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Is it feasible to build the laser?
Requirements at interaction point:
 Energy  5-10 J
 Spot size  10-20 m (diffraction-limited)
 Wavelength  1 m
 Pulse length  2.4 ps FWHM ( = 1 ps)
 Circular polarization
 Rep rate/pulse train for superconducting L-band accelerator:

— 369 ns bunch spacing
— 2820 bunches/train
— 5 Hz train repetition rate

 5 Hz x 2820 x 5 J  70 kW average power laser

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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Laser requirements depend on interaction 
configuration
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Short-pulse lasers

 Chirped pulse amplification
— Stretch pulses temporally before amplification to avoid 

nonlinear effects in optical system, then temporally compress 
after passing through most or all material

 State of the art
— Jena fiber systems:

– 325 W average (8.2 J, 40 MHz, 375 fs, 30 m Yb-PCF core)1

– 70 W average (0.7 mJ, 100 kHz, 800 fs, 80 m Yb-PCF core)2

— Long-pulse:
– 42 W average (4.3 mJ, 9.6 kHz, 1 ns, 100 m Yb-PCF core)3

– 280 W average (150 J, 1.9 MHz, 3 ns, 41 mm Yb-LMA core)4

[1] T. Eidam, et al., IEEE J. Sel. Top. Quant. Elect. 15, 187 (2009)
[2] F. Roser, et al., Opt. Lett. 32, 3495 (2007)
[3] C.D. Brooks and F. Di Teodoro, Appl. Phys. Lett. 89, 111119 (2006)
[4] W. Li, et al., Opt. Exp. 17, 10113 (2009)
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Conceptual design for a resonant stacking cavity by 
DESY-Zeuthen and MBI* 

 Design for L-band accelerator
— 369 ns pulse spacing (111 m cavity length)

* I.Will, T. Quast, H. Redlin andW. Sander, “A Laser System For The TESLA Photon Collider
Based On An External Ring Resonator”, Nucl. Instrum. Meth. A 472 (2001) 79.

G. Klemz, K. Monig, I. Will, “Design study of an optical cavity for a future photon-collider
at ILC”, Nucl. Instrum. Meth. A 564 (2006) 212.
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Resonant stacking cavity

 Only 10-9 of laser energy used in each interaction
— Reuse photons, replenish cavity losses

 Coherent addition of pulses in cavity requires extreme control of 
laser and cavity parameters

input

“rejected”

input
couplerdestructive 

interference

constructive 
interference
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Resonant stacking cavity
 Baseline case: input coupler R=0.996, cavity mirrors R=0.998
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Enhancement as a function of mirror reflectivities
 Impedance-matched cavity (equal cavity and input coupler reflectivity) gives 

greatest enhancement for given cavity reflectivity
 For given input coupler, increasing cavity reflectivity increases 

enhancement
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There is an optimum input coupler to minimize total energy

 Lower reflectivity input coupler gives faster cavity loading, but reduced enhancement
 Total energy  (# loading pulses to 95% + 2820)/enhancement
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Resonant cavity enhancement puts stringent 
requirements on the laser and optics

 Dispersion in resonant cavity
 Phase noise
 Cavity length/laser repetition frequency
 Amplitude noise
 Pointing through pulse compressor

 Coating damage due to scattered electrons and synchrotron 
radiation
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Total cavity GVD should be less than 100 fs2

 Low-dispersion mirrors can be manufactured with  < 10 fs2 GVD
— Negative GVD mirrors also available
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Phase noise
 0.10 wave (650 mrad) achieved in CEP stabilized Ti:Sapphire system (1.4 mJ 

@ 1 kHz)*
 0.03 wave (171 mrad) achieved with single amplifier (21 nJ, 75 MHz)**
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* E. Gagnon, et al., Opt. Lett. 31, 1866 (2006)
** A. Ozawa, et al., New J. Phys. 11, 083029 (2009)
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Linear phase ramp through bunch

 Can relate to cavity length:
1 wave  1 µm
1 wave/bunch  0.7 mm/s
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The B-integral is a measure of nonlinear 
phase accumulation

Refractive index:

Phase:

B-integral (nonlinear phase accumulation):

n(r, t)  no   I(r, t)

  k dz  2
 n(r, t) dz 

2noL


 B(r, t)

B(r, t)  2


 I(r, t)dz

Optical Kerr effect results in:
•Self-focusing and spatial beam collapse for B>3
•Self-phase modulation and temporal distortions for B>1

At 1 J/cm2 and 1064 nm, B=1 for:
• 169 cm fused silica at 3 ns
• 0.56 mm fused silica at 1 ps

Fused silica:
=3x10-16 cm2/W
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Energy jitter with B-integral

 Typical short-pulse lasers run with B<2, but some fiber-laser 
designs have B>5
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Laser system concept

Seed pulse
Intermediate
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Compression

Pulse Stretcher / 
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Pulse injection

 “Off-the-shelf” 
technology

 Similar to lasers for ILC 
photogun

 Special photon collider 
requirements:

— Need phase-locked 
oscillator at 1 m

Pulse Stretcher / 
Selector

Pulse Selector

100 MHz 
Oscillator

CW Amplifier

10nJ, ps

10J, ns, 2.7 MHz
27 W avg

100nJ, ns, 2.7 MHz

High Q Laser femtoTrain

KM Labs pulse stretcher/compressor

Clark MXR  20 W @ 2 MHz

Lasermetrics Pockels cell and driver
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Intermediate Amplification

 “Off-the-shelf” 
technology exists to 
reach this power 
level

 At this level non-
linear and thermal 
effects begin to be 
important

Low Energy 
Amplification

Medium Energy 
Amplification

10 J, ns, 
5 Hz train of 4000 pulses,
0.2 W avg

0.1 mJ, ns
2 W avg

5 mJ, ns
100 W avg

Cutting Edge Optronics 
RBA PowerPULSE

Cutting Edge Optronics' slab 
pumphead, the Whisper 

MiniSlabTM 
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Main Amplifier

 Not commercially available

 Basic enabling technologies exist:
— Diode pumping
— Thermal management

Main Amplifier

5 mJ, ns
100 W avg

50 mJ, ns
kW avg

Diode pumping

Forced
cooling

Allows 10-Hz
operation

Higher efficiency
and reliability,
Lower thermal 

effects
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World’s largest dielectric gratings (LLNL)World’s largest dielectric gratings (LLNL)

Vacuum compressor (Titan Vacuum compressor (Titan –– LLNL)LLNL)

Pulse Compression

 System will be in 
vacuum after 
compression

 Large gratings are 
needed to keep power 
levels low

Pulse 
Compression 30 mJ, ps50 mJ, ns
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Work to be done

 Design of final amplifiers
— Gain material 
— Pumping/extraction geometry 
— Minimize thermal effects    

 Modeling of 2D sensitivities
— Pointing jitter
— Diffraction losses
— Optical aberrations

 Conceptual design of laser system

 Conceptual design of control system


