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This Erratum addresses errors that occurred in some of the analysis in our recent 

publication (Ref. 1).  The main elements of Ref. 1 are (1) the presentation of kinetic 

simulations of stmulated Brillouin backscattering (SBS) and the accompanying secondary 

instability of the primary SBS ion acoustic wave (IAW) with and without the inclusion of 

the second harmonic of the primary IAW; (2) analyses of the four-wave (primary IAW, 

low-frequency IAW, and two sidebands of the primary IAW) and seven-wave (includes 

the second harmonic of the primary IAW and its two sidebands, as well as the four waves 

defined in the foregoing) dispersion relations for the secondary IAW instability; (3) 

comparisons of the results of solving the dispersion relations to the two particle 

simulations; (4) mode coupling calculations for SBS and the four-wave system of IAWs 
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that model the particle simulations; and (5) a discussion and summary.  However, the 

simplified 7-wave dispersion relation used in Ref. 1 propagated a typographical error in 

Eq.(44) in Ref. 2, the Pesme, Riconda, and Tikhonchuk (PRT) paper.  This Erratum 

corrects Eq.(44) of Ref. 2 (discussed in more detail in an Erratum3 for Ref. 2) and revises 

Sec. IV of Ref. 1 by correcting the analysis and comparisons of the 4-wave and 7-wave 

dispersion relations, and the comparison of the 7-wave dispersion relation to the particle 

simulations.  

We find that the results of the corrected 7-wave dispersion relation are not

profoundly different from the corresponding results in Ref. 1 and the 7-wave growth rates 

of the most unstable modes are more similar to the results of the 4-wave dispersion 

relation.  The main results of Ref. 1 are unchanged: (1) the particle simulations exhibit a 

secondary IAW instability that is a modulational instability involving parallel and 

obliquely propagating IAWs; (2) the two types of particle simulation exhibit similar 

spectra, and the second harmonic IAW is a transient feature in the first particle simulation 

that is not well differentiated from the noise in the streak spectra shown in Ref. 1; (3) the 

4-wave dispersion relation fits the simulation data relatively well, and only the 4-wave 

dispersion relation is applicable to the simulation with the second harmonic IAW 

suppressed;  (4) the results of the 7-wave dispersion relation do not differ profoundly 

from the 4-wave results for the modulational instability when frequency mismatch effects 

are included; and (5) it is problematic justifying the application of the 7-wave dispersion 

relation even to the first particle simulation because the second harmonic signal is either 

transient or weak.  The 7-wave dispersion relation is not a primary focus of Ref. 1.
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In Ref. 1 a typographical error in Eq. (44) of the earlier PRT publication (Ref. 2) 

was repaired late in the galley-proof stage.  The correction involved the term 

[(1)  4 2s ˜ a
2

(2) ] on the left side of Eq. (11a) of Ref. 1, which corrected [(1)  4 2s ˜ a
2

(2) ]

[containing the typographical error (2) instead of (2)] on the left side of Eq. (44) in 

Ref. 2, with the various quantities defined following Eq. (11a) in Ref. 1 and in Eq.(1b) 

here. Regrettably, Ref. 1 was posted on line before the solutions of the incorrect 

dispersion relation Eq.(44) of Ref. 2, appearing in Figs. 5c, 5d, 6c, 6d, 7, 8c, 8d, 9, 10c, 

and 10d of Ref. 1, could be re-examined.  Thus, the results plotted in these figures in Ref. 

1 based on the original incorrect 7-wave dispersion relation are inconsistent with 

Eq.(11a) in Ref. 1 and are incorrect.  In addition, Pesme, Riconda, and Tikhonchuk 

realized after the publication of Ref. 1 that the corrected Eq.(44) does not accurately 

represent the H2 decay of the second harmonic decay of the primary ion acoustic wave 

(IAW) into a sideband and a lower-frequency IAW.2,3  This erratum corrects the results 

for the seven-wave dispersion relation described in the preceding. 

In the Erratum3 for Ref. 2, Pesme, Riconda, and Tikhonchuk have presented a 

revised simplified dispersion relation [corresponding to the Korteweg-de-Vries (KdV) 

limit] for the seven-wave system of ion acoustic waves based on Eq.(39) in Ref. 2: 

R (0){[(1)  4 2 s ˜ a
2

(2) ][(1)  4 2s ˜ a
2

(2) ] 4 2m
2 ˜ a

4

[2 (0,0)]2 }  4 ˜ a
2
{[(1)  4 2s ˜ a

2

(2) ](1)2

 [(1)  42 s ˜ a
2

(2) ](1)2  4 ˜ a
2
[ 2m
2 (0,0)](1)(1)} (1a)

with 
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R (0)  (0)  42m
2  2s ˜ a

4

[2 (0,0)]2 [ 1
(2) 

1
(2)]

2(0,0)  3ka
2(1mis), mis 

2
3

mis

 3 (ka )
, mis a  ka /(1 ka

2)

(0) 1 k 2  k 2 / 2, (1) 1 k
2  k

2 /
2, (2) 1 k2

2  k2
2 /2

2

k
2  (kx  ka )2  ky

2,  a, k2
2  (kx  2ka )2  ky

2,2   2a

  2  2m 2s
˜ a

2

[2 (0,0)]
1

(2)

(1b)

where 2s,2m  0 or 1, mis  a / pi , and  na /ne  2 ˜ a ; and in Eq.(1)  we use 

units: ˜ a  e ˜ a /Te, k  ke,  / pi as in Ref. 2 to streamline in the notation. 

Equation (1a) corresponds exactly to the KdV limit of the general dispersion relation (39) 

in Ref. 2, i.e., to the limits V2
stab  2 for all the second-order coupling coefficients, and   

V3
stab  0 for all the third-order coupling coefficients. Equation (44) of Ref. 2 

corresponds to the approximation    0 , and this approximation is a priori

incorrect for the decay H2 instability.  Equation (1a) corrects Eq.(44) in Ref. 2 and 

Eq.(11a) in Ref. 1.

Equation (44) in Ref. 2, Eq.(11a) in Ref. 1, and Eq.(1a) yield identical results for 

the four-wave limit of the general dispersion relations (NR ,2s,2m  0).  Thus, all of 

the 4-wave results in Ref. 1 are unaffected by the correction to Eq.(44) in Ref. 2 and the 

revised dispersion relation in (1a) here.  For the modulational instability investigated in 

Ref. 1 the renormalization term NR 9 ˜ a
2

in R (0) in Eq.(11) of Ref. 2 is unimportant 

so that the PRT 7nr-wave roots (NR=0) in Ref. 1 differ insignificantly from the PRT 7-

wave (NR=1) results. This renormalization term has been dropped in the KdV 

approximation leading to Eq.(1a) here.   Analysis of Eq.(1a) in Ref. 3 and careful 

comparison to the more general dispersion relation Eq.(39) in PRT show that Eq.(1a) 

yields valid results for the modulational instability only in the limit that kae<<1.   For the 
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case of interest in Ref. 1 where kae=0.36, the more general dispersion relation Eq.(39) in 

PRT must be used.

We now compare the 4-wave and 7-wave dispersion relations for the 

modulational instability and revise the relevant illustrations and discussion in Ref. 1 to 

accommodate the corrections in the 7-wave dispersion relation. We employ the general 7-

wave dispersion relation Eq.(39) in PRT in which the mode coupling coefficients V2 and 

V3 have been approximated by their lowest order expression as derived in Appendix B of 

Ref. 2. Motivated by the particle simulation results in Ref. 1, we restrict ourselves to the 

modulational instability, so that we exclude consideration of the three-wave decay of the 

second harmonic IAW. Figures 1-6 here replace Figures 5-10 in Ref. 1 and show

comparisons of the solutions of four-wave and seven-wave dispersion relations 

corresponding to the modulational instability. 

We consider a/al={-0.01, 0, and 0.01} in Figs. 1 and 2 and note the sensitivity 

of the secondary instability with respect to the mismatch frequency. Using a small

mismatch frequency is motivated by the BZOHAR observations and by the argument on 

the cancellation of the net effect of the frequency shifts due to trapping in Ref. 1.   We 

consider the solutions of the 4-wave and 7-wave dispersion relations for the secondary 

IAW instability in Figs. 1-6 for parameters relevant to the BZOHAR simulations. In Fig. 

1 are shown contours of the growth rate as a function of kxe and kye =ke for 

|na /ne | 0.12, kae  0.36, a /al  0. The peak four-wave (Ref. 4) growth rate is 

Im al =0.0071 (Fig. 1a), while the peak PRT four-wave growth rate is 0.0051 (Fig. 

1b); and the locations of the roots are indicated on the plots near the half-harmonic in kxe

but with substantial values of kye . The peak instability growth rate for the 7-wave 
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dispersion relation in Figs. 5c is 0.0060 occurring near the half-harmonic in kx and at 

slightly smaller ky than in the 4-wave dispersion relation, and the structure of the roots 

differs. The growth rate for the secondary instability observed in the first BZOHAR 

simulation shown in Fig. 2c of Ref. 1 is Im al~0.0073 for na/ne~0.12, and Im 

al~0.013 in the second simulation shown in Fig. 3c in Ref. 1 for the higher IAW 

amplitude na/ne~0.18 (for this amplitude and a=0, the PRT 4-wave peak growth rate 

is Im al~0.01).  

The roots shown in Fig. 1 correspond to modulational instability: 

(1) ~ O(102)  (2),(0) ~ O(1) . Instability in the 7-wave case extends to kye=0 

and a finite value of kxe smaller than the half-harmonic of the primary IAW for a=0. 

The modulational instability with ky=0 will be referred to as a “1D modulational 

instability” and does not exist in the limit of the 4-wave dispersion relation for a=0.  

The most unstable, obliquely propagating mode can be approximated, in the limit 

| / | 1a en n  and kae <<1 by  / 3y x a ek k k  (see Eq.(80) and Sec. VI.B.2 of Ref. 2). 

The modulational instability appears to play an important role in the interpretation of the 

BZOHAR results. References 2 and 3 discuss the other branches of instability (three-

wave decay of the primary IAW, the three-wave decay of the second harmonic, and 

hybrids of the branches of instability) supported by Eq.(39) of Ref. 2 in some detail.

Does the second harmonic decay occur in the first of the BZOHAR simulation 

examples in Ref. 1?  The wave number spectrum of the IAWs observed in the BZOHAR 

simulations shows no signature of modes with very small values of kx and kye=O(0.1), 

which could indicate that there is no instability corresponding to the decay of the second 

harmonic of the primary IAW. On the other hand, this domain of very small values of kx
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and kye=O(0.1) is not the only signature of the influence of the second harmonic. Indeed, 

there are at least two other signatures of the influence of the second harmonic: (i) the “1D 

modulational instability” domain exists in the case of the seven-wave dispersion relation 

for a=0, as observed when comparing Fig. 1a or Fig. 1b (4-wave) with Fig. 1c (7-

wave);  (ii) the “2D modulational instability” domain corresponding to the domain kx 

~ka/2 and / 3y x a ek k k  also involves a contribution from the second harmonic, as can 

be checked by comparing Fig. 1(b) (4 wave) with Fig. 1c (7 wave) for a=0, Fig. 2a (4 

wave) with Fig. 2c (7 wave) a<0, and Fig. 2b (4 wave) with Fig. 2d (7 wave) for 

a>0. The reason why the second harmonic may significantly modify the modulational 

instability in the “2D modulational instability” domain can be explained as follows: the 

decay product frequencies and wave numbers of the second harmonic decay are (~5/2 a, 

~5/2 ka) for the upper component and (~3/2 a, ~3/2 ka) for the lower one. Thus, this 

lower component is able to interact with the upper component of the modulational 

instability. Therefore, the modulational instability and the second harmonic decay 

instability may coalesce and give rise to a hybrid root in the vicinity of the intersection of 

the resonant curves of the modulational instability and of the secondary decay instability. 

This domain corresponds to the “2D modulational instability”. However, these two 

different structures of the modulational root observed in Fig. 1c and resulting from the 7-

wave dispersion relation are not exclusive features of the 7–wave dispersion relation. 

Indeed, Fig. 2a, corresponding to the parameters 

|na /ne | 0.12, kae  0.36, a /al  0.01, displays a structure for the root of the 

PRT 4-wave dispersion relation, which is very similar to the structure observed in Fig. 1c 

for the PRT 7-wave dispersion relation: unstable IAWs near the primary IAW's half-
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harmonic in kxe with substantial values of kye, namely 3 ( )y e a e x ek k k   , (the “2D 

modulational instability”), and unstable modes extending to smaller kxe and kye=0 (the 

“1D modulational instability” domain).

The “2D modulational instability” structure is a good match to the BZOHAR 2D 

wave number spectra shown in Fig. 4 of Ref. 1.  However, there are also 1D modes 

present in the spectra, and the electrostatic wave spectra for the one-dimensional SBS 

simulations shown in Fig. 4 of Ref. 12 exhibit a spread of longer wavelength IAWs 

accompanying the instability of the SBS IAW.  Thus, it is significant that the 

modulational instability can have unstable modes with kye=0, in addition to the unstable 

modes with finite kye.  Both 4-wave and 7-wave dispersion relations support 1D and 2D 

modulational instability depending on the values of a used.  We also note that the 

structure of the roots in Fig. 2 shows a significant asymmetry with respect to the sign of 

the mismatch frequency a (Figs. 2a and 2c vs. Figs. 2b and 2d).  This asymmetry is 

more pronounced at larger values of |a| and is addressed in Ref. 2.   All of the unstable 

roots plotted in Figs. 1and 2 are modulational modes as confirmed by evaluating the 

dielectric functions of the unstable product waves. 

In Fig. 3 we show a scan of the most unstable growth rate for modulational 

instability as a function of |na /ne | for kae  0.36, a /al  0 .  The PRT 7-wave 

and 4-wave roots have growth rates scaling as |na /ne |2 for small wave amplitudes.   

The 4-wave roots have slightly weaker growth rates. A consequence of the quadratic 

scaling of the growth rates with IAW amplitude is that the secondary instability temporal 

behavior will be sensitive to the time dependence of the SBS IAW amplitude.  The 

dependence of the modulational instability roots on |na /ne | is further elaborated in Fig. 
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4 where the growth rates, frequencies, and wave numbers of the fastest growing modes 

are plotted as functions of |na /ne |.  The structures of the solutions from the PRT 4-

wave and 7-wave dispersion relations are generally similar, but there are quantitative 

differences.  The increased growth rate accompanying the larger IAW amplitude in the 

second BZOHAR example in Sec. II of Ref. 1 follows from the scaling of the growth 

rates with |na /ne |2.

In Figs. 5 and 6 we show solutions for the growth rates, frequencies, and wave 

numbers of the most unstable modulational modes as functions of the mismatch 

frequency a with |na /ne | 0.12, kae  0.36 for the 4-wave dispersion relation of 

Ref. 4 and the PRT 4-wave and 7-wave dispersion relations.  The structure of the roots is 

generally similar, but quantitative differences are evident. We note that the smallest 

growth rates for the four-wave dispersion relations occur at a=0, while the smallest 

growth rates are shifted to a/al ~ -0.02 for the seven-wave dispersion relations.  The

results in Fig. 5 provide some insight into why the maximum growth rates in Figs. 1, 2, 

and 3 for the 4-wave dispersion relations are either smaller or larger than for the 7-wave 

dispersion relations.  The dependence of the modulational instability roots on the 

frequency mismatch is important, and faster growth rates are observed for sufficiently 

large |a| than for a=0.  

For small values of |a/al| the solutions of the dispersion relations yield 

Re/al~0.3-0.4 which sets the separation of the unstable sidebands of the primary IAW 

and compares favorably to the observed frequency spectra in Figs. 2b and 3b of Ref. 1. 

For the range of mismatch frequencies considered, there is no instability of the IAW 

corresponding to a resonant three-wave decay of the primary SBS IAW.   The BZOHAR 
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power spectra in Figs. 2b and 3b in Ref. 1 suggest that the SBS IAW experiences a small 

negative frequency shift at a time preceding the onset of the secondary instability.  

However, if the instability products share the same proportional frequency shift due to 

trapping, then the net frequency shift might cancel.1  In addition, if ion trapping is 

affecting all of the IAW instability products (the ion trapping width as a fraction of the 

IAW phase velocity vtr/cs~|na/ne|1/2~0.3 is relatively large in the BZOHAR examples), 

then the ion Landau damping of all of the instability product waves will be reduced, 

which reduces thresholds and increases the net growth rates for the secondary instability 

relative to the case with finite damping of the instability products.   We note that the 

growth rates for the modulational instability become too large compared to the BZOHAR 

observations in Figs. 1, 2, and 3 of Ref. 1 if |a| is too large.  It seems that the best 

agreement with the BZOHAR observations is obtained for a/a=0 or -0.01 with the 

caveat that IAW damping has not been included in the analysis of the dispersion 

relations.

We cannot assert with absolute certainty that the second harmonic IAW has no 

influence on the secondary instability observed in the first BZOHAR simulation 

described in Sec. II of Ref. 1.  However, the analysis of the secondary instability 

presented here and in Ref. 1 suggests that the 4-wave dispersion relation can yield growth 

rates and spectra similar to the simulation results of both particle simulations in Ref. 1 for 

reasonable parameters.  The results of the analysis of the 4-wave and 7-wave dispersion 

relations indicate that the modulational instability is a good candidate to explain the 

simulation observations and that coupling to the second harmonic of the SBS IAW is not 

a required element in the secondary IAW instability seen in the particle simulations. The 
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conclusions derived from the solutions of the general 7-wave dispersion relation, Eq.(39) 

of PRT, for modulational instability support the main findings of Ref. 1.
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Figure Captions

Figure 1. (Color online) Solutions of the (a) 4-wave dispersion relation (Ref. 4), (b) PRT 

4-wave dispersion relation, and (c) 7-wave dispersion relation Eq.(39) in PRT including 

V3 terms and using App. B in Ref. 2 for the coupling coefficients, for modulational 

instability growth rates Im/al vs. kye and kxe, with kae=0.36, |na/ne|=0.12, a=0, 

and cold ions. 

Figure 2. (Color online) Solution of the (a),(b) PRT 4-wave and (c), (d) 7-wave 

dispersion relation Eq.(39) as in Fig. 1 for modulational instability growth rates Im/al

vs. kye and kxe, with kae=0.36, |na/ne|=0.12 and cold ions with (a), (c) a/al =-0.01 

and (b), (d) a/al =0.01  

Figure 3. (Color online) Solutions of the PRT four-wave and seven-wave dispersion 

relations for modulational instability growth rates Im/al vs. |na/ne| for the most 

unstable mode, with kae=0.36, a=0 and cold ions. 

Figure 4. (Color online) Solutions of the dispersion relations for modulational instability 

growth rates Im/al, Re/al, kye, and kxe vs. |na/ne| for the most unstable mode, with 

kae=0.36, a=0, and cold ions: (a) PRT 4-wave dispersion relation and (b) PRT 7-wave 

dispersion relation. 

Figure 5. (Color online) Solutions of the 4-wave (Ref. 4), PRT 4-wave and 7-wave 

dispersion relations for modulational instability growth rates Im/al vs. a/al for the 

most unstable mode, with kae=0.36, |na/ne|=0.12, and cold ions. 

Figure 6. (Color online)  Solutions of the dispersion relations for modulational instability 

growth rates Im/a, Re/al, kye, and kxe vs. a/al for the most unstable mode, with 
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kae=0.36, |na/ne| =0.12, and cold ions:  (a) 4-wave dispersion relation from Ref. 4, (b) 

PRT 4-wave dispersion relation, and (c) PRT 7-wave dispersion relation. 
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Figure 1

(c) Im al vs. kxe and kye
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Figure 2

(c) (d)
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Figure 3
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Figure 4
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Figure 5
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Figure 6

(c)(b)


