
LLNL-TR-410901

IP Profiling via Service Cluster
Membership Vectors

A. Bartoletti

February 27, 2009

–2–

Disclaimer

This document was prepared as an account of work sponsored by an agency of the
United States government. Neither the United States government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States government or Lawrence Livermore National Security, LLC, and shall not be
used for advertising or product endorsement purposes.

Auspices Statement

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
This work was funded by the Laboratory Directed Research and Development
Program at LLNL under project tracking code 08-FS-007.

–3–

FY08 LDRD Final Report
IP Profiling via Service Cluster Membership Vectors

LDRD Project Tracking Code: 08-FS-007
Tony Bartoletti, Principal Investigator

Abstract

This study investigates the feasibility of establishing and maintaining a system of
compact IP behavioral profiles as a robust means of computer anomaly definition and
detection. These profiles are based upon the degree to which a system’s (IP’s)
network traffic is distributed among stable characteristic clusters derived of the
aggregate session traffic generated by each of the major network services. In short,
an IP’s profile represents its degree of membership in these derived service clusters.
The goal is to quantify and rank behaviors that are outside of the statistical norm for
the services in question, or present significant deviation from profile for individual
client IPs. Herein, we establish stable clusters for accessible features of common
session traffic, migrate these clusters over time, define IP behavior profiles with
respect to these clusters, migrate individual IP profiles over time, and demonstrate
the detection of IP behavioral changes in terms of deviation from profile.

Introduction/Background

Contemporary means of computer network intrusion detection rely upon specific
"signatures" (traffic in known bad-content, connections to known bad destinations,
use of unknown services on unusual ports) or make other brittle assumptions
regarding expected bad behavior. Adversaries have adapted to these detection
means by encrypting content, employing large proxy servers as destinations
(rendering most all destinations both good and bad in order to frustrate IP-blocking)
and have adapted to the modern network security practice of disallowing services on
unusual ports by "tunneling" malicious command traffic and data exfiltration within
the standard service protocols, and targeting attacks to the application layer.

For these reasons, anomaly methods have become increasingly critical for detecting
compromised systems and related abuse such as illicit data-exfiltration in the
absence of prior knowledge of specific attacks.

Anomaly detection methods place an additional burden upon the adversary, who
must now appear both syntactically correct and statistically normal. By defining IP
profiles in terms orthogonal to the range of characteristic service clusters, a uniform
means to broad and generalized anomaly detection is supported.

An additional motivator for the proposed method is the relative ubiquity of network
flow summary data in large enterprise network monitoring, and in support of feature
generation. In contrast to signatures derived over specifics of session content, which
quickly become stale as network content evolves, fundamental measures such as
per-service session packet and byte volumes, durations and invocation times are
expected to remain meaningful over time. While clearly less informative than full
packet capture in detection of known threat content, these session summary

–4–

features provide a straightforward and durable foundation for statistical treatment of
traffic behaviors.

This work is an extension of a study conducted by the author and a colleague, where
cluster set distance is derived and employed to distinguish service traffic, especially
when services may be set up illicitly on unusual ports[1].

Available Data

The data subject to this study is “session connection summary” data, representative
of a large corporate enterprise. Each event record summarizes a network connection
in terms of endpoints (initiating and responding IP addresses), time of connection,
session duration, protocol and service, total bytes sent, total bytes received, total
packets sent and total packets received. Although minimally informative (no packet
payload content is investigated) this form of summary is commonly produced for
gigabit-per-second traffic due to its brevity. It is reasonable to assume that results
might improve for those cases where greater detail is available for profile
consideration.

Such session summary data is usually captured at a site’s outer boundary router, a
common traffic “choke point” minimizing the need to manage multiple sensors. Such
sensor position has a serious drawback when outbound client requests are internally
“proxied” – the sensor sees only a handful of proxy systems issuing thousands of
session requests, rather than the actual thousands of IPs issuing sessions on their
own.

We limit our interest to profiling the behavior of internal systems, with respect to
boundary-crossing activities they have initiated. Hence, we filter the traffic to
sessions that have been initiated in the outbound direction and evidence bi-
directional data flow. In this regard, we limit ourselves to protocol 6 (TCP) and
protocol 17 (UDP) traffic, and for TCP insist that the flow record indicate the “full
session handshake” flags are present. This helps to ensure we are not double-
counting sessions.

The flow records are provided in files containing 15 minutes of boundary-crossing
traffic, 96 files per day, each file about 50 MB uncompressed and representing over
100,000 session (flow) records. In the daily accumulations of 96 15-minute files,
filtered to TCP and UDP protocol and two-way data flow, the following protocol-port
combinations are seen to represent nearly all of the traffic:

Service Description Protocol-Port Sessions/Day Percent Proxied?
HTTP (web) traffic 6-80 3,500,000 61.9 Yes
DNS (Domain Name Service) 17-53 1,400,000 24.8 Yes
HTTPS (Secure web) 6-443 560,000 9.9 Yes
NTP (Network Time Protocol) 17-123 130,000 2.3 No
SMTP (Simple Mail Transfer
Protocol)

6-25 30,000 0.5 Yes

SSH (Secure Shell) 6-22 28,000 0.5 No
FTP (File Transfer Protocol) 6-21 5,000 0.1 No
TOTAL 5,653,000 100.0

Figure 1 – Daily Session Counts by Service (average over 4 consecutive
workdays)

–5–

Any uniform profiling of session activity will need to be made in terms of these
services. Unfortunately, it turned out that several of these services were "proxied" -
hundreds of individual IPs conducting (for instance) HTTP sessions have their
requests funneled through a handful of systems that conduct the outbound sessions
on behalf of the actual client IPs. The border sensor sees only the proxies
contributing to highly-aggregated behavior in such cases. To further complicate
matters, there are hours or days when the proxies fail, and then the number of IPs
seen conducting HTTP sessions will jump from (eg) 10 to over 1000.

The following table (figure 2) reveals the number of internal IPs seen issuing border-
crossing sessions on the major services. Where non-proxied, these are typically
“desktop” systems.

Protocol-Port Approximate Unique IPs Active per Day (at
boundary)

Proxied?

6-80 10/1900 (proxied/non-proxied) Yes (inconsistent)
17-53 10 Yes
6-443 10/400 (proxied/non-proxied) Yes (inconsistent)
17-123 1300 No
6-25 3 Yes
6-22 240 No
6-21 200 No

Figure 2 – Daily IP Counts by Service
Based upon this data assessment, we chose to conduct IP profiling on all 7 indicated
protocol-port services, but for ports 80 and 443 (web traffic) limiting ourselves to
only those days when proxies were in effect, as these days far outnumbered the
occasions of proxy-failure. This means our ability to profile the “end user desktop”
IPs is limited to SSH (6-22), FTP (6-21) and NTP (17-123) service traffic.

Producing Feature Vectors

In preparing the data for service clustering, we transform each session flow record
into a characteristic “feature vector” presenting sufficient component range and
variation for cluster support. In this regard, we have chosen to produce feature
vectors based upon the following 6 components:

(Proximity-to-midnight,duration,bytes-sent,bytes-received,packets-
sent,packets-received)

We partition these derived records according to protocol-port, and separately retain
the identity of the initiating IP for each record. Such elements will not contribute to
the clustering calculations.

The justification for tracking both byte and packet counts is that services often
display characteristic packet sizes, or bytes per packet, and unusual deviations in
these numbers can be evidence of abuse. We transform the session timestamp to
“proximity to midnight” (PTM), in order that very late evening activity (11 PM) and
very early morning activity (1 AM) not be artificially and widely separated. Scaling
this measure to the range [0.0,1.0] means that sessions occurring during regular
work hours are assigned PTM values above 0.5, while off-hour activities will have
PTM < 0.5.

–6–

Preliminary assessment of the data revealed all features other than PTM to be highly
skewed toward zero, with a relatively sparse population of large outliers. In order to
better condition upon fine structure in the dense region near zero, these skewed
components were transformed as follows:

x’ = 0 if x = 0
x’ = 0.05 + 0.95*(ln(x) - min(ln(x))/(max(ln(x) - min(ln(x)) otherwise.

The before and after result of these logarithmic normalizations is depicted in figure 3,
where the white background is used to indicate the presence of data too small to
produce visible histogram columns. One can clearly see structure amenable to
clustering in the log-normalized representations.

Figure 3 – Feature Vector Component Distributions

Data Clustering and Stability

Data clustering exists to take points from a continuous (or discrete) and often high-
dimensional space, and assign them categorically to a lesser collection of groups.
This is desired foremost as a means to quickly understand the structure (if any)
present in the data - which values of which features tend to occur together, which
"quadrants" of the space appear empty, etc. Put most simply, clustering algorithms
seek to identify regions of high density bounded or separated by regions of relatively
lower density, and then to assign each point to the "region to which it belongs",
accordingly.

Clustering algorithms can be broadly classed into "top-down" methods (generally
involving k-means and repeated bisections) and bottom-up methods (various
agglomerative techniques), all of which have variants according to the distance

–7–

functions and similarity criteria one chooses to apply. Commonly, these algorithms
expect "desired number of clusters" to be supplied as an input parameter, and then
they divide (or agglomerate) until the desired number of clusters is obtained. This
can be frustrating, when the efficacy must be tested over a variety of clustering
solutions.

A range of techniques have been developed that attempt to identify the "correct"
number of data clusters evident in a data set. This will always be a bit of a black art,
as one can always create pathological data sets for which any fixed cluster
assessment logic will fail to arrive at a consistent or "reasonable" number. Consider
for example figure 4, where one might argue either that 3, or 7, is a better measure
of the number of clusters presented.

Figure 4 – Cluster Count Ambiguity

We have chosen to employ a stability-based cluster number determination, inspired
by the work of Heer and Chi [2]. Stability-based methods proceed by repeatedly
taking many random (say) 80% samplings of the data points and applying a fixed k-
way clustering to each sample. Each pair of samples will have about 64% of the
base population data in their mutual intersection, and we consider whether pairs of
points taken from the intersection do, or do not appear consistently in a common
cluster under both sample cluster solutions. A high fraction of point-pairs that are
either members of a common cluster in both samples (or of different clusters in both
samples) is taken as evidence that the samples presented a similar cluster structure
(the clusters correspond to "true" and consistent regions of relative density,
unaffected by the 80% sampling). The Rand statistic, Fowlkes-Mallows statistic, and
Jaccard coefficient provide various normed similarity measures in comparing cluster
solutions. By repeating the experiment many times (e.g. conducting a round-robin
of similarity measures among the sample cluster solutions) one produces a PDF, and
then CDF of the statistic in question, the particular curve indexed by "k", the number
of requested clusters.

This method of testing for stability requires that each pair of sample datasets have
most of their elements in common, owing to the nature of the Rand, Fowlkes-
Mallows and Jaccard formulations as similarity measures (the Jaccard formulation
requires a specific a-priori matching exist between the clusters of two k-way
solutions). A small fraction, say 20% of the points, differ between the samples and
can be considered as "noise" that seeks to obscure the clustering result. In the
presence of such noise, the ability of a clustering procedure to cluster the "commonly
held" points similarly is then seen as a testament to the stability of the solution, and
points especially to having chosen a "correct" cluster count.

–8–

We considered the work of Meila[3] in promoting the notion of “Information-
Variation” distance, specifically for assessing the similarity of competing clustering
solutions. Every clustering induces a random variable X, representing the cluster
(index) to which a randomly selected point has been assigned. Recall that the
entropy of any random variable X is given by

H(X) = -∑(PX(i)log(PX(i)), where i ranges over the possible values of X,

and for any two random variables X and Y, one can define their mutual information
by

I(X,Y) = ∑(PXY(i,j)log(PXY(i,j)/PX(i)PY(j))), i and j ranging over the values of X and
Y, respectively.

The mutual information between two random variables X, Y indicates the degree to
which knowledge of the outcome of one provides information regarding the outcome
of the other. If they are independent, then I(X,Y) = 0. One can then go on to define
variation of information to represent the sum of information gained and lost, when
assessing one variable as opposed to another. This sum is depicted in green in
figure 5 below.

Figure 5 – VI-Distance
Applying VI-distance as a metric in the cluster-stability tests outlined by Heer and
Chi provides a strong indicator of the “correct” number of clusters of a data set. We
exercised this claim in a test consisting of 1000 points, arranged in the form of 6
distinct Gaussian clusters. Of this set, 20 independent random 80% selections were
made, each clustered into k clusters, and a round-robin VI-distance comparison of
the 190 pairs of solutions was made. The following graph of CDFs of the VI-
distances for cluster counts k=2 through k=15 is obtained (see figure 6). Note how

I(X,Y)

H(X)
H(Y)

H(X|Y)

H(Y|X)

VI(X,Y) = H(X|Y) + H(Y|X)

 = H(X) + H(Y) - 2*I(X,Y)

Variation of Information

–9–

the desired number of clusters (6) is distinguished as the first (rightmost) member of
the regular curves on the left side of the graphic.

Figure 6 – Cluster Count Estimation by Stability of VI-Distance

A facility of VI-Distance is that it can be used to compare random variables with
different structure, such as might be imposed by comparing clusterings with differing
cluster counts. However, the resulting graph turned out to be far more difficult to
interpret when the data was noisier or more ambiguous that the example with well-
behaved Gaussians. Our desire to employ consistent clustering as a basis for
characterizing the contributing generators (individual IP behaviors) requires a test of
stability that will always be applied between pairs of clusterings of identical cluster
count. From one day to the next, our datasets will have no points in common.
Rather, they will have been produced by (approximately) the same generators.

Instead, we conducted our k-way clustering comparison by considering the centroids
of the k clusters from each set, and matching them up so as to produce a minimal
sum of vector distances. Explicitly, we define a cluster set distance D as follows.

If {a1, a2, ... ak} and {b1, b2, ... bk} are the centroids for clusterings A and B, we
seek a set of k pairs {(ai,bj)} with 1≤i≤k, 1≤j≤k, each value of i and j occurring
exactly once, such that the sum of vector distances D = ∑ dist(ai,bj) is minimal.
We take "dist" to be the ordinary Euclidean distance on points, although any
desired distance function on components is allowed. We take this minimal D to
be the distance between the centroid sets A and B.

–10–

Note that one cannot rely upon a greedy algorithm to obtain a minimum here.
Consider a1=0, a2=3, b1=2, b2=6. The greedy algorithm would dictate using
dist(a2,b1) = 1, forcing us to then use dist(a1,b2) = 6, for a sum of 7. In contrast,
the minimal matching is obtained by dist(a1,b1) + dist(a2,b2) = 2+3 = 5. It might
then seem one would have to measure all k! permutations in matchings from AxB to
determine the minimal matching. However the Hungarian Matching algorithm[4] can
be employed to obtain the desired minimal pairing of distance-weighted edges in
polynomial time (optimally O(k3)). This involves a particular reduction procedure
over the KxK matrix [dist(ai,bj)].

We should justify calling D an actual "distance" function. Clearly, for any two sets of
k centroids A and B, with D = min ∑ dist(ai,bj), we will have D ≥ 0, and D = 0 IFF
the two sets of centroids are identical. It should also be clear that we must have
D(A,B) = D(B,A). To establish the triangle inequality, we must demonstrate that for
sets A, B, C we must have D(A,C) ≤ D(A,B) + D(B,C). Let the centroids of each set
be fixed in index. Then D(A,B) is obtained by a particular permutation PAB of indices,
and D(B,C) is obtained by another permutation PBC of indices. Our definition
demands that some permutation PAC of indices give the minimal "distance" D(A,C).
Consider instead an alternate distance D'(A,C) given by permutation P'AC = PBC*PAB.
This permutation induces a matching between sets A and C by composition of the
individual mappings used to obtain D(A,B) and D(B,C). As the triangle inequality is
thus satisfied component-wise, we must have D'(A,C) ≤ D(A,B) + D(B,C). As we
must also have D(A,C) ≤ D'(A,C), the triangle inequality is satisfied by D.

Armed with this measure of distance between k-clusterings of disjoint sets, we can
apply it as well to a stability-based method for cluster-count determination. Figure 7
demonstrates the result of this method, applied to the very same 6-gaussians data
that was the basis of figure 6. Here, the suggested number of clusters can be found
by seeking global (or local) minima, with 6 producing a clearly distinguished minima.

–11–

Figure 7 – Cluster Count Estimation by Mean Cluster-Set Distance

When we apply this method of cluster count determination to the actual session
data, the results are not quite as unambiguous. However, they were sufficient to
allow a reasonable selection of cluster count for the various services under study.
This is exemplified by figure 8, for SMTP and DNS traffic respectively. For each
service, the records for each of 4 separate days were sampled in 20 subsets at 80%,
and a k-way clustering was applied. The minimal matching distance was determined
for the 190 round-robin pairings of cluster solutions, and the mean distance and
standard deviation recorded. The plot of these means, for 2 <= k <= 15, provides a
single blue line in each figure (red for stdv) and the entire process is repeated for 4
consecutive days. The heavy blue and red lines indicate the mean values for the 4
days. The evident consistency of the results suggests it is reasonable to assign an
“optimal” cluster count employing this method.

–12–

Figure 8 – Cluster Count Determination

Based upon the results obtained by this method, the following selection of cluster
counts was decided for each of the 7 services subject to profiling:

Service Description Protocol-
Port

Cluster
Count

HTTP (web) traffic 6-80 11
DNS (Domain Name Service) 17-53 8
HTTPS (Secure web) 6-443 11
NTP (Network Time Protocol) 17-123 7
SMTP (Simple Mail Transfer Protocol) 6-25 7
SSH (Secure Shell) 6-22 7
FTP (File Transfer Protocol) 6-21 11

Figure 9 – Selected Cluster Counts by Service

As an aid to visualizing the longitudinal stability of the service clustering, a clustering
solution was obtained for each of 15 consecutive workdays. The centroids obtained
for the first day were treated as the “root” cluster centroids for the given service,
and each is given a unique color in the parallel coordinates graph in figure 10 below.
On each subsequent day, an independent clustering is obtained. The new centroids
are matched to the root centroids according to minimal matching distance, and
colored accordingly. For each cluster, the black-edged line indicates the mean of the
corresponding centroids.

–13–

Figure 10 – Parallel Coordinate Visuals of Service Cluster Histories

–14–

A Regime for Service and IP Profile Updates

In our routine IP-profiling activity, data is processed on a daily basis. Each day, the
session summary data is filtered down to the selected services and then further
restricted according to our other limiting criteria (“outbound” initiated sessions, full
sessions only, two-way packet exchanges) and the feature vectors produced. The
resulting collection of records is then processed in support of two separate activities:

1. Creation or update of canonical service clusters and centroids

2. Creation or update of IP profiles and daily anomaly ranking

To describe these activities in detail, we provide the following definitions:

Def. Canonical Service Clusters
For an agreed-upon structure of service feature vectors, and a predetermined
clustering method and cluster count K, let an initial set of such vectors be clustered
and declare the resulting set of cluster centroids to be the initial canonical service
clusters (CSC) for the service in question, and write

CSC = {csc1,…,cscK}

to denote the set of centroid vectors, ordered (initially) in an arbitrary but fixed
manner. For each subsequent day contributing to the history of the service, that
day’s feature vectors are clustered by the same methods, producing a new set of
centroids SC = {sc1,…,scK}, where the ordering is now performed in accord to the
minimal sum (Euclidean) matching distance to the centroids of the CSC. For a
desired decay factor α, we migrate the CSC toward the current day’s centroids to
produce the updated CSC’ by

CSC’ = { α csci + (1- α)sci }, for i = 1,…,K.

In our study, we chose α = 0.90 as the weight to apply to the previous mean on
each update. Note that in calculating the initial centroids csci of the clusters, one
could also maintain and migrate the covariance matrix (CV) of the component
features. Where µ1i and µ2i are the historical and recent values of an i-th centroid
component, and CV1ij and CV2ij are the historical and recent values of a cell in the
covariance matrix, one can produce the updated components by

µi = α µ1i + (1- α) µ2i

CVij = α (CV1ij + µ1i µ1j) + (1- α) (CV2ij + µ2i µ2j) - µi µj

If the covariance matrix is maintained (and is invertible), a more accurate measure
of the association of arbitrary feature vectors to the canonical service centroids can
be obtained by using Mahalanobis distance [5].

Armed with the service CSC’s, we produce and update daily IP profiles by considering
the degree to which each IP’s activities on a given service align to the corresponding
service clusters.

Def. Service Cluster Membership Vector (SCMV)

Let V(IP,S) = { vt }, t = 1,…,T be the feature vectors corresponding to the activities
of a particular client IP on a selected service S, those activities comprised of T

–15–

sessions for a given day. Let CSC = {C1,…,CK} be the K canonical service clusters
representing the basis by which the vectors V(IP,S) are to be assessed.

We define this IP’s service cluster membership vector (SCMV), for the day in
question, to be the normalized K-dimensional vector u = <u1,…,uK>, where the value
ui represents the degree to which the feature vectors of V(IP,S) are associated with
service cluster Ci. In particular, for each vt in V(IP,S) we may consider the vector
distance from vt to each canonical service cluster centroid as

di,t = dist(vt – Ci), i = 1,…,K

and take the contribution of vt to each cluster to be inversely proportional to this
distance, raised to a power of our choosing. (For our study, we chose p=2). This
leads each vt to contribute to the i-th component ui of the normalized membership
vector u in the amount

1/((di,t)p∑j
K(1/ dj,t)p)

Summing the (normalized) contributions from all v in V(IP,S), we obtain
u = < ui >, i = 1,…,K

= < (1/T) ∑t
T[1/((di,t)p∑j

K(1/ dj,t)p)] >

Note that if we let the exponent p → ∞, then each vector v merely contributes the
amount 1/T to the component whose centroid is closest to v (or contributes 1/(nT) to
the closest n components in the case of an n-way tie).

As with the canonical service cluster centroids themselves, we establish for each IP
and service an initial SCMV to represent that IP’s “profile”, and for subsequent days
we calculate a new value from that day’s activities and migrate the profile
accordingly, maintaining a “running mean” SCMV U for the IP by

U’ = < u’i > = < αUi + (1 – α) ui >, for i = 1,…,K

In summary, each day of processing involves

1. IP Behavior Snapshot
Production of that day’s SCMVs, for each IP and each service, conducted by
assessing the feature vectors of each IP and service with respect to the current
canonical service cluster centroids (CSCs).

2. IP Anomaly Ranking
Comparisons of each IP’s SCMVs to their own historical mean SCMVs, in order to
generate an anomaly score for ranking purposes.

3. IP Profile Maintenance
Migration of each IP’s historic profile SCMVs using the current day snapshot
SCMVs.

4. Canonical Service Cluster Maintenance
Independent clustering of all behaviors evidenced for each given service to
produce the current day’s service clusters, and the migration of the historical
canonical service clusters (CSCs) accordingly.

–16–

Results/Technical Outcome

Performance

For the typical daily volumes (5.5M sessions, 10-2000 IPs active), the
aforementioned processing requires approximately 15 minutes on a commodity Dell
blade (i686 processor). This is roughly 100 times faster than “real time”, and
suggests ample leeway exists to extend the profiling activity.

This measure does not include the cluster stability testing employed at the outset to
select the cluster count for each service.

Measures of Effectiveness

Ideally, we would have a history of systems for which some subset was known to be
subject to compromise (evidenced by beaconing or unusual data exfiltration) during
the period of study. This would provide a degree of “ground truth” in the separation
of compromise-derived anomaly from the background of (assumed) innocuous
anomaly.

In lieu of such data, we can examine the sensitivity of the subject profiling measures
in terms of the distributions of deviation from profile and also the temporal patterns
of high anomaly. Two such methods are depicted here.

In the first method, we consider how well these IP profiles serve to isolate individual
IPs. In particular, we consider the daily membership vectors (SCMVs) generated for
each IP (and for each service), and determine how well proximity to the IP’s service
profile serves to classify the membership vectors.

For each service, we limit our investigation to the profiles of those IPs whose
behaviors were evidenced in each of the 43 “consecutive” workdays of the study
(excluding weekends and holidays). For each qualifying IP, we define a service-
neighborhood to be the (presently spherical) region centered on the IP’s service
profile, whose radius is given by the IP’s most distant membership vector. Hence,
the region encompasses every membership vector evidenced by the IP. We then
conducted a random sample of days to obtain the membership vectors attributed to
IPs other than the profiled IP, sorted these together with the IP’s own vectors in
terms of distance to profile, and mapped the rates of true and false positives as
distance from profile increased to the neighborhood radius. The resulting ROC
curves, and effectiveness in terms of area under curve (AUC) are depicted in figure
11.

–17–

Figure 11 – Selected ROC Curves for Non-Proxied Services

These ROC curves are for comparative purposes only, as they are heavily affected by
outliers of each IP, which determines the population of false positives. Even so, one
can see that the FTP service (6-21) allows much better discrimination of IP behavior
that either SSH (6-22) or NTP (17-123). One can surmise the dismal ability to
discriminate based upon NTP is due to the lack of variations able to be exercised
within that protocol. To obtain a more accurate assessment of the effectiveness in IP
discrimination, one could measure profile neighborhoods in terms of Mahalanobis
Radii. We also expect that we would obtain strong results for web traffic (HTTP,
HTTPS) if we could access the individual IP behaviors "behind" the proxy servers.

In the second method, we compare each IP’s daily membership vector to the history
of its moving average. By displaying these differences in a triangular array, one can
immediately visualize the relative stability or volatility in the behavior of each IP, and
easily identify those points in time when a significant departure from historical
behaviors has occurred (figure 12).

–18–

Figure 12 – Visualizing IP Histories

One interprets a graph in figure 12 by proceeding from the lower-left to upper-right
corner along the “white diagonal” (cells directly adjacent the colored region). Each
cell on that diagonal represents another day (its corresponding daily membership
vector), and to its left lies a row of colored cells moving back through past days.
Those cells are colored toward blue when the current day’s vector is close to that
past day’s running mean membership vector U, and tends toward red when it is
correspondingly distant. For example, in the graph for “IP-3: 17-123 (NTP)”, the
horizontal cells left of almost every diagonal cell are uniformly blue-purple, indicating
that each day was relatively similar to all past days, until one arrives at the 7th from
last day. On that day, a significant departure is evident – the entire row is bright
red. Thereafter, the behavior returns to its previous quality, similar again to all past
days except for the one anomalous day. Likewise, one can interpret IP-2 (a web
proxy) to alternate somewhat irregularly between at least two distinctive behaviors.
Lastly, IP-1 is seen to have one behavior for the lower 1/3 of its diagonal, and then
to switch to a new behavior for the remaining 2/3, being thereafter similar to its
recent past, but dissimilar from its distant past.

The values along the first super-diagonal are thus an indication of the “present
anomaly” of the corresponding present day (white cell to the immediate right).

–19–

Summary

We have demonstrated the practicality, in terms of performance, of maintaining and
migrating daily canonical service clusters for a range of IP services, of maintaining
and migrating individual IP mean service cluster membership vectors (SCMV) for
thousands of IPs (systems) representing the behavioral profiles for those IPs, and for
assessing each IP’s present SCMV to that of its running mean, in providing an
anomaly measure.

In an operational environment, one could seek IP SCMV’s that are proximal to those
of a known compromise, or one could take highly anomalous SCMV, identify the
component(s) responsible for the divergence, and then locate actual session
summary records in recent store that correspond to the identified clusters for further
analysis.

Future work could consider optimizations in the clustering methods employed in
seeking more distinct clustering solutions (more definitive cluster counts) and
improved cluster stability over time. Additionally, sensitivity testing is needed,
wherein either known compromise behavior or simulated departures from norm are
applied in order to calibrate various detection thresholds.

References

[1] Characterizing Network Services through Cluster-Set Variations, Anthony
Bartoletti, Nu Ai Tang, Lawrence Livermore National Laboratory, UCRL-TR-211020,
http://www.osti.gov/bridge/servlets/purl/15016408-OWMNnq/native/15016408.pdf

[2] Mining the Structure of User Activity using Cluster Stability, Jeffrey Heer,
Ed H. Chi, PARC (Palo Alto Research Center) {jheer, echi} @parc.com

[3] Comparing clusterings --- an information based distance, Marina Meilă,
Journal of Multivariate Analysis, Volume 98 , Issue 5 (May 2007) ISSN:0047-259X

[4] http://en.wikipedia.org/wiki/Hungarian_algorithm

[5] http://en.wikipedia.org/wiki/Mahalanobis_distance

