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The first practical method to evolve many-body nuclear forces to softened form using the Similarity
Renormalization Group (SRG) in a harmonic oscillator basis is demonstrated. When applied to 4He
calculations, the two- and three-body oscillator matrix elements yield rapid convergence of the
ground-state energy with a small net contribution of the induced four-body force.
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A major goal of nuclear structure theory is to make
quantitative calculations of low-energy nuclear observ-
ables starting from microscopic internucleon forces. Chi-
ral effective field theory (χEFT) provides a systematic
construction of these forces, including a hierarchy of
many-body forces of decreasing strength [1]. Renormal-
ization group (RG) methods can be used to soften the
short-range repulsion and short-range tensor components
of the initial chiral interactions so that convergence of nu-
clear structure calculations is greatly accelerated [2, 3].
The difficulty is that these transformations (or any other
softening transformations) change the short-range many-
body forces. To account for these changes, we present
in this letter the first consistent evolution of three-body
forces by using the Similarity Renormalization Group
(SRG) [4–8], which offers a technically simpler approach
to evolving many-body forces than other RG formula-
tions. Our results show that both the many-body hier-
archy of χEFT and the improved convergence properties
are preserved.

The SRG is a series of unitary transformations of the
free-space Hamiltonian (H ≡ Hλ=∞),

Hλ = UλHλ=∞U †
λ , (1)

labeled by a momentum parameter λ that runs from ∞
toward zero,1 which keeps track of the sequence of Hamil-
tonians. These transformations are implemented as a
flow equation in λ,

dHλ

dλ
= −

4

λ5
[[T, Hλ], Hλ] , (2)

whose form guarantees that the Hλ’s are unitarily equiv-
alent [6, 7].

The appearance of the nucleon kinetic energy T in
Eq. (2) leads to high- and low-momentum parts of Hλ

being decoupled, which means softer and more conver-
gent potentials [9]. This is evident in a partial-wave mo-
mentum basis, where matrix elements 〈k|Hλ|k

′〉 connect-
ing states with (kinetic) energies differing by more than

1 The flow parameter s = 1/λ4 has been used for the SRG else-
where [7, 8].

λ2 are suppressed by e−(k2−k′2)2/λ4

factors and there-
fore the states decouple as λ decreases. (Decoupling also
results from replacing T in Eq. (2) with other genera-
tors [6, 7, 10].) The optimal range for λ is not yet
established and also depends on the system, but expe-
rience with SRG and other low-momentum potentials
suggest that running to about λ = 2.0 fm−1 (in units
where ~

2/M = 1) is a good compromise between im-
proved convergence from decoupling and the growth of
induced many-body interactions [9].

To see how the two-, three-, and higher-body potentials
are identified, it is useful to decompose Hλ in second-
quantized form. Schematically (suppressing indices and
sums),

Hλ = 〈T 〉a†a + 〈V
(2)

λ 〉a†a†aa + 〈V
(3)
λ 〉a†a†a†aaa + · · · ,

(3)
where a†, a are creation and destruction operators with
respect to the vacuum in some (coupled) single-particle

basis. This defines 〈V
(2)
λ 〉, 〈V

(3)
λ 〉, . . . as the two-body,

three-body, . . . matrix elements at each λ. Upon evalu-
ating the commutators in Eq. (2) using Hλ from Eq. (3),
we find that even if initially there are only two-body po-
tentials, higher-body potentials are generated with each
step in λ. Thus, when applied in an A-body subspace,
the SRG will “induce” A-body forces. But we also find

that 〈T 〉 is fixed, 〈V
(2)
λ 〉 is determined entirely in the

A = 2 subspace with no dependence on 〈V
(3)
λ 〉, 〈V

(3)
λ 〉 is

determined in A = 3 given 〈V
(2)

λ 〉, and so on.

Since only the Hamiltonian enters the SRG evolution
equations, there are no difficulties with solving T matri-
ces in all channels for different A-body systems. How-
ever, in a momentum basis there will be complications
from disconnected terms associated with spectator nu-
cleons, which require solving separate equations for each

set of 〈V
(n)
λ 〉 matrix elements. In Refs. [11, 12], a dia-

grammatic approach is introduced to handle these com-
plications. But while it is natural to solve Eq. (2) in
momentum representation, we can in fact use any con-
venient basis. Having chosen a basis, we obtain coupled
first-order differential equations for the matrix elements
of the flowing Hamiltonian Hλ, where the right side of
Eq. (2) is evaluated using simple matrix multiplications.



Here we choose to evolve in a discrete basis, where there
are no issues with disconnected terms and induced many-
body forces can be directly identified.

Our calculations are performed in the Jacobi coordi-
nate harmonic oscillator (HO) basis of the No-Core Shell
Model (NCSM) [13]. This is a translationally invariant,
anti-symmetric basis for each A, with a complete set of
states up to a maximum excitation of Nmax~Ω above the
minimum energy configuration, where Ω is the harmonic
oscillator parameter. The procedures used here build di-
rectly on Ref. [12], which presents a one-dimensional im-
plementation of our approach along with a general anal-
ysis of the evolving many-body hierarchy.

We start by evolving Hλ in the A = 2 subsystem, which

completely fixes the two-body matrix elements 〈V
(2)
λ 〉.

Next, by evolving Hλ in the A = 3 subsystem we deter-
mine the combined two-plus-three-body matrix elements.
We can isolate the three-body matrix elements by sub-

tracting the evolved 〈V
(2)
λ 〉 elements in the A = 3 ba-

sis [12]. Having obtained the separate NN and NNN ma-
trix elements, we can apply them to any nucleus. We are
also free to include any initial three-nucleon force in the
initial Hamiltonian without changing the procedure. If
applied to A ≥ 4, four-body (and higher) forces will not
be included and so the transformations will be only ap-
proximately unitary. The questions to be addressed are
whether the decreasing hierarchy of many-body forces is
maintained and whether the induced four-body contri-
bution is unnaturally large. We summarize in Table I
the different calculations to be made for 3H and 4He to
confront these questions.

The initial (λ = ∞) NN potential used here is the
500MeV N3LO interaction from Ref. [14]. The initial
NNN potential is the N2LO interaction [15] in the local
form of Ref. [16] with constants fit to the average of triton
and 3He binding energies and triton beta decay accord-
ing to Ref. [17]. We expect similar results from other
initial interactions because the SRG drives them toward
near universal form; a survey will be given in Ref. [18].
NCSM calculations with these initial interactions and the
parameter set in Table I of Ref. [17] yield energies of
−8.473(4)MeV for 3H and −28.50(2)MeV for 4He com-
pared with −8.482 MeV and −28.296 MeV from exper-
iment, respectively. So there is a 20 keV uncertainty in
the calculation of 4He from incomplete convergence and a
200keV discrepancy with experiment. The latter is con-
sistent with the omission of three- and four-body chiral
interactions at N3LO. These provide a scale for assessing
whether induced four-body contributions are important
compared to other uncertainties.

In Fig. 1, the ground-state energy of the triton is plot-
ted as a function of the flow parameter λ. Evolution is
from λ = ∞, which is the initial (or “bare”) interaction,
toward λ = 0. We use Nmax = 36 and ~Ω = 28 MeV, for
which all energies are converged to better than 10 keV.
We first consider an NN interaction with no initial NNN
(“NN-only”). If Hλ is evolved only in an A = 2 sys-
tem, higher-body induced pieces are lost. The resulting
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FIG. 1: (Color online) Ground-state energy of 3H as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.
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FIG. 2: (Color online) Ground-state energy of 4He as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.

energy calculations will only be approximately unitary
for A > 2 and the ground-state energy will vary with λ
(squares). Keeping the induced NNN yields a flat line
(circles), which implies an exactly unitary transforma-
tion; the line is equally flat if an initial NNN is included
(diamonds). Note that the net induced three-body is
comparable to the initial NNN contribution and thus is
of natural size.

In Fig. 2, we examine the SRG evolution in λ for 4He

with ~Ω = 36 MeV. The 〈V
(2)
λ 〉 and 〈V

(3)
λ 〉 matrix ele-

ments were evolved in A = 2 and A = 3 with Nmax = 28



TABLE I: Definitions of the various calculations.

NN-only No initial NNN interaction and do not keep NNN-induced interaction.

NN + NNN-induced No initial NNN interaction but keep the SRG-induced NNN interaction.

NN + NNN Include an initial NNN interaction and keep the SRG-induced NNN interaction.

and then truncated to Nmax = 18 at each λ to diagonal-
ize 4He. The NN-only curve has a similar shape as for
the triton. In fact, this pattern of variation has been ob-
served in all SRG calculations of light nuclei [3]. When
the induced NNN is included, the evolution is close to
unitary and the pattern only depends slightly on an ini-
tial NNN interaction. In both cases the dotted line rep-
resents the converged value for the initial Hamiltonian.
At large λ, the discrepancy is due to a lack of conver-
gence at Nmax = 18, but at λ < 3 fm−1 SRG decoupling
takes over and the discrepancy is due to induced four-
body forces, which therefore contribute about 50 keV net
at λ = 2 fm−1. This is small compared to the rough
estimate in Ref. [19] that the contribution from the long-
ranged part of the N3LO four-nucleon force to 4He bind-
ing is of order a few hundred keV. If needed, we could
evolve 4-body matrix elements in A = 4 and will do so
when nuclear structure codes can accomodate them.
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FIG. 3: (Color online) Ground-state energy of 3H as a func-
tion of the basis size Nmax for an N3LO NN interaction [14]
with and without an initial NNN interaction [1, 17]. Un-
evolved (“bare”) and Lee-Suzuki (L-S) results with ~Ω =
28 MeV are compared with SRG at ~Ω = 20MeV evolved
to λ = 2.0 fm−1.

In Fig. 3, we show the triton ground-state energy as a
function of the oscillator basis size, Nmax, for various cal-
culations. The lower (upper) curves are with (without)
an initial three-body force (see Table I). The conver-
gence of the bare interaction is compared with the SRG
evolved to λ = 2.0 fm−1. The oscillator parameter ~Ω
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FIG. 4: (Color online) Ground-state energy of 4He as a func-
tion of the basis size Nmax for an N3LO NN interaction [14]
with an initial NNN interaction [1, 17]. Unevolved (bare) re-
sults are compared with Lee-Suzuki (L-S) and SRG evolved
to λ = 2.0 fm−1 at ~Ω = 28 and 36 MeV.

in each case was chosen roughly to optimize the conver-
gence of each Hamiltonian. (As λ decreases, so does the
optimal ~Ω.) We also compare to a Lee-Suzuki (L-S)
effective interaction, which has been used in the NCSM
to greatly improve convergence [20, 21]. These effective
interactions result from unitary transformations within
the model space of a given nucleus, in contrast to the
free-space transformation of the SRG.

The SRG calculations are variational and converge
smoothly and rapidly from above with or without an
initial three-body force. The dramatic improvement in
convergence rate is seen even though the χEFT interac-
tion is relatively soft. Thus, once evolved, a much smaller
Nmax basis is adequate for a desired accuracy and extrap-
olating in Nmax is also feasible.

Figure 4 illustrates for 4He the same rapid conver-
gence with Nmax of an SRG-evolved interaction. How-
ever, in this case the asymptotic value of the energy dif-
fers slightly because of the omitted induced four-body
contribution. (The SRG-evolved asymptotic values for
different ~Ω differ by only 10keV, so the gap between
the converged bare/L-S results and the SRG results is
dominated by the induced NNNN rather than incomplete
convergence). Convergence is even faster for lower λ val-
ues [18], ensuring a useful range for the analysis of few-
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FIG. 5: (Color online) Binding energy of the alpha particle
vs. the binding energy of the triton. The Tjon line from phe-
nomenological NN potentials (dotted) is compared with the
trajectory of SRG energies when only the NN interaction is
kept (circles). When the initial and induced NNN interac-
tions are included, the trajectory lies close to experiment for
λ > 1.7 fm−1 (see inset).

body systems. However, because of the strong density
dependence of four-nucleon forces, it will be important
to monitor the size of the induced four-body contribu-
tions for heavier nuclei and nuclear matter.

The impact of evolving the full three-body force is
neatly illustrated in Fig. 5, where the binding energy of
4He is plotted against the binding energy of 3H. The ex-
perimental values of these quantities, which are known
to a small fraction of a keV, define only a point in this
plane (at the center of the X, see inset). The SRG NN-
only results trace out a trajectory in the plane that is

analogous to the well-known Tjon line (dotted), which
is the approximate locus of points for phenomenological
potentials fit to NN data but not including NNN [22]. In
contrast, the short trajectory of the SRG with the NN
+ NNN interaction (shown for λ ≥ 1.8 fm−1) highlights
the small variations from the omitted four-nucleon force.
Note that a trajectory plotted for NN+NNN-induced cal-
culations would be a similarly small line at the N3LO
NN-only point.

In summary, we have demonstrated a practical method
to use the SRG to evolve NNN (and higher many-body)
forces in a harmonic oscillator basis. Calculations of
A ≤ 4 nuclei including NNN show the same favorable
convergence properties observed elsewhere for NN-only,
with a net induced four-body contribution in A = 4 that
is smaller than the truncation errors of the chiral inter-
action. The soft SRG interactions are an alternative to
the use of Lee-Suzuki effective interactions in NCSM and
the HO matrix elements can also be used (after conver-
sion to a Slater-determinant HO basis as needed) for cou-
pled cluster and many-body perturbation theory calcu-
lations. A more complete analysis of convergence and
dependencies for the energy and other observables for
few-body systems, as well as results for other interac-
tions and choices of generator in Eq. (2), will be given in
a forthcoming publication [18].
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[18] R.J. Furnstahl, E.D. Jurgenson, and P. Navrátil, in
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[21] P. Navrátil et al., Phys. Rev. Lett. 99, 042501 (2007).
[22] A. Nogga, S.K. Bogner and A. Schwenk, Phys. Rev. C

70, 061002(R) (2004).


