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Several approximations of the thin-wire kernel have been used 
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•  Reduced kernel (RTWK):  
  current filament on the surface, 
  evaluation on the axis (NEC-4) 

•  Reduced kernel with wire end caps (Popovic) 
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•  Exact kernel (Werner 1993, Wilton, Champagne 2006 ...) 

•  Extended kernel: integrate 1/R accurately, remainder RTWK 
   (Hwu, Wilton 1988) 



Kernels involve different approximations of the surface integral 
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•  Exact kernel: the Green’s function  
   is integrated over z and  
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•  The reduced kernel (RTWK) uses a current filament at  

€ 

φ = π /2

•  The extended kernel (ETWK) integrates 1/R accurately 
RTWK approx. Accurate double integral 

Evaluation on segment axis 



The 1/R term can be integrated over φ, then numerically in z’
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K = Complete elliptic integral of first kind 

•  Integrate numerically over z’ and extract near the singularity 



Or 1/R can be integrated over z’, then numerically over φ
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R = ρ2 + a2 + (z − z')2 − 2aρcosφ
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z1 = −Δ /2 − z, z2 = Δ /2 − z

Sign: + for z1, z2 >0 
-  for z1, z2 <0 
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In the log form the singularity can be integrated exactly
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The last term, which may be singular, can be integrated over φ as 

Except when the evaluation point is near segment end, then extract. 

when -Δ/2< z < Δ/2 : 
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The linear term (z’-z)/R can be integrated exactly 
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R = ρ2 + a2 + (z − z')2 − 2aρcosφ
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z1 = −Δ /2 − z, z2 = Δ /2 − z

E(x) = complete elliptic integral of the second kind 



RTWK and ETWK errors were evaluated relative to the 
exact kernel 

•  Exact kernel evaluated with Mathematica’s NIntegrate function 
    including singular integrals. 
    It needs a little help: MaxRecursion->20,  PrecisionGoal->10 

ETWK: log form with φ integral done with NIntegrate 

•  “Error” in individual matrix elements may not reflect 
   error in the solution.  



Self-term error relative to the exact kernel: 

ρ = a,  z = 0 

•  RTWK error depends on Δ/a 
•  ETWK is limited by phase error across the wire 

ETWK RTWK 



With ρ =3 a the RTWK error is larger for small a 

ρ =3 a,  z = 0 

ETWK RTWK 



With increasing ρ the RTWK error gets smaller 

ρ =10 a,  z=0 
ETWK RTWK 



With increasing ρ the RTWK error gets smaller 

ρ =100 a,  z=0 

ETWK RTWK 



With ρ = 1000 a the RTWK is limited by phase error 

ρ =1000 a,  z = 0 ETWK RTWK 

For  ρ >>  a, Δ:     
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With increasing z the RTWK and ETWK errors get smaller 

z =1 max(Δ, a), ρ = a 

ETWK RTWK 

source evaluation ETWK evaluation on surface 
RTWK evaluation on axis 



With increasing z the RTWK and ETWK errors get smaller 

z =10 max(Δ, a), ρ = a 

ETWK RTWK 



With increasing z the RTWK and ETWK errors get smaller 

z =100 max(Δ, a), ρ = a 

ETWK RTWK 



With increasing z the RTWK and ETWK errors get smaller 

z =1000 max(Δ, a), ρ = a 

ETWK RTWK 



NEC-4 and NEC-5 were compared with ETWK or RTWK 

In ETWK mode the RTWK is used to when R > 10 max(Δ,a) 

•  NEC-5: mixed potential, linear basis, can use ETWK or RTWK 

• NEC-4: EFIE point-matched,  RTWK only, 
              Basis: A+ B sin(ks) + C cos(ks) 
              Evaluation on the wire axis 
              Approximate wire end caps 



Dipole current is unstable with RTWK for small Δ/a but stable with ETWK 

v 
L = 0.5λ, a = 0.01λ,  N segments 

NEC-5, RTWK 

NEC-5 
ETWK 



The dipole solution converges with the ETWK 
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NEC-4 and 5 solutions with RTWK blow up 

L = 0.5λ, a = 0.01λ,  N segments 



The ETWK converges for a square loop to small Δ/a 

v  

0.1λ 

wire radius a = 0.01λ 



Another test of the kernel is the wire transmission line 
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small Δ/a 

For an open termination model: 
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Transmission line equations were used to get Z0 from Zin 

L = 5λ,  a = 0.001λ 
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Number of segments in length 2L = 400 
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Z0 = j /Yin( ) tan(kL)

Δ/a= 25. 

Near kL = n(2π) use: 
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The model used: 
computed 



ETWK and RTWK make no difference on a transmission line 

s/d=10 

s/d=2 

s/d=1.1 

Transverse dim. x1000 A patch model allows current 
to concentrate between the wires 

color: 3-decade log scale 



The “equal area rule” holds with reduced or integrated kernels 

0.02λ 

Infinite screen with 2D periodic Green’s function 

Ei ET 
Transmission coefficient = ET/Ei 

H0
(2)(kρ) integrated numerically 

around the wire 



Conclusions: 

•  The ETWK allows stable convergence to small Δ/a 

•  ETWK may give higher matrix condition number for large models 
   ( from Nathan Champagne) 

•  “Equal area rule” for a wire mesh still applies with ETWK 

•  Computational overhead for ETWK is minor 

•  It is still a thin-wire model, not accurate for large ka or wires 
   close together or close to a ground plane 


