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Calculating the Errors on 
the Feynman Variance, Y2F 

 
In a multi-channel detector we record the time of arrival of detected counts. We divide the 
timeline into separate gates of width T, and ask how many counts arrived in each gate. 
Finally, we form the count distribution histogram, B, a tally of how many gates had zero 
counts, how many had one count, . . .  For illustration, we’ll use the gamma block data from 
NTS Run 20071114224434, RTO 1.2, which was RF1-24, 13.7 kg HEU with 2” Pb 
shielding.   

The count distribution for a gate width of 416 µs is shown in Figure 1.  Note that B is a 
vector across multiplicity, n.  B also depends on the gate time, B = B T( ) = B Ti( ) , so we 
could just as well think of B as a rectangular matrix.  For the moment we’ll work with a fixed 
T, and use a single column of the full count distribution matrix.  We’ll leave the T 
dependence implicit. 

 
Figure 1. Count distribution from NTS Run 20071114224434, RTO 1.2, RF1-
24, 13.7 kg HEU with 2” Pb shielding, gamma blocks only, for a gate width 
of 416 µs. 
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The Feynman variance is a scalar random variable which depends on the vector count 
distribution: 

 Y2F = Y2F Bn( ) = Y2F B( )  (1) 

Using Sean’s formulary, the Idiot’s Guide,1 it’s straight-forward to calculate Y2F “by hand” 
from B:   
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where N is the total number of gates in the timeline, ntot is the total number of observed 
counts, c  is the average number of counts per gate, and  M2 is the second combinatorial 
moment. 

My calculation is shown in Figure 2.  For comparison, the result of analysis pass V490CD0 is 
shown in Figure 3.  They give the same results, so I haven’t made a gross error.  Note that 
this run yields about 118 K independent gates for each gate width. 

Again, using Sean’s formulary, it is straightforward to calculate the variance as well.   
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Again, we agree, but let’s look at this in more detail. 

Variance I – Ensemble 
Imagine that we have an ensemble of nexp experiments for Y2F. That is, a vector B from each 
experiment.  The standard definition for the variance is 

 varY2F = σY2F
2 = (Y2F −Y2F )

2

nexp
= (ΔY2F )

2
nexp

 (4) 

where the ensemble average is defined as: 
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…k
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nexp −1

∑  (5) 
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Figure 2. Y2F as a function of gate width from the data, using this calculation. 
Open symbols represent gate widths where Bn≥2 = 0 and Y2F is undefined. 

 
Figure 3. Y2F as a function of gate width from NTS Run 20071114224434, 
RTO 1.2 (RF1-24 + 2” Pb), gamma blocks only, using the standard analysis 
package, version and pass V490CD0. 
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The mean value of Y2F is 

 Y2F = Y2F nexp
=
1
nexp

Y2F( )k
k=0

nexp −1

∑ =
1
nexp

Y2F Bk( )
k=0

nexp −1

∑  (6) 

Using the data, we can pick a gate time and obtain a good measurement of the count 
probability distribution, b, shown as the solid line in Figure 4. This differs from Figure 1 
only in the normalization; Figure 1 shows the raw number of gates, B; Figure 4 is the same 
distribution divided by the total number of gates, b = 1

N B , to obtain the (normalized) 
probability distribution. 

Using this well-measured count probability distribution, we can simulate the result for a 
different live time, just by generating a count distribution B’, drawn according to the 
measured b, with the specified total number of gates (cycles).  In this case I simulate 
nexp = 100 experiments with N = 400 gates. The results are summarized in Table 1; the 
quantities are described in Table 2. Then, across the 100 experiments, I calculate the average, 
standard deviation, and the standard error on the average, for each of the defined quantities. 
Figure 4 also shows the count probability distribution for all experiments taken together, 
40,000 gates total, which agrees with the source probability distribution, b. 

 
Figure 4. (Blue curve) Measured count probability distribution from Run 
20071114224434 using 416 µs gate width. (Red points) Average Monte Carlo 
sampled count distribution for 100 experiments using 400 gates.  
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Notice the highlighted numbers in Table 1.  The Idiot’s Guide variance formula gives 
σ  = 0.254, whereas the Monte Carlo sample has a standard deviation of only 0.043.  Where 
does this difference come from? 

Variance II – Covariance 
The variance formula derived in the Idiot’s Guide is based on the usual expression for 
propagating errors, 

 σY2F
2 = varY2F =

1
ntot

∂Y2F
∂Bn








2

σ Bn
2

n=0

ntot −1

∑  (7) 

This is actually just a sum across the diagonal elements of the full covariance matrix. This 
simplification is appropriate when there are no correlations, or off-diagonal elements.   

Table 1. Summary of nexp = 100 experiments each with N = 400 gates.  See Table 2 for 
the definition of each quantity. 

Index 0 99 Average ±SE Mean Stdev 

N 400 400 400.000 0.000 0 
N ≥ 2 400 400 399.700 0.048 0.482 
c  10.693 10.438 10.533 0.017 0.171 

ntot 4277 4175 4213.160 6.859 64.589 
 M2  57.788 54.968 56.292 0.188 1.882 
Y2F 0.058 0.048 0.076 0.004 0.044 

var Y2F 0.066 0.063 0.065 0.000 0.002 
σ 0.257 0.251 0.254 0.000 0.004 
r 25,695.240 25,082.447 25,311.704 41.207 412.068 

 
Table 2.  Definitions of quantities in Table 1. 

Quantity Definition 

N Number of gates sampled 
N ≥ 2 Number of gates with 2 or more counts, N≥2 = N-B0-B1 
c  Average number of counts per gate 

ntot Total number of counts in the experiment 
 M2  Second combinatorial moment of the count distribution 
Y2F Feynman’s second moment 

var Y2F Variance computed using “Idiot’s Guide”, Eq. 3 above 
σ Square root of the variance 
r Singles rate in Hz 
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The complete expression is 

 σY2F
2 = ∇Y2F( )T ⋅ Σ ⋅∇Y2F  (8) 

Here ∇ is the usual vector gradient, 

 ∇ ≡
∂

∂Bn









 (9) 

( )T denotes the transpose (in this case from column to row vector), and Σ  is the covariance 
matrix.  In our case,  
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For an ensemble, the covariance matrix is defined as 

 

Σ = σ n,m
2{ } = ΔBn ⋅ ΔBm nexp{ }

= Bn − Bn( ) ⋅ Bm − Bm( )
nexp









= ΔB ⋅ ΔBT
nexp

 (11) 

(Note the outer product in the last line, resulting in a square matrix with ntot rows/columns.) 

Correlations in the Count Distribution 
It’s high time to be really clear on the question we want to answer.  We take some data, an 
“experiment.” We compute Y2F.  Based on this single experiment, we want to know what 
variation we could expect had we run an ensemble of identical experiments. That means, 
suppose we knew the true count probability distribution, b, and we took a series of runs each 
with the same number of gates, N, what variation should we expect on the measured Y2F?  

For this we need the generalization of the binomial distribution, the multinomial distribution. 
In a binomial distribution, there are only two possible outcomes, “success” and “failure,” 
with a constant probability, p, of success across trials. In a multinomial distribution each of N 
trials results in one of a finite number, ntot, of outcomes, each with a constant probability, bn, 
across trials.  Not surprisingly, the marginal distribution for any one of the outcomes is a 
binomial.  In a multinomial the outcomes are (anti-)correlated because the total number of 
trials is fixed; a positive fluctuation in the number of trials with a given outcome has to be 
compensated by negative fluctuations for other outcomes. 
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The multinomial probability distribution is 

 

 

P B;N ,b( ) =
N !
Bn !

n
∏

bn
Bn

n
∏ , when Bn

n
∑ = N

0 otherwise









 (12) 

and the total probability for all outcomes is unity: 

 bn
n
∑ = 1  (13) 

The covariance matrix for the multinomial distribution can be written in this simple form: 

 ΣMultinomial = Σi, j{ } = Nbi 1− bi( ) i = j
−Nbibj i ≠ j






 (14) 

The diagonal entries are just the variance of the binomial distribution. 

So how does this apply to us?  

Figure 5 shows the covariance matrix calculated for the ensemble of experiments, using 
Eq. 11.  Clearly, there are anti-correlations, especially where b has strong support.  Not 
surprisingly, this is somewhat noisy, since each experiment has only 400 gates.  Figure 6 
shows the covariance computed using Eq. 14 and the count probability distribution b 
measured in the full data set with 118K gates. 

Finally, I computed the error using Eq 8, and obtained the results shown in Table 3.  There is 
still considerable variation run to run for the numerical covariance.  To understand the size of 
this variation, I computed each of the methods for ten iterations at a sample of gate widths.  
These results are summarized in Table 4.  I conclude that the Monte Carlo and all covariance 
calculations are in agreement; the Idiot’s Guide disagrees, especially for long gate widths. 

As a last note, the live-time dependence is 

 

σY2F
2 = ∇Y2F( )T ⋅ Σ ⋅∇Y2F

≈
1
N
⋅N ⋅

1
N

≈
1
N

 (15) 

So the error falls as the square root of the number of gates. 



 

LLNL -TR-414706  p. 8 of 17 
 

 
Figure 5. Covariance matrix for the ensemble, computed using Eq. 11. 

 
Figure 6. Covariance computed using Eq. 14. 
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Table 3. Summary of error estimates. 

Method Sources σ  

1 “Idiot’s Guide” Eq 3 0.2542 

2 Monte Carlo Eq 4 
b from data, resampled for N = 400, 
averaged over Monte Carlo ensemble 0.0440 

3 
Σ  Eq. 11, Monte Carlo ensemble 
∇Y2F  averaged over Monte Carlo ensemble 0.0441 

4 
Σ  Eq. 14, 
 b from data, scaled to N = 400, 
∇Y2F  averaged over Monte Carlo ensemble 

0.0416 

5 

Covariance 

Σ  Eq. 14, 
∇Y2F  
 both using b from data, scaled to N = 400 

0.416 

Table 4. Error estimates for each method, as a function of gate time, T.  Missing entries occur 
when at least one iteration of the Monte Carlo fails to generate a single gate with more than one 
count. Method numbers refer to lines in Table 3. 

Method T (µs) 1 2 3 4 5 
1.024  0.09 ± 0.01 0.082 ± 0.009 0.092 ± 0.004 0.0789 ± 0.0000 
3.25  0.057 ± 0.004 0.058 ± 0.006 0.057 ± 0.001 0.0546 ± 0.0000 

10.32 0.034 ± 0.001 0.037 ± 0.003 0.045 ± 0.004 0.040 ± 0.001 0.0389 ± 0.0000 
32.77 0.0333 ± 0.0005 0.033 ± 0.003 0.039 ± 0.003 0.0358 ± 0.0003 0.0356 ± 0.0000 

104.0 0.0670 ± 0.0005 0.049 ± 0.003 0.041 ± 0.003 0.0490 ± 0.0001 0.0490 ± 0.0000 
330.3 0.2018 ± 0.0005 0.044 ± 0.003 0.043 ± 0.003 0.0415 ± 0.0001 0.0415 ± 0.0000 
1049 0.6459 ± 0.0006 0.040 ± 0.003 0.040 ± 0.003 0.0407 ± 0.0000 0.0407 ± 0.0000 
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Implementation Results 
I implemented the full covariance method for calculating the errors in an analysis framework 
based on the Root package.2 Figure 7 shows the full count distribution, B, as a function of 
multiplicity, bn, vs. gate width index.  Figure 8 shows the covariance matrix for gate index 
55, T = 416 µs; compare to Figure 6.  Finally, Figure 9 shows the gate time dependence of 
Y2F with a fit using the full errors; compare to Figure 2-3. 

 

 
Figure 7. Full count distribution, B, showing multiplicity, bn, vs. gate width 
index. 
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Figure 8. Covariance matrix for gate index 55, corresponding to T = 416 µs. 

 
Figure 9. Y2F as a function of gate width from the data, with a fit, calculated 
by the analysis framework. 
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Gate Time Dependence 
With the full covariance machinery in hand, I recomputed the error as a function of gate time. 
Figure 10 shows the Feynman variance, the error computed using the full covariance, Eq. 14, 
and the conventional error using the Idiot’s Guide, Eq. 3.  Correlations clearly become 
important in reducing the errors at long gate times.  Figure 11 shows the same two errors, 
along with the range of non-zero counts per gate present in B, as a function of gate width.  
The range of non-zero counts is the dimension of the covariance matrix. Evidently 
correlations become important when this range is larger than of order 10. 

With the live-time dependence from Eq. 15, we can estimate the errors we would have 
obtained had we run for a different live-time, or allocated our live time differently between 
gates of different widths.  Figure 12 shows the scaled error for three different strategies. 
“Uniform number of gates” allocates the same number of gates, N, for each gate width.  This 
is essentially the strategy we use now.  “Uniform Y2F / Sigma” allocates live-time to obtain 
uniform significance. “Uniform Live Time” allocates more gates for shorter gate widths, so 
that all gate widths receive the same live time.  All of these cases assume a fixed total live 
time. 

Figure 13 shows the significance, Y2F σ , for a uniform one second live-time for each gate.  
This type of plot is useful for estimating the live-time that will be required to reach a stated 
level of significance.  For example, at 1 µs we have ~40 σ at 1 s live-time.  We can estimate 
that we need 6

40( )2 ×1 s = 22.5 ms to achieve a 6-σ measurement. 
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Figure 10. Feynman variance and error, computed using full covariance, 
Eq. 14, and the Idiot’s Guide, Eq. 3. 

 
Figure 11. Error on Feynman variance (right axis) compared to the range of 
counts per gate present as a function of gate time. Correlations become 
important when the count range is of order 10. 
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Figure 12.  Error estimates for different live-time strategies.  See the text for 
definitions of each strategy. 

 
Figure 13.  Significance vs. gate width for one second of live-time for each 
gate width. 
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Appendix A:  Formulary 
Here are the complete set of formulas needed to compute all the moments using the 
covariance. 

First, some definitions: 

(From Eq. 8) σ X
2 = ∇X( )T ⋅ Σ ⋅∇X  (A1) 

(From Eq. 9) ∇ ≡
∂

∂Bn









 (A2) 

(From Eq. 12) ΣMultinomial = Σi, j{ } = Nbi 1− bi( ) i = j
−Nbibj i ≠ j






 (A3) 

The count distribution, B, will be updated as new data arrives, so we have ready access to B, 
not the probability distribution, b = 1

N B .  In addition, we’ll extract common factors as much 
as possible. to compute things efficiently.  Here are the forms we’ll use: 

 K = −NΣ =
−NBi + BiBi i = j

BiBj i ≠ j




 (A4) 

 D ≡ N∇ = Ν
∂

∂Bn









 (A5) 

 

σ X
2 = ∇X( )T ⋅ Σ ⋅∇X

=
1
N
DX





T

−
1
N
K




1
N
DX





= −
1
N 3 DX( )T K DX( )

 (A6) 
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Moment, m  Moment Gradient Dm  

N = Bn∑  (A7) 0  (independent variable) (A8) 

 
M1 =

1
N

nBn∑  (A9)  DM1 = n{ }  (A10) 
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n
2
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N
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n
3
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

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

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 (A14) 

 Y1 = M1  (A15)  DY1 = DM1  (A16) 

 
Y2 = M2 −

Y1
2

2
 (A17)  DY2 = DM2 −Y1DY1  (A18) 

 
Y3 = M3 −Y2Y1 −

1
3!
Y1
3  (A19)  

DY3 = DM3 − Y1DY2 +Y2DY1( ) − 1
2
Y
1

2DY1  

 (A20) 

Y2F =
Y2
Y1

 (A21) DY2F =
1
Y1
2 Y1DY2 −Y2DY1( )  (A22) 

Y3F =
Y3
Y1

 (A23) DY2F =
1
Y1
2 Y1DY3 −Y3DY1( )  (A24) 

 c = M1  (A25)  Dc = DM1  (A26) 

nTot = Nc1  (A27) DnTot = NDc  (A28) 
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