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Abstract 

A multi-scale approach is used to construct a continuum strength model for vanadium. The 
model is formulated assuming plastic deformation by dislocation motion and strain hardening 
due to dislocation interactions. Dislocation density is adopted as the state variable in the model. 
Information from molecular statics, molecular dynamics and dislocation dynamics simulations is 
combined to create kinetic relations for dislocation motion, strain hardening relations and 
evolution equations for the dislocation density. Implicit time integration of the constitutive 
equations is described in the context of implementation in a finite element code. Results are 
provided illustrating the strain, strain rate, temperature and pressure dependence of the 
constitutive model. 
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Introduction 
The Physics and Engineering Materials program at LLNL has been working toward 

multiscale modeling of material strength for nearly a decade. Much of that time was spent 
developing and validating simulation capabilities accounting for mechanisms at various length 
scales. Over the past few years there has been a concerted effort to combine information from the 
different length scales to produce a multiscale strength model. The first attempt at a bottom to 
top integration across the length scales was a model for tantalum presented as a FY-2007, L2 
PEM Milestone[1]. A year later a second multiscale strength milestone was completed for 
vanadium[2] . This model improved the linking of scales in several crucial areas. The purpose of 
this report is to provide a more detailed description of the resulting continuum model for 
vanadium. 

The vanadium multiscale strength model was constructed using an information passing 
paradigm where simulation results from one size scale were used to define functional forms and 
parameters that served as the basis for the model at the next larger length scale. The process 
starts with density functional theory, and includes molecular statics, molecular dynamics, and 
dislocation dynamics simulations. Model forms and parameters are determined at each level. In 
this report, only the results from simulations that feed directly into the macroscale continuum 
model are described. The models generating the results and the simulations at lower length scales 
are cited and are discussed elsewhere.  

 
Model Construction 

The presumed basis for the macroscale model is plastic deformation by thermally activated 
dislocation motion and strain hardening resulting from elastic interactions among dislocations. 
The connection between dislocation mechanics and macroscale plasticity variables is through 
traditional models. Dislocation density is evolved as the state variable that characterizes the flow 
strength of the material. The primary focus for the current model is the temperature, strain rate 
and pressure dependence of the plastic flow strength. Microstructure and mechanisms at the 
grain scale are neglected, and the material is assumed to be isotropic following J2-Flow theory 
plasticity with an associative flow rule.  

 
Connection to continuum variables 

Orowan’s equation gives the macroscale plastic strain rate, ߝ௣ሶ , in terms of mean dislocation 
velocities, ݒ, and dislocation densities, ߩ. 

௣ሶߝ ൌ
ܾ
ܯ

ሺߩ௘ݒ௘ ൅  ௦ሻ                                                              ሺ1ሻݒ௦ߩ

Here, ܾ is the Burgers vector of the bcc vanadium crystal, ܯ is the Taylor factor accounting for 
the average crystal orientation, and the subscripts ݁ and ݏ denote edge and screw dislocation 
populations, respectively. While moving dislocations have a wide range of velocities, nominal 
average values are employed for the current model. 

The thermally activated dislocation motion is driven by the net resolved shear stress on a 
particular slip system. This net shear stress, ߬כ, is given in terms of the von Mises effective 
stress,  ߪത, the Taylor factor and the athermal strength, ߬௔: 

௦כ߬ ൌ
തߪ
ܯ െ ߬௔

௦                                                                       ሺ2ሻ 
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The athermal strength, defined in Eq. 19 below, is different for the edge and screw dislocations, 
so the net resolved shear stress can also vary with dislocation character.  

Use of these historical linking assumptions bypasses mechanisms on the grain scale and 
neglects effects of grain boundaries on dislocation propagation and strength. It is recognized that 
the Hall-Petch effect and other mechanisms at the grain scale can have a significant impact on 
measured strength, but the compressed time scale for model development necessitated omission 
of simulations on certain length scales. 

 
Kinetic model driving force from molecular statics calculations 

The energy barrier for dislocation motion can be overcome by a combination of shear stress 
and thermal activation. The thermally activated dislocation velocity is assumed to follow an 
Arrhenius relation, 

ݒ ൌ ଴expݒ ൬
െܪ
݇ܶ ൰                                                                ሺ3ሻ 

where ܪ is an activation energy barrier, ݒ଴ a reference velocity, ܶ the absolute temperature and ݇ 
Boltzmann’s constant. The activation energy in Eq. 3 is assumed to be a function of resolved 
shear stress and pressure, and these dependencies are determined by molecular statics 
calculations at 0K [3,4]. Figure 1 shows results from the molecular statics simulations for both 
screw and edge dislocations at three pressures. The lines represent the height of the energy 
barrier after application of shear stress. This is the barrier that must be overcome by thermal 
mechanisms. Also shown are fits to the numerical data. The fitting process is described below. 
 

      
Figure 1.  Activation energy for a) screw and b) edge dislocations predicted from molecular 
statics calculations (symbols) and the corresponding model fits (lines) at 3 pressures. 

 Assuming that the activation energy is a multiplicative function of shear stress and pressure, 
the pressure dependence of the activation energy is determined by fitting a quadratic function to 
the numerical data at zero shear stress for both the screw and edge dislocations. The pressure, ݌, 
is normalized by the reference shear modulus, ܩ଴. 

 
଴ܪ

௦

݇
ሺ°ܭሻ ൌ 7891 ൅ 11292 ൬

݌
଴ܩ

൰ െ 6700 ൬
݌

଴ܩ
൰

ଶ
                                  ሺ4ܽሻ 
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଴ܪ
௘

݇
ሺ°ܭሻ ൌ 696 ൅ 579 ൬

݌
଴ܩ

൰ െ 630 ൬
݌

଴ܩ
൰

ଶ
                                            ሺ4ܾሻ 

Similarly, fitting the numerical data from Figure 1 at zero on the vertical axis gives the pressure 
dependence of the shear stress required to move dislocations in the absence of thermal activation. 
This is the Peierls stress, ߬௣, and it is fit by 

   ߬௣
௦ ൌ ଴ܩ ቈ0.006939 ൅ 0.0018786 ൬

݌
଴ܩ

൰ ൅ 0.003530 ൬
݌

଴ܩ
൰

ଶ
቉                        ሺ5ܽሻ 

   ߬௣
௘ ൌ ଴ܩ ቈ0.001265 ൅ 0.000518 ൬

݌
଴ܩ

൰ ൅ 0.000711 ൬
݌

଴ܩ
൰

ଶ
቉                          ሺ5ܾሻ 

With the end points of the curves in Figure 1 specified by Eqs 4 and 5, functions are constructed 
fitting the data in between. These are, for screw and edge dislocations, respectively: 

௦ܪ ൌ ଴ܪ
௦   ln ቆ

1 ൅ ߙ
௦כ߬ ߬௣

௦⁄ ൅ ቇߙ ln ൬
1 ൅ ߙ

ߙ ൰   ; ߙ   ൌ 0.14                    ሺ6ܽሻ൘  

௘ܪ ൌ ଴ܪ
௘   ቆ1 െ

௘כ߬

߬௣
௘ ቇ                                                                                        ሺ6ܾሻ 

It is significant that the reference activation energies and the Peierls stresses in Eqs 4 and 5 
are fit using only the reference shear modulus (ܩ଴ ൌ 49000 MPa) rather than the pressure and 
temperature dependent shear modulus. Figure 2 shows the calculated reference activation energy 
and Peierls stress normalized by the pressure-dependent shear modulus plotted as a function of 
pressure. While the normalization by the pressure dependent modulus appears to capture the 
pressure dependence of the screw dislocations, the pressure dependence of the edge dislocations 
is not well represented. This is likely because an edge dislocation is dilational, and creation of an  

 

 
Figure 2.  Reference activation energy and Peierls stress for edge and screw dislocations as 
a function of pressure. 
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edge dislocation does work against the applied pressure. This additional work is not captured by 
shear modulus scaling, but the effect is captured through Eqs 4 and 5.  

While the pressure dependent shear modulus could have been used in Eqs 4 and 5, an 
additional pressure correction would be needed. That would increase the complexity of the 
model unnecessarily, add parameters, and tie the parameterization of the strength model to the 
particular shear modulus model used when fitting the data. Changes to the shear modulus model 
would then require reparameterization of the strength model. This is not a desirable model 
construct. 

 
Kinetic parameters from molecular dynamics calculations 

Molecular dynamics simulations, similar to those in [5,6], were used to determine kinetic 
relations for edge and screw dislocation in vanadium at a range of temperatures from 200K-
1000K. Guided by the common assumption that dislocation motion is affected by thermal 
activation at low stress and by phonon drag at high stress, functional forms were fit in the two 
regimes and a smooth transition function was applied. At lower stress, Arrhenius equations were 
applied in both forward and backward directions so the dislocation velocity is zero at zero stress. 
The dislocation velocities are fit well by linear stress dependence in the phonon drag regime, and 
the functional form for the transition region is simply a curve fit. Figure 3 shows the molecular 
dynamics results and the parameterized fits.  

      
Figure 3.  a) screw and b) edge dislocation velocities predicted by molecular dynamics 
simulations and the accompanying curve fits. 

The fit for the screw dislocation velocities is given by expressions for the thermally 
activated and drag regimes and the transition function. 

௦ݒ ൌ
௛௘௥௠்ݒ

௦ ஽௥௔௚ݒ 
௦

ටሺ்ݒ௛௘௥௠
௦ ሻହ ൅ ൫ݒ஽௥௔௚

௦ ൯ହభ/ఱ 
                                                                     ሺ7ሻ 

஽௥௔௚ݒ
௦ ൌ ஽ߦ

௦ ଴ܥ
௦כ߬

߬௣
௦                                                                                                 ሺ8ሻ 

௛௘௥௠்ݒ
௦ ൌ ்ߦ

௦ ܥ଴ ൤exp ൬െߚ௦ ௦ܪ

݇ܶ൰ െ exp ൬െߚ௦ ௦כܪ

݇ܶ ൰൨                                    ሺ9ሻ 
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The activation energy in the reverse direction, כܪ௦, is limited to prevent numerical underflow as 
the backward velocity contribution goes to zero.  

௦כܪ ൌ ቊ
߬                  ሺെ߬ሻܪ ൑ ௣߬ ߙ 0.95

௦                                               ሺ10ሻ
௣߬ ߙ ൫0.95ܪ

௦൯      ߬ ൐ ௣߬ ߙ 0.95
௦                                                       

 

In the screw dislocation kinetic relations, ܥ଴ ൌ  is a reference sound speed and the ݏ/݉ 5077
remaining parameters are functions of temperature 

௦ߚ ൌ 0.019426 ൅ 9.115 ൈ 10ିସܶ െ 1.3776 ൈ 10ି଻ܶଶ   

்ߦ
௦ ൌ 0.03100 െ 3.650 ൈ 10ିହܶ ൅ 2.3030 ൈ 10ି଼ܶଶ                            ሺ11ሻ 

஽ߦ
௦ ൌ 0.018788 െ 3.484 ൈ 10ି଺ܶ െ 1.0695 ൈ 10ି଼ܶଶ  

It is important to note that the ߚ௦and ்ߦ
௦  parameters differ significantly from unity and have 

a significant temperature dependence. Good fits could not be constructed with constant values. 
This implies that the thermally activated screw dislocation velocities are not well represented by 
the assumptions underlying the Arrhenius relation. It is likely because energy barrier heights are 
temperature dependent.  

Expressions for the edge dislocation velocities are similar, but the fit in the thermally 
activated regime is contrived. The molecular dynamics simulations were extremely noisy at low 
stress and the numerical data are not meaningful. The numerical data in the phonon drag range 
are well behaved.  

௘ݒ ൌ
௧௛௘௥௠ݒ

௘ ஽௥௔௚ݒ 
௘

ටሺ்ݒ௛௘௥௠
௘ ሻଷ ൅ ൫ݒ஽௥௔௚

௘ ൯ଷభ/య 
                                                                   ሺ12ሻ 

௛௘௥௠்ݒ
௘ ൌ ்ߦ

௘ ܥ଴exp ൬െߚ௘ ௘ܪ

݇ܶ൰ sinh ቆߚ௘ ௘ܪ

݇ܶ
௘כ߬

߬௣
௘ ቇ                                      ሺ13ሻ 

஽௥௔௚ݒ
௘ ൌ ஽ߦ

௘ ଴ܥ
௘כ߬

߬௣
௘                                                                                               ሺ14ሻ 

Since the stress dependence in the Arrhenius equation is linear for the edge dislocation, the 
forward and backward dislocation velocities combine to give the hyperbolic sine dependence. 
The parameterization of the remaining constants is simpler for the edge dislocations in the 
thermal regime since they are simply postulated rather than fit to molecular dynamics data. 

௘ߚ ൌ 2                                                                             

்ߦ
௘ ൌ 0.05                                                                                                            ሺ15ሻ 

஽ߦ
௘ ൌ 0.0145 െ 2.53 ൈ 10ିହܶ െ 1.33 ൈ 10ି଼ܶଶ 

Density evolution from dislocation dynamics simulations 
The kinetic relations described above were implemented in the ParaDiS [7,8] dislocation 

dynamics code to simulate the evolution of dislocation density and strain hardening. The 
predicted dislocation density evolution was then used to parameterize evolution equations for the 
continuum hardening model.  

The continuum dislocation density evolution model is based on existing dislocation growth 
and capture radii relations, and a dislocation multiplication term is tacked on to force 
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homogeneous dislocation nucleation at high stresses. The physical motivation for the growth 
relations is based on a simple dislocation loop growth model. The increase in screw dislocation 
length depends on the velocity of the edge dislocation segments; and, likewise, increases in edge 
dislocation density depend on screw dislocation velocity. Dislocation density decreases are 
presumed to result from capture of oppositely signed dislocations within a capture radius, Rc. 
The capture radius depends on the velocity of the passing dislocations, but it is parameterized in 
terms of stress in Eqs 17 for convenience. Finally, the homogeneous nucleation term at the end is 
simply a construction that has negligible contribution at low stress and generates appreciable 
dislocation density as the stress approaches the ideal strength of the crystal. Here it is assumed 
that Τ௜ௗ௘௔௟ ൌ  .଴ܩ 0.1

 

௦ሶߩ ൌ  
௘ݒ ௘ߩ2

݈௘
െ ௦ߩ

ଶܴ௖௦ݒ௦ ൅
௦ݒ0.01

ܾଷ exp ൤െ15 ൬1 െ
߬

߬ூௗ௘௔௟
൰൨                        ሺ16ܽሻ 

௘ሶߩ ൌ  
௦ݒ ௦ߩ2

݈௦
െ ௘ߩ

ଶܴ௖௘ݒ௘ ൅
 ௘ݒ0.01

ܾଷ exp ൤െ15 ൬1 െ
߬

߬ூௗ௘௔௟
൰൨                        ሺ16ܾሻ 

The capture radius was adjusted until the dislocation density evolution predicted by Eq. 16 
matched that given by ParaDiS. The capture radii from 13 simulations at different strain rates, 
temperatures and pressures were plotted as a function of stress and used to fit the expressions.  

ܴ௖௦ ൌ 461.39 exp ቆെ1.2138
߬

߬௣
ቇ ൅ 1                                                     ሺ17ܽሻ 

ܴ௖௘ ൌ 113.84 exp ൬െ213.98
߬

଴ܩ
൰ ൅ 1                                                     ሺ17ܾሻ 

The simulation data and the model fits are shown in Figure 4. As the stress and dislocation 
velocity increase, the dislocations spend less time in locations where they can be captured and 
the capture radius decreases. It can be noted that the stress normalization is done differently for 
the screw and edge relations. The screw relation scales with the Peierls stress which scales with 
shear modulus for the screw dislocations. The edge expression, on the other hand, did not scale 
as well with the associated Peierls stress, so it was simply a normalized by the reference shear 
modulus.  

     
Figure 4. Fits to calculated capture radius data for a) screw and b) edge dislocations. 
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The other material state variable in these evolution relations is the dislocation link length, ݈. 

It increases as the dislocation loops expand and decreases as dislocations from other systems 
intersect and produce shorter segments. As with the dislocation evolution equations, the link 
length evolution expressions are motivated by single loop concepts. 

݈௦ሶ ൌ
݈௦

௦ߩ
௦ሶߩ  െ 0.002݈௦

ଷ ߩሶ௘                                                          ሺ18ܽሻ 

݈௘ሶ ൌ
݈௘

௘ߩ
௘ሶߩ  െ 0.002݈௘

ଷ ߩሶ௦                                                          ሺ18ܾሻ 

The combined set of dislocation evolution equations has few tunable parameters. A typical 
fit for dislocation density is shown in Figure 5. 

 
Figure 5. Predicted screw dislocation density evolution and the model fit. 

Additional information extracted from the dislocation dynamics simulations is the effect of 
dislocation density on strength. Assuming the traditional square root dependence of strength on 
dislocation density, interaction coefficients are determined by fitting the simulated strength data.  

߬௔
௦ ൌ ௦ߩඥܾܩ 0.321 ൅ ௘ߩ ൅ ߬௔଴

௦                                                   ሺ19ܽሻ 

߬௔
௘ ൌ ௦ߩඥܾܩ 0.415 ൅ ௘ߩ ൅ ߬௔଴

௘                                                   ሺ19ܾሻ 

The coefficients are on the order of experimentally determined values cited in the literature. An 
offset value, ߬௔଴, of 10 MPa was added to the athermal stress for both screw and edge to ensure a 
finite lower limit even if initial dislocation densities were set very low.  

Using a traditional equation tying dislocation density to strength carries an additional 
assumption which needs to be investigated through further simulations—namely, the strength 
dependence on shear modulus. Choosing the model form of Eq. 19 implies that, for a given 
microstructure state, the temperature and pressure dependence of the strength scales with the 
shear modulus. This is one of the very assumptions that the multiscale strength simulations 
should be investigating, so it should not be assumed in the model form. Future model 
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development efforts must examine the relationship between dislocation density and strength 
more thoroughly. 
 
Model simplifications for numerical stability and additional data constraints 

The relations outlined above were implemented and several issues were uncovered. The 
coupling between the edge and screw dislocation density evolution rates is very strong and 
highly nonlinear. Extremely small time steps are required for stability and to capture the path 
dependence. Several semi-implicit and subcycling algorithms were tried, but none gave stability 
and accuracy at a time step tractable in an explicit finite element code. In addition, certain sets of 
initial conditions or load paths resulted in unphysical behavior such as plastic deformation 
occurring entirely by motion of screw dislocations with no edge dislocation velocity. These 
responses are believed to have resulted from insufficient direct coupling between the evolution 
of screw and edge dislocation densities. Equations 16 specify screw and edge dislocation density 
evolution, but there is nothing in the formulation to enforce a coordinated evolution of the two 
populations.  

The machinery of the dislocation dynamics model provides coordinated dislocation density 
evolution, so a path forward was suggested by further examination of the ParaDiS results. The 
fraction of screw dislocations is about 0.6 over a wide range of loading conditions and 
dislocation densities, Figure 6. Therefore, a modification to the continuum model ties the edge 
dislocation evolution to the screw component so that ߩ௘ ൌ  ௦/3. As a consequence, theߩ2
modified model is ultimately formulated entirely in terms of the screw dislocation density and 
velocity. When needed, the edge density is simply calculated and inserted. The edge dislocation 
link length in Eq. 16a is determined by integrating Eq. 18b using the 2/3 restriction on the edge 
density and rate. 

 

 
Figure 6. Fraction of screw dislocations for a range of strains and deformation conditions. 
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crystal above the slip plane with respect the crystal below the slip plane. If all dislocations 
initiate as loops at the center of the slip plane, the fluxes of edge and screw dislocations must be 
equal for steady state crystal slip. This equal flux assumption, ߩ௘ݒ௘ ൌ  ௦, is used inݒ௦ߩ 
calculating the evolution rate for screw dislocations using Eq. 16a and the strain rate in Eq. 1. 
The edge kinetic relations and the evolution equations for edge dislocations are not used. 
 
Model implementation 

The model was implemented in the Arbitrary Lagrange Eulerian code ALE3D. At the 
highest level of the material model integration scheme, iterations are performed to determine the 
stress commensurate with the applied deformation and the elasticity. Integration of the 
dislocation density, Eq. 16a, is through a combination of backward implicit iteration and closed 
form integration assuming a constant link length, ݈௘, over a time step.  Finally, the dislocation 
link length is integrated in closed form given the density evolution rate. The link length evolves 
slowly compared to the dislocation density, so using the value from the beginning of the time 
step in the density evolution equation is a reasonable approximation 

 
Coupling to the elasticity relations 

For J2-Flow theory with an associative flow rule, the scalar relation coupling the elastic and 
plastic deformation is 

തߪ ൅ ,തߪሶ௣ሺߝݐΔܩ3 ܶ, ,݌ ,௦ߩ ௘ሻߩ ൌ ௘ߪ
்௥                                           ሺ20ሻ 

 where ߪത is the von Mises or equivalent stress 

തߪ ൌ  ටଶ
ଷ൫ߪ௜௝ ߪ௜௝൯మ                                                              ሺ21ሻ 

and the effective trial stress, ߪ௘
்௥,  is given in terms of the deviatoric stress at the beginning of the 

time step and the total deviatoric strain increment, ΔߝԢ௜௝, by 

௘ߪ
்௥ ൌ  ටଶ

ଷ൫ߪ௜௝
்௥ ߪ௜௝

்௥൯మ                                                          ሺ22ሻ 

௜௝ߪ
்௥ ൌ Ԣ௜௝௧ߪ

൅  Ԣ௜௝                                                        ሺ23ሻߝΔܩ2

The prime in Eq. 23 denotes the deviatoric part of the tensor. The plastic strain rate in Eq. 20 
depends on the equivalent stress, temperature and history variables through the relations 
presented above. 

Equation 20 is solved iteratively for the equivalent stress using a combined Newton-
Raphson iteration and bisection method. The lower bound on the stress is taken as the yield value 
and the upper bound is the effective trial stress. There are potentially issues with the lower limit 
if softening due to dislocation annihilation exceeds the increased strength due to rate 
dependence, but this has not been encountered so far. A more robust solution would have the 
stress represented in terms of the strain rate, but that is not feasible with the current model 
structure. 

 
Dislocation density calculation 

The multiscale constitutive routine calculates the plastic strain rate given the estimate of the 
equivalent stress. The thermally activated shear stress is determined by Eq. 2 where the athermal 
stress is given by Eq. 19a. The ratio of the shear stress to the Peierls stress is used to determine 
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the activation energy in Eq. 6 and the screw dislocation velocity is calculated using Eqs 7-11. 
Using the assumption ߩ௘ݒ௘ ൌ  ௦ described above, the screw evolution expression, Eq. 16a, isݒ௦ߩ 
rewritten 

௦ߩ݀

ܰ ൅ ௦ߩܯ െ ௦ߩܣ
ଶ ൌ  ሺ24ሻ                                                           ݐ݀

where 

ܣ ൌ െܴ௖௦ݒ௦ ; ܯ     ൌ
௦ݒ2

݈௘
 ;     ܰ ൌ

௦ݒ0.01

ܾଷ exp ൤െ15 ൬1 െ
߬

߬ூௗ௘௔௟
൰൨              ሺ25ሻ 

Equation 24 can be solved in closed form over the time increment as 

௦ߩ ൌ
ܯሾሺܯ െ ௦௧ሻሺ1ߩܣ2 െ ሻܧ െ ሺ1ݍ ൅ ሻሿܧ ൅ ܯሾሺݍ െ ௦௧ሻሺ1ߩܣ2 ൅ ሻܧ െ ሺ1ݍ െ ሻሿܧ

ܯሾሺܣ2 െ ௦௧ሻሺ1ߩܣ2 െ ሻܧ െ ሺ1ݍ ൅ ሻሿܧ       ሺ26ሻ 

with 

ݍ ൌ ඥܯଶ ൅ మܰܣ4          and        ܧ ൌ expሺെݍΔݐሻ                                         ሺ27ሻ 

This closed form integration is unconditionally stable and valid for any size time step. It returns 
the dislocation density at the beginning for the time step, ߩ௦௧, for a zero time step and approaches 
the saturation density at as the time step approaches infinity.  

There is a complication because Eq. 26 is used in a full backward integration scheme for the 
plastic strain rate; the dislocation velocity appearing in the coefficients of Eq. 26 depends on the 
dislocation density. This creates an implicit dependence on ߩ௦ that is resolved through iteration. 
Writing the error in the dislocation density as the assumed value used to calculate coefficients in 
Eq. 26 minus the value computed by Eq. 26 gives an error that can be driven to zero with the 
Newton iteration method. 

௘௥௥ߩ ൌ ௦ߩ െ ොߩ ቀ߬, ,௦ߩ௦ሺכ௦൫߬ݒ ߬ሻ൯ቁ                                                     ሺ28ሻ 

A linearization of Eq. 28 provides an equation to solve for a correction to dislocation density. 

0 ൌ ௦ߩ െ ,ො൫߬ߩ ,௦ߩ௦ሺכ௦ሺ߬ݒ ߬ሻ ሻ൯ ൅ ൤1 െ
ොߩ߲
௦ݒ߲

௦ݒ݀

௦כ߬݀
௦כ߲߬

௦ߩ߲
൨ ௦ߩߜ െ ൤

ොߩ߲
߲߬ ൅

ොߩ߲
௦ݒ߲

௦ݒ݀

௦כ߬݀
௦כ߲߬

߲߬ ൨  ሺ29ሻ      ߬ߜ

The applied stress, ߬, is fixed by the iterations over Eq. 20. Therefore, the variation in applied 
stress, ߬ߜ, is zero when calculating the plastic strain rate in the multiscale constitutive routine. 
With ߬ߜ ൌ 0, Eq. 29 provides the expression for the correction to dislocation density used in the 
Newton-Raphson iteration. 

௦ߩߜ ൌ
െߩ௘௥௥

1 െ ොߩ߲
௦ݒ߲

௦ݒ݀

௦כ߬݀
௦כ߲߬

௦ߩ߲

                                                        ሺ30ሻ 

For a given value of ߬, Eq. 30 is evaluated and the dislocation density updated until the error 
reaches an acceptable tolerance. Limits are placed on the dislocation density correction so that it 
never exceeds 25% of the current dislocation value. Also, the resulting density can’t be so high 
as to set the driving force, ߬כ௦, to zero. A maximum permitted dislocation density is calculated 
from ߬ for this purpose. This limit is approached gradually to prevent oscillations in the solution. 
With ߩ௦ determined, the dislocation velocities and edge dislocation density are easily computed. 
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The edge dislocation link length can likewise be integrated in closed form once the change 
in dislocation density is known. Here the increment in edge dislocation density is assumed to be 
2/3 that of the screw increment. The screw segment length is not needed and not computed. 

݈௘ ൌ ඨ
݈௦଴

ଶ   expሺ2Δߩ௦ ⁄௦ߩ ሻ
1 ൅ ௦݈௦଴ߩ0.002

ଶ expሺ2Δߩ௦ ⁄௦ߩ ሻ                                                   ሺ31ሻ 

Plastic strain rate and derivatives 
With the dislocation density and velocity determined as outlined above, the plastic strain 

rate is computed from Eq. 1, again assuming that the edge and screw dislocation fluxes are equal, 
௘ݒ௘ߩ ൌ  ௦. Remaining is to compute the derivative of the plastic strain rate with respect toݒ௦ߩ
stress needed for the Newton-Raphson iteration on Eq. 20. This is given by 

௣ሶߝ݀  
തߪ݀ ൌ ቈ

௣ሶߝ߲  
௦ߩ߲

௦ߩ݀

݀߬ ൅
௣ሶߝ߲  
௦ݒ߲

௦ݒ݀

௦כ߬݀ ൬
௦כ߲߬

߲߬ ൅
௦כ߲߬

௦ߩ߲

௦ߩ݀

݀߬ ൰቉
݀߬
തߪ݀                             ሺ32ሻ 

Since the error indicated by Eq. 28 has been driven toward zero and should remain zero, the rate 
of change of dislocation density with stress can be determined from Eq. 29 as: 

௦ߩ݀

݀߬ ൌ ൤
ොߩ߲
߲߬ ൅

ොߩ߲
௦ݒ߲

௦ݒ݀

௦כ߬݀
௦כ߲߬

߲߬ ൨ ൤1 െ
ොߩ߲
௦ݒ߲

௦ݒ݀

௦כ߬݀
௦כ߲߬

௦ߩ߲
൨൘                                ሺ33ሻ 

The remaining derivatives used in Eq. 32 are straight forward to calculate. 
 
Model Behavior 

Single element, adiabatic, uniaxial stress simulations were run over a wide range of strain 
rates, temperatures and pressures to ensure that the model gives physically plausible results and 
is numerically robust. Selected results are provided below to illustrate the model behavior.  

The strength depends on both the dislocation density and the dislocation velocity through the 
kinetic relations, and the two effects are intricately coupled. Increased strength with increasing 
strain rate from the kinetic relation reduces the dislocation capture radius leading to a higher 
dislocation density and still higher strength. Figure 7a shows dislocation density evolution for 
strain rates from 10-6 sec-1 to 108 sec-1. There is little effect of strain rate at lower strain rates, but 

           
Figure 7. Evolution of a) dislocation density and b) strength at a variety of strain rates for 
ambient pressure and initial temperature of 300K.  

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

0.00 0.10 0.20 0.30 0.40

D
is

lo
ca

tio
n 

D
en

si
ty

 (1
/c

m
2)

Axial Strain

ε = 1.e8

1.e7

1.e6

1.e4
1.e2

1.e-6

.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.00 0.10 0.20 0.30 0.40

St
re

ng
th

 (M
B

ar
)

Axial strain

ε = 1.e8.

1.e7

1.e6

1.e41.e2

b) a) 



13                                                 LLNL-TR-416095 
 

increases of dislocation density with strain rate are substantial at higher rates. This is reflected in 
the strength evolution, Figure 7b, where the strength also increases substantially at higher rates.  

The dislocation density evolves rapidly and saturates at low to moderate strains resulting in 
little strain hardening beyond a strain of 0.05. The absence of hardening is consistent with the 
dislocation dynamics simulation results which were used to construct the dislocation evolution 
model. It is known that this low strain hardening is not consistent with experimental observation, 
and efforts are underway to understand why the dislocation density saturates so quickly in the 
calculations. The apparent strain hardening at the highest strain rates in Figure 7 is a result of 
temperature increase due to adiabatic heating.  

The temperature dependence of the strength is illustrated in Figure 8. Figure 8a is 
constructed at a strain rate of 102 sec-1 where thermal activation is the dominant mechanism. The 
flow strength is reduced as the temperature increases. Figure 8b is constructed at a strain rate of 
106 sec-1 where phonon drag is dominant. Here the trend of strength with temperature is reversed. 
At higher temperature the crystal lattice vibrations are larger, providing a greater impediment to 
dislocation motion. This temperature strengthening effect, combined with adiabatic heating, is 
responsible for the apparent hardening seen at the highest rate in Figure 7b. Because of the 
change in mechanisms, it is expected that the model will exhibit very little temperature 
sensitivity at some strain rate intermediate between these two. 

     

Figure 8. Temperature dependence of strength at strain rates of a) 102 sec-1 and b) 106 sec-1 
illustrating the different behavior in, respectively, the thermally activated and phonon drag 
regimes. 

The pressure dependence of the model is through combined influence of the shear modulus, 
activation energy (Eq. 4), Peierl’s stress (Eq. 5), evolved dislocation density and Orowan relation 
(Eq. 1). As the pressure is increased, keeping strain rate constant, the dislocation density 
increases, Figure 9a. The increase is modest but consistent. The flow strength, on the other hand, 
shows an unanticipated trend of decreasing as pressure is increased, Figure 9b. Examining the 
results in closer detail reveals that the dislocation velocity increases slightly with pressure 
implying that the reduction in velocity balancing the increased dislocation density in Orowan’s 
equations is not entirely responsible for the downward trend in stress. The pressure dependence 
of the activation energy and Peirels stress also contribute to the strength reduction. While the 
effect is small, it does highlight the highly interdependent nature of the model. 
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Figure 9  Evolution of a) dislocation density and b) flow strength at pressure and at a strain 
rate of 100 sec-1 

Closing remarks 
Constructing continuum level models using an array of multiscale simulations is an evolving 

process. Several lessons learned from the prior tantalum work[1] have been applied here, and 
experience from the current vanadium model will be applied to future models. The most 
significant advancement in the current model has been use of dislocation kinetic relations 
determined from molecular dynamics simulations. This provided constants for the kinetic 
relations and data to fit for the transition from thermal activation to phonon drag. An attempt was 
made to utilize distinct history variables for edge and screw dislocations, but the lack of direct 
coupling between the two evolving populations lead to instabilities and unphysical behavior.  

Discoveries and experiences from the current model suggest modifications to the procedure 
for future models. The few suggestions provided below are conservative in that they aim to 
extract more information from existing simulation capabilities rather than developing new 
capabilities.  

• It is evident that kinetic relations determined from the molecular dynamics simulations do 
not fit with a strict Arrhenius model. The activation energy is likely temperature 
dependent. This suggests that more latitude can be taken in choosing a functional form for 
the kinetic relation.  

• Direct use of the dislocation kinetic relations in the continuum model neglects the 
distribution of dislocation velocities and dislocation interactions. The dislocation dynamics 
code was constructed to include these effects and average the behavior. Running ParaDiS 
through jump tests in strain rate, pressure and temperature will provide these dependencies 
directly in terms of macroscopic stress and plastic strain rate. Jump tests are needed to 
extract the relations at constant dislocation structure. 

• The pressure dependence of the strength is contrary to the direction suggested by the 
limited experimental data available. A path forward is to use a range of pressures when 
running MD simulations determining dislocation kinetic relations. This will avoid 
extrapolating pressure dependence of the activation energy over a range of temperatures.
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