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STABILITY OF NUMERICAL INTERFACE CONDITIONS FOR
FLUID/STRUCTURE INTERACTION∗

J.W. BANKS AND B. SJÖGREEN†

Abstract. In multi physics computations, where a compressible fluid is coupled with a linearly
elastic solid, it is standard to enforce continuity of the normal velocities and of the normal stresses at
the interface between the fluid and the solid. In a numerical scheme, there are many ways that the
velocity- and stress-continuity can be enforced in the discrete approximation. This paper performs
a normal mode analysis to investigate the stability of different numerical interface conditions for
a model problem approximated by upwind type of finite difference schemes. The analysis shows
that depending on the ratio of densities between the solid and the fluid, some numerical interface
conditions are stable up to the maximal CFL-limit, while other numerical interface conditions suffer
from a severe reduction of the stable CFL-limit. The paper also presents a new interface condition,
obtained as a simplified charcteristic boundary condition, that is proved to not suffer from any
reduction of the stable CFL-limit. Numerical experiments in one space dimension show that the new
interface condition is stable also for computations with the non-linear Euler equations of compressible
fluid flow coupled with a linearly elastic solid.

Key words. Finite difference method, Normal mode analysis, Fluid/structure interaction,
Compressible fluid, Interface condition

1. Introduction. The subject of this article is the stability of numerical approx-
imations of fluid-structure interaction problems. Fluid-structure interaction occurs in
many application areas including aeroelasticity, blood flow in elastic pipes, modelling
of explosives, and many others.

Although many large scale computations of fluid-structure interaction have been
performed to date, see, e.g., [1, 2], the theory of stability and convergence of numerical
schemes for such problems is less developed. The aim of this paper is to improve the
understanding of the underlying mathematical properties of approximations for fluid-
structure interaction problems, and thereby facilitate improvements in accuracy and
efficiency of the numerical methods.

We introduce a simplified model problem consisting of the wave equation in two
different materials. This simple model gives insight into the different numerical be-
haviors that occur at the interface between the materials. It turns out that one critical
parameter effecting the numerical stability is the ratio of the densities on either side
of the interface.

For problems in aeroelasticity, the density of the solid material is usually several
orders of magnitude larger than the density of the fluid. However, in other fluid-
structure interaction applications, such as blood flow or oil and gas recovery, the
density ratio can be very close to one. Although standard numerical methods often can
be tuned to a specific density ratio, a coupling method that performs well regardless
of the density ratio between the solid and fluid would be more convenient. This is
especially true for non-linear problems where the density ratio can vary widely from
point to point along the interface and also in time.

The ratio of the densities in fluid and solid respectively is known to impact the
numerical stability of finite element discretizations [3, 4], the so called added mass
effect. Causin et al [3] derived and analyzed a model problem for this instability.
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Although the model problem in [3] is very different from the model problem presented
here, the results are similar. In both cases, implicit coupling is stable, while for simple
explicit time integration (or fixed point iteration in implicit schemes), the CFL number
(or relaxation parameter) needs to be reduced for the method to be stable.

One remedy for instabilities, such as the added mass effect, is to switch to implicit
coupling. However, when the objective is to resolve all time scales, explicit methods
are preferrable, because of their lower computational cost. This paper shows that
by chosing appropriate numerical interface conditions it is possible to have a stable
explicit method for any density ratio, that does not suffer from any CFL restriction
other than that of the numerical schemes in the respecive solid and fluid parts of the
domain.

Section 2 introduces a one dimensional fluid-structure example problem, where a
few standard methods with explicit time stepping are shown to be stable or unstable
depending of the density ratio. The explanation for the behavior is captured in the
analysis of the model problem presented in Section 3. Section 3 also introduces a new
numerical interface condition that is proved to be stable with explicit time stepping
for any density ratio. Numerical experiments with the model problem in Section 4
compares performance of the different interface conditions, confirming the analytical
results. Finally, in Section 4.1, the generalization of the new stable interface condition
to the fluid/structure example from Section 2, shows stable behavior in numerical
experiments with both small and large density ratios.

2. Introductory example. A fluid, described by the inviscid Euler equations of
compressible gas dynamics, interacts with an elastic body, described by the equations
of structural mechanics for a linearly elastic material. Assume a one-dimensional
problem with a single interface between the solid and the fluid located at x = xI(t).
The fluid domain is x > xI(t) and the solid domain is x < xI(t). The equations of
the model in the Lagrangian coordinate X are ρ

ρu
e


t

+

 ρu− ρs
ρu2 + p− ρus
u(e+ p)− es


X

=

 0
0
0

 X > 0 (2.1)

 u
σ
x


t

+

 − 1
ρ(s)σ

−Eu
0


X

=

 0
0
u

 X < 0 (2.2)

The unknowns are functions of the Lagrangian coordinate X, and time, t. The Eule-
rian coordinate is a function x = x(X, t) that traces the material points, defined such
that x(X, 0) = X. The interface location in the Eulerian coordinate is xI(t) = x(0, t).
The density of the solid is given by ρ(X, t) = ρ(s)/xX(X, t), where the initial density
is assumed to be the constant ρ(s). E is the constant Young’s modulus. The fluid
equations are formulated in a rigid coordinate system that moves with the velocity
of the interface, s = s(t) = dxI(t)/dt. This is a natural extension of the Lagrangian
coordinate to the fluid domain. The dependent variables in the fluid are the density,
ρ, the velocity u, and the total energy e. The pressure is given by the gamma law
equation of state p = (γ − 1)(e − 1

2ρu
2), where γ = 1.4. The dependent variables

in the solid are the velocity u, the stress σ, and the coordinate x. Superscripts will
indicate whether a variable belongs to the fluid or to the solid, e.g., u(s) is the velocity
in the solid and u(f) is the velocity in the fluid. Superscripts will be omitted when it
is clear from the context if a variable belongs to the fluid or to the solid.
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At a continuous level, the interface conditions are continuity of velocity and stress

u(s)(0, t) = u(f)(0, t) (2.3)
σ(0, t) = −p(0, t). (2.4)

The numerical approximation of the fluid/structure system (2.1), (2.2) is done on a
computational domain [−1, 1], with a grid, X(s)

i = −1 + (i− 1/2)h, i = 1, . . . , N + 1,
for the solid and X(f)

i = (i− 1/2)h, i = 0, . . . , N for the fluid. The grid points X(s)
N+1

and X(f)
0 are ghost points that faciliate imposing the interface condition. The number

of grid points in each domain, N , and the grid spacing h, are related by 1 = hN . The
interface is located between the last point in the solid and the first point in the fluid,
X

(s)
N = −h/2 and X

(f)
1 = h/2 respectively.

A dependent variable, q(X, t), approximated at time level tn = n∆t and grid
point i is denoted qni . In the description of the interface conditions below, the time
superscript n will often be left out. The equations (2.1) and (2.2) are approximated
by the Godunov scheme (see [5] for example). Equation (2.2) is a linear hyperbolic
problem, and the Godunov scheme is identical to the upwind scheme. The numerical
schemes are explicit three point schemes, and thus advance the solution from time tn to
tn+1 at all points except at the ghost points X(s)

N+1 and X(f)
0 . Extrapolation with first

order accuracy gives the density of the fluid at the ghost point, (ρ(f))n+1
0 = (ρ(f))n+1

1 .
The stress and velocity interface conditions (2.3), (2.4) can be enforced in different

ways. For example, setting the interface stress to the stress of the solid and the
interface velocity to the velocity of the fluid,

u
(f)
0 = u

(f)
1 u

(s)
N+1 = u

(f)
1 (2.5)

p0 = −σN σN+1 = σN , (2.6)

where the fluid velocity and solid stress are obtained by extrapolation from the inte-
rior. Other possibilities are to reverse the order of (2.5), (2.6) and set

u
(f)
0 = u

(s)
N u

(s)
N+1 = u

(s)
N (2.7)

p0 = p1 σN+1 = −p1, (2.8)

or to use an average of the above two conditions,

u
(f)
0 = (u(s)

N + u
(f)
1 )/2 u

(s)
N+1 = (u(s)

N + u
(f)
1 )/2 (2.9)

p0 = (p1 − σN )/2 σN+1 = (−p1 + σN )/2. (2.10)

A-priori, there is no reason to expect one condition to perform better than another,
and all three conditions approximate (2.3), (2.4) with first order accuracy.

The Riemann problem with initial data

ρ(f)(X, 0) = 1 u(f)(X, 0) = 0 p(X, 0) = 1 X > 0

for the fluid, and

u(s)(X, 0) = 1 σ(X, 0) = −1 X < 0

for the solid is used to demonstrate the performance of the different numerical interface
conditions. The initial solid density, ρ(s), will be a problem parameter and we choose
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Fig. 2.1. Solution of the Riemann problem showing velocity (left) and stress (right). Red x-
symbols represent the solid, blue o-symbols the fluid, and the black line is the exact solution. The
approximations use N = 100 points in each domain.

Table 2.1
Behavior of interface conditions for different values of the initial density of the solid.

ρ(s)

Interface conditions 0.005 0.04 0.125 2 20 50
(2.5),(2.6) Stable Stable Stable Stable Unstable Unstable
(2.7),(2.8) Unstable Unstable Unstable Stable Stable Stable
(2.9),(2.10) Unstable Stable Stable Stable Stable Unstable

E = 3ρ(s) giving the wave speed
√

3 in the solid. Fig. 2.1 displays a representative
numerical approximation as well as the exact solution at time 0.4. This example
employs the numerical interface conditions of (2.7) and (2.8), CFL number 0.9, 100
grid points in each domain, and sets ρ(s) = 2. The solutions computed with (2.5),
(2.6) or (2.9), (2.10) are similar (not shown). However, for larger or smaller values of
ρ(s) some numerical interface conditions lead to unstable methods and the computed
solution blows up. Notice here that because (2.1) becomes ill-posed for p < 0, the
computation is stopped when p becomes negative.

Table 2.1 summarizes the behavior of the three different numerical interface con-
ditions for a few different values of ρ(s) with CFL 0.9. For these numerical experiments
(2.5),(2.6) are unstable for large ρ(s) values, while (2.7), (2.8) are unstable for small
ρ(s). The average condition (2.9), (2.10) combines, in some sense, the behavior of the
two other conditions and is stable only when ρ(s) is not too small or too large. The
first order Godunov method is usually thought to be very robust as a result of its
significant numerical dissipation. Nevertheless, as Table 2.1 shows, when the density
ρ(s) becomes very large or very small, the computation will break down for certain
interface approximation techniques.

3. Analysis of interface conditions for a simple model. In order to under-
stand the stability of various interface treatments, consider the problem of coupling
two domains whose governing equations are linear elasticity with different densities
and elastic parameters. Formally[

uL
σL

]
t

−
[ σL

ρL

κLuL

]
x

=
[
uL
σL

]
t

−
[

0 1
ρL

κL 0

] [
uL
σL

]
x

= 0, for x < 0

[
uR
σR

]
t

−
[ σR

ρR

κRuR

]
x

=
[
uR
σR

]
t

−
[

0 1
ρR

κR 0

] [
uR
σR

]
x

= 0, for x > 0
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and

uL(0, t) = uR(0, t)

σL(0, t) = σR(0, t).

Here uL, uR, σL, and σR are functions of space and time and so the last equations
are simply a statement that the velocities and stresses agree at the material interface
x = 0. The quantities ρL, κL, ρR and κR are given constants. An analysis of the
eigenstructure of the flux Jacobian of the governing equations reveals[

0 1
ρk

κk 0

]
= RkΛkR−1

k =

[
ck −ck
κk κk

][
−ck 0

0 ck

][ 1
2ck

1
2κk

− 1
2ck

1
2κk

]

where the wave speed is ck =
√
κk/ρk and k = L or R. For simplicity and clarity

we make the assumption that c = cL = cR. This assumption can be relaxed, but
at the cost of significantly increasing the complexity of the analysis with very little
change in the result. Our interest is in analyzing various treatments of the interface
conditions in the context of simple numerical methods and so we introduce the first
order upwind interior discretizations[

uk
σk

]n+1

i

=
[
uk
σk

]n
i

−∆t
∆x

RkΛ−k R
−1
k

([
uk
σk

]n
i+1

−
[
uk
σk

]n
i

)

−∆t
∆x

RkΛ+
k R
−1
k

([
uk
σk

]n
i

−
[
uk
σk

]n
i−1

) (3.1)

where

Λ−k =
[
−c 0
0 0

]
, Λ+

k =
[

0 0
0 c

]
.

These discretizations are stable under the CFL condition c∆t
∆x ≤ 1 and we assume

this constraint in the analysis to follow where applicable. The interior discretizations
are applied on the computational domain x̂i = 0−∆x(i+ 1/2) for i = 0,−1, . . . and
x̃j = 0 + ∆x(j + 1/2) for j = 0, 1, . . . to the left and right of the interface. The
superscript n indicates the time step where tn = t0 + n∆t. The interface conditions
are applied by making use of ghost cells whose centers are located at x̂1 and x̃−1. In
this way, the choice of interface conditions for any three point scheme, including the
first order upwind scheme, boils down to a determination of [uL, σL]n1 and [uR, σR]n−1.
For a first order implementation of the interface conditions it is sufficient to determine
an interface velocity unI and stress σnI and use[

uL
σL

]n
1

=
[
uI
σI

]n
=
[
uR
σR

]n
−1

(3.2)

to determine the unknown quantities in the ghost cells.
We will use a normal mode analysis [6] to investigate the stability properties of

various interface treatments. Many of the steps of the proofs are common to all the
methods and we describe those steps here. We seek solutions to the coupled discrete
system (3.1) of the form [

uk
σk

]n
i

= zn
[
ũk
σ̃k

]
i
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where ũk,i and σ̃k,i are bounded functions of space and z is a complex scalar. Denoting
the characteristic normal modes by[

ak
bk

]
= R−1

k

[
ũk
σ̃k

]
(3.3)

and using the interior discretization from (3.1) we find

z

[
ak
bk

]
i

=
[
ak
bk

]
i

+
c∆t
∆x

[
ak,i+1 − ak,i
bk,i−1 − bk,i

]
. (3.4)

Using the assumption that ũk,i and σ̃k,i are bounded functions of space, the normal
mode solutions are found as[

ũ
σ̃

]
L,i

=
[

c
κL

]
ri−1aL,1 for i ≤ 0 (3.5)

[
ũ
σ̃

]
R,i

=
[
−c
κR

]
r−(i+1)bR,−1 for i ≥ 0 (3.6)

where r = z−1+ c∆t
∆x

c∆t
∆x

. Note that |z| > 1 implies |r| > 1 under the CFL constraint

0 < c∆t
∆x < 1. We will insert these solutions into the interface condition, and obtain a

system of two equations for the two unknowns aL,1 and bR,−1. According to the GKS
theory [6], the approximation is stable if and only if no non-trivial solutions of this
sytem exists for |z| > 1 and if there are no non-trivial solutions for |z| = 1 that are
generalized eigenvalues, see [6] for details.

3.1. The traditional option. The most common interface condition found in
the fluid structure literature sets the interface velocity to the solid velocity and the
interface stress to the fluid stress. The current example investigates two domains of
linear elasticity and so a morally equivalent condition sets the interface velocity to
the velocity from the left and the interface stress to the stress from the right domain.
Use the first order approximations unI = unL,0 and σnI = σnR,0. From equation (3.2) we
then obtain unL,1 = unL,0, σnL,1 = σnR,0, unR,−1 = unL,0, and σnR,−1 = σnR,0.

Theorem 3.1. Let the interior discretization be given by (3.1) and the interface
conditions by (3.2) with [

uI
σI

]n
=
[
uL
σR

]n
0

. (3.7)

Then the discretization is stable for

λ =
c∆t
∆x

< min

(
1,

4
1 + ρL

ρR

)
.

Thus, for ρL

ρR
< 3, the discretization is stable under the standard CFL-limit λ < 1.

When ρL

ρR
> 3, the stable CFL-limit decreases with increasing density ratio and λ→ 0

when ρL

ρR
→∞.

Proof. By definition (3.3)

aL,1 =
1
2c
ũL,1 +

1
2κL

σ̃L,1

bR,−1 = − 1
2c
ũR,−1 +

1
2κR

σ̃R,−1.

(3.8)
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The interface conditions (3.2) and (3.7), along with the normal mode solutions (3.5)
and (3.6) give

aL,1 =
1
2c
ũL,0 +

1
2κL

σ̃R,0 = r−1 1
2
aL,1 +

κR
2κL

r−1bR,−1

bR,−1 = − 1
2c
ũL,0 +

1
2κR

σ̃R,0 = −r−1 1
2
aL,1 +

1
2
r−1bR,−1,

(3.9)

and the system for aL,1 and bR,−1 becomes 1− 1
2r

− κR
2rκL

1
2r

1− 1
2r

[ aL,1

bR,−1

]
=

[
0

0

]
.

Non-zero aL,1 and bR,−1 exist if the determinant is zero, i.e., if(
1− 1

2r

)2

+
κR

4κLr2
= 0,

which has solutions

r =
1
2
± i

2

√
κL
κR

.

Substituting the definition of r we find

z = ± ic∆t
2∆x

√
κL
κR

+ 1− c∆t
2∆x

from which

|z|2 =
c2∆t2

4∆x2

(
κL
κR

+ 1
)

+ 1− c∆t
∆x

. (3.10)

Recall that we are seeking unstable normal modes with |z| > 1 and so the interface
treatment is unstable for κL

κR
> 4∆x

c∆t − 1. As a result of the assumption of uniform
wave speeds this is equivalent to the constraint on the mass ratios ρL

ρR
> 4∆x

c∆t − 1.

3.2. The implicit option. The instability discussed in Section 3.1 is well known
in practice and one method used to avoid the instability is to move to an implicit treat-
ment. Although this works in practice, the stability of the method is not immediately
clear and so we perform a normal mode analysis much as was done in Section 3.1. In
order to achieve an implicit method, we introduce the implicit upwind method[

uk
σk

]n+1

i

=
[
uk
σk

]n
i

−∆t
∆x

RkΛ−k R
−1
k

([
uk
σk

]n+1

i+1

−
[
uk
σk

]n+1

i

)

−∆t
∆x

RkΛ+
k R
−1
k

([
uk
σk

]n+1

i

−
[
uk
σk

]n+1

i−1

) (3.11)

We again seek normal mode solutions and similar reasoning leads to the normal mode
solutions [

ũ
σ̃

]
L,i

=
[

c
κL

]
si−1aL,1 for i ≤ 0 (3.12)
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ũ
σ̃

]
R,i

=
[
−c
κR

]
s−(i+1)bR,−1 for i ≥ 0 (3.13)

where s = z−1+ c∆t
∆x

zc∆t
∆x

= ∆x
c∆t

(
1− 1

z

)
+ 1. Notice that |z| > 1 implies |s| > 1 for c∆t

∆x > 0.

Theorem 3.2. Let the interior discretization be given by (3.11) and the interface
conditions by (3.2) with [

uI
σI

]n+1

=
[
uL
σR

]n+1

0

. (3.14)

The resulting discretization is stable for c∆t
∆x > 0.

Proof. The analysis follows an identical path to that in the proof of Theorem 3.1
with r being replaced by s. We therefore arrive at the solution

s =
1
2
± i

2

√
κL
κR

.

Substitution of the definition for s leads to

z =
2

2 + λ (1± i
√
α)

=
4− 2λ (−1± i

√
α)

4 + 2λ+ λ2 (1 + α)
(3.15)

where λ = c∆t
∆x and α = κL

κR
. Simple algebra shows

|z|2 =
(4 + 2λ)2 + 4λ2α

(4 + 2λ)2 + 2λ2(4 + 2λ)(1 + α) + λ4(1 + α)2
=
D

N
.

(Notice that both D and N are real with D > 0, N > 0). Any unstable modes will
have |z|2 > 1 which is equivalent to the condition D > N . This easily reduces to

2α > (4 + 2λ)(1 + α) +
λ2

2
(1 + α)2

and subsequently to

α2λ
2

2
+ α

(
2 + 2λ+ λ2

)
+ 4 + 2λ+

λ2

2
< 0. (3.16)

Clearly (3.16) can never be true because λ > 0 and α > 0 and so there are no roots
with |z| > 1 which completes the proof.

3.3. A stable alternate. For strictly hyperbolic problems, such as the current
example under consideration, an explicit treatment of the interface conditions which
is stable whenever the interior discretizations are stable would be extremely advan-
tageous. To motivate such a treatment we investigate a “characteristic” interface
condition. The coupling interface condition (3.2) is applied and gives two constraints
on the four ghost values. The remaining two constraints are obtained by extrapo-
lating the outgoing characteristic from each domain. Extrapolation of the outgoing
characteristics at first order gives

1
c

(
unL,1 − unL,0

)
=

1
κL

(
σnL,1 − σnL,0

)
(3.17)
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and

−1
c

(
unR,0 − unR,−1

)
=

1
κR

(
σnR,0 − σnR,−1

)
. (3.18)

Using (3.2) to eliminate uR,−1 from (3.18) gives

−1
c

(
unR,0 − unL,1

)
=

1
κR

(
σnR,0 − σnR,−1

)
. (3.19)

Solving (3.17) for uL,1 and substituting back into (3.19) yields to condition

σnI =
εLσ

n
L,0 + εRσ

n
R,0 + unR,0 − unL,0

εL + εR
(3.20)

where εL = 1
cρL

and εR = 1
cρR

. It is then trivial to determine the interface velocity

unI =
εRu

n
L,0 + εLu

n
R,0 + εLεR

(
σnR,0 − σnL,0

)
εL + εR

. (3.21)

Equations (3.20) and (3.21) represent a first order characteristic implementation of
the interface conditions, but we move one step further. In the condition we ana-
lyze (and later show results from), the term unR,0 − unL,0 from (3.20) and the term
εLεR

(
σnR,0 − σnL,0

)
from (3.21) are dropped because they are approximations to the

interface coupling conditions of no jump in stress or velocity. The analysis to follow
concerns the condition after their elimination although it seems likely, and computa-
tional experiment verifies, that they could be kept if one desired.

Theorem 3.3. Let the interior discretization be given by (3.1) and the interface
conditions by (3.2) with[

uI
σI

]n
=

1
εL + εR

[
εRuL + εLuR
εLσL + εRσR

]n
0

(3.22)

where εL = 1
cρL

and εR = 1
cρR

. The resulting discrete system is stable under the CFL
condition 0 < c∆t

∆x ≤ 1 independent of the density jump across the material interface.
Proof. Much as before, the definition of aL,1 and bR,−1 along with the interface

conditions (3.2) and (3.22) can be combined to give

aL,1 =
εRũL,0 + εLũR,0

2c(εL + εR)
+
εLσ̃L,1 + εRσ̃R,0

2κL(εL + εR)

bR,−1 = −εRũL,0 + εLũR,0
2c(εL + εR)

+
εLσ̃L,0 + εRσ̃R,0

2κR(εL + εR)
.

(3.23)

Substitution of the normal mode solution (3.5) and (3.6), and some slight rearrange-
ment then leads to

(εL + εR)aL,1 =
εRaL,1 − εLbR,−1

2r
+
εLκLaL,1 + εRκRbR,−1

2κLr

(εL + εR)bR,−1 = −εRaL,1 − εLbR,−1

2r
+
εLκLaL,1 + εRκRbR,−1

2κRr
.

(3.24)
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The system for aL,1 and bR,−1 can then be written as (2r − 1)(εL + εR) εL − εR
κR
κL

εR − εL
κL
κR

(2r − 1)(εL + εR)

[ aL,1

bR,−1

]
=

[
0

0

]
.

Non-zero aL,1 and bR,−1 may exist when the determinant is zero, i.e., if

(2r − 1)2(εL + εR)2 −
(
εL − εR

κR
κL

)(
εR − εL

κL
κR

)
= 0.

The last term in this equation is seen to be zero by substituting the definitions εL = c
κL

and εR = c
κR

. The determinant condition then yields the solution r = 1
2 . Substituting

back into the definition of r we find

z = 1− c∆t
2∆x

from which it is clear that |z| < 1 for 0 < c∆t
∆x < 4. Recall that the interior discretiza-

tions are stable for c∆t
∆x ≤ 1 and this completes the proof.

3.4. Extensions to second order discretizations. Extension of the analysis
to second order (or higher) discretizations is, in principle, straightforward. However,
we have found the resulting recurrence relations, polynomials, and the eventual so-
lutions to be quite complicated and difficult to deal with. In fact we have only been
able to solve these systems for restricted cases and we now present some results.

In order to treat the interface conditions to second order we must modify the
discrete interface conditions (3.2). A straightforward second order treatment uses

1
2

([
uL
σL

]n
l

+
[
uL
σL

]n
1−l

)
=
[
uI
σI

]n
=

1
2

([
uR
σR

]n
−l

+
[
uR
σR

]n
l−1

)
. (3.25)

where l takes values 1, . . . , Ng and Ng is the number of ghost cells required by the
interior discretization. Given values for the interface velocity and stress one can use
(3.25) to solve for the unknown ghost quantities in both domains. At this point it is
convenient to introduce some additional notation. Second order interface conditions
will require second order approximations to the interface velocity and stress from
each domain. For instance, a second order approximation to the interface velocity
according to the left domain is

unI,L =
3
2
unL,0 −

1
2
unL,−1

while for the right domain is

unI,R =
3
2
unR,0 −

1
2
unR,1.

Similar formulas are used to determine σnI,L and σnI,R.
Let us examine the stability properties of the traditional and the new interface

conditions using the first order upwind method (3.1) and the second order interface
conditions (3.25).
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Fig. 3.1. Stability bound for the second order interface condition with the first order upwind
discretization. Shown is the maximum stable CFL number as a function of the mass ratio α = ρL

ρR
.

Theorem 3.4. Let the interior discretization be given by (3.1) and the interface
conditions by (3.25) with [

uI
σI

]n
=
[
uI,L
σI,R

]n
. (3.26)

Then the discretization is stable for

λ =
c∆t
∆x

< min

1,
3
2
−
√

2
4

√
−7 + 2α+ 9α2 +

√
(49 + 81α)(α+ 1)3

(α+ 1)2


where α = ρL

ρR
. Thus, for ρL

ρR
< −8+2

√
17

2 ≈ 0.123, the discretization is stable under

the standard CFL-limit λ < 1. When ρL

ρR
> −8+2

√
17

2 , the stable CFL-limit decreases
with increasing density ratio and λ→ 0 when ρL

ρR
→∞. This stability bound is shown

graphically in Figure 3.1.
Proof. As in the proof of Theorem 3.1 we begin with the definition of aL,1 and

bR,−1. Using the second order interface condition (3.25) and the definitions of the
interface quantities in (3.26) we arrive at

aL,1 =
1
2c

(2ũL,0 − ũL,−1) +
1

2κL
(3σ̃R,0 − σ̃R,1 − σ̃L,0)

bR,−1 =
1
2c

(3ũL,0 − ũL,−1 − ũR,0) +
1

2κR
(2σ̃R,0 − σ̃R,1).

(3.27)

The normal mode solutions (3.5) and (3.6) are then used to give the system of equa-
tions for aL,1 and bR,−1

1
2r
− 1

2r2
− 1

3κR
2rκL

− κR
2r2κL

3
2r
− 1

2r2
1 +

1
2r2
− 1

2r


[

aL,1

bR,−1

]
=

[
0

0

]
. (3.28)

The determinant condition leads to the equation(
2r2 + 1− r

)2
+
κR
κL

(3r − 1)2 = 0 (3.29)
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which has roots

r =
1 + 3iβ ±

√
−7− 9β2 − 2iβ
4

, r =
1− 3iβ ±

√
−7− 9β2 + 2iβ
4

(3.30)

where β =
√

κR

κL
. By definition, z = rλ−λ+ 1, where λ is the CFL number c∆t/∆x,

and we must determine conditions when |z| < 1 (or equivalently |z|2 < 1). Define f
as the real part and g as the imaginary part of

√
−7− 9β2 ± 2iβ. It follows that f

satisfies

f4 + (7 + 9β2)f2 = β2, (3.31)

and consequently

f =
1
2

√
−14− 18β2 + 2

√
49 + 130β2 + 81β4, g =

±β
f
.

The four roots (3.30) consist of two complex conjugate pairs. Because |z| does not
depend on the sign of the imaginary part of r, there are only two cases to consider.
These are

r =
1
4

(
1± f + i

(
3β ∓ β

f

))
.

From here it is straightforward to see

|z|2 =
(
−3λ

4
± λf

4
+ 1
)2

+
(

3λβ
4
∓ λβ

4f

)2

. (3.32)

By substitution of β in terms of f from (3.31), the condition |z|2 > 1 is straightfor-
wardly transformed into a polynomial relation in f and λ. The resulting condition
is

(λ− 3/2)(1− f2)± 4f > 0,

where we note that f is monotonically increasing with β, and satisfies 0 < f < 1/3.
Therefore, there are no roots with |z| > 1 when

λ < 3/2∓ 4f
1− f2

.

Only the minus sign gives a restriction over the CFL condition of the interior scheme.
Substitution of f in terms of β and further straightforward formula manipulations
give the final condition

λ <
3
2
−
√

2
4

√
−7 + 2β + 9β2 +

√
(49 + 81β)(β + 1)3

(β + 1)2

which completes the proof.
We turn now to the stability properties of the new interface coupling technique

implemented at second order but again restrict ourselves to the first order interior
discretization.
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Theorem 3.5. Let the interior discretization be given by (3.1) and the interface
conditions by (3.25) with[

uI
σI

]n
=

1
εL + εR

[
εRuI,L + εLuI,R
εLσI,L + εRσI,R

]n
0

(3.33)

where εL = 1
cρL

and εR = 1
cρR

. The resulting discrete system is stable under the CFL
condition 0 < c∆t

∆x ≤ 1 independent of the density jump across the material interface.
Proof. The proof follows now familiar lines beginning with the definition of aL,1

and bR,−1. Using the second order interface condition (3.25) and the definitions of
the interface quantities in (3.33) we arrive at the equations for aL,1 and bR,−1

r − 1
2r2

− 1 0

0
r − 1
2r2

− 1

[ aL,1

bR,−1

]
=

[
0

0

]
. (3.34)

The solution is found as

r =
1±
√

7i
4

from which it is trivial to show that |z| < 1 for 0 < λ ≤ 1.
We make a few observations concerning the stability of the second order imple-

mentation of the interface conditions. Although we have used the first order upwind
interior discretization, the analysis is directly applicable to higher order interior dis-
cretizations in certain limiting conditions. Take for instance the case when λ = 1.
Here the first order discretization is exact as are many second order space-time cou-
pled schemes. As a result, the analysis we have presented is applicable in this limit.
As one relaxes from λ = 1, to λ = 0.9 for instance, the effect is an increase in numer-
ical dissipation. As a result the bound for λ = 1 is a worst case. The quantitative
decay from that bound will obviously vary depending on the interior discretization,
but the qualitative behavior will remain unchanged. On the other hand, for λ < 1 it
is common that the move from first to second order interior discretizations has the
effect of reducing numerical dissipation. For such cases the limits for the first order
interior discretization with the second order interface condition provides a best case
bound. That is to say that if a density ratio is unstable with a first order interior
discretization we expect it will be unstable with a similar second order interior dis-
cretization, however, if it is stable with the first order scheme it may be unstable as
one moves to a second order scheme.

One final observation concerns density ratios near 1. Our analysis shows that
one sided interface conditions, that is using stress from one side and velocity from
the other, introduces possible stability limitations. Use of our new technique enables
the stability constraints to be lifted. However, this new type of condition requires
the implementation of a somewhat unique boundary condition which may be difficult
from a practical perspective. A simpler idea is to switch the sides where the stress
and velocity are taken. In a practical approach one might simply test to determine
which side has the denser material and apply the appropriate one sided conditions.
The analysis of the second order conditions shows that this will not always eliminate
the stability constraints introduced as a result of the one sided approach. Take for
instance the ratio ρL

ρR
= 1. The stability constraint of the one sided approximations
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at second order (Theorem 3.5) gives a maximum time step with λ ≈ 0.4397 regardless
of which side donates stress and velocity. In fact, for the second order one sided
interface conditions, a time step restriction exists for ρL

ρR
∈ (−8+2

√
17

2 , 2
−8+2

√
17

) ≈
(0.1231, 8.123) regardless of which side donates the velocity and stress. This is a
fairly harsh restriction and is likely to be worse with higher order approximations of
both the governing equations and interface conditions.

4. Numerical examples. We demonstrate the practical implications of our
stability analysis using a number of numerical experiments. To produce a problem
with known exact solution we use the method of characteristics [7]. Because the model
problem is linear with uniform wave speed, the characteristics are straight lines whose
slopes are the wave speed. For the 1-D problem under consideration each point (x, t) is
intersected by two characteristic curves each carrying information about the solution
at that point. The characteristic equations tell us that

u

2c
+

σ

2κ
= constant for

x

t
= −c (4.1)

and

− u

2c
+

σ

2κ
= constant for

x

t
= c. (4.2)

To simplify the construction we assume that the initial condition has u
2c + σ

2κ = 0 and
− u

2c + σ
2κ = f(x) which implies that the initial conditions set u(x, 0) = −cf(x) and

σ(x, 0) = κf(x). The solution at the interface (x = 0) is easily determined as

u(0, t) =
−2cf(−ct)

1 + κR

κL

σ(0, t) =
2f(−ct)
1
κR

+ 1
κL

.

(4.3)

Using equations (4.1) and (4.2), the initial conditions, and the solution at the interface
(4.3), the solution for any point (x, t) away from the interface can be found as

u(x, t) =



−cf(−ct) for x < −ct(
2f(−ct) +

u(0, tI)
c

+
σ(0, tI)
κL

)
c

2
for −ct ≤ x < 0(

u(0, tI)
c

− σ(0, tI)
κR

)
c

2
for 0 ≤ x < ct

0 for x ≥ ct

and

σ(x, t) =



κLf(−ct) for x < −ct(
2f(−ct) +

u(0, tI)
c

+
σ(0, tI)
κL

)
κL
2

for −ct ≤ x < 0(
−u(0, tI)

c
+
σ(0, tI)
κR

)
κR
2

for 0 ≤ x < ct

0 for x ≥ ct

where tI = t− |x|/c.
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Fig. 4.1. Exact solution to the test problem with ρL
ρR

= 4∆x
c∆t

− 1 at t = 0 (left), t = 0.375

(center), and t = 0.75 (right).

As a test case let the initial condition be given by f(x) = e−100(x− 1
2 )2

. The
evolution of the exact solution is shown in Figure 4.1 with the representative density
ratio ρL

ρR
= 4∆x

c∆t −1, c∆t∆x = 0.9, and c =
√

3. Initially we see the Gaussian pulse moving
from left to right. At time t = 0.375 the pulse is in the latter stages of interacting
with the interface at x = 0. Some portion of the wave pulse is transmitted through
the interface and some portion is reflected. The final plot at t = 0.75 is slightly
before the reflected and transmitted pulses exit the domain to the left and right. We
perform computations on the finite domain x ∈ [−1, 1] with the interface located at
x = 0. On the far left and far right boundaries, which are not considered in our
analysis, we implement a first order characteristic non-reflecting boundary condition.
At the interface we apply the appropriate interface condition for the given test case.
Simulations are run using ∆x = 1/50 (51 grid cells in each domain), and a fixed CFL
of c∆t/∆x = 0.9. Time integration is carried out to the final time t = 5.0 which is
well after the pulses have left the domain.

Figure 4.2 shows the results when the traditional condition of Theorem 3.1 is
used. In the figure, blue indicates the maximum error using the unstable density
ratio ρL

ρR
= 4∆x

c∆t − 1 + 0.01, and the red using the stable ratio ρL

ρR
= 4∆x

c∆t − 1 − 0.01.
The growth or decay rate for the admissible normal modes can be computed from
(3.10) as z ≈ 1.001012 and z ≈ 0.9989870 respectively. The black lines in the figures
are reference lines with those slopes and show the agreement of the simulation results
to the theory.

The alternate interface condition of Theorem 3.3 is applied to the same problem
and computational setup and the results plotted in Figure 4.3. The behavior for both
density ratios is remarkably similar and the stability of the scheme for either ratio is
apparent.

In order to further demonstrate the efficacy of the condition in Theorem 3.3,
the same Gaussian initial condition is used but now with the density ratios set to
ρL

ρR
= 1010 and 10−10. For the later, the traditional interface condition is stable

and gives nearly identical results to the new interface condition. For the former the
traditional scheme experiences rapid numerical blowup and by the second step the
max error is already ≈ 108. On the other hand, the new condition is stable for either
ratio and produces roughly the same response for both cases. In fact the results
for these extreme density ratios are roughly the same as the results found for the
more modest ratios of Figures 4.2 and 4.3. Figure 4.4 shows these results. We now
move to numerical examples using the second order interface conditions. Figure 4.5
shows results obtained for the test problem with the first order interior discretization
and the second order interface condition using both the traditional and new coupling
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Fig. 4.2. Errors in the velocity (left) and stress (right) using the traditional coupling technique
of Theorem 3.1. In the plot the blue indicates the unstable density ratio ρL

ρR
= 4∆x

c∆t
− 1 + 0.01, and

the red the stable ratio ρL
ρR

= 4∆x
c∆t

−1−0.01. The black lines indicate the theoretical growth or decay

rate of the admissible normal mode solutions.
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Fig. 4.3. Errors in the velocity (left) and stress (right) using the new coupling technique of
Theorem 3.3. In the plot the blue indicates the density ratio ρL

ρR
= 4∆x

c∆t
− 1 + 0.01, and the red

the ratio ρL
ρR

= 4∆x
c∆t

− 1− 0.01. The black lines indicate the theoretical decay rate of the admissible

normal mode solutions.
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Fig. 4.4. Errors in the velocity (left) and stress (right) using the new coupling technique of
Theorem 3.3. In the plot the blue indicates the density ratio ρL

ρR
= 1010, and the red the ratio

ρL
ρR

= 10−10. The black lines indicate the theoretical decay rate of the admissible normal mode

solutions.
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Fig. 4.5. Errors in the velocity using the second order boundary conditions. On the left is the
traditional option of Theorem 3.4, and on the right is our new coupling technique of Theorem 3.5.
In the plot the blue indicates the density ratio ρL

ρR
= 0.1876 + 0.01, and the red the ratio ρL

ρR
=

0.1876− 0.01. The black lines indicate the theoretical growth or decay rate of the admissible normal
mode solutions. Note that the vertical scales differ between the two plots.

techniques. For CFL λ = 0.9, the neutrally stable density ratio for the traditional
technique is found to be ρL

ρR
≈ 0.1876. We perform simulations on either side of this

limit with ρL

ρR
= 0.1876 + 0.01 chosen as an unstable case and ρL

ρR
= 0.1876− 0.01 as a

stable case. The corresponding values for z are found to be approximately 0.9893 and
1.0104 respectively and the plot includes reference lines associated with those growth
rates. The theoretical growth rates are shown to be well captured by the simulation.
The same computations are carried out using the new coupling technique at second
order and the results are as expected. The error decays rapidly after the pulse exits
the computational domain. Note that the stress is not shown in either figure but
the behavior is qualitatively similar to that of the velocity. Also note that the new
coupling technique at second order gives qualitatively similar results for the larger
density ratios ρL

ρR
= 1010, and the red the ratio ρL

ρR
= 10−10.

As a final test we use the same Gaussian initial condition but now implement a
second order upwind discretization along with the second order boundary condition
to yield a fully second order scheme in both space and time. We no longer have a
theoretical result in hand to indicate the stability limit and so instead we choose to
illustrate the potential hazards via a convergence study. We use CFL λ = 0.9 and
ρL

ρR
= 0.25, and integrate in time to tf = 0.5. Figure 4.6 shows the error for the

velocity as a function of time for the four resolutions ∆x = .02, .01, .005, and .0025
for both the traditional interface treatment and the new proposed technique. For
the traditional method the first resolution doubling gives reasonable results but upon
the second doubling the instability begins to dominate the error by the final time.
For the final resolution the instability completely dominates the error. The unstable
mode will also dominate the solution on the coarser grids if these computations are
run longer in time. For the new coupling technique, the instability is apparently not
present and second order convergence is achieved at any fixed time. To ensure that the
fully second order method is in fact stable, the simulation is allowed to run further in
time so that the pulses leave the domain. As expected the errors decay off to ≈ 10−60

by t = 5 in much the same way as the previous results indicate. Furthermore the
behavior for the new coupling is unaltered for the large density jumps ρL

ρR
= 10−10

and 1010.
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Fig. 4.6. Errors in the velocity using a fully second order algorithm. On the left is the traditional
option of Theorem 3.4, and on the right is our new coupling technique of Theorem 3.5. Here we use
the fixed density ratio ρL

ρR
= 0.25 and perform simulations at fixed CFL with the four resolutions

∆x = .02 (red), .01 (blue), .005 (green), and .0025 (black).

4.1. Introductory example with new interface condition. The analysis of
the previous sections resulted in the interface condition (3.22), which is stable for the
model problem, for all density ratios. It is here generalized and applied to the coupled
Euler/linear elastic problem (2.1), (2.2) presented in Section 2.

The generalization of the stable interface condition (3.22) to the Euler/linear
elastic problem is

u
(f)
0 = (εsu

(s)
N + εfu

(f)
1 )/(εs + εf ) u

(s)
N+1 = (εsu

(s)
N + εfu

(f)
1 )/(εs + εf ) (4.4)

p0 = (−εsσN + εfp1)/(εs + εf ) σN+1 = (εsσN − εfp1)/(εs + εf ). (4.5)

This condition is the same as (2.9), (2.10) but with weighted averages. The weights
are generalized from (3.22) to be

εs = 1/(ρ(s)cs) εf = 1/(ρ(f)
I cf )

where

cs =
√
E/ρ(s) cf =

√
γpI/ρ

(f)
I

and where first order extrapolation,

ρ
(f)
I = ρ

(f)
1 pI = p1

determines the interface values. The extrapolation is, of course, easy to generalize to
higher order of accuracy if needed.

Figures 4.7 and 4.8 show the computed solution of the Riemann problem in Sec-
tion 2, computed in the same way as described there, but with the interface condition
(4.4), (4.5). In Fig. 4.7, ρ(s) = 0.001, and in Fig. 4.8, ρ(s) = 1000. Both computations
use CFL number 0.9 and are stable. Additional numerical experiments show that the
new interface conditions lead to a method that is stable for CFL numbers up to 1
for arbitrary values of ρ(s). For example all cases investigate in Table 2.1 as well as
the rather extreme cases of ρ(s) = 10±10 are stable with (4.4), (4.5). Furthermore,
extension of the new technique to second order in both space and time yields the
same stability characteristics while the more traditional techniques suffer even more
restrictive constraints than their first order counterparts.
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Fig. 4.7. Solution of Riemann problem showing velocity (left) and stress (right). Red x-symbols
represent the solid, blue o-symbols the fluid, and the black line is the exact solution. The approxi-
mations use N = 100 points in each domain and ρ(s) = 0.001 with the new interface conditions.
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Fig. 4.8. Solution of Riemann problem showing velocity (left) and stress (right). Red x-symbols
represent the solid, blue o-symbols the fluid, and the black line is the exact solution. The approxi-
mations use N = 100 points in each domain and ρ(s) = 1000 with the new interface conditions.

5. Conclusions. In this paper we have discussed the stability of various discrete
treatments of the interface coupling conditions for fluid-structure problems. The need
to understand the stability properties of a given scheme was motivated by a numerical
example which coupled an invicid and compressible ideal gas with a linearly elastic
solid in 1-D. It was seen that some of the most natural discretizations are unstable
as the ratio of densities becomes too large or too small. This problem was subse-
quently simplified to a coupling between two linearly elastic materials. A normal
mode analysis showed the conditional stability of the simplest explicit treatment and
the stability of an implicit treatment. A simplified characteristic interface condition
was then derived and was proved to be stable up to the maximum stable CFL limit of
the interior discretizations. We also extended the analysis to second order discretiza-
tions in certain limits and showed that the restriction on the traditional methods is
even more severe with increasing order, but that the new condition remains stable
for any density jump. A series of numerical examples explored these results and con-
firmed the conclusions. Finally the new coupling condition was applied to the original
example and numerical examples demonstrated the stability of the resulting scheme
for arbitrary jumps in density.

The specific results of this paper concern the stability of the FSI interface for
an invicid and compressible ideal gas with a linearly elastic solid, but the methods
are much more widely applicable. For example, we intend to pursue these techniques
to investigate the numerical stability of interface treatments for the linearized Euler
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equations coupled with the equations of linear elasticity in two space dimensions, as
well as the linearized Navier-Stokes equations with elastic and visco-elastic solids.
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