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Abstract

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) 
and stellar interiors have high temperature (a few hundred eV to tens of keV), high 
density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands 
of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly 
thermonuclear processes.  In order to describe HDR plasmas, computational physicists in 
ICF and astrophysics use atomic-scale microphysical models implemented in various 
simulation codes. Experimental validation of the models used to describe HDR plasmas 
are difficult to perform. Direct Numerical Simulation (DNS) of the many-body 
interactions of plasmas is a promising approach to model validation but, previous work 
either relies on the collisionless approximation or ignores radiation. We present four 
methods that attempt a new numerical simulation technique to address a currently 
unsolved problem: the extension of molecular dynamics to collisional plasmas including 
emission and absorption of radiation. The first method applies the Lienard-Weichert 
solution of Maxwell's equations for a classical particle whose motion is assumed to be 
known (section 3).   The second method expands the electromagnetic field in normal 
modes (plane-waves in a box with periodic boundary-conditions) and solves the equation 
for wave amplitudes coupled to the particle motion (section 4).   The third method is a 
hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates radiation 
emitted or absorbed by electron-ion pairs during close collisions (section 5).   The fourth 
method is a generalization of the third method to include small clusters of particles 
emitting radiation during close encounters: one electron simultaneously hitting two ions, 
two electrons simultaneously hitting one ion, etc.(section 6).   This approach is inspired 
by the Virial expansion method of equilibrium statistical mechanics.

  

1.) INTRODUCTION

Inertial fusion research aims to achieve self-sustaining nuclear reactions by 
compressing DT fuel to high particle densities.   Fusion ignition requires ion temperatures 
Ti above 2 - 10 keV.   In these hot plasmas electron and ion temperatures may be 
unequal.   There may be impurities of higher Z material mixed with the DT fuel.   We can 
expect the D, T ions to be fully-ionized, but high-Z impurities may retain some bound 



electrons.   As fusion reactions begin, highly energetic reaction products (e.g., 3.5 MeV 
DT fusion alphas) will add energy to the hot plasma, sustaining or raising the 
temperature.

This paper describes recent work aimed at developing a new fundamental tool for 
particle simulation of hot dense plasmas near the ignition threshhold for fusion.   At 
present the specific challenge is to add emission and absorption of radiation to molecular 
dynamics (MD) particle simulations.   In the future we plan to include nuclear reactions 
and reaction-products in the simulations.

Inertial fusion plasmas have long been modeled by elaborate calculations using 
hydrodynamic models which typically include various forms of energy transport.  The 
size-scale of these simulations is the  ~ 10-2 cm  size of the target capsules.   The models 
assemble theoretical formulas to describe the many underlying physical processes.   The 
formulas are obtained from kinetic theories of varying complexity and a priori we expect 
that most of the formulas are good approximations.   Hydrodynamic simulations have 
been compared to a variety of experiments at conditions below the ignition threshold, and 
have generally succeeded to describe or even predict experimental results.

However, in most cases the formulas were derived by assuming simplified initial 
conditions or boundary conditions, or by considering one process at a time, and it is 
always possible that some unexpected interaction between two microscopic phenomena 
could make a significant modification in the plasma behavior.   In particular, radiation 
processes are typically studied separately from charged-particle energy-exchange, nuclear 
reactions and hydrodynamic processes (e.g., diffusive mixing of materials or viscosity 
effects on flow gradients).

Accurate and detailed experiments on burning plasmas might reveal unexpected 
couplings between the different processes but even with large new facilities now being 
prepared, sufficiently detailed experiments will be difficult to perform and diagnose.   
Despite many years of research on fusion science it is still not true that all the models for 
all the important basic process have been tested with adequate diagnostics at the relevant 
(extreme) conditions.

Fortunately, microscopic particle simulation offers an additional methodology.   
Particle simulation is based on known fundamental laws: Newtonian particle mechanics 
under the Coulomb pair-forces, a known coupling to the radiation field and (eventually) 
known cross-sections for nuclear reactions.   Particle simulation automatically includes 
any nonlinear interaction between the fundamental couplings, and offers the possibility to 
see how the "macroscopic" energy-exchange coefficients emerge from the atomic-scale 
interactions.   

Particle simulations do not need to make the typical approximations of kinetic 
theory, such as predicting three-body correlations by an integral over two-body 
distribution functions.   A particle simulation with enough particles will generate many-
particle correlations without theoretical assumptions and can test the validity of results 



from kinetic theories.   Another important advantage of particle simulation is that the 
diagnostics are accurate and comparatively inexpensive, although they also encounter 
questions of signal and noise.

Molecular Dynamics (MD) and Monte Carlo (MC) particle simulations have 
already provided a great deal of useful information about dense plasmas, especially in the 
low-temperature strongly-coupled range.   However to the best of our knowledge 
radiation processes have never been included in atomic-scale MD or MC particle 
simulations.  

There should be no doubt that radiation is important to ignition physics.   The 
radiation energy-density may significantly exceed the matter energy-density at 
temperatures 2-10 keV, and the process of converting plasma energy into radiation 
competes with the possibility of heating to fusion conditions.   (The conversion is rapid 
for low-energy photons and slower for high energy X-rays and that difference of rates can 
have a large effect on plasma energetics.)   

The energy-density of ideal black-body radiation in vacuum is (TkeV is the 
temperature in keV units):

       U  =  aT4   =  13.7 MJ/cm3 TkeV
4      (1)

In comparison the energy-density of ideal-gas DT plasma can be written

                         Emat  =  116 MJ/gram  g/ccTkeV (2)

The larger numerical coefficient in Eq. (2) should not obscure the higher power of 
temperature in the radiation energy density.   At ignition temperatures, if the radiation is 
anything like a black-body field, the radiation energy is dominant.   Likewise the 
equilibrium radiation pressure easily exceeds the material pressure.   There are two 
important questions here: 1.) Is the radiation anything like a black-body (Planck) 
distribution?  and 2.) Are the ideal-gas estimates too crude?   The first question is about 
reaching equilibrium and the second questions is about non-ideal corrections due to 
coupling between particles, waves and radiation.   Because the ideal equilibrium radiation 
pressure and energy are large, even modest corrections might play an important role for 
plasma hydrodynamic behavior.

For pure hydrogen (or DT) plasmas, the electron-ion Coulomb energy-exchange 
is faster than radiation processes.   Even when multiplied by the small electron-ion mass-
ratio me/Mi, the Coulomb cross-section exceeds the radiative cross-sections, so the most 
rapid temperature-equilibration is between electrons and ions.   However this is not 
enough reason to ignore radiation processes.   

First, the time-scale of interest is the time-scale for ignition.   Just as the Coulomb 
cross-section exceeds the radiative cross-sections, so the radiation cross-sections greatly 



exceed the fusion cross-sections, and therefore radiative phenomena will be well-
advanced before fusion self-heating and ignition can occur.   

A second reason to include radiation processes is that all real experiments involve 
plasmas with impurities of various atomic species.   The elements present may depend on 
the specific target but they necessarily have atomic number Z and/or ionization state Z* 
much greater than unity.   However the radiative rates rise with high powers of Z (or Z*) 
and so radiative phenomena are much more important for impure plasmas than for pure-
hydrogen (or DT) plasmas.

Given these two reasons, we conclude that some treatment of radiative 
phenomena is essential to a realistic particle simulation of fusion ignition.   Since there is 
no body of established techniques to perform such a combined simulation (radiation + 
atomic particle dynamics) we have been compelled to explore various algorithms and 
approaches, searching for the most appropriate.

This paper considers four methods.   The first method applies the Lienard-
Weichert solution of Maxwell's equations for a classical particle whose motion is 
assumed to be known (section 3).   The second method expands the electromagnetic field 
in normal modes (plane-waves in a box with periodic boundary-conditions) and solves 
the equation for wave amplitudes coupled to the particle motion (section 4).   The third 
method is a hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates 
radiation emitted or absorbed by electron-ion pairs during close collisions (section 5).   
The fourth method is a generalization of the third method to include small clusters of 
particles emitting radiation during close encounters: one electron simultaneously hitting 
two ions, two electrons simultaneously hitting one ion, etc.(section 6).   This approach is 
inspired by the Virial expansion method of equilibrium statistical mechanics.

Each of these four approaches has been implemented in test-calculations of 
various sizes and each offers some insight and poses some difficulties.   The present 
paper is a progress report on this research.   We want to evaluate these methods to see
whether they can obtain the right answer, whether they are computationally practical, and 
to see whether they offer the generality and elegance that we always wish to find in a new 
method of scientific inquiry.

2.) RADIATION IN PARTICLE SIMULATIONS: GENERAL 
CONSTRAINTS

Our particle simulations are classical but we know that radiation is a quantum 
phenomenon -- or at least the emission and absorption involve an irreducible minimum of 
quantum behavior.   We must include that minimum but apparently it would be 
impractical to try to do fully quantum MD simulations.   These facts are the fundamental 
challenge for our research.



   As we explore different approaches, we constantly face the difficulty that a 
complete and rigorous classical solution of Maxwell's equations for the classical many-
particle system would give a hopelessly incorrect result: instead of the Planck 
distribution, it would predict the Rayleigh-Jeans distribution for the radiation intensity.   
The Rayleigh-Jeans law has far too much energy in high-energy x-rays, and this would 
completely invalidate the energetics of the simulation.   So we must force some quantum 
features onto the classical particle dynamics.

   A related technical difficulty for simulations with radiation is caused by the 
technique of "pseudopotentials" often used to suppress recombination in MD simulations.   
Classical point-charge electrons and ions, interacting through the Coulomb potential, are 
unstable with respect to 3-body recombination into deeply bound states not allowed by 
quantum mechanics.   For hydrogen, the lowest allowed boundstate is the 1s groundstate 
at energy  - 13.6 eV; classical mechanics does not recognize this limit.   Radiation will 
increase the recombination problem by adding another type of recombination  -  unless 
we limit the classically allowed emission in a way consistent with the quantum theory.  

In most MD particle simulations, the 3-body recombination is suppressed by 
replacing the Coulomb potential by a pseudo-potential that does not support deeply 
bound states, i.e., by reducing the potential at small distances.   If the long-range behavior 
is unchanged, then many plasma phenomena (screening, plasma waves, Coulomb energy 
exchange, etc.) are unchanged.    Unfortunately the pseudo-potential changes the 
behavior for collisions with large scattering angles and those collisions are most 
important for emission or absorption of radiation, especially for high-energy ("hard") 
photons.   In our work, a constant theme has been to search for a way around this 
difficulty and the algorithm described in section 5 below is one alternative to the 
pseudopotential method.

The algorithm described in section 5 treats the close collisions by a different 
method from that used for the main MD simulation.   When an electron and an ion 
approach to within a small distance (typically ~ 0.2 Angstrom) they are treated as a two-
body system and their collision is described by matching the current position and velocity 
to the classical Coulomb-scattering trajectory for the motion of the pair.   This solution is 
used until they again separate.   Since this part of the orbit is entirely governed by 2-body 
forces the 3-body recombination is automatically suppressed.   We also can permit 
emission and absorption of bremsstrahlung radiation during the close collision, controlled 
by a Monte Carlo algorithm described in section 5, and this leads to a simulation that 
behaves in an essentially satisfactory manner.    However there are questions or 
difficulties for this method and we discuss them in depth in this paper.

Quite generally, adding radiation to a particle simulation encounters both 
questions of principle and technical difficulties.   We will discuss the difficulties together 
with the specific methods but give here a short preliminary list:

a.) Stochastic Evolution.   The basic quantum nature of emission/absorption appears 
inconsistent with deterministic molecular dynamics (MD) time-evolution.   (That is, 



quantum mechanics predicts probabilities for emission, absorption but does not give a 
deterministic prediction which process occurs in a given encounter.)

b.) Time-scales.   The generation of radiation is slow for the electron-proton system, so 
the simulation must be followed for many time-steps in order to see the appearance of a 
significant radiation field.   Of course the radiative rates rise rapidly with Z and/or they 
can be artificially increased.

c.) Sampling.   The expected number of photons is only comparable to the particle 
number at high temperatures.   In a 1000 A3 simulation box there will only be a few 
photons at kTR ~ 1 keV and this will make a signal-to-noise problem for our simulations.  
At temperatures above ~ 3 keV this difficulty is greatly reduced.

d.) Fundamental data.   We have good approximate rates for radiative processes 
involving one atom (ion) in a spherically symmetric environment, but do not have 
corresponding rigorous quantum calculations for non-spherical or multicenter clusters.   
To analyze emission from such systems we will use classical or hybrid semiclassical 
methods but would have more confidence in the results if we had rigorous quantum 
comparison calculations.

Early in this work there was a concern that the technique of simulating a number 
of particles confined in a computational box would lead to some unrealistic coupling to 
radiation.   For example, if the particles are confined with reflecting boundary conditions 
by computational box-boundaries, the wall reflections correspond to abrupt accelerations: 
won't those accelerations cause spurious or unphysical radiation?   If the particles are 
represented by periodic boundary conditions, then when an electron leaves the box on the 
right wall it is instantaneously re-injected on the left: in effect a sudden (superluminal) 
jump in position.   Does that make some kind of Cerenkov emission?   Careful study has 
shown these problems do not arise if the simulation is performed in a sensible way.   For 
example, even if we used reflecting walls, the abrupt wall-acceleration would occur at a 
zero of the electromagnetic wave-field and would therefore not couple to radiation.  (The 
periodic boundary-conditions are discussed in sections 3 and 4.)

Throughout this work we must also be alert to the possibility of deeper and more 
interesting difficulties: it is well-known that classical electrodynamics (and some versions 
of quantum electrodynamics) lead to divergent results unless the calculations are 
performed very carefully.   In general the divergences affect only the calculation of 
higher-order processes (pair production, self-interaction, …).   There exists a very 
satisfactory method, the S-matrix renormalization theory, to remove the divergences, at 
least for few-particle collision processes.   It is not clear today how these methods work 
out for a statistical ensemble of dense particles continuously interacting with radiation.   
As we examine the possible methods, we try to point out the possibility of problems with 
radiation reaction, self-interaction, etc.   Divergent integrals do not occur in our work 
simply because we never consider an infinite number of normal modes; a high-frequency 
cutoff is artificially imposed by our computational limitations.   That this cutoff is 
sufficient remains to be investigated further.   Our simulations make no effort to obtain 



results that are covariant or gauge invariant -- as is true for all particle simulations. The 
radiation algorithm described here does not require any specification of a gauge and there 
is no specific consideration of gauge invariance. However, the MD algorithms discussed 
here rely on forces acting on particles which in turn depend on gauge invariant quantities 
such as electric and magnetic fields.

3.) LIENARD-WEICHERT POTENTIALS

Classical OCP simulations assume instantaneous Coulomb interactions between 
charged particles.[1]  In most cases the simulations are performed for N particles in a 
simulation box embedded in an environment modelled by periodic boundary conditions.   
It is known that the technique of periodic continuation leads to rapid convergence of the 
free energy and other equilibrium properties with the size of the simulation box.[2]

To introduce radiation into such a classical MD particle simulation, classical 
electrodynamics offers two straightforward approaches.   One can replace the 
instantaneous Coulomb interaction by the retarded potentials (Lienard-Weichert 
potentials) for the electromagnetic field of classical point charges following known 
trajectories.[3]  Alternatively one can expand the classical EM field in normal modes; 
Maxwell's equations give differential equations for the field amplitude coefficients 
(section 4).   In this section we discuss the Lienard-Weichert method.

We have written a small code to evolve the motion of a few-particle system 
replacing the instantaneous Coulomb interaction with forces obtained from the Lienard-
Weichert electric and magnetic fields.   In doing this we encounter interesting questions 
to ask about all MD plasma simulations.

A first point is that the usual Coulomb MD simulation neglects the magnetic 
forces between moving particles.   For the ion OCP (One-component plasma) this neglect 
is clearly justified, but it for simulations of electron motion in hot plasmas the 
approximation is more debatable.   The magnetic forces are of order  v/c  relative to 
electrical forces, but this parameter is not small in a fusion ignition plasma.   At an 
electron temperature of 2 keV, already ve/c ~ .11, i.e., the magnetic forces are a 10 % 
correction.

   An interesting fundamental question is that the usual periodic boundary 
conditions are inconsistent with relativistic causality: these boundary conditions assume 
instantaneous correlations between particles separated by large distances ignoring the 
requirement that these correlations can only propagate at speeds less than (and for plasma 
waves, much less than) c.   

This is an objection in principle, but it is not clear that the artificial long-range 
correlations have a significant effect on thermodynamic properties in the limit of large N.   



It is probably more important that the strong electric fields and large energy-density of 
radiation are neglected in the usual simulations. 

  Using the Planck formula we can calculate the RMS microfield of equilibrium 
black-body radiation (TR = radiation temperature):

           
ERad 1.2 1010 Volt
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2

(3)

At temperatures in the keV range, this electric field exceeds the Coulomb fields of 
neighbor ions.   Of course ERad is rapidly oscillating and the electron response to a rapidly 
oscillating field is only a small "quiver motion" 

vrad   ~  eE/(m     

This quiver velocity is evidently less than the electron thermal velocity because most of 
the black-body photons have high frequencies.   However since <  ~ T,  vrad grows 
proportional to T while the thermal velocity is  ~  √T.   Additional study and verification 
are probably needed to be sure that the large field of Eq. (3) plays no role in atomic or 
nuclear processes.

Lienard-Weichert potentials

For calculations by the Lienard-Weichert (LW) method, an electron's position and 
velocity  rp(t), vp(t)  are assumed to be known, and we use the LW solution of Maxwell 
equations for the E, B fields generated at a field point r, t.[3]   These fields are simply 
expressed in terms of the retarded time tret and retarded distance Rr defined by:
     

                    Rr  r  rp (tret )                 Rr  r  rp(tret )  c t  tret             (5, 6)

In this brief summary we use the same notation for vector and scalar distance, e.g., Rr in 
the line above; the careful reader can easily correct the notation.   In the usual Lorentz
gauge the fields are obtained from scalar and vector potentials,
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A useful quantity (script R) is defined by:

  
R  Rr 

v 

R r

c









        (9)



When appropriately differentiated the potentials give the electric and magnetic fields at 
the field point r, t:
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Such fields are produced by each particle in the plasma.  Each particle is subject 
to the forces produced by the other particles (there is no self-interaction).   The formula 
for the electric field consists of two terms with different dependence on radius.  The first 
term ( ~ 1/R2) is a modified Coulomb field while the second term ( ~ 1/R) is also 
proportional to the acceleration a  evaluated at the retarded time, and leads to the 
emission of radiation.

To use the Lienard-Weichert fields in a simulation we save the classical 
trajectories (histories) rj(t), vj(t) for each particle.   We have this data from each previous 
time-step, and store the data for  ~ 105 time-steps.   When we want to calculate the force 
on particle j, we search the histories for each other other particle k to find the retarded 
time for the pair (j,k).   We find time-steps that bracket the retarded time and interpolate.  
To speed-up the search, it is useful to save a pointer to the previous retarded time; the tret
only increases by about dt during a time-step dt, so the previous value of tret is a good 
first guess.

At the beginning of the simulation (t = 0) we launch the particles with random 
positions and velocities sampled from an appropriate Maxwellian.   For the first time 
steps we extrapolate to earlier times (t < 0) to find the retarded times and distances; we do 
this assuming straight-line motion before t = 0.   Since there is no acceleration at these 
unphysical times, no radiation is produced.   For nearby particles the retarded time is very 
"recent", i.e., occurs at a time after the end of the last previous time-step.   For these cases 
an extrapolation procedure is needed rather than simple interpolation.

For the LW method, we sum over the N particles in the simulation box and also 
over a finite number of image charges for each particle, setting aside the difficult 
question about convergence with the number of images.   The retarded times of the image 
charges grow with distance and so the simulation must run for a certain length of time 
before image-charge location data becomes available.    

We do not start to accumulate data for the thermodynamic averages until the 
calculation has progressed long enough so that dynamical data (calculated with 
accelerations) has become available for all particles and their images.



We use electrical forces from the past positions of the image-charges but their 
current positions are assumed to be exactly correlated with the current positions of the N 
particles in the simulation box.   This is the causality issue.   The image charge's past 
positions affect the motion of the charges in the box after a time-delay of t ~ R/c, but 
the box particles' current positions instantaneously determine the image particles current 
positions.   The round-trip influence time is then R/c instead of 2R/c.   One might worry 
that this articificial correlation acts like a "Maxwell Demon" to perturb the entropy of the 
simulation; deeper study is needed to assuage this concern.   This is a question, not just 
for the Lienard-Weichert simulation but for any particle simulation using periodic 
boundary conditions.  (With pure Coulomb potentials, as is usual in MD simulations, the 
round-trip influence time is zero!)

The LW potentials give pair-forces between the electrons and ions.   In principle 
the same formulas also predict the EM field throughout the volume of the plasma 
simulation box.   The LW formulas enable us to distinguish emitted radiation from fields 
attached to the particles (Coulomb + vxB magnetic fields) but further analysis (more 
precisely, Fourier analysis) would be required to extract the radiation spectrum.   

The LW method has difficulty to describe a pre-existing radiation field, for 
example in a plasma receiving radiation emitted by a high-temperature source.   In order 
to describe such radiation the simulation would have to carry additional variables such as 
the amplitudes of the various normal modes of the radiation field.   If this were done one 
might as well use the method of the next section.

The most important defect of the LW method is that it is not quantum mechanical.    
If we Fourier analyze the LW fields E(r, t), B(r, t) the best result we can hope for is the 
basically incorrect Rayleigh-Jeans spectrum.   (We did not continue our LW simulations 
long enough to see this problem.)

For this reason it is a very interesting question whether there is a quantum version 
of the LW method.   Using well-known methods of quantum electrodynamics (Glauber 
states), one can convert classical field amplitudes into semiclassical quantum fields that 
are consistent with the specified classical amplitudes.[4, 5]    To do this for the LW 
potentials, it is useful to transform the LW potentials to the Coulomb gauge and we offer 
here a simple and general formula for this gauge transformation:

                                   
f (r,t )  qc dt '

r  rp(t ' )tret (r,t )

t


        (12)

f(r, t) is the generating function for the gauge transformation.   This function f is 
essentially the potential of a uniformly charged wire running along the spatial trajectory 
of the electron during its motion from tret to t.   In the Coulomb gauge, the scalar potential 
is exactly the instantaneous Coulomb potential,
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The formulas apply to an electron with an arbitrary (known) trajectory.   
From Eq. (14) it is easily shown that the transformed potential obeys div A = 0, the 
signature of the Coulomb gauge.

For an electron moving with constant velocity (i.e.,  rp(t) = v t ), it is easy to 
evaluate the integral in Eq. (14).    For comparison with the normal-mode method of the 
next section, we give the Fourier transform of that Coulomb gauge Lienard-Weichert 
potential (describing motion at constant velocity):


ACoul (


k , t )  4q k2v  (k v)


k 

c2k2  (k v)2 eikvt

(15)

The LW method is clearly an O(N2) algorithm - we find the force on each particle 
by a summation over contributions from each other particle - and this limits the number 
of particles that can be treated.   We do not have a generalization of the Ewald summation 
technique to include retardation and magnetic effects, and have underlined the causality 
difficulties with such a generalization. Figure 1 shows the simulations results of two 
electrons and two ions interacting via Coulomb and radiation fields. The sphere 
represents a unit sphere surrounding the simulation box. The colors denote the magnitude 
of the normal of the Poynting vector, where blue denotes zero magnitude. The dipole 
nature of the emission spectrum is clearly seen by the blue shading at the poles. As the 
electrons move through the system, the blue shading moves around the ball but always in 
a way such as two poles are always zero.



Figure 1: MD plus radiation results for two electrons scattering off of two ions. The sphere 
represents a unit sphere surrounding the simulation box and the colors refer to the normal 

component of the Poynting vector.

4.) NORMAL-MODE EXPANSION OF EM FIELD

In the normal-mode method, the classical electromagnetic field is expanded in a 
set of propagating waves that obey periodic boundary-conditions in some rectangular 
box.   The normal-mode amplitudes change due to absorption and emission by the 
particles in the simulation box.   Since the initial normal-mode amplitudes can be chosen 
arbitrarily we can simulate plasmas with arbitrary initial radiation spectra with this 
method.

It is most natural to define these normal modes in the same simulation box used 
for the particles.   The advantage of this choice will be discussed below.

There are many normal modes.    Our small work-station simulation uses 200 
wave-vectors in each spatial direction, i.e., 8 106 normal modes.   The largest allowed 
wave-vector k determines the spatial resolution inside the simulation box.   The time-step 
in the simulation should resolve the highest photon frequency  unless we adopt some 
method to integrate analytically over short time intervals.    For example, with a (100 A)3

box and 8 106 normal modes the high-frequency modes have a wavelength of about 1 A 
(h ~ 10 keV) and the exploratory calculations could be done on a small workstation.

Normal-mode expansion for classical electrodynamics:



It is natural to write the equations for the normal-mode expansion in a notation 
close to non-relativistic Coulomb-gauge quantum electrodynamics [4, 5]:
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In this equation, k denotes a photon wave-vector and ek is the polarization vector of the 
mode defined by k,   ( = 1,2 identifies the polarization state).    The notation
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  (18)

is often used for the coefficient in Eqs. (16,17).   In the quantum theory, a and a+ are field 
operators but in the classical case they are simply complex numbers;   ak(t) = complex 
field strength,  a+ is its complex conjugate.   V is the volume of the quantization box and 
 = c k is the photon frequency.

This expansion for the vector potential and its derivative applies in the Coulomb 
(transverse) gauge, expressed by the condition  k . ek = 0.   The functional forms for the 
vector potential and its derivative already guarantee that the electrical and magnetic fields 
will satisfy three of the Maxwell equations.   The fourth Maxwell equation is satisfied if 
the field amplitudes ak obey an equation for the coupling to the particles.    

                          
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q
c
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

                (19)

From Eq. (18) we can easily derive an equation for the photon number  nk = ak
+ ak ,


nk

t
 q v p  ˆ e k ic Ck ak,eikrp (t)  ak,

 eikrp (t ) 
(20)

(The higher-order coupling (~ A2) is omitted here.)   For this normal-mode expansionm 
one has separated transverse and logitudinal contributions to the fields, their energies and 
to the energy flux.   The technical details of the separation are explained in several 
references (e.g., Kroll [4], Cohen-Tannoudji [5]).

Given the vector potential and its derivatives, the radiation electric and magnetic 
fields are calculated by
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To these fields must be added the instantaneous Coulomb field between the point 
charges.   Corrections to the instantaneous Coulomb field due to retardation and 
relativistic distortion of the 1/r2 field are obtained through Eq. (21) from Eq. (19).   These 
corrections can be thought of as due to "bound photons" carried by a moving charged 
particle.

For the case in which there is no coupling to particles, the equation of motion, Eq. 
(19), for ak has the simple free-field solution  ak ~ e-it .   When there is a coupling, the 
amplitude changes corresponding to emission and absorption.   In the classical theory 
these are distinguished by the relative phases of the terms in Eq. (19).

Eq. (19) is easily solved for the simplest case of coupling to a particle that moves 
with constant velocity v.   The result agrees with Eq. (15), i.e., the normal-mode method 
and Lienard-Weichert method contain the same physics.

We can evolve the normal-mode amplitudes using Eq. (19) and then reconstruct 
the local electric, magnetic fields.   This method gives the classical electromagnetic 
theory in a form closely parallel to nonrelativistic quantum electrodynamics.   The 
particle motion is governed by the total electric and magnetic fields at the location of the 
particle, so the particles respond to any existing radiation.

A question arises immediately: why do the classical equations (16-22) contain 
Planck's constant?   Examination reveals that Planck's constant is simply a convenient
normalization of the field amplitudes  ak.   If one changes notation by grouping together 
the product √ak, it will be found that there's no further appearance of Planck's constant. 
In the quantum theory the operators a, a+ cannot be rescaled in this way because they 
obey the additional equation

[a+, a]  =  -1 (23)

This relation fixes the normalization in the quantum case.

Test-code for the normal-mode method

Our calculations include 8,000,000 normal modes, i.e., many normal modes.   The 
spatial resolution is limited by this number.   The time-step must be small enough to 
resolve changes in the particle velocity including high-frequency perturbation by the x-
ray photons vp(t).



The electric and magnetic fields reconstructed from the normal-mode amplitudes,  
E(r, t) and B(r, t), contain some numerical noise because of the imperfect spatial 
resolution.   Despite this noise it is clear that the results agree with r-space Lienard-
Weichert calculations; in particular, the distortion of the static Coulomb field due to the 
particle motion, and the magnetic field are found to be essentially the same.

For the normal-mode expansion, we find (both numerically and analytically) that 
if the radiation normal modes are defined in the same box used for the particles, using 
periodic boundary conditions, then the fields (near field, emitted radiation) generated by 
the particle motions move as if in the periodically extended system.   

For example, the O(v2) corrections to the Coulomb potential remain attached to a 
particle as it exits one side of the simulation box and re-enters the opposite side.   It is 
specially interesting that part of the radiation correction precedes the electron and jumps 
across the box before the electron itself.    The distorted Coulomb field follows when the 
particle crosses the cell boundary because we use periodic BCs with the same 
quantization box for the radiation as used for the particle simulation.   The corrections to 
Coulomb's law obtained from the normal mode method agree (exactly) with the 
distortions described by the Lienard-Weichert formulas, when evaluated for the same 
particle motion.

The normal-mode method automatically includes absorption and emission 
processes.   Absorption occurs because coupling to the high-frequency electric field is 
contained in the particle equation of motion as well as in the radiation equation.

It might be possible to sample and interpolate for the normal modes, without 
keeping so many degrees of freedom.   It is reasonable to expect an isotropic plasma will 
create an isotropic radiation spectrum (apart from fluctuations) and that expectation could 
be forced onto the algorithm with a conequent loss of information about interference 
effects.   We have not yet attempted this type of calculation.

There is an interesting question about self-interaction.   In the LW method, all the 
interactions between particles are explicit pair-interactions (including events in which a 
photon is emitted, propagates some distance, and then is absorbed later) and our 
instructions are to never permit self-interaction between the particles.   (Interaction of a 
particle with its periodic image is permitted.)    In the normal mode approach, each 
particle changes the general radiation field which then can interact back with the same 
particle.   Is there a self-interaction?   Is it divergent?   Why not?

In fact, in the simulations any radiation field generated by a particle leaves the 
vicinity of that particle at the speed of light, and only returns to interact with the same 
particle after reflection from the box boundary.   It's possible that a simulation with many 
more normal modes would encounter a difficulty, but our modest simulations do not 
seem to exhibit any problem from self-interaction.



   These simulations are entirely classical (classical particles and a classical 
electromagnetic field).   They necessarily produce an incorrect result for the high-
frequency electromagnetic field: they must relax to the Rayleigh-Jeans distribution 
instead of the Planck distribution for the black-body radiation.   The Rayleigh-Jeans law 
is the classical result, but for fusion plasmas it would be seriously incorrect.

On this point, we have two comments.   One is that for the long-wavelength part 
of the electromagnetic spectrum the Rayleigh-Jeans law is not significantly incorrect.   So 
our ultimate algorithm may use the normal mode equations for this part of the radiation 
field (although it does not carry a large energy-density in any case).   

The second point is the case against trying to develop a quantum version of the 
normal-mode calculation.   A fully-quantum simulation would follow a rapidly-
increasing family of copies of the system with different numbers of photons in different 
photon modes and must permit transitions (including interference) between these copies; 
a simple estimate of the number of states makes this approach seem impractical.   For 
example, to follow states with 0, 1 and 2 photons each for 107 photon modes would 
require carrying 310 million ~ 103,000,000  amplitudes.

Finally there is an important computational question: scaling with the number of 
particles or size of the system.   We imagine comparing systems of constant particle 
density in large and larger simulation boxes.   The number of particles  Np  ~  L3, where L 
is the edge of the box.  To obtain a constant spatial resolution (something comparable to 
the particle separation, for example) the normal mode method requires us to carry more 
normal modes for the larger box: basically the number of normal modes also scales as L3.   
Since each normal mode must interact with each particle, this is also an Np

2 algorithm, 
like the LW method.   

5.) BINARY ENCOUNTER EMISSION/ABSORPTION MODEL

   At this point it is clear we must include quantum effects in the simulation, at least 
a semiclassical form, in order that the simulations satisfy the common-sense requirement 
that they relax toward a Planck spectrum for the radiation.   

Apparently the simplest way to accomplish this follows Einstein's original 
discussion of detailed balance [6]: the probabilities of absorption and emission during a 
collision are required to be respectively proportional to expressions of the form:

absorption  ~  f(El) vl B n      

emission     ~  f(Eu) vu B (n + 1)  (25)

where f(E) is the electron distribution function for lower and upper electron energy-states 
(denoted by subscripts l, u); vl, vu are the approach velocities; n is the number of photons 



per normal mode and B is a coefficient which must be equal for two processes related by 
time-reversal.   We use the symbol B to suggest the Einstein B coefficient (which refers 
to line transitions) but in our case B is an appropriate average of the bremsstrahlung 
cross-section and depends on electron and photon energies.  

The pair of electron states related by detailed balance have different energies Eu, 
El which differ by the energy h of the photon emitted/absorbed  ( Eu - El = h ).   The 
one-electron states in the classical simulation have specified position and velocity whose 
apparent accuracy exceeds the uncertainty limit.   With this formulation of the radiative 
processes we expect that the simulation will drive the two species (electrons, radiation) 
toward equilibrium with a Maxwell distribution for the electrons and a Planck function 
for the radiation, and if the coefficient B is approximately correct the relaxation will 
occur on an realistic time-scale.   At equilibrium the rates of emission and absorption will 
be equal.

We do not have a deterministic algorithm to implement these rates, and instead 
assume there are probabilities for emission and absorption (during strong collisions).   
This means we must combine molecular dynamics (a classical and deterministic 
simulation) with the Monte Carlo method (which uses random numbers to make choices 
during the simulation) in a semi-quantum simulation.   

To obtain a feasible algorithm we implement the Einstein expressions for 
absorption/emission rates by a hybrid MD/MC (molecular dynamics/Monte Carlo) 
algorithm described here.   Our method requires approximations that ignore potentially 
interesting (small) effects.  While our algorithm does relax to the correct thermal 
equilibrium, other methods could be considered and we continue to explore other 
methods that might capture other aspects of the physics.   

MC/MD Algorithm   

In this approach the radiation field will be represented by an isotropic 
homogeneous photon spectrum  I .   In equilibrium I is expected to be the black-body 
function B

B 
2h 3

c2 n
0 

2h 3

c2
1

eh /kY 1   (26)

Here the symbol n again denotes the number of photons per normal mode of the 
radiation field.   We assume radiation is emitted and/or absorbed in electron-ion 
collisions and ignore smaller contribtions from electron-electron or electron-ion 
collisions.   At present we also ignore Compton scattering although ultimately it must be 
included.

In this approach we assume the radiation field is isotropic and replace the many 
normal mode amplitudes by the photon energy-distribution.   This means that instead of 
carrying 107 normal modes we carry only ~ 100 photon energy-bin populations.   We 



make no attempt to represent any spatial variation of the radiation field inside the 
simulation box, i.e., we are considering electron-photon energy-exchange but not 
radiative transfer.

The MC algorithm for radiation emission/absorption assigns a conditional 
probability of emitting/absorbing during each electron-ion collision.   We convert 
existing formulas for bremsstrahlung cross-sections into appropriate conditional 
probabilities while preserving detailed balance.

We begin with the Kramers' absorption and emission cross-sections.[7]   Here we 
write the cross-sections and show how they are normally used in kinetic theory, i.e., how 
they generate a number of radiative events dN per volume d3r, time dt and photon energy 
range dhv.   The notation matches an earlier review article by one of the authors.[8]

Inverse bremsstrahlung absorption is a 3-body reaction (the initial particles are 
electron, ion and photon), so the absorption cross-section abs has units cm5.   The 
Kramers form for abs is
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If abs is multiplied by the spectrum of ambient photons = n dN/d(h (photons/cm3-eV) 
and integrated over photon energy it yields a normal cross-section (cm2) for absorption. 
In a kinetic theory this cross-section gives the rate of photon absorption events:
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Here nI is the ion number density and f() is the electron distribution function.

The emission cross-section emiss is a differential cross-section to emit a photon of 
energy h so its units are cm2/eV.   
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To obtain the emission rate, emiss is multiplied by (n + 1) to include stimulated emission 
and integrated over photon energies (up to the electron's initial energy).   The rate of 
emission of photons of energy h is (in kinetic theory)
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 nI

2d 3 po
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(30)
    

We must adapt these expressions to the different description used in the MD 
simulation.   In that description the electron distribution function f() is being sampled 



one collision at a time; the factors nI and f() are represented by the frequency of 
attempting the radiation calculation.

The cross-sections become conditional probabilities when we form the ratio to the 
Coulomb collision cross-section.   Analysis of special MD simulations (which did not 
include pair-interactions) show that the rate of collisions is, as expected from kinetic 
theory,

                 ne ni  <  v > (31)

where ne, ni are electron and ion number densities,  is the cross-section and v is the 
relative velocity.   For example, if we ask the MD simulation to count the rate at which 
electrons arrive within a distance RB of an ion, the MD rate is given by the above formula 
with  =  RB

2 (to about 1 % accuracy).

Given that an electron has arrived within a distance RB of an ion, we take the 
conditional probability of emission (of a photon of energy h) to be the ratio

d
dh
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RB
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This conditional probability is proportional to 1/RB
2 but the dependence on RB cancels 

because the rate of arrival of the electrons is proportional to RB
2.     We have verified that 

simulations with different values of RB give similar rates for the radiative events to within 
the numerical fluctuations.

Our algorithm can now be outlined:

1.) When an electron arrives within a distance RB of an ion, use a random number to 
decide whether any radiative process occurs.   (The probability of a radiative process is 
small so this test is rarely passed.)   If not, proceed with the usual Coulomb collision.  
The probability is calculated using the current photon populations in the integrated cross-
sections. 

2.) If there is a radiative event, determine whether it is emission or absorption and 
determine the photon frequency.  Emission and absorption do not have equal probabilities 
(in general) according to Eqs. (24, 25).   [It is the time-reversed processes that have equal 
probabilities.]   The determination is based on one or several random numbers; the 
normalized probability distribution is obtained from the cross-sections by the usual MC 
cumulative probability.

3.) The photons are described by photon frequency groups and the emitted/absorbed 
photon is assigned the energy at the center of the group (while the photon density of 
states is an integral over the group).   This change of photon energy is an approximation 



that has its largest effect for the hardest and softest photons.   The electron energy is 
reduced (or increased) to conserve energy.

This algorithm is installed in the Coulomb molecular dynamics code without 
changing the Ewald sum used to handle the long-range part of the Coulomb interaction.
We select photon energy-groups that put primary emphasis on relatively high-energy 
photons which are expected to be most important for the energetics.   The high-energy 
photons are emitted and absorbed in relatively strong ("close") collisions and these events 
are expected to be mainly binary electron-ion collisions not strongly influenced by the 
neighboring ions.   It is likely that a different algorithm could be developed to handle the 
lower photon energies and this algorithm might not need to make the binary-encounter 
approximation.

The simulations we have performed with the algorithm described here indeed 
relax to a photon distribution consistent with a Planck function.   The low-energy 
frequency groups relax much more rapidly than the high-energy photons.  Simulations 
performed on a small workstation have substantial numerical noise because the number 
of photons in a 1000 A3 simulation box is not large at kT < 5 keV.   The algorithm has 
been added to our larger parallel simulation code and has been used for larger simulations 
and which give less numerical noise.

At present the simulations assume the Kramers cross-sections and this is a 
limitation that precludes study of new effects such as modified emission when an electron 
simultaneously encounters two nearby ions.   We anticipate there should be interference 
between the emission probabilities and the algorithm described in this section neglects 
this interference.

The Kramers cross-sections are summed over angular momentum of the incoming 
electron, although it is evident that the smallest angular momenta are strongly dominant.
It would be more accurate to use the L-resolved cross-sections which are given by 
relatively simple formulas.   It would also be possible to improve the accuracy of the 
Kramers cross-sections by multiplying them by a correction for quantum mechanics(the 
Gaunt factor), but this is not a large correction for cases where the cross-section is large.

The algorithm described in this section has an imporant advantage: the close 
collisions (corresponding to electron-nucleus distance shorter than RB) are handled as 
binary collisions and the exact classical Kepler orbits can be used for the Coulomb 
scattering.   These orbits give deflections consistent with the Rutherford cross-section, the 
same result obtained from a full quantum mechanical solution of the corresponding 
collision.    In this case there is no need for a pseudopotential, which inevitably distorts 
the large-angle collision cross-section.

The pseudopotential is not needed because the unphysical three-body 
recombination to negative energy states does not occur in the two-particle classical 
system.   However if we improved the algorithm for motion at r < RB, say by including a 
microfield from the ambient environment, and if this microfield were allowed to change 



during the collision, then we would again have to confront the problem of recombination.   
At present we omit the possibility of radiative recombination; this phenomenon will enter 
in future simulations in which each ion is allowed to be coupled to a collisional-radiative 
kinetic model.

The calculations described here represent one approach to simulating the coupling 
of particles and radiation but other methods or hybrids need to be explored to evaluate all 
the many physical processes which are present in such a rich environment.   We are 
especially interested in effects of interference in simultaneous collisions of one electron 
with two or more ions, interference in collisions of two or more electrons with one ion, 
interference between subsequent collisions, and processes in which the high-frequency 
quiver-velocity of electrons (caused by black-body radiation) alters the collision 
dynamics.   For most of these processes considered in isolation there are analytic 
calculations in the literature but the phenomena interact.   It may be difficult to describe 
all these effects in the same simulation but we plan to improve our algorithms toward that 
goal.

6.) MULTICENTER EFFECTS

In this section we briefly mention our recent efforts to move to an approximate 
inclusion of multi-center effects in the emission and absorption of radiation.   By multi-
center effects we mean the additional emission which occurs when two target ions are 
close together and one electron simultaneously strikes both, or the additional emission 
which occurs when two electrons simultaneously strike the same ion.   In each case we 
compare the multiparticle collision with the sum of the the two separate interactions, in 
the usual spirit of the Virial expansion.

For the multicenter interactions we propose to group together (and allow 
interference between) the accelerations of the particles involved in the collision.   Thus in 
an electron-electron collision, if we keep the accelerations of both electrons (which are 
equal and opposite) we find a small result (zero in the dipole approximation).

An expansion in terms of small clusters of near-neighbor particles may seem to be 
threatened by the long range of the Coulomb interaction, but in fact the situation is more 
favorable for radiation than for the plasma equation of state.   That is because the 
emission/absorption probabilities are basically proportional to the square of a fourier 
component of the classical acceleration, i.e., a()2,  and for Coulomb forces this quantity 
falls off like 1/R4, where R is the particle pair-separation.   Of course the actual 
convergence with distance is probably much more rapid because the various regions of 
the plasma are neutral on the average so positive and negative accelerations by distant 
charges strongly cancel.

We plan to improve our simulations guided by classical emission calculations 
(using the Lienard-Weichert or normal-mode methods) for few-particle collisions.   In 



this effort we expect to encounter special challenges in finding comparison data: we need 
a quantum or semiclassical emission cross-section for systems that are not spherically 
symmetric.   At a fundamental scientific level these challenges are salient points of 
interest for this work.

The multicenter calculations predict interference phenomena which have been 
previously studied using the Born approximation to express the emission/absorption as 
integrals over the equilibrium pair-correlation functions.[9, 10]   Our calculations are 
effectively non-Born (classical) calculations of the nearest-neighbor part of this 
interference effect.   For specific orientations the interference effects are quite strong but 
the practical question is what survives averaging over orientations of the local cluster of 
target particles.

7.)  SIMULATIONS USING THE BINARY-ENCOUNTER APPROXIMATION

In order to test the radiation algorithm described in section 6, MD simulations 
were performed for three-temperature systems of electrons, ions and photons in a cubic 
simulation box using periodic boundary conditions. The MD was performed with a fully 
parallel code using a basic leapfrog method [11] with the Coulomb interaction evaluated 
by an Ewald summation [12, 13]. 

A simulation was performed for a weakly coupled hydrogen plasma with a 
particle number density of 1026/cm3, initial ion temperature of 20 keV, electron 
temperature of 10 keV and radiation temperature of 3 keV.  The initial particle 
distributions were obtained by coupling the two species to separate Langevin thermostats, 
while the radiation initial conditions were selected from a Planckian distribution. The 
MD results were compared to a multi-group radiation code which treats the plasma like a 
fluid and computes the time evolution of electron and ion temperatures for an LTE 
plasma undergoing emission and absorption due to bremsstrahlung.  The radiation field 
evolves according to the homogeneous and isotropic semi-classical radiation transport 
equation.  The electron and ion temperatures evolve according to an energy balance 
relationship. 

Figure 1 shows the evolution of temperature as a function of time compared to the 
results coming from the multi-group radiation code. The MD simulation assumes nothing 
about the plasma properties apart from the Coulomb law; the emission and absorption are 
governed by the Kramers cross-sections described above.  For a hydrogen plasma at the 
specified conditions, the simulation results are close to the multigroup radiation code.  



Figure 2: MD and radiation code results for a relaxing 
non-equilibrium hydrogen plasma. The noisy lines are the MD results.

In order to see the evolution of the radiation field, we enhanced the coupling 
between photons and electrons by a factor of 100.  Figure 2 shows time snap-shots of the 
evolving radiation intensity from a Planckian at 3 keV for the same three temperature 
equilibration problem.  We see that the low frequency groups are populated earlier as 
expected for an electron-radiation (Bremsstrahlung) coupling rate 31 1~   .

Figure 3: Time snapshots of the radiation specific
intensity as a function of photon energy

8.)  SUMMARY



The goals of this work are to investigate the effects of impurity ions, fusion 
products and non-equilibrium kinetic processes in hot plasmas near the threshhold for 
fusion ignition.   We will test kinetic-theory models widely used in plasma modeling 
codes against the fundamental laws of mechanics, electrodynamics, etc.  This work is a 
natural preparation for upcoming fusion ignition experiments that will be performed on 
the LLNL NIF laser.

The usual atomic-scale particle simulation of plasma consider classical point-
charge electrons and ions interacting with instantaneous Coulomb forces.   The particles 
are contained in a simulation box surrounded by periodic images of the instantaneous 
configuration in the original box.   With the development of large parallel computers, this 
method has come of age and modern simulations involve very large numbers of particles.
However realistic simulations must include radiation phenomena

In the work described here, we found it was possible to add a classical EM field to 
a classical MD particle simulation by two methods:  1.) the Lienard-Weichert solution of 
the Maxwell equations, or  2.) a normal-mode expansion of classical EM field with a 
first-order ordinary differential equation for the field amplitudes.

Both methods give retardation, magnetic fields, and low-frequency EM wave 
effects.   In both methods there is an interesting story about the periodic boundary 
conditions.   We wrote codes for both methods and found by both numerical and 
analytical study of special cases that the Lienard-Weichert and normal-mode solutions 
agree.   This is no surprise because both are (in principle) exact solutions of the classical 
Maxwell equations; unfortunately they do not relax to the equilibrium black-body 
radiation field.   That is because these are classical theories.  

We expect that quantum ingredients are always required to calculate the radiation 
produced by a hot plasma when the photon energy  h  is greater than or equal to the 
plasma temperature  kT.   In this case the classical calculation simply cannot obtain the 
correct answer.   Long ago, Einstein showed what's needed to get a calculation to relax to 
the Planck spectrum:  absorption and emission must be governed by probabilities whose 
ratio contains the particle distribution and the usual factors  n, (n + 1).
      

We have developed a practical strategy to implement this minimum quantum 
theory at least for radiation from binary electron-ion collisions.   The radiation field is 
represented by an isotropic spectral intensity

     I  =  ch n  dN/dhv      

The emission and absorption probabilities are obtained from Kramers' cross-sections for 
emission/absorption, scaled to the Coulomb cross-section to make conditional 
probabilities for emission/absorption during Coulomb collisions.   In this work we 
include electron-ion radiation only, neglecting small contributions from electron-electron 



or ion-ion quadrupole emission.   At present we also ignore Compton (Thomson) 
scattering.

  We perform MC tests to decide between emission and absorption and to decide 
the photon frequency.   The relative probabilities are obtained from the Kramers cross-
sections.   Radiation occurs in less than  10-3  of the strong collision events (for a 
hydrogen plasma).  Each electron-ion pair gets only one chance to emit or absorb per 
collision.   In this treatment the close collisions are binary (distant particles are neglected 
during the collision); this approximation is only used for the short time the particles are 
within a separation like 1/10 of the average distance between particles.  

With this approximate method it is possible to do MD simulations including 
radiative processes.   We believe there is a rich variety of microscopic physics to explore 
using our code: effects of impurities, effects of high-energy particles (e.g., fusion 's), 
various types of relaxation to equilibrium, fusion by high-energy knock-on ions, etc.

In this work we have encountered a variety of fundamental questions (we do not 
repeat the list here) and additional research will be required before all the questions have 
been thoroughly studied.
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