 

DD code, these functions are used directly for the screw and edge dislocation segments.  In 

ParaDiS, after the basic segment velocity functions are established, the code utilizes the 

screw and edge segment mobilities to obtain a general velocity at each dislocation node by 

mixing the two mobility functions.  The details of this mixing and the resulting nodal velocity 

are given in detail in Ref. 30. 

 

5.2 Temperature- and pressure-dependent plastic flow 

 

Using the ParaDiS simulation code and the above described velocity functions, we have 

carried out DD simulations in Ta and Mo for a range of pressure and temperature conditions.  

In the case of Ta, we have also carried out the simulations at different strain rates, as well as 

simulations with the lattice-based DD code over a wider range of pressures.  The simulations 

focus on the initial yield behavior rather than later stage strain hardening.  The ParaDiS 

simulations start with an initial dislocation configuration consisting of screw lines with the 

total density of 5 10
12

/m
2
 in a cubic 5 m simulation box with periodic boundary conditions 

along all directions.  The simulations are carried out under a constant strain rate.  The flow 

stress response is initially elastic until dislocations start to move.  When the plastic strain rate 

reaches the applied strain rate, the flow stress shows a steady state behavior, as shown in the 

stress-strain response curves.  The yield stress is thus obtained at the end of the simulations 

when the flow stress reaches a nearly steady value.  The loading is uniaxial tension and the 

orientation is along [123].  Under this single slip orientation, the Schmid factor is 0.467.  The 

resolved yield stress is obtained from the flow stress multiplied by the Schmid factor. 

 

The simulated ParaDiS stress-strain curves for Ta are shown in Fig. 25 at ambient pressure 

and at 30 GPa, for temperatures of 300, 600 and 1000 K, and at strain rates of 1/s and 1000/s.  

All simulated responses show an initial elastic behavior, then plastic deformation when the 

flow stress is high enough to move the dislocations.  The dislocation densities also go 

through orders of magnitude increase in these simulations.  The corresponding resolved yield 

stress values obtained are shown in Fig. 26.  The resolved yield stresses clearly show a strong 

dependence on strain rate, pressure and temperature.  The higher the strain rate, the higher the 
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pressure and the lower the temperature, the higher the yield stress.  This is expected for 

plastic deformation process dominated by thermally activated dislocation motion.  The 

pressure dependence comes from the fact that both the activation enthalpy and the Peierls 

stress are higher at higher pressures.  The temperature dependence is direct through the 

dislocation velocity functions, Eqs. (20) and (22).  As for the strain rate dependence, higher 

stress is required to move the dislocations with a higher deformation rate.  The dislocations 

multiply faster and also move faster at higher strain rate.  The simulations show that the 

dislocation density at yield for the higher strain rate is about 25 times the density at the lower 

strain rate.  This means the main effect responding to the high strain rate is through the 

velocity speed up rather than density multiplication alone. 

 

In the case of Ta, calculations of the temperature dependence of the yield stress have also 

been performed over a wider pressure range using the lattice-based DD code.  These results 

are plotted in Fig. 27 and cover pressures as high as 204 GPa.  These simulations were 

performed at a quasi-static strain rate of 10
-3

/s, which for ambient pressure allows a close  

 

 
 

Figure 25.  Simulated stress-strain curves of single-crystal Ta, as obtained with the ParaDiS DD 

code.  The left panel shows the results at a strain rate of 1/s; and the right panel results at a strain rate 

of 1000/s.  For each strain rate, the simulations were performed at two pressures values, ambient and 

30 GPa and for temperatures of 300, 600 and 1000 K.  The nearly steady state flow stress values at 

the end of the simulations are used to obtain the resolved yield stress values in Fig. 26. 
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Figure 26.  The resolved yield stress values for single-crystal Ta corresponding to the stress-strain 

curves in Fig. 25.  The solid square symbols are values at 30 GPa, and the solid circles values at 

ambient pressure.  The upper curves are results obtained at a strain rate of 1000/s, while the lower 

curves were obtained at 1/s. 

 

 

 

Figure 27.  Temperature dependence of the resolved yield stress at three pressures in single-crystal 

Ta, as obtained using the legacy lattice-based DD code at a quasi-static strain rate of 10
-3

/s.  

Experimental data at ambient pressure and the same strain rate (solid squares) are from Ref. 78. 
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comparison with accurate experimental data [78].  While our factor of two scaling down of 

the Peierls stress was motivated in part by a desire to normalize to experiment at one point on 

the ambient pressure curve, the full temperature dependence of the experimental data is 

nonetheless well captured by our simulation.  Using ParaDiS, we performed verification 

simulations at ambient pressure using the same parameters and loading conditions and 

obtained reasonable consistency when compared with the results obtained using the lattice 

based DD code. 

 

We have also carried out ParaDiS simulations for single-crystal Mo at ambient pressure for 

temperatures of 300, 600 and 1000 K and at 225 GPa for temperatures of 600 and 1000 K.  

These simulations were all carried out at a strain rate of 1/s and the simulated stress-strain 

curves are shown in Fig. 28.  An attempt to simulate the additional point at 225 GPa and 300 

K was made, but due to the extremely large activation enthalpy and low temperature, the DD 

time-step required was too small to obtain meaningful results.  We have, however, estimated 

the resolved yield stress for this point in the following manner.  Using the rate equation,  

 

 
 

Figure 28.  Simulated stress-strain curves for single-crystal Mo at a strain rate of 1/s, as obtained 

with the ParaDiS DD code.  The solid lines are results obtained at ambient pressure for temperatures 

of 300, 600 and 1000 K.  The dashed lines are results obtained at 225 GPa for temperatures of 600 

and 1000 K.  As in the case of Ta, the nearly steady state flow stress values at the end of the 

simulations were used to obtain the resolved yield stresses plotted in Fig. 29. 
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sbv  = constant, we first used the simulated dislocation density  at 225 GPa and 600 K 

to estimate its value at 300 K.  Then combining this rate equation and the velocity function in 

Eq. (22) we obtained an estimate of the resolved yield stress.  This value together with the 

resolved yield stresses obtained directly from the stress-strain curves in Fig. 28 are shown in 

Fig. 29.  Again, one sees a strong dependence on pressure and temperature in these results.  

For comparison we also show in Fig. 29 ambient pressure and temperature experimental data 

for the resolved yield stress in Mo from the Seeger group in Germany [70,71] and from the 

Aono group in Japan [79].  We note, however, that this data was measured at quasi-static 

strain rates as opposed to the 1/s strain rate in our simulations.  Since the resolved shear 

stress value is expected to decrease with decreasing strain rate, the data should be lower in 

magnitude than the simulation, which they are.  However, the two experimental data points 

themselves have a rather large discrepancy.  This shows the sensitivity of the experimental 

measurement to sample conditions. 

 

 
 

Figure 29.  Resolved yield stresses of single crystal Mo obtained at ambient pressure (solid circles 

and solid lines) and at 225 GPa (solid squares and solid lines).  Except for the estimated point at 225 

GPa and 300 K (see text), the remaining results were obtained from the stress-strain curves in Fig. 28 

obtained at a strain rate of 1/s.  For comparison ambient temperature and pressure experimental data 

points from the Seeger group [70,71] and the Aono group [79] at lower quasi-static strain rates are 

also shown. 
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6. Summary and Conclusions 

In this paper we have successfully combined first-principles PP and FP-LMTO electronic 

calculations, quantum-based GFBC/MGPT atomistic simulations, and atomistically informed 

lattice-based and ParaDiS dislocation dynamics simulations at the microscale to study the 

fundamental properties of / 2 111a  screw dislocations and the plasticity that they drive in 

the bcc transition metals Ta, Mo and V over a wide range of pressure.  Within this 

information passing approach to the multiscale modeling of mechanical properties, the 

electronic structure calculations have allowed us to accurately calculate the material specific 

high-pressure elasticity and range of bcc mechanical stability in these metals, and to provide 

fundamental bcc data on the equation of state, ideal strength and  surfaces needed to validate 

multi-ion MGPT interatomic potentials.  In particular, we have shown that the present MGPT 

potentials for Ta and Mo predict very accurately the {110} and {211}  surfaces relevant to 

screw dislocation structure and motion over pressures ranging from ambient to 400 GPa.  

With the GFBC/MGPT atomistic simulations, we have studied in detail the pressure-

dependent properties of the / 2 111a  screw dislocations, including the core structure and 

energy, the Peirels stress 
P

 and its orientation dependence, the kink-pair formation energy 
f

kpE  and the activation enthalpy ( , )H P  for dislocation motion below 
P

, and the 

dislocation velocity ( , , )sv P T  in the phonon drag regime above 
P

.  These properties 

exhibit a complex blend of both material specific and generic scalable behavior.  The core 

structure is materials specific and varies qualitatively with material and pressure, while the 

Peierls stress 
P

 is always minimized for <111> shear stresses on {110} slip planes and 

scales reasonable well with the 
111G  shear modulus to 1000 GPa in Ta, 400 GPa in Mo and 

53 GPa in V.  The kink pair formation energy 
f

kpE  is less robust in its scaling properties but 

varies approximately as 3

111G b  at high pressure.  The activation enthalpy ( , )H P  and 

phonon-drag velocity ( , , )sv P T  lend themselves to analytic fits as a function of pressure, 

temperature and shear stress that can be used directly in the DD simulations to quantify the 

motion of individual dislocation segments.  Using these analytic functions, we have 

successfully performed predictive lattice-based and ParaDis simulations of flow stress and 

resolved yield stress in Ta and Mo as a function of pressure, temperature and strain rate. 



- 55 - 

Acknowledgements 

 

This work was performed under the auspices of the U. S. Department of Energy by the 

Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part 

under Contract DE-AC52-07NA27344.  We would like to thank A. Arsenlis, R. Becker, G. 

Hommes, and M. Rhee for helpful discussions related to the ParaDiS simulations. 



- 56 - 

References 

 

[1]  S. Yip, ed., Modeling Industrial Materials: Connecting Atomistic and Continuum Length 

Scales, special issue of J. of Computer-Aided Mater. Design, Vol. 3, Nos. 1-3 (1996). 

[2] H. M. Zbib, J. P. Hirth, T. Khraishi and R. Thomson, eds., Multi-Scale Modeling of 

Deformation and Fracture, special issue of J. of Engineering Mater. and Technology, Vol. 

121, No. 2 (1999). 

[3]  V. V. Bulatov, T. Diaz de la Rubia, R. Phillips, E. Kaxiaras and N. Ghoniem, eds., 

Multiscale Modelling of Materials, MRS Symposium Proceedings Volume 538 

(Materials Research Society, Warrendale, 1999). 

[4]  L. Levine, L. Kubin and R. Becker, eds., Dislocations 2000: An International Conference 

on the Fundamentals of Plastic Deformation, special issue of Mater. Sci. and Engineering 

A, Vols. 309-310 (2001). 

[5]  E. A. Chandler and T. Diaz de la Rubia, eds., Bodega Bay International Workshop on 

Multiscale Modeling of Material Strength and Failure, special issue of J. of Computer-

Aided Mater. Design, Vol. 9, No. 2 (2002). 

[6] B. Devincre, D. Rodney and P. Veyssiere, eds., Dislocations 2004, special issue of Mater. 

Sci. and Engineering A, Vols. 400-401 (2005). 

[7] Z. Xiao Guo, ed., Multiscale Materials Modeling (Woodhead Publishing, Abington, 

2007).  

[8]  P. Gumbsch, ed., 3
rd

 International Conference on Multiscale Materials Modelling, MMM 

2006, J. of Computer-Aided Mater. Design, Vol. 14, Supplement 1 (2007). 

[9] W. Xu and J. A. Moriarty, Phys. Rev. B, 54 (1996) 6941 and Comput. Mater. Sci., 9 

(1998) 348. 

[10] S. Ismail-Beigi and T. A. Arias., Phys. Rev. Lett., 84 (2000) 1499. 

[11] C. Woodward and S. I. Rao, Philos. Mag., A81 (2001) 1305. 

[12] S. I. Rao and C. Woodward, C., Philos. Mag., A81 (2001) 1317. 

[13] L. H. Yang, P. Söderlind and J. A. Moriarty, Philos. Mag. A, 81 (2001) 1355. 

[14] J. A. Moriarty, J. F. Belak, R. E. Rudd, P. Söderlind, F. H. Streitz and L. H. Yang, J. 

Phys.: Condens. Matter, 14 (2002) 2825 and references therein. 

[15] C. Woodward and S. I. Rao, Phys. Rev. Lett. 88 (2002) 21642. 

[16] J. A. Moriarty, V. Vitek, V. V. Bulatov and S. Yip, J. of Computer-Aided Mater. 

Design, 9 (2002) 99 and references therein. 

[17] S. L. Frederiksen and K. W. Jacobsen, Philos. Mag., 83 (2003) 365. 

[18] M. Mrovec, D. Nguyen-Manh, D. G. Pettifor and V. Vitek, Phys. Rev. B, 69 (2004) 

94115. 



- 57 - 

[19] J. A. Moriarty, L. X. Benedict, J. N. Glosli, F. H. Streitz, M. Tang and L. H. Yang, J. 

Mater. Res., 21 (2006) 563 and references therein. 

[20] L. Kubin, G. Canova, M. Condat, B. Devincre, V. Pointikis and Y. Brechet, Solid State 

Phenomena, 23-24 (1992), 455. 

[21] M. Tang, L. P. Kubin and G. R. Canova, Acta Mater., 46 (1998) 3221. 

[22] M. Tang, in: Handbook of Materials Modeling, Vol. 1, ed. S. Yip (Springer, 

Amsterdam, 2005), p. 827. 

[23] M. Rhee, H. Zbib, H. Huang and T. Diaz de la Rubia, Modelling Simul. Mater. Sci. 

Eng., 6 (1998) 467. 

[24] K. Schwarz, J. Appl. Phys., 85 (1999) 108. 

[25] N. Ghoniem and L. Sun, Phys. Rev. B, 60 (1999) 128. 

[26] D. Weygand, L. Friedman, E. Van der Giessen and A. Needleman, Modelling Simul. 

Mater. Sci. Eng., 10 (2002) 437. 

[27] V. V. Bulatov and W. Cai, Computer Simulations of Dislocations (Oxford Press, 

Oxford, 2006). 

[28] V. V. Bulatov, L. L. Hsiung, M. Tang, A. Arsenlis, M. C. Bartelt, W. Cai, J. N. 

Florando, M. Hiratani, M. Rhee, G. Honnes, T. G. Pierce and T. Diaz de la Rubia, 

Nature, 440 (2006) 1174. 

[29] W. Cai, A. Arsenlis, C. Weinberger and V. Bulatov, J. Mech. Phys. Solids, 54 (2006) 

561. 

[30] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce and V. 

V. Bulatov, Modelling Simul. Mater. Sci. Eng., 15 (2007) 553. 

[31] M. Tang, G. Xu, W. Cai and V. Bulatov, Simul. Mater. Sci. and Eng., 14 (2006) 1139. 

[32] M. S. Duesbery and V. Vitek, Acta Mater., 46 (1998) 1481. 

[33] V. Vitek, Crystal Lattice Defects, 5 (1974) 1. 

[34] M. S. Duesbery, Acta Metall., 31 (1983), 1747 and 1759. 

[35] M. S. Duesbery, Proc. R. Soc. Lond. A, 392 (1984) 145 and 175. 

[36] M. S. Duesbery, in: Dislocations in Solids, ed. F. R. N. Nabarro (Elsevier, Amsterdam, 

1989), p. 67. 

[37] P. Söderlind and J. A. Moriarty, Phys. Rev. B, 57 (1998) 10340. 

[38] P. Söderlind, R. Ahuja, O. Eriksson, B. Johansson and J. M. Wills, Phys. Rev. B, 49 

(1994) 9365. 

[39] N. E. Christensen, A. L. Ruoff and C. O. Rodriguez, Phys. Rev. B, 52 (1995) 9121. 

[40] Y. Ding, R. Ahuja, J. Shu, P. Chow, W. Luo and H.-K. Mao, Phys. Rev Lett., 98 (2007) 

85502. 



- 58 - 

[41] B. Lee, R. E. Rudd, J. E. Klepeis, P. Söderlind and A. Landa, Phys. Rev. B, 75 (2007) 

180101. 

[42] P. Hohenberg and W. Kohn, Phys. Rev., 136 (1964) B864. 

[43] W. Kohn and L. Sham, Phys. Rev., 140 (1965) A1133. 

[44] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge 

Press, Cambridge, 2004) and references therein. 

[45] P. Söderlind, L. Yang, J. A. Moriarty and J. M. Wills, Phys. Rev. B, 61 (2000) 2579. 

[46] L. Yang, in: Industrial Strength Parallel Computing, ed. A. Koniges (Morgan Kaufmann, 

San Francisco, 2000), p. 297. 

[47] A. Landa, J. Klepeis, P. Söderlind, I. Naumov, O. Velikokhatnyi, L. Vitos and A. 

Ruban, J. Phys. Chem. Solids, 67 (2006) 2056. 

[48] N. Troullier and J. L. Martins, Phys. Rev. B, 43 (1991) 1993. 

[49] J. A. Moriarty, Phys. Rev. B, 38 (1988) 3199. 

[50] J. A. Moriarty, Phys. Rev. B, 42 (1990) 1609 and 49 (1994) 12431. 

[51] S. Rao, C. Hernandez, J. Simmons, T. Parthasarathy and C. Woodward, Philos. Mag., 

A77 (1998) 231. 

[52] S. Rao, T. A. Parthasarathy and C. Woodward, Philos. Mag., A79 (1999) 1167. 

[53] J. A. Moriarty, J. N. Glosli, R. Q. Hood, J. E. Klepeis, D. A. Orlikowski, P. Söderlind 

and L. H. Yang, in TMS 2008 Annual Meeting Supplemental Proceedings Volume I: 

Materials Processing and Properties (TMS, Warrendale, PA, 2008), p. 313. 

[54] H. Cynn and C.-S. Yoo, Phys. Rev. B, 59 (1999) 8526. 

[55] K. W. Katahara, M. H. Manghnani and E. S. Fisher, J. Phys. F: Metal Phys., 9 (1979) 

773. 

[56] D. L. Farber, M. Krisch, D. Antonangeli, A. Beraud, J. Badro, F. Occelli and D. 

Orlikowski, Phys. Rev. Lett., 96 (2006) 115502. 

[57] J. Sinclair, P. Gehlen, R. Hoagland and J. Hirth, J. Appl. Phys., 49 (1978) 3890. 

[58] A. N. Stroh, Phil. Mag., 3 (1958) 625 and J. Math. Phys., 41 (1962) 77. 

[59] P. H. Dederichs and G. Leibfried, Phys. Rev., 188 (1969) 1175. 

[60] D. C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972).  Our present 

elastic moduli ijC  are the stress-strain coefficients ijB  defined by Wallace. 

[61] A. T. Paxton, P. Gumbsch and M. Methfessel, Phil. Mag. Lett., 63 (1991) 267. 

[62] J. W. Morris, Jr., C. R. Krenn, D. Roundy and M. L. Cohen, in Phase Transformations 

and Evolution in Materials, eds. P. E. Turchi and A. Gonis (TMS, Warrendale, PA, 

2000), p. 187. 

[63] P. B. Hirsch, in: Proceedings of the Fifth International Conference on Crystallography 

(Cambridge Press, Cambridge, 1960). 



- 59 - 

[64] M. S. Duesbery, V. Vitek and D. Bowen, Proc. R. Soc. A, 332 (1973) 85. 

[65] A. Seeger and C. Würthrich, Nuovo Cim. B, 33 (1976) 38. 

[66] B. Sadigh, W. Cai and V. Bulatov (2002, private communication and unpublished). 

[67] M. S. Duesbery (1999, private communication and unpublished). 

[68] K. Ito and V. Vitek, Phil. Mag. A, 81 (2001) 1387. 

[69] S. Takeuchi, E. Kuramoto and T. Suzuki, Acta Metall. 20 (1972) 909. 

[70] A. Seeger and L. Hollang, Mater. Trans. JIM, 41 (2000) 141. 

[71] L. Hollang, M. Hommel and A. Seeger, Phys. Status Solidi A, 160 (1997) 329. 

[72] T. Suzuki, Y. Kaminura and H. O. K. Kirchnner, Philos. Mag. A, 79 (1999) 1629. 

[73] J. P. Hirth, in: Handbook of Materials Modeling, Vol. 1, ed. S. Yip (Springer, 

Amsterdam, 2005), p. 2879. 

[74] H. Koizumi, H. O. K. Kirchner, and T. Suzuki, Philos. Mag. A, 69 (1994) 805. 

[75] J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley-Interscience, New York, 1982). 

[76] S. Nose′, Molec. Phys., 52 (1984) 255. 

[77] W. G. Hoover, Phys. Rev. A, 31 (1985) 1695. 

[78] W. Wasserbach, Philos. Mag. A, 53 (1986) 335. 

[79] Y. Aono, E. Kuramoto, K. Kitajima, in: Strength of Metals and Alloys, Vol. 1, ed. R. C. 

Gifkins (Pergamon Press, Oxford, 1982), p. 9. 


