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Abstract
Metagenomic “shotgun” sequencing of environmental microbial communities has the 
potential to revolutionize microbial ecology, allowing a cultivation-independent, yet 
sequence-based analysis of the metabolic capabilities and functions present in an 
environmental sample. Although its intensive sequencing requirements are a good match for 
the continuously increasing bandwidth at sequencing centers, the complexity, seemingly 
inexhaustible novelty, and “scrambled” nature of metagenomic data is also proving a 
tremendous challenge for analysis. In fact, many metagenomics projects do not go much 
further than providing a list of novel gene variants and over- or under-represented 
functional gene categories. In this project, we proposed to develop a set of novel 
metagenomic sequence analysis tools, including a binning method to group sequences by 
species, inference of phenotypes and metabolic pathways from these reconstructed species, 
and extraction of coarse-grained flux models. We proposed to closely collaborate with the 
DOE Joint Genome Institute to align these tools with their metagenomics analysis needs and 
the developing IMG/M metagenomics pipeline. Results would be cross-validated with 
simulated metagenomic data using a testing platform developed at the JGI. 

Introduction/Background
Metagenomic sequence data gives us an insight into the genes and pathways that drive the 
behavior and metabolic capabilities of a microbial community. Just as whole-genome 
sequencing has radically changed 21st century microbiology, we expect that metagenomic 
sequencing will likewise cause a sea change in microbial ecology and environmental 
microbiology. The first meta-genome of a microbial community was sequenced only three 
years ago (Tyson et al, 2004), today there are more than two dozen metagenome sequence 
data sets available, and more than a hundreds of new projects are expected over the next 
five years, indicating a potentially exponential increase, roughly eight years behind the 
exponential rise in sequenced single genomes.

However, despite the intense interest in this new approach, making sense of these large 
sequence data sets has been very challenging, in large part because the “shotgun” 
sequencing destroys the information of which piece of sequenced DNA belongs to which 
species in the community. We have a unique opportunity today, to create the tools that will 
make this data accessible, and shape the field for years to come.

In particular, the extraction of metabolic pathways from metagenomic data – a key step in 
determining the repertoire of metabolic capabilities present in the community – is hindered 
by the mixture of enzyme sequences from hundreds or thousands of different species. 
Naively treating the entire community as a single “bag of enzymes” will lead to the spurious 
inference of large numbers of mosaic pathways, consisting of enzymes from multiple 
species. Separating the mixture of shotgun sequences into separate species presents a 
serious challenge for all but the least complex of communities. Various binning methods 
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have been proposed, from coarse metrics such as GC content and sequence coverage, 
frequencies of oligonucleotides or more complex sequence patterns, to overly specific 
criteria such as closest BLAST hits. We proposed to develop a novel binning method that 
takes advantage of the specificity of BLAST hits, but locates each species bin based on its 
phylogenetic relationship with fully sequenced reference species.

SRI’s Pathway Tools software (Karp et al, 2002) provides ontology, inference, and 
visualization services for organism-specific pathway-genome databases (PGDBs). To 
reconstruct the metabolic network of an organism, the PathoLogic program (Karp et al, 
2002) uses an organism’s genome annotation and a reference set of known, experimentally 
validated pathways from MetaCyc (Caspi et al, 2006) or from the PGDB of a known, closely 
related species. However, it assumes a complete and fully annotated genome, and will make 
incorrect inferences when faced with the incomplete species coverage, poorly separated 
bins, and uncertain functional annotations typical of most metagenomics projects. We 
proposed to provide the capability to deal with this type of data by providing a probabilistic 
representation of each predicted gene, enzyme, pathway, and species in the community, 
allowing us to analyze the collective genome and metabolic capabilities of an entire 
microbial community. 

Our proposed binning, enzyme annotations and pathway inference pipeline would take 
advantage of JGI’s developing metagenomic analysis pipeline, and the IMG/M 
metagenomics portal (Markowitz et al, 2006a), which is currently lacking in effective 
pathway analysis. We will additionally take advantage of the metagenomic data simulation 
system that has been developed at JGI (Markowitz, 2006a) for evaluation of metagenomics 
tools and comparison with state-of the art existing tools (e.g. alternative binning methods). 

In addition to leveraging our early access to the continuous stream of new metagenomics 
data being generated from the growing number of metagenomic sequencing projects under 
way at JGI, we also planned to demonstrate the power of this approach on a microbial 
community of interest to JGI, LLNL and DOE.

Research Activities
FY2008 Accomplishments and Results

Due to a reduction in funding, we eliminated sections on remote homology detection, and a 
NASA collaboration present in the original proposa (see Raymond et al., 2007)l. We more 
than accomplished all other goals for FY08, achieving excellent results and attracting 
interest from collaborators at JGI and SRI. Specifically, we illustrated a simplified form of 
metabolic pathway inference on a real-world metagenomic dataset, developed a method to 
map reference species and gene sequences into a Euclidean phylogenetic space, 
investigated the conservation of phenotypic traits and metabolic pathways with evolutionary 
distance, and developed and validated a Nearest Neighbor algorithm for prediction of 
metabolic pathways from 16S marker genes.

In addition, we also made significant progress on work that had originally been planned for 
FY09, including development of a phylogenomic algorithm for pathway prediction, design of 
a standalone web-based tool, and demonstration on real-world datasets. Unfortunately, 
despite the outstanding results in this first year, the project was canceled one week before 
the start of FY09 because of budget problems at the funding directorates. Due to this loss of 
funding, and long-term illness of the postdoc, it may be difficult to leverage any of the 
highly promising results that have come out of this project.
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Results/Technical Outcome
Naïve inference of metabolic pathways from Acid Mine Drainage metagenome bins

Banfield et al. sequenced the metagenome of a biofilm floating on top of extremely acidic 
water in the abandoned Richmond iron mine at Iron Mountain, California (Tyson et al., 
2004). The community composition of this biofilm was dominated by a small number of 
bacteria and archaea, presumably due to the extreme, pH<1.0 environment. Because of the 
low complexity, the 4 top species represented in the metagenome could be easily binned 
based on differences in GC content (38% G+C for the Archaea, 55% G+C for the Bacteria) 
and depth of coverage (10X local read depth for the two most abundant species, 10X for the 
less abundant ones).

The metagenome sequence for this Acid Mine Drainage community is available at JGI’s 

Figure 1. "Naive" reconstruction of metabolic pathways within the 5 sequence bins of the Acid Mine 
Drainage microbial community. Overview diagrams for the five dominant species were drawn 
proportional to their representation in the metagenome (10X coverage for Leptospirillum group II 
and Ferroplasma type II, around 3X or less for the others)
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IMG/M microbiome portal (Markowitz et al., 2008), separated into five species bins based 
on tetranucleotide frequences. As a proof of principle, we downloaded each of these five 
annotated species bins, and processed them using the PathoLogic algorithm of Pathway 
Tools to extract the metabolic pathways. Each bin was treated as if it were a complete 
annotated genome, separated into numerous “Unassigned Contigs” - ranging from 59 
scaffolds for the abundant and almost fully sequenced Ferroplasma acidarmanus Type II 
(average scaffold length 31Kbp), to 474 scaffolds for the lower-coverage and therefore 
harder to assemble Leptospirillum sp. Group III (average scaffold length 5.6Kbp). 

Figure 1 shows the Pathway Tools overview diagrams reconstructed from these bins. This 
shows that the platform currently can handle the unusual nature of the data – hundreds of 
separate sequence scaffolds, each of which requires two separate input files in the current 
implementation. It also illustrates what a multi-species overview diagram might look like.

Sequence binning in phylogenetic space

The 16S rRNA sequence alignments for all fully sequenced microbial genomes were 
extracted from the GreenGenes database (DeSantis et al., 2006), and their pairwise 
evolutionary distances were calculated using ClustalW. We used Principal Coordinate 
Analysis to map the corresponding species into a high-dimensional Euclidean phylogenetic 
space. The most significant dimension in this space cleanly separates the Archaea from 
Bacteria, while the next most significant components separate the major bacterial lineages 
(Figure 2). The internal structure within these high-level clusters is also consistent with the 
evolutionary relationships at the lower taxonomic ranks.

gamma-ProteobacteriaFirmicutes

Actinobacteria

Cyanobacteria

delta/epsilon-
Proteobacteria

beta-Proteobacteria

Figure 2. Principal coordinate mapping of 488 reference species, based on pairwise 16S distances.
Only the second and third principal coordinates are shown. The first principal coordinate separates 
Bacteria from Archaea (not shown).
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Note that the goal of this exercise is not to propose this as a novel tool for the construction 
of phylogenetic trees. In fact, since the distances within this space are a close 
approximation of the evolutionary distances between the species, applying a hierarchical 
clustering within this space would be roughly equivalent to the classical neighbor joining or 
UPGMA methods of phylogeny reconstruction – methods which are known to be highly 
computationally efficient, but tend to generate sub-optimal trees. Rather, the purpose of 
this phylogenetic space is to provide an efficient structure into which we can map – and 
cluster – hundreds of thousands of metagenomic sequences, based on their evolutionary 
distance with respect to the reference species which define the space. 

The next step in this part of the project would be to map known individual genes from 
known species into this space, based on their BLAST distance to other reference species. 
Initial experiments showed that BLAST scores between genes can be correlated to 
evolutionary distances between species, allowing us to calibrate BLAST scores to distances 
to known reference points in the Euclidean phylogenetic space. The location of sample 
genes mapped into this space corresponded well with the location of the species the genes 
belonged to, indicating the feasibility of mapping and clustering metagenomic sequence 
reads into the phylogenetic space.

Conservation of phenotypic traits with evolutionary distance

The evolutionary relationship of an organism to other known organisms, typically measured 
by similarities in the nucleotide sequence of the 16S ribosomal subunit, is often used 
implicitly as a first estimate of the role of an organism within its larger environment, i.e. its 
phenotype. However, the utility of 16S as an approximation of phenotype is in question, as 
even strains from the same species can exhibit a substantial amount of diversity with regard 
to both genome content and phenotype. Here, we have critically assessed the relationship 
between phenotype and evolutionary distance across the prokaryotic kingdom.

The 16S rRNA sequence alignments for all fully sequenced genomes were extracted from 
the GreenGenes database (DeSantis et al., 2006) and the evolutionary distances between 
the 488 organisms were calculated using ClustalW. As an alternative measure of 
evolutionary distance we also used distances between organisms derived from a 
phylogenetic tree based on universal protein sequences (Ciccarelli et al., 2006).

In an earlier project, we assembled and curated a large phenotype dataset, consolidated 
into 79 well defined and biologically relevant phenotypes across 558 sequenced prokaryotic 
organisms (Figure 3), and developed a phenotypic similarity measure between organisms, 
based on the log likelihood of agreements for the phenotype annotations they have in 
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Figure 3. Phenotype profiles for 558 prokaryotic organisms x 79 phenotypes. Each column represents 
one organism, each row represents one phenotype. Red, blue, or white dots indicate the phenotype is 
present, absent, or unknown for that particular organism.
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common, minus a penalty for disagreements for the phenotypes for which they have 
opposite annotations. In the current project, we examined in greater detail the conservation 
of phenotypic profiles with evolutionary distance, in order to build a method to extrapolate 
phenotypic traits from well-studied model organism to novel organisms for which we may 
only know their evolutionary relationship.

We showed that the correlation between evolutionary distance and phenotypic similarity is 
moderate, although the correlation varies depending on marker gene and method used  to 
derive the evolutionary distance. We have used both 31 universal marker genes and 16S 
sequences (results shown here). Figure 4 below shows the decrease in phenotypic similarity 
with increasing taxonomic rank. 

Some lineages are better preserved than others, such as for instance, the Proteobacteria 
are better preserved than the Firmicutes. Further, it appears that Archaea have a far better 
conserved overall phenotypic similarity, though this is likely due to poor sampling and less 
collective knowledge about the phenotypic traits of Archaea. Alternatively, the greater 
variance for well sequenced phyla may be the result of selective sequencing of strains that 
are phenotypically disparate. The most conserved phenotype in our study is methanogens.

Conservation of metabolic pathways with evolutionary distance

The analysis in the previous section can be equally well applied to pathway co-occurrence 
profiles, instead of phenotype profiles. We have applied the method on 788 pathways (see 
Figure 5), covering 343 organisms, collected from BioCyc (Caspi et al., 2006). 

Figure 4 Log likelihood based phenotypic similarity between pairs of organisms, versus taxonomic rank
(left), or evolutionary distance (right).
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As with the microbial phenotypes, metabolic profiles show the highest degree of similarity 
between organisms of the same species or genus, and there is a moderate negative 
correlation between metabolic similarity and evolutionary distance, see Figure 6. The 
average pathway similarity is higher than for phenotype similarity, because there are a 
number of almost universal metabolic pathways, and, additionally, this dataset contains no 
missing values. 

Further, there are clear differences between lineages. Noticeably, some lineages, such as 
Cyanobacteria, Chlamydiae and Archaea, have a significantly higher metabolic similarity 
within the lineage compared to other phyla (Figure 7), although this may be in part because 

Figure 6. Metabolic similarity between pairs of organisms, versus taxonomic rank (left), or 
evolutionary distance (right).
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Figure 5. Pathway co-occurrence profiles for 343 prokaryotic genomes x 778 pathways. A red dot 
indicates the pathway is present in the BioCyc pathway genome database for that organism.
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their metabolic pathways remain less well explored. Furthermore, there are many different 
pathway conservation patterns, ranging from pathways that are only conserved at distances 
of 0.05 or less, while the core pathways are conserved to distances over 0.3 substitutions 
per site.

Metabolic pathway prediction using 
Nearest Neighbors

We have developed a pathway prediction 
method based on nearest neighbors. 
Random sampling from the GreenGenes 
database indicates that >70% of 
randomly chosen 16S sequences have 
three nearest neighbors at a distance of 
0.2 or less. Therefore, we may be able to 
derive a preliminary, probabilistic 
assessment of the metabolic capability of 
an organism, extrapolated from its closest 
relatives. 

Figure 8. Some pathways are conserved over significantly greater distances than others.

Aspartate and asparagine biosynthesis Anaerobic purine degradation

(a
)

(b
)

Figure 7 Scatterplot of metabolic similarity between pairs of organisms at different 16S evolutionary 
distance. Right: pairs of Archaea and Cyanobacteria show significantly higher metabolic similarity 
than -Proteobacteria at similar evolutionary distances.

Evolutionary distance
Figure 9. Fraction of organisms with 1, 2 or 3 
sequenced nearest neighbors within a given 
evolutionary distance.
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The microbial tree of life has been sequenced very unevenly, depending on ease of 
cultivation of the organisms, their significance as a human pathogen or model organism, 
etc. For example, there are currently 28 sequenced strains of E. coli, but only one other 
sequenced non-coli species of Escherichia. If we were to count all of these closely related E. 
coli strains with equal weight, then a standard Nearest Neighbors approach would predict E. 
coli pathways for any Escherichia species. To account for this, we down-weighted the 
nearest neighbors based on the local density of sequenced genomes, in such a way that n
identical strains would each receive a weight of 1/n. 

We can now calculate the pathway content of an unknown organism as a weighted sum of 
the pathway contents of its nearest neighbors with known pathway content. We multiply the 
pathway content of each organism with a distance kernel, such that closer neighbors are 
weighted more heavily than remote neighbors in the weighted sum. We have evaluated 
weighting according to an inverse exponential, square, or triangular function, and 
preliminary results suggest that the former is preferable. 

To validate our predictions, we 
performed a leave-one-out-
crossvalidation experiment on our 
entire metabolic pathway dataset, 
cycling through each of the 343 
organisms, and predicting their 
metabolic pathway profile based 
only on their nearest neighbors. 
Figure 10 shows the results of the 
cross-validation predictions. Each 
pathway prediction is a value 
between 0.0 and 1.0, and van be 
directly related to the probability 
that the pathway in question is 
present in that organism. Figure 11
shows that for pathways which are 
known to be absent in a specific 
organism, the predicted value 
tends to be very close to 0.0 (blue 
histogram), while for the pathways 
which are known to be present, the 
predicted value tends to be very 
close to 1.0 (red histogram). If we 
set a classification threshold such that the number 
of predicted pathways is the same as in the 
original dataset, the method correctly predicts 
80% of pathway presence and 90% of pathway 
absence (r=0.74).

Planned improvements on this basic approach 
included:

1. As shown above, there is considerable variation 
in conservation between pathways. Therefore, we 
intended to include weighting according to 
individual pathways.

2. Similarly, certain lineages are better preserved 
than others. Hence, lineage variations can be 

Figure 10. Original metabolic pathway dataset (left), vs
predicted pathways based on cross-validation (right).

Figure 11. Histogram of predicted values 
for pathways known to be absent (blue) 
and present (red) in the dataset.
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included in the calculation.

3. The genomes that have been partially manually annotated (Tier 2 in BioCyc) should be 
up-weighted in comparison to the automatically generated Tier 3 organisms.

4. Explore the possibility of weighing according to the reliability of the BioCyc pathway 
predictions. Ultimately, instead of pathway absence or presence, we would like to include 
the reliability scores for the presence of the pathways.

In addition to the cross-validation on known genomes explored above, we have also applied 
metabolic pathway prediction to sets of 16S sequences accompanying published 
metagenomics studies, with the intent to compare our predictions to findings derived from 
metagenomic sequence data. In particular, we have predicted the metabolic pathway 
content of the Sargasso sea, farm soil and whalefall datasets (Tringe, et al, 2005), see
Figure 12.

Figure 12. Metabolic pathway prediction for three real-world metagenomic datasets, based on their 
16S rRNA community composition.
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Metabolic pathway prediction using phylogenomics

Distance-based methods are known to exhibit certain types of errors, especially when the 
relative evolutionary rate between the closest related organisms varies. For example, in
Figure 13, organism E may have organism C as 
closest neighbor in terms of evolutionary distance 
(sum of branch lengths), even though 
evolutionarily it is more closely related to D and 
F. By tracing the evolutionary inheritance of a 
trait, we can make the most likely or most 
parsimonious inference of the presence of the 
trait in novel organisms. Here, we use 
phylogenomic ancestral reconstruction to predict 
the presence or absence of known metabolic 
pathways in microbes.

To infer microbial metabolic capability, we
created an algorithm, called meta-pup (metabolic 
pathway predictor, using phylogenomics). Meta-
pup begins with four pieces of information: a list 
of known taxa, the metabolic pathways known to exist in those taxa, a list of novel taxa 
whose metabolic functionality is unknown, and a phylogeny expressing the evolutionary 
relationship between the known and novel taxa. For each of the targeted metabolic 
pathways, meta-pup uses a binary Markov model to reconstruct the presence/absence of 
that pathway in all internal (i.e. ancestral) nodes of the given phylogeny. The binary Markov 
model (see Figure 14) assumes a constant rate of loss (“death”) or emergence (“birth”) of 
metabolic pathways per unit of time. If we know the probability of presence/absence of a 
pathway at an ancestral node, the birth and death rates, and the branch length 
(evolutionary time) to a descendant node, we can calculate the probability of the pathway 
at that descendant node. Conversely, 
if we know probabilities at all the 
descendants of a node, we can infer 
the most likely probabilities at the 
ancestral node. The process of 
ancestral reconstruction therefore can 
be phrased as an optimization 
problem: we need to simultaneously 
optimize the birth and death rate 
parameters, and all ancestral 
probability estimates, to best fit the 
known presence/absence of the 
pathways at the leaf nodes. Using 
this ancestral reconstruction, Meta-
pup then infers the probability of 
each pathway for each novel taxa.

To explore the efficacy of this approach, we cross-validated meta-pup against 307 microbial 
species and 509 known pathways in the BioCyc database. Figure 15 shows the prediction 
error for each organism, mapped across the phylogenetic tree. Meta-pup’s accuracy varies, 
depending on underlying phylogenetic accuracy, taxonomic sampling bias, and the quality of 
genomic annotation. A surprising result is that meta-pup shows usefulness for discovering 
poor or incomplete metabolic annotations. This especially shows up in cases where we have 
pairs of very closely related organisms with very different metabolic pathway content. In 
this case, the pathway prediction for each will be heavily influenced by the other member of 

Figure 13. By tracing the evolutionary 
inheritence of a trait, phylogenomics can 
avoid some of the errors inherent with 
distance-based estimates.

Figure 14. We first infer pathway probabilities at all 
internal nodes, by fitting a simplified birth/death model
to the pathway content of all known taxa, then infer 
the probabilities for novel downstream taxa.
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Figure 15. A phylogeny relating 307 known microbes. The colored wedges sort the microbes into 
taxonomic groups. The bars along the circumference indicate the Euclidean error of meta-pup’s cross-
validated predictions against 509 known metabolic pathways (with short bars indicating low error).

Terminal branch length

Figure 16. Prediction error versus terminal branch length in the phylogenetic tree. As expected, 
more remotely diverged organisms are harder to predict. The outliers at top left are due to 
inconsistencies in annotation quality between closely related strains. These outliers are also clearly 
visible in Figure 15, as pairs of organisms with very small evolutionary distance yet high prediction 
error (right).
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the pair, so both organisms will be assigned a high prediction error (see Figure 16). At this 
point, the performance of this basic meta-pup algorithm is comparable to that of the 
Nearest Neighbor based method, although there room for significant improvement. Future 
work includes exploring alternative evolutionary models, and using meta-pup to make finer-
grained predictions about the presence of individual enzymes within a given pathway.

Interface design for a standalone metabolic pathway prediction tool

With the help of Jason Conkey, we designed a standalone web tool, “metap” for metabolic 
pathway prediction from 16S rRNA sequence data, implemented primarily in Python, using 
the Cheetah templating package. 16S ribosomal RNA is a marker gene often used to 
characterize the phylogenetic position of an organism in the tree of life, and metagenomic 
studies of microbial communities are typically accompanied by sequencing of 16S sequences 
to characterize the species composition of the community. The user can upload or paste in a 
set of 16S sequences of organisms of interest, which need to be pre-aligned with the 
GreenGenes 16S phylogeny (e.g. using tools available at greengenes.lbl.gov). The system 
will then predict metabolic pathway probabilities for each pathway in MetaCyc and each 
organism of interest, and display the probability for each pathway that exceeds a specified 
threshold for at least one organism. Figure 17 shows the front page of the web-based tool, 
with entry fields for the 16S file and analysis parameters, as well as the resulst page with 
the pathway probabilities, grouped based on the pathway classes defined in BioCyc. 

At the moment, the web tool still uses a stub that generates random pathway probabilities, 
rather than the nearest neighbor or phylogenomic algorithms, although we intend to tie in 
the real algorithms soon.

Figure 17. Interface for a web tool for metabolic pathway prediction based on 16S rRNA sequences.
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Exit Plan
Due to the sudden and unexpected cancellation of the project after only one year and loss 
of the postdoc working on the project, there are a large number of loose ends which need to 
be tied up, without funding or personnel available to do so. The PI does intend to complete 
the web-based tool, although it may not be possible to add further refinements to the 
nearest neighbor and phylogenomic algorithms, which were expected to improve the 
performance significantly. We had started a manuscript on the conservation of phenotypic 
traits and metabolic pathways with evolutionary distance, although significant additional 
effort would be required for a high-profile scientific publication. Due to time restrictions, we 
may include some of this material in a Bioinformatics paper on the web tool instead. 

We intend to salvage as much as possible of the other work done in this project, although 
sequence binning in phylogenetic space, as well as the planned integration of metagenomic 
binning, 16S-based prediction, and pathway prediction based on the metagenomic bins will 
likely require securing additional, reliable funding to complete.

Ever since this project was originally proposed in 2007, the need for these types of tools has 
become increasingly urgent. The number of metagenomic sequencing projects has more 
than doubled, following the exponential trend we initially predicted. Next generation 
sequencing technologies are poised to flood the field with an even greater volume of 
metagenomic and 16S sequence data. Completion of the tools developed in this project 
would have put us at the forefront of this rapidly growing field.

This research is directly in line with the goals of DOE/OBER’s Genomics:GTL program, and 
would have positioned us to tackle issues related to bioenergy, bioremediation, carbon 
cycling and sequestration, mediated by metabolic processes in microbial communities. For 
example, our contribution to the DOE Joint Bioenergy Institute (JBEI) depends critically on
our ability to analyze metagenomic and 16S community composition data of biomass 
degrading communities from compost and rainforest soil. Some of the research presented 
here may be continued under existing DOE GTL funding, either as part of LLNL’s Scientific 
Focus Area in BioFuels, or as part of JBEI, although their support for development of 
computational analysis tools is limited. We will apply for additional funding within the 
framework of the planned GTL KnowledgeBase Center, which the PI has helped to plan.

We may be able to apply for follow-up funding, jointly with our current collaborators: (a) 
with JGI to continue developing metagenomics tools, and integrating these into the IMG/M
portal, (b) with SRI to build further support for metagenomic datasets and multicellular 
metabolic models into the Pathway Tools software, or (c) with collaborators to further 
characterize their communities. Some of these continued collaborations might be funded 
through GTL, although other sources may be available as well. We already submitted one 
proposal in collaboration with Peter Karp at SRI to the NIH Human Microbiome Project last 
year, and we have established contacts with researchers at the USDA, UC Berkeley, and UC 
Davis, interested in studying a variety of microbial communities.

Summary
During the first year of our project, we established the feasibility of microbial species and 
gene sequences into a Euclidean space for metagenomic sequence binning, investigated the 
conservation of phenotypic traits and metabolic pathways with evolutionary distance, 
developed algorithms to predict metabolic pathways from 16S rRNA data based on Nearest 
Neighbors or phylogenomic approaches, and designed a web-based tool to make these tools 
available online.

The early cancellation of the project—despite excellent results and despite increasing need 
for such tools in the scientific community—has significantly impacted its potential, but we 
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intend to salvage as much of the research as possible and looks for external funding to 
continue development of these essential tools. 
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