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Abstract

This study investigates the feasibility of establishing and maintaining a system of 
compact IP behavioral profiles as a robust means of computer anomaly definition and 
detection.  These profiles are based upon the degree to which a system’s (IP’s) 
network traffic is distributed among stable characteristic clusters derived of the 
aggregate session traffic generated by each of the major network services.  In short, 
an IP’s profile represents its degree of membership in these derived service clusters.  
The goal is to quantify and rank behaviors that are outside of the statistical norm for 
the services in question, or present significant deviation from profile for individual 
client IPs.  Herein, we establish stable clusters for accessible features of common 
session traffic, migrate these clusters over time, define IP behavior profiles with 
respect to these clusters, migrate individual IP profiles over time, and demonstrate 
the detection of IP behavioral changes in terms of deviation from profile.

Introduction/Background

Contemporary means of computer network intrusion detection rely upon specific 
"signatures" (traffic in known bad-content, connections to known bad destinations, 
use of unknown services on unusual ports) or make other brittle assumptions 
regarding expected bad behavior.  Adversaries have adapted to these detection 
means by encrypting content, employing large proxy servers as destinations 
(rendering most all destinations both good and bad in order to frustrate IP-blocking) 
and have adapted to the modern network security practice of disallowing services on 
unusual ports by "tunneling" malicious command traffic and data exfiltration within 
the standard service protocols, and targeting attacks to the application layer.  

For these reasons, anomaly methods have become increasingly critical for detecting 
compromised systems and related abuse such as illicit data-exfiltration in the 
absence of prior knowledge of specific attacks.

Anomaly detection methods place an additional burden upon the adversary, who 
must now appear both syntactically correct and statistically normal.  By defining IP 
profiles in terms orthogonal to the range of characteristic service clusters, a uniform 
means to broad and generalized anomaly detection is supported.

An additional motivator for the proposed method is the relative ubiquity of network 
flow summary data in large enterprise network monitoring, and in support of feature 
generation.  In contrast to signatures derived over specifics of session content, which 
quickly become stale as network content evolves, fundamental measures such as 
per-service session packet and byte volumes, durations and invocation times are 
expected to remain meaningful over time.  While clearly less informative than full 
packet capture in detection of known threat content, these session summary 
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features provide a straightforward and durable foundation for statistical treatment of 
traffic behaviors.

This work is an extension of a study conducted by the author and a colleague, where 
cluster set distance is derived and employed to distinguish service traffic, especially 
when services may be set up illicitly on unusual ports[1].

Available Data

The data subject to this study is “session connection summary” data, representative 
of a large corporate enterprise.  Each event record summarizes a network connection 
in terms of endpoints (initiating and responding IP addresses), time of connection, 
session duration, protocol and service, total bytes sent, total bytes received, total 
packets sent and total packets received.  Although minimally informative (no packet 
payload content is investigated) this form of summary is commonly produced for 
gigabit-per-second traffic due to its brevity.  It is reasonable to assume that results 
might improve for those cases where greater detail is available for profile 
consideration.

Such session summary data is usually captured at a site’s outer boundary router, a 
common traffic “choke point” minimizing the need to manage multiple sensors.  Such 
sensor position has a serious drawback when outbound client requests are internally 
“proxied” – the sensor sees only a handful of proxy systems issuing thousands of 
session requests, rather than the actual thousands of IPs issuing sessions on their 
own.

We limit our interest to profiling the behavior of internal systems, with respect to 
boundary-crossing activities they have initiated.  Hence, we filter the traffic to 
sessions that have been initiated in the outbound direction and evidence bi-
directional data flow.  In this regard, we limit ourselves to protocol 6 (TCP) and 
protocol 17 (UDP) traffic, and for TCP insist that the flow record indicate the “full 
session handshake” flags are present.  This helps to ensure we are not double-
counting sessions.

The flow records are provided in files containing 15 minutes of boundary-crossing 
traffic, 96 files per day, each file about 50 MB uncompressed and representing over 
100,000 session (flow) records.  In the daily accumulations of 96 15-minute files, 
filtered to TCP and UDP protocol and two-way data flow, the following protocol-port 
combinations are seen to represent nearly all of the traffic:

Service Description Protocol-Port Sessions/Day Percent Proxied?
HTTP (web) traffic 6-80 3,500,000 61.9 Yes
DNS (Domain Name Service) 17-53 1,400,000 24.8 Yes
HTTPS (Secure web) 6-443 560,000 9.9 Yes
NTP (Network Time Protocol) 17-123 130,000 2.3 No
SMTP (Simple Mail Transfer 
Protocol)

6-25 30,000 0.5 Yes

SSH (Secure Shell) 6-22 28,000 0.5 No
FTP (File Transfer Protocol) 6-21 5,000 0.1 No
TOTAL 5,653,000 100.0

Figure 1 – Daily Session Counts by Service (average over 4 consecutive 
workdays)
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Any uniform profiling of session activity will need to be made in terms of these 
services.  Unfortunately, it turned out that several of these services were "proxied" -
hundreds of individual IPs conducting (for instance) HTTP sessions have their 
requests funneled through a handful of systems that conduct the outbound sessions 
on behalf of the actual client IPs.  The border sensor sees only the proxies 
contributing to highly-aggregated behavior in such cases.  To further complicate 
matters, there are hours or days when the proxies fail, and then the number of IPs 
seen conducting HTTP sessions will jump from (eg) 10 to over 1000.

The following table (figure 2) reveals the number of internal IPs seen issuing border-
crossing sessions on the major services.  Where non-proxied, these are typically 
“desktop” systems.

Protocol-Port Approximate Unique IPs Active per Day (at 
boundary)

Proxied?

6-80 10/1900 (proxied/non-proxied) Yes (inconsistent)
17-53 10 Yes
6-443 10/400 (proxied/non-proxied) Yes (inconsistent)
17-123 1300 No
6-25 3 Yes
6-22 240 No
6-21 200 No

Figure 2 – Daily IP Counts by Service
Based upon this data assessment, we chose to conduct IP profiling on all 7 indicated 
protocol-port services, but for ports 80 and 443 (web traffic) limiting ourselves to 
only those days when proxies were in effect, as these days far outnumbered the 
occasions of proxy-failure.  This means our ability to profile the “end user desktop” 
IPs is limited to SSH (6-22), FTP (6-21) and NTP (17-123) service traffic.

Producing Feature Vectors

In preparing the data for service clustering, we transform each session flow record 
into a characteristic “feature vector” presenting sufficient component range and 
variation for cluster support.  In this regard, we have chosen to produce feature 
vectors based upon the following 6 components:

(Proximity-to-midnight,duration,bytes-sent,bytes-received,packets-
sent,packets-received)

We partition these derived records according to protocol-port, and separately retain 
the identity of the initiating IP for each record.  Such elements will not contribute to 
the clustering calculations.

The justification for tracking both byte and packet counts is that services often 
display characteristic packet sizes, or bytes per packet, and unusual deviations in 
these numbers can be evidence of abuse.  We transform the session timestamp to 
“proximity to midnight” (PTM), in order that very late evening activity (11 PM) and 
very early morning activity (1 AM) not be artificially and widely separated.  Scaling 
this measure to the range [0.0,1.0] means that sessions occurring during regular 
work hours are assigned PTM values above 0.5, while off-hour activities will have 
PTM < 0.5.
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Preliminary assessment of the data revealed all features other than PTM to be highly 
skewed toward zero, with a relatively sparse population of large outliers. In order to 
better condition upon fine structure in the dense region near zero, these skewed 
components were transformed as follows:

x’ = 0 if x = 0
x’ = 0.05 + 0.95*(ln(x) - min(ln(x))/(max(ln(x) - min(ln(x)) otherwise.

The before and after result of these logarithmic normalizations is depicted in figure 3, 
where the white background is used to indicate the presence of data too small to 
produce visible histogram columns. One can clearly see structure amenable to 
clustering in the log-normalized representations.

Figure 3 – Feature Vector Component Distributions

Data Clustering and Stability

Data clustering exists to take points from a continuous (or discrete) and often high-
dimensional space, and assign them categorically to a lesser collection of groups.
This is desired foremost as a means to quickly understand the structure (if any) 
present in the data - which values of which features tend to occur together, which 
"quadrants" of the space appear empty, etc. Put most simply, clustering algorithms 
seek to identify regions of high density bounded or separated by regions of relatively 
lower density, and then to assign each point to the "region to which it belongs", 
accordingly.

Clustering algorithms can be broadly classed into "top-down" methods (generally 
involving k-means and repeated bisections) and bottom-up methods (various 
agglomerative techniques), all of which have variants according to the distance 
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functions and similarity criteria one chooses to apply. Commonly, these algorithms 
expect "desired number of clusters" to be supplied as an input parameter, and then 
they divide (or agglomerate) until the desired number of clusters is obtained. This 
can be frustrating, when the efficacy must be tested over a variety of clustering 
solutions.

A range of techniques have been developed that attempt to identify the "correct" 
number of data clusters evident in a data set. This will always be a bit of a black art, 
as one can always create pathological data sets for which any fixed cluster 
assessment logic will fail to arrive at a consistent or "reasonable" number. Consider 
for example figure 4, where one might argue either that 3, or 7, is a better measure 
of the number of clusters presented.

Figure 4 – Cluster Count Ambiguity

We have chosen to employ a stability-based cluster number determination, inspired 
by the work of Heer and Chi [2]. Stability-based methods proceed by repeatedly 
taking many random (say) 80% samplings of the data points and applying a fixed k-
way clustering to each sample. Each pair of samples will have about 64% of the 
base population data in their mutual intersection, and we consider whether pairs of 
points taken from the intersection do, or do not appear consistently in a common 
cluster under both sample cluster solutions. A high fraction of point-pairs that are 
either members of a common cluster in both samples (or of different clusters in both 
samples) is taken as evidence that the samples presented a similar cluster structure 
(the clusters correspond to "true" and consistent regions of relative density, 
unaffected by the 80% sampling). The Rand statistic, Fowlkes-Mallows statistic, and 
Jaccard coefficient provide various normed similarity measures in comparing cluster 
solutions. By repeating the experiment many times (e.g. conducting a round-robin 
of similarity measures among the sample cluster solutions) one produces a PDF, and 
then CDF of the statistic in question, the particular curve indexed by "k", the number 
of requested clusters.

This method of testing for stability requires that each pair of sample datasets have 
most of their elements in common, owing to the nature of the Rand, Fowlkes-
Mallows and Jaccard formulations as similarity measures (the Jaccard formulation 
requires a specific a-priori matching exist between the clusters of two k-way 
solutions). A small fraction, say 20% of the points, differ between the samples and 
can be considered as "noise" that seeks to obscure the clustering result. In the 
presence of such noise, the ability of a clustering procedure to cluster the "commonly 
held" points similarly is then seen as a testament to the stability of the solution, and 
points especially to having chosen a "correct" cluster count.
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We considered the work of Meila[3] in promoting the notion of “Information-
Variation” distance, specifically for assessing the similarity of competing clustering 
solutions.  Every clustering induces a random variable X, representing the cluster 
(index) to which a randomly selected point has been assigned.  Recall that the 
entropy of any random variable X is given by

H(X) = -∑( PX(i)log(PX(i)), where i ranges over the possible values of X,

and for any two random variables X and Y, one can define their mutual information 
by

I(X,Y) = ∑(PXY(i,j)log(PXY(i,j)/PX(i)PY(j))), i and j ranging over the values of X and 
Y, respectively.

The mutual information between two random variables X, Y indicates the degree to 
which knowledge of the outcome of one provides information regarding the outcome 
of the other.  If they are independent, then I(X,Y) = 0.  One can then go on to define 
variation of information to represent the sum of information gained and lost, when 
assessing one variable as opposed to another.  This sum is depicted in green in 
figure 5 below.

Figure 5 – VI-Distance
Applying VI-distance as a metric in the cluster-stability tests outlined by Heer and 
Chi provides a strong indicator of the “correct” number of clusters of a data set.  We 
exercised this claim in a test consisting of 1000 points, arranged in the form of 6 
distinct Gaussian clusters. Of this set, 20 independent random 80% selections were 
made, each clustered into k clusters, and a round-robin VI-distance comparison of 
the 190 pairs of solutions was made.  The following graph of CDFs of the VI-
distances for cluster counts k=2 through k=15 is obtained (see figure 6).  Note how 

I(X,Y)

H(X)
H(Y)

H(X|Y)

H(Y|X)

VI(X,Y)        =  H(X|Y)  +  H(Y|X)

                    =  H(X)  +  H(Y)  -  2*I(X,Y)

Variation of Information
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the desired number of clusters (6) is distinguished as the first (rightmost) member of 
the regular curves on the left side of the graphic.

Figure 6 – Cluster Count Estimation by Stability of VI-Distance

A facility of VI-Distance is that it can be used to compare random variables with 
different structure, such as might be imposed by comparing clusterings with differing 
cluster counts.  However, the resulting graph turned out to be far more difficult to 
interpret when the data was noisier or more ambiguous that the example with well-
behaved Gaussians.  Our desire to employ consistent clustering as a basis for 
characterizing the contributing generators (individual IP behaviors) requires a test of 
stability that will always be applied between pairs of clusterings of identical cluster 
count. From one day to the next, our datasets will have no points in common.  
Rather, they will have been produced by (approximately) the same generators.

Instead, we conducted our k-way clustering comparison by considering the centroids 
of the k clusters from each set, and matching them up so as to produce a minimal 
sum of vector distances. Explicitly, we define a cluster set distance D as follows.

If {a1, a2, ... ak} and {b1, b2, ... bk} are the centroids for clusterings A and B, we 
seek a set of k pairs {(ai,bj)} with 1≤i≤k, 1≤j≤k, each value of i and j occurring 
exactly once, such that the sum of vector distances D = ∑ dist(ai,bj) is minimal.  
We take "dist" to be the ordinary Euclidean distance on points, although any 
desired distance function on components is allowed.  We take this minimal D to 
be the distance between the centroid sets A and B.



–10–

Note that one cannot rely upon a greedy algorithm to obtain a minimum here.
Consider a1=0, a2=3, b1=2, b2=6. The greedy algorithm would dictate using 
dist(a2,b1) = 1, forcing us to then use dist(a1,b2) = 6, for a sum of 7. In contrast, 
the minimal matching is obtained by dist(a1,b1) + dist(a2,b2) = 2+3 = 5. It might 
then seem one would have to measure all k! permutations in matchings from AxB to 
determine the minimal matching. However the Hungarian Matching algorithm[4] can 
be employed to obtain the desired minimal pairing of distance-weighted edges in 
polynomial time (optimally O(k3)).  This involves a particular reduction procedure 
over the KxK matrix [dist(ai,bj)].

We should justify calling D an actual "distance" function.  Clearly, for any two sets of 
k centroids A and B, with D = min ∑ dist(ai,bj), we will have D ≥ 0, and D = 0 IFF 
the two sets of centroids are identical.  It should also be clear that we must have 
D(A,B) = D(B,A).  To establish the triangle inequality, we must demonstrate that for 
sets A, B, C we must have D(A,C) ≤ D(A,B) + D(B,C).  Let the centroids of each set 
be fixed in index.  Then D(A,B) is obtained by a particular permutation PAB of indices, 
and D(B,C) is obtained by another permutation PBC of indices. Our definition 
demands that some permutation PAC of indices give the minimal "distance" D(A,C).  
Consider instead an alternate distance D'(A,C) given by permutation P'AC = PBC*PAB.  
This permutation induces a matching between sets A and C by composition of the 
individual mappings used to obtain D(A,B) and D(B,C).  As the triangle inequality is 
thus satisfied component-wise, we must have D'(A,C) ≤ D(A,B) + D(B,C).  As we 
must also have D(A,C) ≤ D'(A,C), the triangle inequality is satisfied by D.

Armed with this measure of distance between k-clusterings of disjoint sets, we can 
apply it as well to a stability-based method for cluster-count determination. Figure 7 
demonstrates the result of this method, applied to the very same 6-gaussians data 
that was the basis of figure 6.  Here, the suggested number of clusters can be found 
by seeking global (or local) minima, with 6 producing a clearly distinguished minima.
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Figure 7 – Cluster Count Estimation by Mean Cluster-Set Distance

When we apply this method of cluster count determination to the actual session 
data, the results are not quite as unambiguous.  However, they were sufficient to 
allow a reasonable selection of cluster count for the various services under study.  
This is exemplified by figure 8, for SMTP and DNS traffic respectively.  For each 
service, the records for each of 4 separate days were sampled in 20 subsets at 80%, 
and a k-way clustering was applied.  The minimal matching distance was determined 
for the 190 round-robin pairings of cluster solutions, and the mean distance and 
standard deviation recorded.  The plot of these means, for 2 <= k <= 15, provides a 
single blue line in each figure (red for stdv) and the entire process is repeated for 4 
consecutive days.  The heavy blue and red lines indicate the mean values for the 4 
days.  The evident consistency of the results suggests it is reasonable to assign an 
“optimal” cluster count employing this method.
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Figure 8 – Cluster Count Determination

Based upon the results obtained by this method, the following selection of cluster 
counts was decided for each of the 7 services subject to profiling:

Service Description Protocol-
Port

Cluster 
Count

HTTP (web) traffic 6-80 11
DNS (Domain Name Service) 17-53 8
HTTPS (Secure web) 6-443 11
NTP (Network Time Protocol) 17-123 7
SMTP (Simple Mail Transfer Protocol) 6-25 7
SSH (Secure Shell) 6-22 7
FTP (File Transfer Protocol) 6-21 11

Figure 9 – Selected Cluster Counts by Service

As an aid to visualizing the longitudinal stability of the service clustering, a clustering 
solution was obtained for each of 15 consecutive workdays.  The centroids obtained 
for the first day were treated as the “root” cluster centroids for the given service, 
and each is given a unique color in the parallel coordinates graph in figure 10 below.  
On each subsequent day, an independent clustering is obtained.  The new centroids 
are matched to the root centroids according to minimal matching distance, and 
colored accordingly.  For each cluster, the black-edged line indicates the mean of the 
corresponding centroids.
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Figure 10 – Parallel Coordinate Visuals of Service Cluster Histories
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A Regime for Service and IP Profile Updates

In our routine IP-profiling activity, data is processed on a daily basis.  Each day, the 
session summary data is filtered down to the selected services and then further 
restricted according to our other limiting criteria (“outbound” initiated sessions, full 
sessions only, two-way packet exchanges) and the feature vectors produced.  The 
resulting collection of records is then processed in support of two separate activities:

1. Creation or update of canonical service clusters and centroids

2. Creation or update of IP profiles and daily anomaly ranking

To describe these activities in detail, we provide the following definitions:

Def.  Canonical Service Clusters
For an agreed-upon structure of service feature vectors, and a predetermined 
clustering method and cluster count K, let an initial set of such vectors be clustered 
and declare the resulting set of cluster centroids to be the initial canonical service 
clusters (CSC) for the service in question, and write

CSC = {csc1,…,cscK}

to denote the set of centroid vectors, ordered (initially) in an arbitrary but fixed 
manner.  For each subsequent day contributing to the history of the service, that 
day’s feature vectors are clustered by the same methods, producing a new set of 
centroids SC =  {sc1,…,scK}, where the ordering is now performed in accord to the 
minimal sum (Euclidean) matching distance to the centroids of the CSC.  For a 
desired decay factor α, we migrate the CSC toward the current day’s centroids to 
produce the updated CSC’ by

CSC’ = { α csci + (1- α)sci }, for i = 1,…,K.

In our study, we chose α = 0.90 as the weight to apply to the previous mean on 
each update.  Note that in calculating the initial centroids csci of the clusters, one 
could also maintain and migrate the covariance matrix (CV) of the component 
features.  Where µ1i and µ2i are the historical and recent values of an i-th centroid 
component, and CV1ij and CV2ij are the historical and recent values of a cell in the 
covariance matrix, one can produce the updated components by

µi = α µ1i + (1- α) µ2i

CVij = α ( CV1ij + µ1i µ1j ) + (1- α) (CV2ij + µ2i µ2j )  -  µi µj

If the covariance matrix is maintained (and is invertible), a more accurate measure 
of the association of arbitrary feature vectors to the canonical service centroids can 
be obtained by using Mahalanobis distance [5].

Armed with the service CSC’s, we produce and update daily IP profiles by considering 
the degree to which each IP’s activities on a given service align to the corresponding 
service clusters.

Def.  Service Cluster Membership Vector (SCMV)

Let V(IP,S) = { vt }, t = 1,…,T be the feature vectors corresponding to the activities 
of a particular client IP on a selected service S, those activities comprised of T 
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sessions for a given day.  Let CSC = {C1,…,CK} be the K canonical service clusters 
representing the basis by which the vectors V(IP,S) are to be assessed.

We define this IP’s service cluster membership vector (SCMV), for the day in 
question, to be the normalized K-dimensional vector u = <u1,…,uK>, where the value 
ui represents the degree to which the feature vectors of V(IP,S) are associated with 
service cluster Ci.  In particular, for each vt in V(IP,S) we may consider the vector 
distance from vt to each canonical service cluster centroid as

di,t = dist(vt – Ci), i = 1,…,K

and take the contribution of vt to each cluster to be inversely proportional to this 
distance, raised to a power of our choosing.  (For our study, we chose p=2).  This 
leads each vt to contribute to the i-th component ui of the normalized membership 
vector u in the amount

1/( (di,t)p∑j
K(1/ dj,t)p)

Summing the (normalized) contributions from all v in V(IP,S), we obtain
u = < ui >, i = 1,…,K

= < (1/T) ∑t
T[1/( (di,t)p∑j

K(1/ dj,t)p) ] >

Note that if we let the exponent p → ∞, then each vector v merely contributes the 
amount 1/T to the component whose centroid is closest to v (or contributes 1/(nT) to 
the closest n components in the case of an n-way tie).

As with the canonical service cluster centroids themselves, we establish for each IP 
and service an initial SCMV to represent that IP’s “profile”, and for subsequent days 
we calculate a new value from that day’s activities and migrate the profile 
accordingly, maintaining a “running mean” SCMV  U for the IP by 

U’ = < u’i > = < αUi + (1 – α) ui >, for i = 1,…,K

In summary, each day of processing involves

1. IP Behavior Snapshot
Production of that day’s SCMVs, for each IP and each service, conducted by 
assessing the feature vectors of each IP and service with respect to the current 
canonical service cluster centroids (CSCs).

2. IP Anomaly Ranking
Comparisons of each IP’s SCMVs to their own historical mean SCMVs, in order to 
generate an anomaly score for ranking purposes.

3. IP Profile Maintenance
Migration of each IP’s historic profile SCMVs using the current day snapshot 
SCMVs.

4. Canonical Service Cluster Maintenance
Independent clustering of all behaviors evidenced for each given service to 
produce the current day’s service clusters, and the migration of the historical 
canonical service clusters (CSCs) accordingly.
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Results/Technical Outcome

Performance

For the typical daily volumes (5.5M sessions, 10-2000 IPs active), the 
aforementioned processing requires approximately 15 minutes on a commodity Dell 
blade (i686 processor).  This is roughly 100 times faster than “real time”, and 
suggests ample leeway exists to extend the profiling activity.

This measure does not include the cluster stability testing employed at the outset to 
select the cluster count for each service.

Measures of Effectiveness

Ideally, we would have a history of systems for which some subset was known to be 
subject to compromise (evidenced by beaconing or unusual data exfiltration) during 
the period of study.  This would provide a degree of “ground truth” in the separation 
of compromise-derived anomaly from the background of (assumed) innocuous 
anomaly.

In lieu of such data, we can examine the sensitivity of the subject profiling measures 
in terms of the distributions of deviation from profile and also the temporal patterns 
of high anomaly.  Two such methods are depicted here.

In the first method, we consider how well these IP profiles serve to isolate individual 
IPs.  In particular, we consider the daily membership vectors (SCMVs) generated for 
each IP (and for each service), and determine how well proximity to the IP’s service 
profile serves to classify the membership vectors.

For each service, we limit our investigation to the profiles of those IPs whose 
behaviors were evidenced in each of the 43 “consecutive” workdays of the study 
(excluding weekends and holidays).  For each qualifying IP, we define a service-
neighborhood to be the (presently spherical) region centered on the IP’s service 
profile, whose radius is given by the IP’s most distant membership vector.  Hence, 
the region encompasses every membership vector evidenced by the IP.  We then 
conducted a random sample of days to obtain the membership vectors attributed to 
IPs other than the profiled IP, sorted these together with the IP’s own vectors in 
terms of distance to profile, and mapped the rates of true and false positives as 
distance from profile increased to the neighborhood radius.   The resulting ROC 
curves, and effectiveness in terms of area under curve (AUC) are depicted in figure 
11.
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Figure 11 – Selected ROC Curves for Non-Proxied Services

These ROC curves are for comparative purposes only, as they are heavily affected by 
outliers of each IP, which determines the population of false positives.  Even so, one 
can see that the FTP service (6-21) allows much better discrimination of IP behavior 
that either SSH (6-22) or NTP (17-123).  One can surmise the dismal ability to 
discriminate based upon NTP is due to the lack of variations able to be exercised 
within that protocol.  To obtain a more accurate assessment of the effectiveness in IP 
discrimination, one could measure profile neighborhoods in terms of Mahalanobis 
Radii.  We also expect that we would obtain strong results for web traffic (HTTP, 
HTTPS) if we could access the individual IP behaviors "behind" the proxy servers.

In the second method, we compare each IP’s daily membership vector to the history 
of its moving average.  By displaying these differences in a triangular array, one can 
immediately visualize the relative stability or volatility in the behavior of each IP, and 
easily identify those points in time when a significant departure from historical 
behaviors has occurred (figure 12). 
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Figure 12 – Visualizing IP Histories

One interprets a graph in figure 12 by proceeding from the lower-left to upper-right 
corner along the “white diagonal” (cells directly adjacent the colored region).  Each 
cell on that diagonal represents another day (its corresponding daily membership 
vector), and to its left lies a row of colored cells moving back through past days.  
Those cells are colored toward blue when the current day’s vector is close to that 
past day’s running mean membership vector U, and tends toward red when it is 
correspondingly distant.  For example, in the graph for “IP-3: 17-123 (NTP)”, the 
horizontal cells left of almost every diagonal cell are uniformly blue-purple, indicating 
that each day was relatively similar to all past days, until one arrives at the 7th from 
last day.  On that day, a significant departure is evident – the entire row is bright 
red.  Thereafter, the behavior returns to its previous quality, similar again to all past 
days except for the one anomalous day. Likewise, one can interpret IP-2 (a web 
proxy) to alternate somewhat irregularly between at least two distinctive behaviors.  
Lastly, IP-1 is seen to have one behavior for the lower 1/3 of its diagonal, and then 
to switch to a new behavior for the remaining 2/3, being thereafter similar to its 
recent past, but dissimilar from its distant past.

The values along the first super-diagonal are thus an indication of the “present 
anomaly” of the corresponding present day (white cell to the immediate right).
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Summary

We have demonstrated the practicality, in terms of performance, of maintaining and 
migrating daily canonical service clusters for a range of IP services, of maintaining 
and migrating individual IP mean service cluster membership vectors (SCMV) for 
thousands of IPs (systems) representing the behavioral profiles for those IPs, and for 
assessing each IP’s present SCMV to that of its running mean, in providing an 
anomaly measure.

In an operational environment, one could seek IP SCMV’s that are proximal to those 
of a known compromise, or one could take highly anomalous SCMV, identify the 
component(s) responsible for the divergence, and then locate actual session 
summary records in recent store that correspond to the identified clusters for further 
analysis.

Future work could consider optimizations in the clustering methods employed in 
seeking more distinct clustering solutions (more definitive cluster counts) and 
improved cluster stability over time.  Additionally, sensitivity testing is needed, 
wherein either known compromise behavior or simulated departures from norm are 
applied in order to calibrate various detection thresholds.
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