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     It is shown that Fermi-Dirac statistics is guaranteed by  
 
the Dirac current, from which spin-dependent quantum velocity  
 
fields and spin-dependent quantum trajectories can be  
 
inferred.  Pauli’s exclusion principle is demonstrated using the  
 
spin-dependent quantum trajectories.  The Dirac current, unlike  
 
the Schroedinger current, is nonzero for stationary bound  
 
states due to the permanent magnetic moment of the electron.   
 
It is of order c0 in agreement with observation that Fermi-Dirac  
 
statistics is independent of electronic velocity.  In summary  
 
the physical basis for exchange-correlation is found in Dirac’s  
 
equation, although Schroedinger’s equation may be used to  
 
evaluate the Dirac current in the nonrelativistic regime of  
 
electronic velocity.  
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In his little volume from the Benjamin lecture notes and reprint series  
 
Richard Feynman [1] raises the point if spin is a relativistic requirement  
 
and then answers negatively because the Klein-Gordon equation is a valid  
 
relativistic equation for a particle without spin.  The answer is not totally  
 
correct.  The Lorentz-invariant equations of motion (EOM) for a  
 
spin-0 particle can be written as the scalar product of its covariant and  
 
contravariant four-momenta operating on a scalar wave function, 
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where 

! 

e" is a scalar potential.  The Lorentz-invariant EOM for a spin-1/2  
 
particle – Dirac’s equation -  can be written as the scalar product of  
 
Dirac’s four-vector and the electron’s four-momentum operating on a  
 
four-component vector wave function, 
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where the first four-vector on the left side of Eq. (2) contains Dirac’s 
                                                  0     σ 
beta (
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$ =                 ) matrices. The scalar product of  

                                                 -σ     0  
two four-vectors is always Lorentz invariant; therefore a second step is  
 
required to prove the covariance of the four-component vector  
 
wave function 
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 [2].   
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     But it is possible to prove the Lorentz invariance of the spin-1/2 EOM  
 
in a single step by writing it as a pair of coupled equations formed by  
 
successively taking the scalar products of the electron’s mass- 
 
renormalized four-momenta 
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an earlier paper [3] and called four-spinors.  We obtain the pair of Lorentz  
 
invariants,                    
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                                                                          ξ 
which are identically Dirac’s equations, where 
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"
D

=           and the wave- 
                                                                          χ 
function components in 

! 

"
D

 are respectively Dirac’s large and small two- 
 
component spinors formed in the usual way from linear combinations of  
 
the products of spherical harmonics and alpha or beta spin eigen- 
 
functions.  Hence we may revise Feynman’s answer here by saying that  
 
spin is indeed a relativistic requirement in the sense that spin guarantees  
 
the Lorentz invariance of a particle EOM having a vector rather than a  
 
scalar wave function 
 
     How is it then that Fermi-Dirac statistics is obeyed in the permutation 
 
symmetry for the exchange of identical electrons in nonrelativistic  
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quantum theory, in which Pauli’s spin vector does not even appear?  The 
 
answer is found in the Dirac current, 
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which is of order c0, since c in Eq. (4) is cancelled by the c-1 dependence  
 
of the small component of the wave function, putting the current  
 
squarely in the nonrelativistic regime.  A finite current is a physical  
 
consequence of the existence of the electron’s permanent magnetic  
 
moment.  The current vanishes in Schroedinger theory for the bound  
 
stationary states of an atom because Schroedinger theory has omitted  
 
the physics of the electron’s magnetic moment. 
 
     As we show in the body of the paper it is possible to infer spin- 
 
dependent quantum velocity fields and quantum trajectories from the  
 
Dirac current for a single-electron Dirac equation.  This equation is  
 
coupled to the single-electron Dirac equations of the other electrons  
 
through the electron-electron Coulomb interaction, which depends on the  
 
three spatial coordinates of the reference Dirac equation and on the time  
 
through the trajectories of the other electrons.  These spin-dependent  
 
quantum trajectories show the following properties.  If two electrons with  
 
the same spin state are assigned the same spatial orbital at initial time,  
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then their trajectories remain identical for all times, which means that the  
 
electrons do not correlate.  On the other hand if the two electrons are  
 
assigned opposite spin states in the same spatial orbital at initial time,  
 
then after a transient they correlate.  The correlation is demonstrated  
 
(Fig. 1) in two trajectories which exhibit periodic excursions of two  
 
electrons to the opposites sides of a point nucleus  The physics of  
 
correlation – the two interacting electrons mutually recoil to a maximum  
 
distance from each other – cannot be captured by standard mean-field  
 
theories, in which partial screening of the nucleus and electronic exchange 
 
omit the instantaneous response of a reference electron interacting with  
 
the other electrons.  The physical description of the response requires 
 
the entire spectrum of states of the Hamiltonian.   
 
     Two electrons in the same spin state but with an assignment of  
 
different spatial orbitals at initial time also correlate.  Thus Pauli’s  
 
exclusion principle, which is the rule used in nonrelativistic quantum  
 
theory to guarantee Fermi-Dirac statistics, is manifestly observed in the  
 
quantum trajectories inferred from Dirac’s current.  Exchange as  
 
guaranteed by the odd permutation symmetry of Slater’s determinantal 
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wave function on the exchange of identical electrons is not a physical  
 
effect:  if electron correlation is correctly described, it is sufficient to  
 
write the total wave function as a simple, unsymmetrized product of  
 
atomic orbitals.  This point was understood in the early days of quantum  
 
mechanics, as discussed in Riley, Schulman, and Musher [4], although  
 
virtually all practical applications proceeded from the symmetrization of a  
 
product of atomic orbitals. 
 
     The observation that Fermi-Dirac statistics is independent of  
 
electronic velocity but yet depends fundamentally on the spin-1/2 nature  
 
of an individual electron demonstrates the governance of the Dirac’s  
 
equation even in the nonrelativistic regime in the physics of exchange- 
 
correlation and Fermi-Dirac statistics, although to out knowledge practical  
 
calculations demonstrating this governance appear not to exist.   We may  
 
of course evaluate the current using Schroedinger wave functions if we  
 
are otherwise in the nonrelativistic regime with respect to electronic  
 
velocity.  We develop the details of the present theory and present our  
 
numerical results in the remainder of the paper. 
 
     In Eq. (4) on eliminating the small component in favor of the large  
 
component, on assuming the Schroedinger form for the large component  
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contributions diagonal in the spin eigenfunctions, 
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for upper (lower) signs for diagonal spin-up (spin-down) contributions.   
 
The first term on the right side of Eq. (5) is the Schroedinger current,  
 
which vanishes for bound stationary eigenstates.  The next two terms for  
 
unit vectors in the x and y directions are Dirac contributions which are  
 
transverse to the quantization axis.  
 
     Velocity and position fields can be inferred from Eq. (5), 
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The trajectory itself is calculated from the expectation value of the  
 
position field,                              
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Notice that the wave function density in the denominator of Eq. (6a) 
 
Is not cancelled by the wave function density in Eq. (7) due to the 
 
temporal integration in Eq. (6b), which archives the history of the  
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trajectory operator   
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     A time-dependent Schroedinger equation for is written for each  
 
electron as follows, 
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where the sum runs over all of the other electrons.  These 
 
Schroedinger equations are solved in the time and Cartesian coordinates  
 
using the implicit PDE solver described in a previous publication [5].  
 
Notice that the Schroedinger term in Eq. (4) does not vanish when Eq. (4) 
 
is evaluated using the time-dependent wave functions (hereafter called  
 
the spectral wave functions) calculated from Eq. (8) since these are  
 
superpositions of eigenstates [6].  Although the interelectronic  
 
interaction in Eq. (8) is time dependent, we nevertheless find that a  
 
solution has a stationary spectrum of states from which we can calculate  
 
eigenfunctions by inverse temporal Fourier transformation [6].  These  
 
eigenfunctions are then used in Eq. (7) to calculate new trajectories –  
 
hereafter called eigentrajectories.  Then the many-electron energy is  
 
calculated from the expectation value of the Hamiltonian using an  
 
unsymmetrized product of the eigenfunctions.  The physics of exchange- 
 
correlation is captured in the calculation of the interelectronic potential 
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whose use in the Schroedinger equation causes the spectral suppression  
 
of states which violate Pauli’s exclusion principle such that a  
 
symmetrization of a product wave function to evaluate the the  
 
Hamiltonian is unnecessary. 
 
     Our results are presented in Fig. 1 and Table 1.  Fig. 1 shows  
 
late-time trajectories calculated using the the spectral wave functions,  
 
eigentrajectories calculated using the eigenfunctions “filtered” [6] from  
 
the spectral wave functions, and the energy obtained as the expectation  
 
value of the two-electron Hamiltonian.  Notice that the maximum  
 
excursions about the nucleus of the spectral trajectories are much larger  
 
than those of the eigentrajectories, which reflects the excited-state 
 
content of the spectral wave functions.  The envelop of the spectral 
 
trajectories gradually increases with time, reflecting their continuum-state  
 
content. 
 
     The ground-state binding energy is overestimated by a few percent  
 
(Table 1).  We believe that that this is due to the difficulty of completely  
 
eliminating dissipative or non-energy-conserving errors in the temporal  
 
integration of the trajectories, which appears to be especially troubling in  
 
the Schroedinger contributions to the current, which are small compared  
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to the transverse contributions and numerically noisy, as observed from  
 
the z-component.  Non-energy conserving errors in the integration of the  
 
trajectories lead to an overestimation of the binding energy through  
 
erroneously large excursions from the nucleus, which lead to an  
 
underestimation of the interelectronic potential.  The flatness of the  
 
envelops of the eigentrajectories in Fig. 1 shows that non-energy  
 
conserving errors in the integration of the trajectories have been reduced  
 
to an acceptable level.  
 
     The Schroedinger x- and y-contributions are also included in the  
 
transverse trajectories but appear to be negligible compared to the Dirac  
 
contributions.  The Schroedinger contributions are possibly unphysical as 
 
suggested by their increasing smallness with increasing refinement of the 
 
temporal mesh.  Notice also that a scheme of solution iterating on the  
 
current would eventually extinguish the Schroedinger contributions, which  
 
are zero for bound Schroedinger eigenstates. 
 
     Notice that the spectral trajectories are strongly correlated over most 
 
of the times shown in Fig. 1.  This is due solely to the equal and opposite 
 
Dirac contributions to the current [Eq. (5)] for alpha and beta spin states, 
 
since each electron is assigned the same spatial orbital at initial time.  The 
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singlet excited state (Table 1) is similarly calculated using equal and  
 
opposite Dirac contributions and the same spatial orbital at initial time for  
 
both electrons except that in this case one of the electrons is assigned to 
 
the first-excited member of the spectrum of states generated from the 
 
time-dependent Schroedinger equation belonging to the electron which is  
 
assigned to the excited orbital.  The triplet state is calculated using  
 
identical Dirac contributions to the current appropriate for parallel spin  
 
states but with widely different orbitals assigned to the two electrons at  
 
initial time, as well as assignment of one of the electrons to the first  
 
excited member of the Schroedinger spectrum belonging to the electron  
 
which is assigned to the excited state.  We believe that a perfect  
 
calculation in the triplet case would depend on choosing the initial orbital  
 
of one of the electrons such that all spectral members lying below the  
 
orbital excited state are totally rather than just partially suppressed.  Yes  
 
it is possible to introduce a physically incorrect electron distinguishability  
 
in the choices of initial conditions.  Yet it appears that most of any bias  
 
which might exist through the choice of initial conditions is reduced to an  
 
acceptable level over time as the trajectories correlate, although  
 
injudicious initial conditions can be a source of error. 
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     In conclusion we have demonstrated that Fermi-Dirac statistics has a  
 
relativistic physical basis in the Dirac Hamiltonian and current  
 
notwithstanding that otherwise we may be in the nonrelativistic regime of  
 
electronic velocity.  We believe that the present theory elucidates the  
 
physics of how the spin-1/2 nature of an individual electron affects the  
 
motion in the aggregate of many electrons.  Finally the theory offers a 
 
new computational methodology in which the replacement of the  
 
physically correct electron-electron interaction with a mean-field model 
 
interaction is eliminated. 
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Table 1.  Energy levels for He in a. u.   
 
                Present Theory                          Variational [7]                       
 
11S             -3.00250                                                       -2.90372 
 
8001 temporal grid points for 0<t<100 a. u.                            
 
21S           -2.14353                                                          -2.14597 
 
8001 temporal grid points for 0<t<200 a. u. 
 
23S           -2.17339                                                          -2.17523 
 
4001 temporal grid points for 0<t<200 a. u. 
 
The ground-state calculation uses a 323 spatial 
mesh for a square computational box with 
edge length of 9.4981 a. u.  The excited-state  
calculations use a 323 spatial mesh for a square  
computational box with edge length 15.0773 a. u.  
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Figure captions 
 
Fig. 1.  He ground-state trajectories and energy. 

! 

R " spectral trajectories  
 
(large-amplitude trajectories) in the y direction for the alpha (solid) and  
 
beta (dashed) spin states (calculated from Eqs. (6) and Eq. (7) using  
 
spectral wave functions); radial eigentrajectories (small-amplitude  
 
trajectories) for the alpha (solid) and beta (dashed) spin states  
 
(calculated from Eqs. (6) using spectral wave functions and from Eq, (7)  
 
using eigenfunctions); energy (flat solid curve near -3 a. u.)  
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