
LLNL-CONF-411198

Enhancements to the Combinatorial
Geometry Particle Tracker in the Mercury
Monte Carlo Transport Code: Embedded
Meshes and Domain Decomposition

G. M. Greenman, M. J. O'Brien, R. J. Procassini,
K. I. Joy

March 11, 2009

International Conference on Mathematics, Computational
Methods & Reactor Physics
Saratoga Springs, NY, United States
May 3, 2009 through May 7, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
Saratoga Springs, New York, May 3-7, 2009, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2009)

ENHANCEMENTS TO THE COMBINATORIAL GEOMETRY PARTICLE
TRACKER IN THE MERCURY MONTE CARLO TRANSPORT CODE:

EMBEDDED MESHES AND DOMAIN DECOMPOSITION

Gregory Greenman, Matthew O’Brien and Richard Procassini
Lawrence Livermore National Lab

Mail Stop L-95, P.O. Box 808
Livermore, CA 94551

United States of America
greenman1@llnl.gov, mobrien@llnl.gov and spike@llnl.gov

Kenneth Joy
Computer Science Department

University of California at Davis
Davis, CA 95616

United States of America
kijoy@ucdavis.edu

ABSTRACT

Two enhancements to the combinatorial geometry (CG) particle tracker in the Mercury Monte
Carlo transport code are presented. The first enhancement is a hybrid particle tracker wherein a
mesh region is embedded within a CG region. This method permits efficient calculations of prob-
lems with contain both large-scale heterogeneous and homogeneous regions. The second enhance-
ment relates to the addition of parallelism within the CG tracker via spatial domain decomposition.
This permits calculations of problems with a large degree of geometric complexity, which are not
possible through particle parallelism alone. In this method, the cells are decomposed across pro-
cessors and a particles is communicated to an adjacent processor when it tracks to an interproces-
sor boundary. Applications that demonstrate the efficacy of these new methods are presented.

Key Words: Monte Carlo, particle transport, combinatorial geometry, embedded mesh, domain
decomposition

 1 INTRODUCTION

Two enhancements to the combinatorial geometry (CG) particle tracker in the Mercury [1],[2]
Monte Carlo transport code are presented. These permit the efficient calculation of problems
with a high degree of geometric complexity. The first enhancement is a hybrid version of the
particle tracker. In this method, a mesh region is embedded within a CG region. This hybrid
scheme permits efficient calculations of problems with contain both large-scale heterogeneous
and homogeneous regions. The second enhancement is a second form of parallelism within the
CG tracker. While the CG tracker has been limited to particle parallelism in the past, this new
method adds spatial parallelism via domain decomposition. This permits calculations of prob-
lems with a very large degree of geometric complexity, which are not possible through particle
parallelism alone. In this method, the cells, as well as the particles, are decomposed across pro-

Greenman, O'Brien, Procassini, et al.

cessors and a particles is communicated to an adjacent processor when it tracks to an interproces-
sor boundary.

 1.1 Motivation for Embedding Meshes within a Combinatorial Geometry

In problems where the problem geometry contains large regions with homogeneous material
properties, a combinatorial geometry (CG) representation is most useful for representing such a
geometry. There would be no superfluous facet crossing events from a homogeneous mesh cell
of one material into another mesh cell of the same material. In a combinatorial geometry, the
zonal boundary crossings will only be between the user-defined cells.

Unfortunately, such a representation is not the most efficient when the problem geometry is high-
ly heterogeneous; in which case a mesh representation is more appropriate. One may also wish to
opt for a mesh representation when the transport problem in question is coupled to a thermal-hy-
draulics solver which are usually mesh based. The question addressed here is whether both geo-
metric representations can be used simultaneously.

One answer is to use a CG representation in the regions of the problem geometry for which it is
the best representation. Likewise, one should use a mesh representation in those areas of the
problem geometry in which a mesh representation is optimal. One then needs to be able to
“stitch” the two representations together wherever they meet and ensure the continuity of the
transport solution across the boundaries of these regions. Additionally, it is highly desirable that
the transport code be responsible for determining the complex connectivity between mesh and
combinatorial geometry regions, and not burden the code user with the specification of what can
be a very complex geometric interface.

 1.2 Motivation for Spatial Domain Decomposition of a Combinatorial Geometry

Previous methods of parallelizing a combinatorial geometry Monte Carlo particle transport code
were implemented using a method known as particle parallelism. In this method, the geometry
information was stored redundantly on each of the processors, while the particle workload was
divided among the processors. This method claims to be “embarrassingly parallel” in the sense
that the processors can run independently of each other, until the end of the calculation, when a
final answer is calculated by summing results from each of the processors.

The question arises as to how to use this form of parallelism when the geometry is of a complexi-
ty that it cannot be stored within the memory of a single processor. Our approach relates to spa-
tial parallelism via domain decomposition, where the geometry is partitioned into spatial do-
mains which are assigned to processors. The number of spatial domains is chosen such that the
memory required for each domain will fit within the available memory on each processor. As a
particle streams from one domain to another, it must be communicated from one processor to an-
other. The technique of domain decomposition is commonly used in parallel finite-difference or
finite-element physics simulations running on a mesh. There are well known techniques for par-
titioning a mesh into domains. In contrast, there is is no underlying “mesh” in a combinatorial
geometry, which consists only of cells and their bounding surfaces.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

2/21

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

 2 THE EMBEDDED-MESH PARTICLE TRACKER

In the Mercury implementation of this hybrid scheme of representing the problem geometry, the
mesh representation “overlays” and takes precedence over the combinatorial geometry, with one
exception. The mesh representation can have a surrounding layer of a “background” material.
This background material is used in lieu of the actual geometry that surrounds the mesh repre-
sentation. In this case, it is useful to have a way to exclude such material regions from the mesh;
and have the combinatorial geometry description take precedence. In the current implementa-
tion, the user is able to specify a list of materials that are to be excluded from the mesh for the
determination of the boundary between the mesh and the combinatorial geometry.

Subject to the above prescriptions, the code finds all zonal facets that form the mesh / combina-
torial geometry boundaries. It then determines a location that is offset slightly from the facet in
the outward direction and executes the combinatorial geometry “Where am I?” routine to find the
CG cell that adjoins the boundary. Once the code determines which mesh cells connect to which
CG cells, that connectivity information is used to populate both the mesh and CG adjacency data
structures. As a result, the code has the requisite connectivity going in each direction: from mesh
to combinatorial geometry and combinatorial geometry to mesh. Therefore, Mercury can seam-
lessly track simulation particles from one geometric representation to the other and back again.

It is desirable that the implementation of this hybrid geometric scheme be able to exploit the ca-
pabilities provided by large multiprocessor supercomputers. The Mercury mesh tracker exploits
both domain decomposition and domain replication multiprocessing paradigms. In its current
implementation, Mercury adds a full description of the combinatorial geometry to each proces-
sor. Since every process has the complete combinatorial geometry model, when a particle transi-
tions from mesh to CG, the processor that was assigned the particle’s “previous” mesh domain
can continue to track the particle, since that processor has a complete description of the CG.

However, when a particle transitions from combinatorial geometry to mesh, it may enter a mesh
domain that is assigned to a different processor than the one that is currently tracking the particle.
In such a circumstance, it is necessary to communicate the particle to the processor assigned to
the mesh domain that the particle is entering for further tracking. Due to this requirement, any
processor that is assigned a domain on the mesh / combinatorial geometry boundary must be able
to communicate with any other processor that owns a mesh domain on the boundary.

In problems that have only domain decomposed mesh geometry, each mesh domain has, at most,
6 neighboring domains for a 3-D Cartesian mesh: domains to the “left”, “right”, “backward”,
“forward”, “down” and “up”. Hence, a given domain needs, at most, 6 sets of domain to domain
communication paths and communication buffers. The communication patterns implied by the
hybrid embedded geometry are much more dense and interconnected. As a result, the domain
connectivity of the CG scales super-linearly with the number of mesh domains.

In order to avoid the proliferation of inter-processor communications paths, Mercury is able to
realize the desired communications interconnectivity by “piggy-backing” on the regular 6 nearest
neighbor connectivity one finds in a 3-D logically Cartesian model. The code employs a dynam-
ic load balancing algorithm to optimally allocate mesh domains to processors. Once the optimal

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

3/21

Greenman, O'Brien, Procassini, et al.

allocation of domains to processors and the requisite communication pathways are established,
one can view the inter-processor communications network as a directed graph. One then asks the
question “What is the shortest path from any one node (processor) to any other node?” This is a
solved problem in the field of applied mathematics. An optimal search algorithm, known as Di-
jkstra’s Algorithm, has already been discovered. Once the pathways are defined, each processor
employs Dijkstra’s Algorithm to find the shortest path to every other processor. Then each pro-
cessor stores the identity of the first processor on the optimal path in a “routing table”.

Whenever a processor needs to pass a particle to any other processor, even if it has no direct con-
nection to that processor; it looks up the desired destination processor in its routing table and
finds the identity of a processor that it does have a direct connection to; that is the first step on
the optimal path. When a processor receives a particle on the communications network, if first
checks if it is the final destination processor for that particle. The destination processor informa-
tion is also captured as part of the mesh / combinatorial geometry connectivity step described
above. If the particle is destined for the processor that just received it, that processor adds the
particle to its particle vault for tracking. If the particle is destined for some other processor, the
processor that just received it consults its own routing table to find the next processor on the op-
timal path and passes the particle along to that processor. Eventually, the particle reaches the
destination processor.

 3 APPLICATION OF THE EMBEDDED MESH PARTICLE TRACKER:
THE MITR BNCT FACILITY

An example of an application in which this hybrid-geometry Monte Carlo transport capability
can find use is in the calculation of neutron doses in the Boron Neutron Capture Therapy
(BNCT) facility at the MIT Nuclear Reactor Laboratory [3],[4]. In this facility, (see Figure 1)
thermal neutrons from the core of the MITR-II nuclear reactor pass through a channel in the re-
actor’s graphite reflector. When the cadmium shutter is open, neutrons are permitted to impinge
on an array of depleted reactor fuel elements in order to generate high energy neutrons. The
spectrum of this beam of fast neutrons is further filtered to provide epithermal neutrons for the
BNCT irradiation facility. Epithermal neutrons are chosen for this application because they pro-
duce a lower dose to the patient than would thermal neutrons.

Our embedded-mesh model of this facility (see Figure 2) represents the reactor core (shown as
the large red volume in Figures 1 and 2) with a 3-D Cartesian mesh region, while the remainder
treatment facility is represented by a 3-D combinatorial geometry region. The size of the core, in
comparison to the entire facility, would render a fully-meshed representation of the facility ex-
tremely inefficient. In addition, this hybrid approach to particle tracking would allow for multi-
physics simulations of the core region (such as couple thermal-hydraulics and neutronics on the
mesh), while solely modeling neutron transport through the remainder of the facility.

Our model of the BNCT facility employs a point detector tally, which is defined at the center of
the small-radius beam exit of the conical collimator. The radiotherapy fluence and spectrum
have been computed using Mercury and these preliminary results compare favorably to mea-
sured values published by MIT [4]. In particular, for a reactor core power of P core = 5 MW
(and assuming a useful energy release per fission of 190 MeV), the power within the ex-core con-

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

4/21

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

verter fuel assemblies is quoted by MIT to be P conv
MIT = 83 kW , while our calculation obtains a

converter power of P conv
LLNL = 83.8 kW .

Of course, the interesting quantity to compare from a treatment perspective is the fluence at the
exit of the conical collimator. The MIT researchers quote a treatment fluence of
MIT = 4.6×109 cm−2 s−1 , and our continuous-energy cross section calculation produces
LLNL = 5.8×109 cm−2 s−1 . While our preliminary results for the fluence are ~26.1% too large,
we continue to examine our model and the drawings provided by MIT to determine if we have
accurately modeled the conical collimator and shield region. In addition, we have noticed a large
sensitivity of the computed fluence to the choice of evaluated cross section set. In particular, the
ENDF/B-VI data set (which was used for this calculation) includes three resonances in 27Al
which are not included in the ENDF/B-VII data set. A Mercury calculation using ENDF/B-VII
data yielded a therapy fluence that is more than 60% too large relative to the MIT data.

Our calculated current spectrum at the beam exit is presented in Figure 3. Our results are in
good agreement with the smallest magnitude spectrum provided in Figure 4 of [4]. In particular,

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

5/21

Figure 1. Schematic of the MIT BNCT facility.

Greenman, O'Brien, Procassini, et al.

each spectrum rises rapidly between 10−2 eV and 1eV , exhibit near constant intensity between
1eV and 104 eV , and falls off rapidly between 104 eV and 106 eV .

 4 DOMAIN DECOMPOSITION OF THE PARTICLE TRACKER

The Mercury implementation of the combinatorial geometry particle tracker employs linear (1st

order) and quadric (2nd order) surfaces, such as planes, spheres, ellipsoids, cylinders, cones, etc.
These surfaces as represented by a list of the coefficients in the implicit equation satisfied by the
points on the surface:

(1)

The surfaces are used to define volumes by considering the points that are “interior”/“below”
the surface }0),,(:),,{(<zyxfzyx , or “exterior”/“above” the surface }0),,(:),,{(>zyxfzyx .

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

6/21

∑
≥

≤++≤
=−−−=

0,,
20

000 0)()()(),,(
kji

kji

kji
ijk zzyyxxazyxf

Figure 2. The Mercury embedded-mesh (mesh + combinatorial
geometry) model of MIT BNCT facility

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

Combinatorial geometry cells are defined via the logical aggregation of surfaces using logical
operations such as AND, OR, NOT to form more complex volumes. An example of the proce-
dure for defining combinatorial geometry cells is shown in Figure 4. Two spherical surfaces,
sphere1 and sphere2, are defined. The cells are defined as:

cell1 = insideOf(sphere1) AND outsideOf(sphere2) (2)

Using only these simple primitives, one can construct very complicated geometries, such as the
National Ignition Facility (NIF) [5] target chamber and support structures shown in Figure 5.
The NIF model contains ~2300 surfaces and ~10800 cells.

 4.1 Domain Decomposition: Mesh vs. Combinatorial Geometry

It is useful to draw some distinctions between mesh-base and CG-based domain decomposition.
In the case when the underlying discretization of your geometry is mesh based, the connectivity
of the mesh cells is an integral part of the description of the mesh. If the mesh is topologically
Cartesian, then an implicit connectivity of the mesh known by using indexing and striding to
move in the i, j or k directions. If the mesh is unstructured, then a data structure is provided that

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

7/21

Figure 3. The treatment spectrum of neutrons at the beam exit location
 within the MIT BNCT facility as calculated by Mercury.

En (MeV)

φ(
E n

) (
cm

-2
 s

 -1
)

Greenman, O'Brien, Procassini, et al.

defines the adjacent faces of every face of every cell. This creates an underlying graph that is
partitioned into domains.

In the case that the underlying discretization of the problem geometry is CG based, then there
does not exist any connectivity information about the adjacency of any of the CG cells. As a
particle exits a bounding surface of one cell and enters an adjacent cell, it does not (a priori)
know what cell it will enter. The algorithm implemented in Mercury dynamically learns the
connectivity of the combinatorial geometry as particles track through it.

The first time a particle exits a cell by crossing a bounding surface, the algorithm loops over all
other cells and asks the question “Are my coordinates in the current cell?”. Once the answer to
the question is “Yes!”, the adjacent cell information is saved in a connectivity table to be
checked on subsequent particle surface crossings. Therefore, at initialization time, when the do-
main decomposition of the CG is defined, there is not any connectivity information for the CG

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

8/21

Figure 4. A simple example of creating a CG cell (cell1)that is inside of
 the sphere1 surface and outside of the sphere2 surface.

sphere1 sphere2

cell1

Figure 5. A combinatorial geometry model of the National Ignition
 Facility (NIF) target chamber and support structures.

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

cells. As a result, there is no underlying cell-face-neighbor adjacency graph, and graph partition-
ing algorithms cannot be use to perform the domain decomposition.

To overcome this data limitation, our method employs a technique that relies on the geometric
position and extent of each cell as shown in Figure 6. After calculating a bounding box for each
cell, the bounding box is used to decide if a given CG surface or cell should exist on a given do-
main. The user specifies a Cartesian domain decomposition of their problem by defining the po-
sitions of decomposition planes normal to the three coordinate axes. Thus only local geometry
information is stored on each domain and a scalable algorithm is obtained. Using this method,
the domains are themselves “boxes”, since they are created from the Cartesian product of bound-
ary planes normal to each of the three coordinate axes. Therefore, the test for membership of a
cell within a domain is a simple axis-aligned box-box intersection test. Figure 7 shows a simple
16 way domain decomposition of a collection of spheres, which are color coded by the domain /
processor they are assigned to.

The implications of the domain decomposition strategy for particle tracking and I/O in mesh-
based and CG-based problems are compared in Table I.

 4.2 Combinatorial-Geometry Domain Decomposition Algorithms

The Mercury Monte Carlo transport code already supported mesh-based domain decomposition
[6] when it was decided to add CG-based domain decomposition. As a result, our team lever-
aged the particle streaming communication that had already been implemented for the mesh-
based method to use with the new CSG domain decomposition. Particle streaming communica-
tion is the MPI-based communication that occurs when particles cross a domain boundary and
need to be sent to an adjacent domain on another processor, in order to continue tracking on the
other processor.

 4.2.1 What data is distributed across domains?

As the geometric description of a problem gets larger, the following sets of data can grow arbi-
trarily long: (a) the complete list of surfaces, (b) the list of surfaces that bound each cell, (c) the
complete list of cells, and (d) the list of templated (cloned) surfaces and cells. Therefore, a
method for distributing this data across processors is required.

Since every object in a CG problem is defined by logical operations on surfaces, the total number
of surfaces can be very large. Rather than storing the entire list of surfaces redundantly on every

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

9/21

Greenman, O'Brien, Procassini, et al.

processor, the approach used in Mercury is to only store locally those surfaces whose bounding
box intersects the bounding box of local domain. The same is true for the cells in the problem:
each processor only stores local cells, according to the portion of space that it has been assigned.

The code has a user interface feature known as templates, which is a simple means of defining
repeated structures. A user defines a template to be a list of surfaces and cells, and then instanti-
ates the template as many times as they would like, each instantiation having a different transla-
tion and/or rotation. For example, one could create a template of a “house”, and then instantiate
and translate a house template several times to create a neighborhood. This list of templates can

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

10/21

Figure 6. Example of combinatorial geometry domain decomposition: (a) the user
 defines the global CG problem, without regard to domain decomposition,

 (b) the user defines the Cartesian domain decomposition by specifying the
 positions of planes normal to the three coordinate axes, while the code

 automatically calculates bounding boxes for all cells which are used to test
 for intersection with each domain, and (c) the code automatically creates

 Domain 1 and Domain 2 and assigns the correct cells to each domain

Domain 1 Domain 2

Domain 1 Domain 2

(a)
(b)

(c)

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

11/21

Figure 7. Domain decomposition of a collection of spheres into 16 domains. The CG cells
 are color coded according to the domain / processor they are assigned to.

Table I. Comparison of the available information and the underlying algorithms
 for mesh-based vs. CG-based domain decomposed particle tracking.

Event Mesh Combinatorial Geometry
Cell Boundary
Crossing

Adjacent cells known Adjacent cells not explicitly
known / Must check adja-
cent candidate cells

Domain Boundary
Crossing

Adjacent domains known Adjacent domains known

Input Input description is already
domain decomposed within
the binary dump file

Must decide which proces-
sor each surface/cell should
be assigned to (Need to do-
main decompose user CG
input)

Output (Graphics) Each processor writes out-
put for its domains, and a
master file describes how to
assemble the pieces

Each processor writes the
portion of space it owns, ex-
plicitly introducing domain
boundary surfaces for cells
on domain boundaries, and
a master file describes how
to assemble the pieces

Greenman, O'Brien, Procassini, et al.

also get very large. Therefore, Mercury calculates bounding boxes for templates and only in-
stantiate them on domains whose bounding box intersects the template’s bounding box.

 4.2.2 Scalability issues

In the case of a mesh, the geometry is defined by a mesh generator which domain decomposes
the mesh and stores the domains in separate files. Domains are then assigned to processors, such
that each processor only has knowledge of its local domains, and no processor has knowledge of
the global description of the geometry. That is in contrast to the CG, where the user defines the
problem geometry using input commands that specify the surfaces and cells for the entire prob-
lem. In the interest of scalability, the domain decomposition algorithm employed in Mercury re-
quires that each processor filter out the parts of the global CG problem description that are not
assigned to it, based upon residence in the domain bounding box.

Scalability issues occur only at initialization time and are limited to (a) the entire CG description
is obtained from an input text file which must be read into memory at once, (b) the entire list of
surfaces/cells is read in, and a surface/cell is kept on the local domain only if its bounding box
intersects the domain’s bounding box, and (c) the entire list of surfaces that define a cell are read
in, and only those surfaces that intersect the domain that the cell is on are kept locally.

 4.2.3 Scalability solutions

After initialization, when the cells are partitioned according to their domain bounding box, each
processor only stores domain-local information. Therefore, the algorithm is scalable. However,
one problem remains to be solved: How does one initialize the CG geometry locally, such that
each processor only has to deal with domain-local geometry and not the global geometry?

It is possible to treat the CG input in a manner that is similar to how mesh geometry is treated:
the definition of surfaces, cell and templates could be decomposed into separate files, and each
processor only reads input for the domains that are assigned to it. However, this solution has not
been implemented. It has the disadvantage of requiring more work of the user, since they would
have to split up their CG input file into several files, each file containing geometry in some spec-
ified bounding box.

If a large cell count arises due to repeated hierarchical structures, our approach achieve scalabili-
ty through the input “template” mechanism. For example, suppose a user wants to model a city
composed of 1,000 houses. They can create a template of a house, which might consist of 2,500
cells. Assume that each CG cell requires about 7 kilobytes of memory. The total memory re-
quirement for this geometry is:

(1,000 houses/city) * (2,500 cells/house) * (7K/cell) = 17.5GB/city (3)

In most cases, 17.5 GB is more memory than exists on most single processors. However, do-
main decomposition permits the distribution of the geometry (required memory) across multiple
processors such that the entire problem can be run. Input templates are only instantiated on pro-
cessors that contain domains which intersect the template’s bounding box, hence scalability is
achieved through the use of input templates.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

12/21

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

 4.2.4 Calculating the bounding box of a cell

Bounding boxes are required for both the surfaces and cells in order to domain decompose the
CG. The surfaces in Mercury are assumed to be just quadric surfaces, specified by coefficients
aijk, such that i,j,k ≥ 0 and 0 ≤ i,j,k ≤ 2, and a translation (x0, y0, z0). These surfaces are created
from user input, where the user specifies the type of surface, such as:

Plane_X, Plane_Y, Plane_Z, Plane, Sphere, Ellipsoid, Cylinder_X, Cylinder_Y,
Cylinder_Z, Cylinder, Cone_X, Cone_Y, Cone_Z, Cone, etc.

In addition to storing the surface coefficients and translation, the code also stores an enumerated
type describing the type of the surface. Given the type of the surface, the code calculates its
bounding box.

For example, a plane normal to the X-axis, has a surface equation:
(4)

Axis-aligned bounding boxes are also stored, which are specified by the minimum and maximum
coordinates, in this case:

Min = (-a000, ∞, ∞), Max = (-a000, ∞, ∞) (5)

Note that it is possible to have infinite extent in any or all of the coordinate directions. This is the
case for an unbounded surface, such as a plane that is not normal to any of the coordinate axes.
When an unbounded surface is intersected with any domain, there will always be an intersection
so unbounded surfaces will be assigned to all processors.

Another example bounding box calculation is that of a spherical surface, which has the surface
equation:

(6)

In this case, the axis-aligned bounding box is given by:

(7)

Once every surface has an axis-aligned bounding box, it is used to filter out non-local surfaces.
Since every domain also has a bounding box, each domain only keeps the surface whose bound-
ing boxes intersect the domain’s bounding box.

As the CG cells are built up from surfaces, the code calculates cell bounding boxes from surface
bounding boxes. A CG cell is recursively defined as a tree of CG cells, with an operator defined
on the children of a parent cell. There are two binary operators (and, or), and one unary operator
(not). All CG cells are classified either as parent or leaf cells. Parent cells have children, while
leaf cells do not. We require all cells to be bounded, so not(cell) is unbounded, thus we re-
turn an infinite bounding box for that case.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

13/21

0000 =+ ax

0)()()(000
2

0
2

0
2

0 =+−+−+− azzyyxx

),,(

),,(

000000000000

000000000000

azayaxMax

azayaxMin

−+−+−+=

−−−−−−=

Greenman, O'Brien, Procassini, et al.

 4.2.5 Cell parsing

A simple filtering method has been implemented when parsing the CG cell data from the user in-
put file. Since the current domain decomposition strategy is Cartesian in nature, every domain
has an axis-aligned bounding box. The bounding box algorithm described above is used to cal-
culate a bounding box for each cell. Each domain inserts a new cell onto its list of cells if the
cell’s bounding box intersects with the domain’s bounding box. This also implies that cells
which straddle domain boundaries are inserted into multiple domains.

 4.2.6 Locate coordinate

One of the most fundamental algorithms that a Monte Carlo transport code must implement is:
“Given a point in space, which cell contains that point?” The modification to this algorithm that
is required to support domain decomposition is trivial, since an algorithm existed that works for
the case of no domain decomposition. In order to use the existing algorithm, a domain filtering
step as also implemented, as shown in Figure 8. If the point in question is outside of the domain
in question, that domain can immediately reject ownership of the particle. If the point in ques-
tion is inside of the domain in question, then proceed with the existing algorithm. During execu-
tion of the the Is-Point-In-Cell routine, if there is more than 1 domain, then the algorithm ensures
that the input particle is inside of the input domain. If that test passes, continue as before; other-
wise the particle is definitely not on the input domain.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

14/21

Figure 8. The bold black lines are domain boundaries. The black dot illustrates the posi-
tion of a particle. The particle is outside of Domain 0, hence it can immediately
reject ownership of the particle. The particle is inside of Domain 1, so it must
proceed as usual to test to see which cell the particle is in.

Domain 0 Domain 1

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

 4.2.7 Nearest facet

Another necessary algorithm to implement in a Monte Carlo particle tracking code is : “What is
the nearest facet to the current particle position based upon its direction of travel?”. This algo-
rithm is isomorphic to ray tracing. As a particle streams through a CG cell, it will eventually
reach the boundary of the current cell and cross into the next cell. Given the particle's position
and velocity, the Nearest-Facet routine calculates the distance to all of the bounding surfaces of
the cell, and it selects the nearest boundary surface that the particle will cross. In the case of a
domain decomposed CG particle tracker, the existing (serial) nearest facet algorithm is employed
with one modification. The distance to the next nearest domain boundary interface must also be
determined. If the distance to the nearest domain boundary interface (d1) is less than the distance
to the nearest cell boundary surface (d2) , then the particle must be communicated to the adjacent
domain (see Figure 9).

The Mercury code had already domain decomposition for mesh-based problems. As a result, it
already had the required infrastructure to buffer and communicate particles among adjacent do-
mains. Therefore, once it is determined that the particle should undergo a CG domain boundary
crossing, the existing infrastructure is used to communicate the particle from its current domain
to the adjacent domain.

 5 APPLICATION OF THE DOMAIN-DECOMPOSED PARTICLE TRACKER:
THE LIFE ENGINE

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

15/21

Figure 9. This example shows that the distance to the domain boundary crossing (d1) is
closer than the distance to the nearest facet (d2) , hence the particle will be com-
municated from Domain 0 to Domain 1.

d
1

d
2

Domain 0 Domain 1

Greenman, O'Brien, Procassini, et al.

Lawrence Livermore National Laboratory (LLNL) is in the final stages of constructing the Na-
tional Ignition Facility (NIF), the world’s largest and most powerful laser. One possible applica-
tion of a NIF-like laser, is to use it for fissile material transmutation and electricity production.
This is the idea behind the Laser Inertial Fusion-Fission Energy (LIFE) engine [7]. The lasers
are fired on a tiny D-T capsule within a holhraum in the center of the target chamber. This caus-
es the capsule to compress and undergo nuclear fusion, releasing large quantities of high energy
neutrons. These neutrons stream out of the holhraum and into a layer of fissionable fuel material
within the spherical, subcritical LIFE engine. This fuel, which can be derived from many
sources including spent reactor fuel and weapons grade material, is in the form of packed peb-
bles, which themselves are comprised of several thousand TRISO pellets. These fuel pebbles un-
dergo fission by the high-energy fusion neutrons and release heat which is used to generate elec-
tricity.

A detailed simulation of neutron transport in this facility requires a very large and complex geo-
metric description. To model only a very small portion (a 1º by 1º solid angle) of the fuel layer
of the LIFE engine requires ~5.6 million CG cells (see Figure 10):

569 pebbles * 2445 pellet/pebble * 4 layers/pellet= 5.6 Million CG cells (8)

A full 4π model the LIFE engine would require billions of CG cells.

Our 1º by 1º solid angle wedge model of the LIFE engine calculates the neutron scalar flux dis-
tribution in 175 binned energy groups. Therefore, each CG cell requires at least 175 double pre-
cision floating point numbers, in addition to the data structure fields for describing cells and sur-
faces. The memory requirement for this “small” LIFE problem is 36GB of memory for the ge-
ometry alone, while additional memory is required for the particles. This is typically more mem-
ory than any one processor has, so the problem must be distributed across processors if it is to
be solved. The Mercury code is in a unique position to solve extremely large scale, detailed
problems like this.

 5.1 Preliminary Results

An initial test of the domain-decomposed particle tracker focused on transporting neutrons
though a single LIFE pebble. For this initial test, the 4 layers in each TRISO pellet were homog-
enized. As a result, this single pebble is comprised of 2446 CG cells (as shown in Figure 11):
2445 TRISO pellet cells and 1 pebble filler cell.

Table II shows the time required for Mercury to calculate a k eigenvalue on the single LIFE peb-
ble. The number of particles was the same for each calculation, but the number of domains and
processors was varied. To begin the analysis of the data, look at the 1 processor data in the sec-
ond column. One notices that as the number of domains is increased from 1 to 8, the calculation
actually runs faster. This is due to a localization of geometry to each domain, as shown in Figure
12. The calculation avoids non-local distance to facet calculations which are “impossible, since
not all of the CG cells are on the current domain.

As more domains are added to a problem (for a given processor count), it further localizes the
geometry. However, there is a competing effect of calculating the distance to the new domain

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

16/21

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

boundaries that are introduced. For example, on 1 processor, increasing the number of domains
from 16 to 64, results in the run time increasing from 686 seconds to 732 seconds. In this case,
the cost of tracking to 48 additional domain boundaries outweighed the cost savings associated
with localization of the geometry.

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

17/21

Figure 10. The hierarchical layout of the “small” model of the LIFE engine: (a) the target
chamber (inner radius 423 cm, outer radius 504 cm), (b) a 1º by 1º wedge of
pebbles contains 569 pebbles surrounded by Flibe coolant (made of Li, Be and
F), (c) each pebble (1cm radius) is contains 2445 TRISO pellets surrounded by
pyrolytic carbon, and (d) each TRISO pellet (radius of 497 µm) has 4 layers
(Layer 1: U238, O, C; Layers 2 and 3: C; Layer 4: SiC).

(a)
LIFE Target Chamber

1º by 1º wedge

(b)
569 Pebbles

(c)
2445 TRISO Pellets

per Pebble

(d)
4 Layers

per TRISO Pellet

Figure 11. A single LIFE pebble containing 2445 homogenized TRISO pellet CG cells.

Greenman, O'Brien, Procassini, et al.

Now examine the data for 16 processors. When the problem is run with 1 domain, the traditional
method of parallelizing Monte Carlo CG transport calculations, each processor has is assigned
all of the geometry, and the particle workload is divided evenly among the processors. This con-
figuration requires 74 seconds to complete When the calculation is divided into 16 domains on
16 processors, it only requires 12 seconds, which is more than a factor of 6 speedup! Once
again, this performance improvement is due to localization of the geometry. When a particle is
inside of the pebble filler cell, it must calculate the distance to the 2445 TRISO pellets surfaces
without domain decomposition. However, when the problem is decomposed into 16 domains, it
only has to calculate the distance to ~2445/16 = ~153 surfaces. Competing with the speedup
arising from localization of the geometry, the particle interprocessor (interdomain) communica-
tion leads to an overhead that results in the calculation running slower on 64 domains than 16 do-
mains. This example illustrates that domain decomposition can result in shorter run times than
particle parallelism: compare the timings for 16 processors, 1 domain (74 seconds for particle
parallelism) to 16 processors, 16 domains (12 seconds for spatial parallelism).

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

18/21

Figure 12. (a) Without domain decomposition, a particle in the pebble filler (blue) cell
must calculate the distance to 2445 (orange) surfaces, which is very expensive.
(b) With domain decomposition, a particle in the pebble filler cell must calculate
the distance to only local surfaces on this domain, which is significantly faster.

(a)
Without Domain
Decomposition

(b)
With Domain

Decomposition

Table II. The time required to complete a k eigenvalue calculation in the homogenized-
TRISO LIFE pebble for various domain and processor configurations.

Time Required to Complete k Eigenvalue Calculation (sec)
1 processor 2 processors 4 processors 8 processors 16 processors

1 domain 848 427 226 131 74
2 domains 736 235 148 82 52
4 domains 668 190 65 34 20
8 domains 659 162 57 20 12
16 domains 686 214 113 32 12
64 domains 732 207 116 37 18

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

 5.2 Dynamic Load Balancing

The Mercury code has an existing dynamic load balancing algorithm [6] which is independent of
the underlying geometry discretization (mesh or CG). When the number of processors is greater
than the number of domains, the code will assign multiple processors to domains. In this case,
the particle workload will be shared evenly among the processors that are working on a particu-
lar domain. This is a hybrid domain-decomposition (spatial parallelism) and domain-replication
(particle parallelism) model.

For example, consider once more the “small” model of the LIFE engine shown in Figure 13.
The figure shows the 569 pebbles in the 1º by 1º wedge. These spherical cells are domain de-
composed into 16 domains (that are stacked in a vertical bed in the figure), but run on 64 proces-
sors. In this time dependent calculation, neutrons are injected into the system at the bottom with
an upward directed. Initially, each domain will have 64 (processors)/16 (domains) = 4 proces-
sors assigned to it. After each cycle of the calculation, the code observes how much work each
domain required during that cycle, and redistributes the processors proportional to the workload
of each domain.

In this figure, the pebbles are color coded according to the number of processors that are as-
signed to the domain that the pebble resides in: red / light blue / dark blue means 17 / 4 / 1 pro-

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

19/21

Figure 13. Time evolution of the number of processors assigned to each domain in the
“small” model of the LIFE engine. The problem is run with 64 processors and
16 domains. The number of processors assigned to each domain varies dynami-
cally in proportion to the particle workload on the domain. The fuel pebbles
are color coded by the number of processors assigned to the domain that the
cell resides in.

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4

Greenman, O'Brien, Procassini, et al.

cessors per domain. It clearly indicates that number of processors assigned to a domain increases
between Cycle 0 and Cycle 1 in response to the particle workload imbalance. As the particles
move upwards in time through the domains, the code reassigns processors to domains, approach-
ing a more uniform distribution (compare Cycle 1 to Cycle 4). In a sense, the processors are
“transporting” along with the particles. By allowing the number of processors assigned to each
domain to vary dynamically, Mercury obtained a factor of 1.4 speedup over a uniform, static as-
signment of 4 processors to each domain.

 6 SUMMARY AND CONCLUSIONS

This paper has presented two enhancements to the existing combinatorial geometry particle
tracker in the Mercury Monte Carlo transport code. These modifications allow us to efficiently
model problems with a high degree of geometric complexity.

A hybrid particle tracker, in which a mesh region is embedded within a CG region, permits effi-
cient calculations of problems which contain both large-scale heterogeneous regions (modeled
with a mesh) and homogeneous regions (modeled with a CG). One application of this methodol-
ogy is to have Mercury simulate particle transport in both the mesh-based and CG-based regions,
while other physics, such as thermal-hydraulics or structural mechanics, is run in conjunction
with particle transport on the mesh.

Our initial application of the embedded-mesh particle tracker is to model neutron transport with-
in the Boron Neutron Capture Therapy (BNCT) facility at the MIT Nuclear Reactor Laboratory.
Transport within the reactor core has been modeled on a Cartesian mesh, while the balance of the
facility has been modeled with combinatorial geometry. Modeling this system completely via a
mesh would have been a daunting challenge, since the core constitutes only a small portion of
the facility, and the remainder of the facility includes large homogeneous volumes and several
heterogeneous features. Our preliminary results agree favorably with the calculations performed
by the MIT reactor designers.

In addition, a second form of parallelism has been added to the CG particle tracker. As a result,
our CG tracker now supports particle parallelism via domain replication, as well as spatial paral-
lelism via domain decomposition. Mercury can now perform calculations of problems with a
very large degree of geometric complexity which cannot be solved through particle parallelism
alone, due to the large memory requirements of the CG. Our new method decomposes both the
cells, as well as the particles, across processors. Therefore, particles are communicated to an ad-
jacent processor when they track to an interprocessor boundary.

The initial application of the domain decomposed CG tracker has been to model a small-solid-
angle section of the Laser Inertial Fusion-Fission Energy (LIFE) engine (a subcritical, laser-driv-
en pebble-bed “engine”) that is being designed at LLNL. While modeling the neutronics of the
entire LIFE engine is far beyond the scope of current supercomputers and transport codes, our
initial models of a small portion of the facility have produced rather promising results. Static k
eigenvalue calculations of a single pebble (which contains 2445 homogenized TRISO pellets)
has shown that domain-decomposed CG particle transport can be faster than use of particle paral-
lelism alone. Using a simple implementation of domain decomposition in which axis-aligned

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

20/21

Combinatorial Geometry Particle Tracker: Embedded Meshes and Domain Decomposition

bounding boxes are defined for surfaces, cells and domains, then localizing the geometry by in-
tersecting bounding boxes and filtering out non-local geometry, has resulted in significant
speedups. For example, the serial calculation of this pebble required 659 sec, while the domain-
decomposed calculation with 8 domains and 8 processors required only 20 sec (superlinear
speedup of 32.95 using 8 processors).

A more complicated problem that has been modeled is a 1º by 1º wedge of the LIFE engine.
This “small” problem works out to be comprised of 5.6 million CG cells, which would require
36GB of memory for the geometry alone. This amount of memory is typically not available on
each processor of current supercomputers, and therefore, particle parallelism alone is not capable
of solving this problem. Finally, we have investigated the use of both domain decomposition
(spatial parallelism) and domain replication (particle parallelism) in a time dependent version of
this problem. Since the neutrons are introduced at the low-radius end of the pebble bed, and
move upward through bed in time, the system starts out in a rather load imbalanced state, and ap-
proaches a more balanced state as time progresses. By enabling dynamic domain replication, the
system is able to better balance the load over multiple cycles, resulting in a speedup over the stat-
ic assignment of processors to domains.

ACKNOWLEDGMENTS

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344

REFERENCES

1. R. J. Procassini, et al., "Mercury User Guide (Version c.2)", Lawrence Livermore National
Laboratory, Report UCRL-TM-204296, Revision 1 (2008).

2. "Mercury Web Site", Lawrence Livermore National Laboratory, http://www.llnl.gov/mercury
(2009).

3. L-W. Hu and J. Bernard, "The MIT Research Reactor as a National User Facility for Ad-
vanced Materials and Fuel Research", IGORR-TRTR Joint Meeting, Gaithersburg, Maryland,
September 12-16 (2005).

4. O. K. Harling, K. J. Riley, et al., "The Fission Converter-Based Epithermal Neutron Irradia-
tion Facility at the Massachusetts Institute of Technology Reactor", Nucl Sci Eng, 140, pp.
223-240 (2002).

5. "The National Ignition Facility: Ushering in a New Age for Science", Lawrence Livermore
National Laboratory, https://lasers.llnl.gov/programs/nif (2009).

6. M. J. O'Brien, J. M. Taylor and R. J. Procassini,, "Dynamic Load Balancing of Parallel
Monte Carlo Transport Calculations", The Monte Carlo Method: Versatility Unbounded In A
Dynamic Computing World, Chattanooga, Tennessee, April 17–21 (2005).

7. "LIFE: Clean Energy from Nuclear Waste", Lawrence Livermore National Laboratory,
https://lasers.llnl.gov/missions/energy_for_the_future/life (2009).

2009 International Conference on Mathematics, Computational
Methods & Reactor Physics (M&C 2009), Saratoga Springs, NY, 2009

21/21

