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In this Letter, we discuss the concept of the nonlinear Landau damping rate, ν, of a driven electron
plasma wave, and provide a very simple, practical, analytic formula for ν which agrees very well
with results inferred from Vlasov simulations of stimulated Raman scattering. ν actually is more
complicated an operator than a plain damping rate, and it may only be seen as such because it
assumes almost constant values before abruptly dropping to 0. The decrease of ν to 0 is moreover
shown to occur later when the wave amplitude varies in the direction transverse to its propagation.

PACS numbers: 52.35.Mw 52.38.Bv 52.38-r

Landau damping is a collisionless, linear, phenomenon
resulting from the global acceleration of electrons by a
plasma wave which occurs, for example, in an initially
Maxwellian plasma. The corresponding damping rate,
νL, was first derived in the famous 1946 paper Ref. [1],
using complex contour deformation and analytic contin-
uation. As is well known, if νL � ωpe, where ωpe is
the plasma frequency, νL is approximately proportional
to the derivative, f ′0(vφ), of the unperturbed distribution
function at the wave phase velocity. This is because Lan-
dau damping is a resonant process, predominantly due to
the electrons such that |v0 − vφ| . νL/k, where k is the
wave number and v0 is the unperturbed electron velocity.

A nonlinear counterpart of νL was first calculated by
O’Neil in Ref. [2], who considered an electron plasma
wave (EPW) of constant and uniform amplitude, E0,
which grew infinitely quickly in an initially Maxwellian
plasma. When ωB � νL, where ωB =

√
ekE0/m, −e

being the electron charge and m its mass, most of the
electrons which contributed to νL in the linear regime are
now trapped and oscillate in the wave trough. Within one
oscillation period, a trapped electron neither gains nor
loses momentum in the wave frame, so that the mecha-
nism which gave rise to Landau damping vanishes. Actu-
ally, O’Neil showed that the EPW non collisional damp-
ing rate oscillated with time, t, and was almost 0 when-
ever ωBt & 30.

A countless number of papers, addressing both the lin-
ear and nonlinear regimes, have been written since these
two seminal works were published. In the linear regime,
many articles discussed the physical origin of Landau
damping and tried to provide a simpler derivation of νL
without resorting to contour deformation (see Ref. [3]
and references therein). In this Letter, we provide such a
derivation which, we believe, is quite simple. In the non-
linear regime, several papers recently discussed the very
work of O’Neil, eventually leading to its experimental
check (see Ref. [4] and references therein). Although the
situation considered by O’Neil is physical and could be
reproduced experimentally, it is not the most general one
since a plasma wave amplitude usually depends on both

space and time, even when the wave induces nonlinear
electron motion. Yet, despite the importance of the sub-
ject and the number of papers devoted to it, we are not
aware of any simple analytic expression, supported by
numerical simulations, for the nonlinear non collisional
damping rate of an EPW whose amplitude is neither
uniform nor constant. This is what we provide in this
Letter. Usually, an EPW either results from a plasma
instability or an external drive. However, only in the lat-
ter case may the EPW grow in an initially Maxwellian
plasma, and may global electron acceleration, at the ori-
gin of Landau damping, occur. This is the case we shall
consider in this Letter. Moreover, recent numerical [5, 6]
and experimental [7] papers on stimulated Raman scat-
tering (SRS) reported reflectivities far above what could
be inferred from linear theory, with direct implication to
inertial confinement fusion. This so-called “kinetic enah-
ncement” was attributed to the nonlinear reduction of
the Landau damping rate, although no theory, nor ana-
lytic formula, was available to support this assumption.
The present Letter fills this gap.

Before proceeding, it is necessary to clarify what one
means by the “nonlinear Landau damping rate” of a wave
which, since it is driven, grows. Actually, the driven
EPW accelerates electrons exactly the same way as if
it were freely propagating, which hampers its growth,
and one would like to account for this through an ef-
fective damping rate that could be used in an enve-
lope equation. More precisely, when the EPW electric
field is ~EEPW = (Epeiϕ + c.c)x̂, with |E−1

p ∂xEp| �
k ≡ ∂xϕ, and |E−1

p ∂tEp| � ω ≡ −∂tϕ, and similarly
the driving electric field is ~Edrive = (Edei(ϕ+δϕ) + c.c)x̂
with|E−1

d ∂xEd| � k, |E−1
d ∂tEd| � ω, and δϕ � ϕ, one

would like to write the follwing envelope equation for the
EPW amplitude,

∂tEp + vg∂xEp + νEp = Ed cos(δϕ)/∂ωχrenv (1)

where ν is called the (nonlinear) Landau damping rate of
the driven plasma wave. Actually, the nonlinear envelope
equation of an EPW has already been derived in Ref. [8],
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and is, when Re(χ) ≈ −1 and |Im(χ)| � 1,

Im(χ)Ep − k−1∂xEp = Ed cos(δϕ) (2)

where χ is the electron susceptibility, χ ≡ iρ0/(ε0kE0),
where ρ0 and E0 are, respectively, the amplitudes of the
charge density and of the total longitudinal electric field
(including the plasma wave and the drive). In this Let-
ter, we derive a theoretical expression for Im(χ) showing
that Eq. (2) can indeed be cast in the form of Eq. (1),
and provide explicit formulas for all the coefficients of
this equation. The accuracy of our theoretical estimate
for Im(χ) can be appreciated in Fig. 1(a), while the
nonlinear variations of the coefficients of Eq. (1) are il-
lustrated in Figs. 1(b)-(d). In particular, one can see
that ν remains approximately constant before abruptly
dropping to 0. This is very different from the oscillating
result found by O’Neil because, in this Letter, we con-
sider slowly varying waves inducing a nearly adiabatic
electron motion. As a consequence, electrons with the
same initial velocity are all trapped nearly simultane-
ously, while in the situation considered by O’Neil, elec-
trons with the same initial velocity are not all trapped
by the wave, depending on their initial position. Hence,
ν is less efficiently reduced to 0 in the O’Neil situation
than in ours, and we find ν ≈ 0 whenever

∫
ωBdt & 6,

instead of ωBt & 30 as found by O’Neil.
Let us now derive the envelope equation for the plasma

wave. We first assume that the total longitudinal field
amplitude, E0, is uniform, while its time variation is such
that |Γ| ≡ |E−1

0 dtE0| � ωpe. For a freely propagating
plasma wave, when νL � ωpe, the Landau damping rate
may be estimated using the expansion Im[χ(ω − iνL)] ≈
Im[χ(ω− i0)]− νL∂ωRe(χ). Then Im(χ) = 0 yields νL =
Im[χ(ω − i0)]/∂ωRe(χ). Here, we would like to make a
similar expansion to get,

Im[χ(ω + iΓ)] ≈ Im[χ(ω + i0)] + Γ∂ωχrenv (3)

When Ep � Ed, which is typically the case for SRS
(see Ref. [9] for a detailed discussion), then Γ ≡
E−1

0 dtE0 ≈ E−1
p dtEp. Hence, plugging Eq. (3) into

Eq. (2), would yield the envelope equation (1) with
ν = Im[χ(ω + i0)]/∂ωχrenv. In order to calculate Im(χ)
we use the expression, χ = −i(kλD)−2〈e−iϕ〉/Φ, derived
in Ref. [8], where λD is the Debye length, Φ = eE0/kTe,
Te being the electron temperature, and

〈e−iϕ〉 =
1

2π

∫ π

−π

∫ +∞

−∞
f(ϕ, v, t)e−iϕdϕdv (4)

where f is the electron distribution function, and ϕ may
be seen as a dynamical variable such that, for each elec-
tron, dϕ/dt = kv − ω, where v is the electron velocity
and ω the EPW frequency. Let us first give an estimate
of 〈e−iϕ〉 obtained through the means of a first order
perturbation analysis. This amounts to using the fol-
lowing expansion ϕ(x, t) = ϕ0 + (v0 − vφ)τ + δϕ, where

τ = kλDωpet, velocities are normalized to the thermal
one, vth ≡ λDωpe, and, at 0-order in the time variations
of vφ,

δϕ = −
∫ τ

0

∫ u

0

Φ(ξ)ei(ϕ0+wξ)dξdu (5)

where we have denoted w ≡ v0−vφ. As shown in Ref. [8],
deeply trapped electrons do not contribute to Im(χ), and
one may therefore calculate Im(χ) by only accounting
for electrons with initial velocity |v0 − vφ| < Vlim, where

Vlim = [4ωB/(πkvth)]
[
1− 3/

∫ t
0
ωB(u)du

]
, and the latter

expression is supposed to be 0 if negative. Then, using
the expansion, 〈e−iϕ〉 ≈ 〈−iδϕe−i(ϕ0+wτ)〉, we find

〈e−iϕ〉 = i

∫
|w|≥Vlim

∫ τ

0

∫ u

0

Φ(ξ)eiw(ξ−τ)f0(w+vφ)dudξdw

(6)
where f0 is the electron distribution function in the limit
Φ→ 0. When Φ monotonically increases as a function of
time, f0 is the electron distribution function at t = 0. It
is therefore the unperturbed distribution function, usu-
ally a Maxwellian. However, when Φ decreases to 0 after
reaching high enough a value to induce nonlinear elec-
tron motion, perturbation analysis only makes sense if
one uses for f0 the electron distribution function in the
limit t → +∞, and integrates the electron motion from
t = +∞ by taking advantage of the time-reversal invari-
ance of the dynamics. Then, as explained in Ref. [8],
f0 is nearly symmetric with respect to vφ in the interval
|v0 − vφ| ≤ max(Vlim) (an example of such a symmetric
distribution function for a decaying wave amplitude may
be seen in Fig. 4 of Ref. [10]). This implies that once
trapped electrons never contribute to Im(χ) again, even
after being detrapped. Eq. (6) may therefore be simpli-
fied by using for f0 the unperturbed distribution function
and by replacing Vlim by max(Vlim). Such a simplfication
will be implicitly used throughout the remainder of this
Letter. In order to derive an expression similar to Eq. (3)
for Im(χ), we now use the decomposition 〈e−iϕ〉 ≡ I1+I2
with

I1 = f ′0(vφ)
∫ τ

0

∫ u

0

Φ(ξ)
∫
|w|≥Vlim

iweiw(ξ−τ)dwdξdu

(7)

I2 = i

∫
|w|≥Vlim

∫ τ

0

∫ u

0

Φ(ξ)eiw(ξ−τ) ×

×[f0(w + vφ)− wf ′0(vφ)]dwdξdu (8)

Provided that (dΦ/dτ)τ=0 may be neglected, integrating
Eq. (8) by parts yields, at first order in the time varia-
tions of Φ,

Re(I2) ≈ 2
dΦ
dτ

∫
|w|≥Vlim

f0(w + vφ)− wf ′0(vφ)
w3

dw (9)

≡ −(kλD)2(dΦ/dt)(∂χr1/∂ω) (10)
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where the integral in Eq. (9) has to be taken in the sense
of Cauchy’s principal part when Vlim = 0.

Setting Vlim = 0 in Eqs. (7) and (9) just yields the
linear value of Im(χ). Then χr1 just is the adiabatic ap-
proximation of the linear value of Re(χ). As for I1, since∫ +∞
−∞ iweiw(ξ−τ)dw = 2π∂ξδ(ξ − τ), where δ is the Dirac

distribution, one easily finds I1 = πf ′0(vφ)Φ(τ). Hence,
in the linear limit, Im(χ) = −π(kλD)−2f ′0(vφ) + Γ∂ωχr1,
which has the same form as Eq. (3). Therefore, Eq. (2)
may indeed be cast in the same form as Eq. (1), with
χrenv = χr1 and ν = −π(kλD)−2f ′0(vφ)/∂ωχr1. The pre-
ceding linear value of ν is just the Landau damping rate,
νL, in the limit νL � ωpe. Hence, our linear calculation
is one derivation of the Landau damping rate which does
not resort on complex contour deformation.

In the nonlinear regime, and when V −1
lim is much smaller

than the typical timescale of variation of Φ, τφ, integrat-
ing Eq. (7) by parts yields,

Re(I1) = f ′0(vφ)[4V −1
lim dΦ/dτ +O(V −3

lim d
3Φ/dτ3)] (11)

Hence, when Vlim � τ−1
φ which, for a slowly varying

wave is typically the case when
∫
ωBdt � 1, Re(I1) is

nearly proportional to dΦ/dτ . As a consequence, Im(χ)
is nearly proportional to Γ and, in Eq. (1), ν ≈ 0. The
decrease of ν towards 0 has the same physical origin as
in the situation considered by O’Neil : nearly resonant
electrons, which predominantly contributed to Landau
damping, are the first to be trapped as the EPW grows,
and no longer contribute to ν while oscillating within the
wave trough. When

∫
ωBdt � 1, Im(χ) may therefore

be approximated by Im(χ) ≈ Γ∂ωχreff where χreff is the
real part of some effective susceptibility obtained by re-
moving the contribution of the deeply trapped electrons.
How to calculate ∂ωχreff very accurately, without resort-
ing to perturbation theory, is explained in Ref. [8]. Note
that the I1 term which, in the linear limit, yields the
damping rate ν, renormalizes the term ∂ωχ

r
env in Eq. (1)

when
∫
ωBdt � 1. In the strong damping limit, when

νL � Γ, ∂ωχrenv may then increase by more than one
order of magnitude, as illustrated in Fig. 1 (c). As for
for the perturbative estimate Im(χper) of Im(χ), yielding
Eqs. (7) and (9), it is valid provided that

∫
ωBdt . 1.

Hence, to get an expression of Im(χ) whatever the wave
amplitude, we just need to connect values of Im(χ) ob-
tained when IωB

≡
∫
ωBdt . 1, and when IωB

� 1, the
following way,

Im(χ) ≈ Im(χper) [1− Y (IωB
)] + Γ∂ωχreffY (IωB

) (12)

where Y is a function rising from 0 to 1 as IωB
increases.

From the preceding equation, we then derive

χrenv = (1− Y )× χr1 + Y × χreff (13)
ν = Y × I1/∂ωχrenv (14)

To complete our calculation, we now need to provide
a practical formula for I1, simpler than Eq. (7), and

to specify a choice for the function Y in Eq. (12). Let
us first consider the case when Γ is a strictly positive
constant, which is a relevant limit since our theory is
only for slowly varying wave amplitudes. As shown in
Ref. [8], when the EPW grows exponentially with time,
Γ∂ωχrenv is very close to Im(χ) whenever IωB

> 6 and
quickly diverges away from it when IωB

< 6. Hence, Y
must be such that Im(χ) defined by Eq. (12) quickly
changes from Im(χper) to Γ∂ωχrenv when IωB

increases
from a little less than 6 to a little more than 6. This is the
case if we choose Y (x) = tanh5[(ex/6−1)3]. Moreover, as
shown in Ref. [11], such a choice for Y yields an excellent
agreement between the theoretical values of Im(χ) and
those inferred from test particles simulations. This is
therefore the choice we make in the general case. As for
I1, when Γ is a strictly positive constant, one easily finds,

Re(I1)
f ′0(vφ)

= Φ(τ)
[
π − 2 tan−1

(
Vlim

γ

)
+

2γVlim

γ2 + V 2
lim

]
(15)

where γ ≡ Γ/kλDωpe. In order to generalize the
preceding formula we use the expansion Re(I1) =
f ′0(vφ)[πΦ(τ) + δI1] and find, from Eq. (15), δI1 ≈
−(4/3)(Vlim/γ)3 when Vlim � γ, while when Vlim � τ−1

φ

Eq. (7) yields δI1 ≈ −4(V 3
lim/3)

∫ τ
0

∫ u
0

∫ ξ
0

Φ(ξ′)dξ′dξdu.
Hence, while for an exponential growing wave γ ≡
Φ−1dΦ/dτ = Φ/

∫
Φdτ , we find that, when Vlim � τ−1

φ ,
Eq. (15) still holds in the general case provided that γ
is expressed in terms of the time integral of Φ. When
Vlim � γ, Eq. (15) yields Im(I1) ≈ 4γΦf ′0(vφ)/Vlim,
which is the same as Eq. (11) provided that γ =
Φ−1dΦ/dτ . Having clarified the actual meaning of γ in
Eq. (15), we may generalize this equation by plugging
into it

γ ≡ Φ(τ)− Φ(τ − π/Vlim)∫ τ
τ−π/Vlim

Φ(u)du
(16)

which has the required properties γ ≈ Φ/
∫

Φdτ when
Vlim � τ−1

φ , and γ ≈ dΦ/dτ when Vlim � τ−1
φ . As shall

be seen, Eqs. (15) and (16) provide quite a precise esti-
mate for ν. The accuracy can even be improved by using
the high order perturbative results of Ref. [8] instead of
Eq. (15). We will not show here the corresponding, huge,
formulas, but Fig. 1 illustrates the improvement.

The previous results are easily generalized to account
for one dimensional (1-D) space variations of the EPW
amplitude. Indeed, by using a Fourier expansion of the
charge density then, as shown in Ref. [8], one finds

Im(χ) = ν + Γ∂ωχrenv − κ[∂kχrenv + Re(χ)/k] (17)

where κ ≡ E−1
0 ∂xE0 ≈ E1

p∂xEp, and ν and χrenv are still
defined by Eqs. (13-16) except that IωB

, γ and max(Vlim)
need now be evaluated in the wave frame. Plugging Eq.
(17) into Eq. (1) we find, provided that [1 + Re(χ)] ≈ 0,
the following expression for the EPW group velocity,
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FIG. 1: (Color online) Panel (a), Im(χ) calculated numeri-
cally (blue solid line) and theoretically using for Im(χper) a 1st

order (green dashed line) or an 11th order (red dashed-dotted
line) perturbation analysis, panel (b), the nonlinear Landau
damping rate normalized to the plasma frequency from a 1st

order (blue solid line) or an 11th order (green dashed line)
perturbation analysis, panel (c), ∂ωχ

r
env normalized to its lin-

ear value and, panel (d), the EPW group velocity (blue solid
line) and phase velocity (red dashed line) normalized to the
thermal one.

vg = −∂kχrenv/∂ωχ
r
env = ω/k − 2/[k∂ωχrenv]. It is note-

worthy that, since in the nonlinear regime χrenv 6= Re(χ),
vg 6= dω/dk. Actually, since ∂ωχ

r
env may reach values

much larger than in the linear limit, the nonlinear value
of vg may get quite close to the EPW phase velocity, as
shown in Fig. 1 (d).

We now compare our theoretical calculations against
direct 1-D Vlasov simulations of SRS using the Eulerian
code ELVIS [6]. In our numerical simulations, which are
detailed in Refs. [6, 9], the EPW results from the in-
teraction of a pump laser, entering from vacuum on the
left (x = 0), and a small-amplitude counterpropagating
“seed” light wave injected on the right. Using a Hilbert
transform of the fields, one can numerically calculate the
ratio [Ed cos(δϕ)+k−1∂xEp]/Ep, which yields a first, nu-
merical, estimate of Im(χ). From Vlasov simulations one
can also extract the values of all the quantities, such as
IωB

, γ, . . . , which enter our theoretical formula for Im(χ).
Using these values we calculate a second, theoretical es-
timate, for Im(χ). Both these estimates are compared in
Fig. 1(a). The simulation results of Fig. 1 correspond
to a plasma with electron temperature, Te = 5keV, and
electron density n = 0.1nc, where nc is the critical den-
sity. The total length of the simulation box is L = 270λl,

where λl = 0.351µm is the laser wavelength, and the
data of Fig. 1 were measured at x = 154λl. The laser
intensity is Il = 4× 1015W/cm2 while the seed intensity
is Is = 10−5Il and the seed wavelength is λs = 0.609µm.
As can be seen in Fig. 1 (a), there is a very good agree-
ment between the theoretical and numerical values of
Im(χ), especially as regards the decrease of Im(χ) from
its linear value. Clearly, as defined by Eq. (14), ν is
much more complicated an operator than a plain damp-
ing rate. However, as shown in Fig. 1 (b), ν is nearly
constant before abruptly dropping to 0, so that it may
indeed be seen as a damping rate.

In a 3-D geometry, Im(χ) is just the statistical average,
over all the transverse velocities ~v⊥, of the expression Eq.
(17), where all the quantities which enter the theoretical
formulas for ν and χrenv are evaluated in the frame moving
at velocity (ω/k)~x + ~v⊥ with respect to the laboratory
frame. If the transverse extent of the EPW is much less
than its longitudinal one then it is clear that, for the same
maximum wave amplitude, IωB

assumes smaller values
than for a plane wave. As a consequence, linear theory
is valid up to larger wave amplitudes in 1-D than in 3-D.

In conclusion, we derived a very precise theoretical
estimate of Im(χ) for a slowly varying electron plasma
wave, that we compared against results obtained from
Vlasov simulations of SRS. From the expression of Im(χ)
we deduced the group velocity and the nonlinear Landau
damping rate, ν, of the EPW, and provided a simple,
practical analytic formula for ν. Our results, first de-
rived for uniform wave amplitudes are easily generalized
to allow for 3-D space variations of the waves.
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