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We extend our earlier model for Rayleigh-Taylor and Richtmyer-

Meshkov instabilities to the more general class of hydrodynamic 

instabilities driven by a time-dependent acceleration )(tg . Explicit 

analytic solutions for linear as well as nonlinear amplitudes are obtained 

for several s)'(tg  by solving a Schrödinger-like equation 

0)(/ 22 =− ηη kAtgdtd  where A is the Atwood number and k  is the 

wavenumber of the perturbation amplitude )(tη . In our model a simple 

transformation Lkk →  and LAA→  connects the linear to the nonlinear 

amplitudes: ),(ln)/1(~),( LL
linear

L
nonlinear AkkAk ηη . The model is 

found to be in very good agreement with direct numerical simulations. 

Bubble amplitudes for a variety of accelerations are seen to scale with s  

defined by dttgs ∫= )( , while spike amplitudes prefer scaling with 

displacement dtdttgx ∫ ∫=Δ ])([ . 
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I. INTRODUCTION, MOTIVATION, AND NOTATION 

Fluids undergoing accelerations are subject to hydrodynamic instabilities whereby 

small deviations from a perfect symmetry (such as planarity or sphericity) amplify with 

time and eventually lead to mixing between the fluids. Best known examples are the 

Rayleigh-Taylor (RT) [1] and the Richtmyer-Meshkov (RM) [2] instabilities induced by 

a constant and an impulsive acceleration, respectively. In this paper we study instabilities 

induced by a time-dependent acceleration )(tg . 

We are interested primarily in inertial confinement fusion (ICF) capsules where 

materials and drives are chosen judiciously to minimize hydrodynamic instabilities [3]. 

Although the implosion proceeds mainly by a series of shocks and constant accelerations, 

there are periods where the acceleration is not constant. A study of how fluid interfaces 

evolve during time-varying accelerations may help design more robust capsules. 

A second motivation is the following: RT and RM instabilities are idealized special 

cases of this more general class of )(tg  in that they are characterized by a single 

parameter: The constant g  in the case of the RT instability, and the jump velocity vΔ  in 

the case of the RM instability. These are, of course, idealizations almost never realized in 

actual experiments that start with 0=g  and later reach .constg =  Similarly, impulses 

have a finite width in time before inducing the jump velocity vΔ . The start-up and pulse-

width issues are ignored in the classical RT and RM results. 

A third reason for this study is that time-dependent effects appear even in 

experiments designed principally for constant accelerations, as in the original rocket-rig 

experiments on turbulent mixing by RT instabilities [4]. More recently, experiments have 
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been performed [5,6] with several deliberately chosen time-dependent stg )'( . These 

experimental profiles for )(tg  will form our starting point. Although the experiments 

had random multimode perturbations and measured turbulent mixing widths, we shall 

consider single-scale perturbations as in the experiments of Jacobs et al. [7-9]. A firm 

understanding of the single-scale problem is needed before tackling the much more 

challenging problem of turbulent mix. 

We consider primarily the bubble amplitude, denoted by )(tη , from its linear regime 

where 1<<kη  to the highly nonlinear regime 1≥kη . Here λπ /2=k  in plane 

geometry often called 2D (two dimensional) with =λ wavelength of the perturbation, 

and Rk /1β=  in 3D (three dimensional) or tubular flow with =R radius of the tube 

and 832.31 ≈β , the first zero of 1J , the Bessel function of order one. The initial 

perturbation has the form )cos(0 kxη  in 2D and )/( 100 RrJ βη  in 3D where 

)0(0 =≡ tηη  is the initial value of the bubble amplitude, taken positive in our 

convention. Spikes, meaning the penetration of the heavier fluid into the lighter one, will 

be negative. As before [10] we shall use the parameter c  with values =c 2 for 2D and  

=c 1 for 3D. Like most experiments [4-8] our direct numerical simulations with the 

hydrocode CALE [11] will be in planar 2D geometry, although we have also performed 

“3D” axisymmetric tubular flow simulations. 

In the linear regime no model is needed because the equation 

 0=− ηη gkA&&           (1) 

describes the evolution of the bubble (and also the spike) for arbitrary )(tg . Here A  is 

the Atwood number, )/()( ABAB ρρρρ +− , where Bρ  ( Aρ ) is the density of the 
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heavy (light) fluid, and g  is directed from fluid A to fluid B. Although Eq. (1) has been 

applied to the RT and RM cases only, it is valid for any g(t). The limitation to the linear 

regime, however, severely restricts the use of Eq. (1): )(tη  rapidly enters the nonlinear 

regime or, even worse, many experiments start with a weakly nonlinear ( 1~0kη ) 

amplitude and grow from there, necessitating the use of a nonlinear model. 

The solutions to Eq. (1) for the classical RT and RM cases are: 

 )cosh()( 0 tt γηη =              (2) 

and 

 )v1()( 000 kAttt Δ+=+= ηηηη &             (3) 

respectively [1,2], with gkA≡γ . For RT we have assumed 00 =η&  (otherwise a 

sinh  term must be added). For RM kAv00 Δ=ηη& , as derived by Richtmyer [2]. 

Corrections for finite pulse-width are given below. The fact that Eqs. (1)-(3) are 

independent of c  indicates that they apply to both 2D and 3D geometry, with 

appropriately defined k . The nonlinear solutions will be found to depend on c . Analytic 

solutions to Eq. (1) for )(tg  other that the above two cases are given in this paper. 

In the next section we describe a progression of mathematical approaches needed for 

the nonlinear evolution of )(tη . In Sec. III we apply the model to a number of gedanken 

experiments patterned after the LEM (Linear Electric Motor) experiments of Dimonte 

and Schneider [5,6], compare model results with CALE simulations, and present 

predictions for future experiments. In Sec. IV we take up the issue of scaling of bubbles 

and spikes. Conclusions are given in Sec. V. The Appendix presents mathematical 

solutions for a number of s)'(tg . 
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II. MODELS AND LEVELS OF ACCURACY 

Computations are used to explain and understand past experiments, as well as predict 

the outcome of future experiments. We shall present briefly four levels of computational 

accuracy, starting with the highest level, level 1, which is most accurate but also most 

complicated, and proceed down to the last level, level 4, which is least accurate but of 

course very simple. 

Level 1. It is generally agreed that the Euler equations expressing conservation of 

mass, momentum, and energy provide the most accurate description of fluids neglecting 

the effects of viscosity and dissipation. Momentum conservation, for example, reads 

0
)()( 3

1
=

∂
∂

+
∂

∂
+

∂
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∑
= ji i

jij

x
p

x
uu

t
u ρρ

          (4) 

in Cartesian coordinates, 3,2,1=j  for 3D. Here ρ  is the density, ur the velocity, and p  

the pressure of the fluid at point xr . The partial differential equations (PDEs) are solved 

numerically by hydrodynamic codes. We use CALE, an arbitrary Lagrangian Eulerian 

code [11], to evaluate the various levels discussed below. 

Level 2. An assumption, often in the form of a potential, is made to reduce Euler’s 

PDEs to ODEs (ordinary differential equations). We concentrate on Layzer’s model [12] 

because it is widely used, has been successful in the past, and has been generalized by 

several researchers [13-17]. In its most general form it accounts for time dependent 

densities, but the two coupled equations (one for the amplitude )(tη  and the other for the 

curvature )(2 tη ) are quite complicated [17]. In this paper we limit ourselves to constant 

densities for which the equations become 
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and 

( )[ ]{ } ),1(4/111)( ))(1(
02

0 cekcckt ck +−++−= −+− ηηηη     (6) 

with 

)1(8/)1(2/2 22
2

22
21 ckccAkcAF +−++= ηη ,       (7a) 

)1/()12(2 2
2
22 ckccAAAF +−−++= ηη  

                                           22 )1(4/)12/3( ccAcAck +−−++  ,             (7b) 

and 

)1(4/2 cckD +−=η .       (7c) 

As before, A  is the Atwood number, )(tη  is the bubble amplitude, and )(2 tη  is its 

curvature with initial value 4/)0( 0
2

2 ηη ck−= . The above equations are derived in the 

Appendix of Ref. [17]. 

For a single fluid ( 1=A ) Eq. (5) reduces to 

024/)2/2( 2
222

2 =+++ ηηηη gkcck &&&             (8) 

while Eq. (6) remains the same. The 1=A  results were given in [13] and applied to 

bubbles only. Zhang proposed using the same 1=A  equations, with a negative η , for 

spikes [14]. The generalization to arbitrary A  was achieved by Goncharov [15] and Eq. 

(5) above reduces to his Eq. (8) for 2D and Eq. (18) for 3D, i.e., for 2=c  and 1=c  

respectively. 
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This model, despite being a relatively high level 2 model, suffers from at least three 

limitations or failures, reported in [10]. Extending the arbitrary- A  model to spikes, as 

proposed by Goncharov [15], does not work. Even for bubbles, one cannot apply it to just 

any )(tg – one must maintain the sign (negative) of 2η  [10]. These two failures are 

related, as changing the sign of η  and 2η  is equivalent to interchanging bubbles and 

spikes. A third failure occurs for bubbles with large initial amplitudes max00 )(ηη >  

given by [10] 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++

+
= 2max0

)1(411
)1(2

)(
Ac

c
c

ckη .                  (9) 

This failure can be remedied in the level 3 model. 

Level 3. As noted in Ref. [13], the Layzer model is simplified not for 00 =η , as 

assumed by Layzer, but by taking )1(/1*0 ck +==ηη . For this value of 0η  one 

obtains a constant 2η , i.e.,  )1(4/4/)0()( 0
2

22 cckckt +−=−== ηηη  (see Eq. (6)). 

With a constant 2η  Eq. (8) gives explicit RT and RM solutions [13]. For arbitrary A  and 

*0 ηη =  Eq. (5) reduces to  

 0=− LLLL Agk θθ&&         (10) 

where  

          )1(2/)1)(1( AcAckAcckL −++++≡ ,      (11a) 

  )1/(2 AcAcAAL −++≡ ,       (11b) 

and 

 Lk
L e )( 0ηηθ −≡ .                  (11c)         
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Therefore, 

 L
Lk

θηη ln1
0 +=            (12) 

is the nonlinear solution. Since Eq. (10) has the same form as the linear equation, Eq. (1), 

we see that the nonlinear solution is essentially the logarithm of the linear solution. More 

explicitly, 

       );;,;,1(ln1
00 tgAkk

k LLL
linear

L

nonlinear ηηηη &+=          (13) 

where );;,;,( 00 tgAklinear ηηη &  is the solution to Eq. (1) with obvious notation. 

In this model one uses the linear equation, Eq. (1), until η  reaches *η , then 

switches to Eq. (10). For simplicity we have proposed [18] using Eq. (10) from the start 

for all *0 ηη ≥ , even for max00 )(ηη >  where the level 2 model fails, as mentioned 

above. An example later (Fig. 4) will compare these two models. 

For the classical RT and RM cases the nonlinear solutions follow immediately from 

Eq. (13) using the linear solutions (2) and (3): 

)]sinh()ln[cosh(1)( 0
0 tkt

k
t L

L

L
L

L
γ

γ
ηγηη
&

++=                     (14) 

and 

 )1ln(1)( 00 tk
k

t L
L

ηηη &++= ,        (15) 

respectively, where LLL Agk≡γ , and we have restored the sinh  term in  the RT 

expression. The asymptotic bubble velocities are 

 LLLL kgAk // ==∞ γη& ,      RT,       (16) 
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and 

 tkL/1=∞η& ,     RM.       (17) 

Note that the nonlinear RM amplitude, Eq. (15), is the integral over 
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      (18) 

given in [13]. This equation can be compared with other, substantially more complex 

expressions found in other models for the bubble velocity η&  [19, 20]. 

Given its simplicity (compare Eqs. (5) and (10)) it is surprising how well this level 3 

model performs in comparison with the level 2 model. We know of no example where the 

level 2 model does substantially better than this simple level 3 model. Add the advantage 

just mentioned for max00 )(ηη >  and we see no reason to revert to the full equations – 

Eq. (10) is equally, if not more, adequate. This is fortunate because the next and last 

model is based on it. 

Level 4. The last and simplest model is obtained by applying a WKB-like 

approximation to Eq. (10): Define 

 dttgs
t

∫≡
0

)(       (19) 

and cast Eq. (10) into the form 

 0
2

1
22

2

=+−
dt

d
dt
dg

g
Ak

ds
d L

LLL
L θθθ

.      (20) 

For s)'(tg  where the last term in the above equation can be neglected we obtain 

 )cosh( LLL Aks=θ      (21) 

 where we assumed 0)0( =Lθ&  and of course 1)0( =Lθ  by definition. Therefore, 
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 )]ln[cosh(1
0 LL

L
Aks

k
+=ηη      (22) 

is the nonlinear solution for “all” )(tg  and therefore called, quite appropriately, the 

scaling solution. This is the level 4 model. The quotation marks around “all” remind us 

that 0)( >tg  and that 2/gg&  must be small enough to justify dropping the last term in 

Eq. (20) (See Ref. [18]). 

From Eq. (22) and the definition of s , Eq. (19), we obtain 

)tanh(//)( LLLL AkskgAdsdgt == ηη&          (23) 

for the bubble velocity. Asymptotically, 

                      dtgkAkAs
t

LLLL ∫==→ ∞
0

//ηη                   (24) 

and 

 LL kAtg /)(=→ ∞ηη && .        (25) 

Needless to say, the scaling solution becomes exact for the standard RT case 

( .constg = ) It fails, of course, for the RM case ( 0=g ), but an explicit nonlinear 

solution is known and was given in Eq. (15). 

We conclude this section by recalling that our discussion has been limited to 

bubbles only. Spikes and their scaling will be taken up in Sec. IV. We hope it is clear 

how each level follows from the previous one. As promised, we evaluate levels 2 through 

4 by comparing them with numerical simulations of gedanken experiments patterned 

after LEM experiments [5]. 
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III. GEDANKEN LEM EXPERIMENTS 

Fig. 1 displays three acceleration profiles which are very similar to the experimental 

s)'(tg – See Fig. 2 in Ref. [5]. A fourth quasi-constant acceleration will be considered 

below. We apply these somewhat idealized acceleration profiles to the top and the bottom 

of the simulated LEM tank filled with hexane ( 66.0=ρ  g/cm3) and a water/NaI 

solution ( 87.1=ρ  g/cm3), for which 48.0≈A . We use ideal equations of state with a 

high “γ ”, the specific heat ratio, to reduce the effects of compressibility (CALE is a 2D 

compressible code but level 2 through 4 models assume constant BA,ρ ). The interface 

follows the prescribed acceleration but with some oscillations induced by sound waves – 

See Ref. [18] and below. 

The interface between the two fluids is initialized as a 3/3.7=λ  cm perturbation, 

i.e., three wavelengths across the 7.3-cm-wide tank. The height of the tank is 8.8 cm. In 

some 1≈A  calculations discussed in Sec. IV we needed to double this height to avoid 

spikes splashing against the roof of the tank. The initial amplitude is less than, equal to, 

or larger than 13.018/3.76/3/1* ≈=== ππλη k  cm. 

Fig. 2 compares the numerical simulations with the level 2 and 3 models for the three 

s)'(tg  shown in Fig. 1, starting with 065.00 =η  cm. It is practically impossible to 

differentiate between level 2 and level 3 models, and both come very close to the CALE 

simulation which, as mentioned earlier, we use as a measure of quality. 

All three profiles in Fig.1 have one common element: Linearly increasing or 

decreasing acceleration. As shown in the Appendix, the solution in such a case is given 

by Airy functions. For the first leg where tg&=g  and starts with 00 =η&  we can write 
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)](3)([
)3/1(3

)( 3/1
0 zAizBit +

Γ
=

πηη ,     (26) 

where t/Tz ≡  with 
3/1kAgT −≡ & , assuming 0Ag >& . For 0Ag <& , t/Tz −≡ . 

Let us compare with the classical RT case .constg =  given by Eq. (2): 

][
2

)( 0 tt eet γγηη −+= ,      (27) 

where 
2/1gkA≡γ . The Bi  term in Eq. (26) corresponds to teγ  in Eq. (27), both 

increasing for large t , while the Ai  term mirrors te γ− , both decreasing for large t . For 

a stable acceleration ( 0gA < ) coscosh → , i.e., tit ee γγ ±± → , both terms in Eq. (27) 

oscillate, just as Ai  and Bi  do for a negative argument. 

We saw how the simple rule of Eq. (13) transformed Lord Rayleigh’s linear solution, 

Eq. (2), and Richtmyer’s linear solution, Eq. (3), into our nonlinear solutions Eqs. (14) 

and (15), for the classical RT and RM cases respectively. Similarly, for the case tg&=g  

the nonlinear solution follows immediately from Eq. (26): 

⎭
⎬
⎫

⎩
⎨
⎧

+
Γ

+= )](3)([
)3/1(3

ln1)( 3/10 LL
L

zAizBi
k

t πηη ,    (28) 

where LL t/Tz ≡  with 
3/1

LT −≡ LL Akg& . 

As mentioned in the Introduction, “constant acceleration” LEM experiments 

maintained a constant acceleration only after a linear climb from 0g =  to 

τg&== maxgg  at τ=t . During the climb Eq. (26) or, more probably Eq. (28) 

describes the bubble amplitude. After the tank reaches maxg  and maintains a constant 
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acceleration Eq. (14) describes the evolution. If, instead of maintaining a constant g  the 

tank is brought back to rest with a linearly decreasing g , as in Figs. 1a-1c, then Eq. (28), 

with a straightforward generalization to include 0η& , also describes this phase. The case 

of an impulse, as in Fig. 1c, is treated explicitly in the Appendix.  

Any acceleration profile can be broken down into a series of piecewise linear 

sections. Any linear tggtg &+= 0)(  can be cast into Airy’s equation and therefore )(tη  

in each interval is given by a linear combination of Airy functions. 

We now turn to a quasi-constant acceleration: 

)1()( /Ttegtg −
∞ −= ,       (29) 

varying smoothly from 0 to ∞g  over a timescale T . It is plotted, using arbitrary units, in 

Fig. 3. CALE results for Egg 35=∞  and 2.1=T  ms, are also shown in Fig. 3, along 

with the analytic solution 

               ]/)cossinln[(1)( 0 LLL
L

zzczc
k

t −+ ++=ηη .         (30) 

We have taken 13.0*0 ==ηη  cm, 3.328.1)3/()1(3 ≈≈++= kAkAkL  cm-1, and 

2/)
2
1sin

2
1(cos ±≡±c  giving 96.0≈+c  and 28.0≈−c . The variable Lz  in Eq. 

(30) is defined as LTt
L ez 2/

2
1 −=  where LLL AkgT ∞≡ 4/1 . The derivation of Eq. 

(30) is also left to the Appendix. As expected, η&  asymptotes to the classical result 

LL kAg /∞→η&  for constant acceleration (See Eq. (16)). 
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Let us use this example of quasi-constant acceleration to illustrate two points we have 

briefly discussed in previous communications: (1) Failure of Eq. (5) for max00 )(ηη > , 

and (2) zitterbewegung [17,18]. 

We ran the same problem on CALE starting with 52.0*40 ≈= ηη  cm which, using 

Eq. (9), is larger than 48.0)( max0 ≈η  cm. The results are shown in Fig. 4. The level 2 

model clearly fails. The level 3 model, Eq. (10) for all *0 ηη ≥ , gives a reasonable 

answer. Since Eq. (30) is this level 3 solution to Eq. (10), all we had to do was set 0η  to 

the appropriate value. In this model, which we prefer, increasing 0η  merely shifts the 

curve up by a constant. 

Turning to zitterbewegung , here meaning rapid oscillations of )(tg  around an 

average value,  we borrowed the term from Quantum Mechanics because Eq. (10), like 

Eq. (1), has the same form as the Schrödinger equation: We solve an initial value 

problem in time instead of an eigenvalue problem in space. As mentioned in [18], we first 

became aware of zitterbewegung when we compared the acceleration of the interface 

with the idealized acceleration imposed at the top and the bottom of the simulated tank in 

CALE. Sound waves in the compressible code induce small oscillations. In Fig. 5 we 

display the idealized )(tg , Eq. (29), and the code-calculated acceleration in thin dashed 

lines, showing these oscillations. Increasing (decreasing) the compressibility of the fluids 

by decreasing (increasing) the specific heat ratio “γ ” increased (decreased) the 

oscillations but made practically no difference to the resulting )(tη . Similarly, when we 

used the code-calculated rapidly oscillating acceleration as )(tg  in Eq. (10), we obtained 
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essentially the same result. This led us to impose deliberately large oscillations on the 

ideal )(tg  to amplify the effect: 

 )cos1)(1()( / tegtg Tt ωε+−= −
∞            (31) 

also displayed in Fig. 5 with 1=ε , taking 10/2πω =  ms-1. This caused )(tg  to vary 

by ± 100%, from 0 to Eg70 , instead of the average Eg35 . To focus on the effect of 

such an oscillation let us define 

 
)0;(

);()0;();(
t

ttt
η

εηηεδ −
≡          (32) 

as the deviation in η  without ( 0=ε ) and with ( 0≠ε ) oscillations, keeping everything 

else the same (we suppress the dependence on ω ). Fig. 6 shows )1;(tδ  as calculated by 

CALE and by Eq. (10). The 100% difference in )(tg  translates to no more than ~13% 

difference in )(tη . 

The rest of this section is devoted to what may be called “double-shock” or “double-

impulse” experiments. No physical experiments of this type have been performed. The 

concept originated from shock tube experiments in which the interface, after seeing the 

first incident shock, is shocked a second time by the reflected shock, i.e., the incident 

shock passes thru the interface, hits the endwall of the tube, reflects, and returns to 

reshock the (already moving) interface. Since all RM experiments in shock tubes have an 

endwall, they all have a second (and subsequently 3rd, 4th, etc.) shock. For examples see 

Refs. [21-23]. A systematic numerical and analytic treatment can be found in [17]. 

If we call the impulse in Fig 1c the first “shock”, a second shock would be an impulse 

just like it in the same or, more interestingly, in the opposite direction, an example of 

which is shown in Fig. 7. These are two equal and opposite impulses, so the interface 
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comes to rest immediately after the second impulse, i.e., at 30 ms. In this case, with the 

impulses having Egg 70max = , the interface moves 6.2 cm and then stops. 

Since this involves positive as well as negative values of )(tg  the reader may 

anticipate difficulty with the models and indeed all models fail except, of course, the 

level 1 model. This is shown in Fig. 8 for the “bubble” amplitude calculated by CALE, 

showing the phase reversal, i.e., the interchange of bubbles and spikes, and the level 2 

calculation which fails at 30 ms. The level 3 model also fails at the same location. As for 

the level 4 (scaling) model, one cannot even define a real )(ts  for negative )(tg . A 

similar failure was reported in [17]. 

After 30 ms, when 0=g , it is possible to follow the new bubble amplitude which 

grows logarithmically according to our nonlinear RM formula, Eq. (15), once η (30 ms) 

and η& (30 ms) are known. Snapshots of the CALE simulation are shown in Fig. 9, from 

which η (30 ms) 0≈ . A similar procedure, including the spike, will be described in the 

next section. As expected, given 0=g  and the correct 0η  and 0η&  Eq. (15) agrees quite 

well with CALE simulations, as previously reported for single shock experiments. 

Such double-impulse experiments have a great advantage for diagnostics: The tank 

comes to rest while perturbations evolve, similar to what happens in shock tubes where 

the interface slows down substantially upon reshock (but does not quite come to rest). 

Obviously, all tanks must come to rest at the end of an experiment ( 0
0

=∫ dtg
finalt

); the 

proposed double-impulse experiment brings it to rest in the middle of the experiment and 
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mixing can go on “forever” (we have neglected Earth’s gravity which will probably 

induce very slow demixing). 

Note that )(tη  overshoots – it changes phase in Fig. 9. Clearly, a somewhat weaker 

second impulse can “freeze-out” )(tη , again borrowing shock-tube terminology [24]. An 

example of such a )(tg  is shown in Fig. 10, and the corresponding s'η , starting with  

065.00 =η  cm, are shown in Fig. 11. Three curves are plotted in Fig. 11: 1) A 

calculation by CALE which shows complete freeze-out; 2) a calculation with Eq. (5) 

indicating slow increase; and 3) a calculation with Eq. (10) indicating slow decrease. 

Only by going to such “critical” phenomena do we see a difference between the level 2 

and the level 3 models; for most practical purposes there is no difference. The fourth fast 

growing curve in Fig. 11 shows how )(tη  would grow without the reshock. Only the 

CALE calculation is shown for that no-reshock case because Eqs. (5) and (10) both get 

this evolution correctly as it is simply a “single-shock” problem like Fig. 1c. 

The strategy for inducing freeze-out is fairly simple. First, it is necessary to have 

0=g  so η&  does not change (See Eq. (1) or (10)). This is necessary but not sufficient: 

Not only η&  must not change, it must be zero, by definition of freeze-out. The strategy is 

therefore to turn off the acceleration the precise moment η&  reaches 0. The acceleration 

profile prior to this freeze-out time is almost arbitrary – any )(tg  which gives 0=η&  at 

some time will do. It may even be possible to stop the bulk motion at outfreezet −  which 

would add the constraint 0)(
0

=∫
−

dttg
outfreezet

, a rather weak requirement. 
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We have discussed these issues in a two-shock system and in the linear regime [24]. 

Freeze-out is possible in the nonlinear regime also [25]. We have pointed out that in such 

a system it is not possible to stop the interface and freeze-out η  simultaneously: 

Stopping the tank requires an equal and opposite reshock, but since η  grows between 

shock and reshock the effect of the reshock is amplified and hence it causes a phase 

reversal instead of freeze-out – it is “too strong”. This is a well known occurrence in all 

shock tubes with a solid endwall. Recently, however, a new technique for reducing the 

reshock was incorporated in a shock tube using partial shock absorbers [26]. Although 

this method was used to investigate the RM turbulent mix [26], reducing the reshock is 

exactly what is required to freeze-out a perturbation with a judiciously chosen 

wavelength and reshock time [24]. We hope future experiments will pursue the detection 

of this phenomenon. 

 

IV. SCALING OF BUBBLES AND SPIKES 

In all our graphs we have plotted η , the bubble amplitude, as a function of time, 

naturally. Induced by different acceleration histories )(tg , they have different time 

dependences – compare figures 2a, 2b, 2c, and 3. The idea of scaling is that there may be 

a variable, in this case s  as defined by Eq. (19), which collapses all the different time 

evolutions into one universal curve. In our model that would be Eq. (22). To test this 

hypothesis we plot in Fig. 12 all four curves of η  as functions of s – these are the 

solutions to Eq. (10) starting with k3/1*0 ==ηη  using the four acceleration histories 

of Fig. 1a, 1b, 1c, and the quasi-constant )(tg  of Eq. (29), labeled A, B, C, D for brevity. 

For each case we computed )(tη  vs t , )(ts  vs t , and display η  vs s , t  being the 
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parametric variable. Curve E is Eq. (22). We see that all s)'(tg  scale, except for the 

impulsive case C because 0=g  after 5≈s  cm1/2. Until that “time” C also scales. 

As mentioned in [18], the parameter s  was suggested first by Read [4] based on his 

rocket-rig experiments. Subsequently, it was confirmed by Dimonte and Schneider [5], 

all for the turbulent bubble mixing width bh , finding 2Ash bb α≈  with 07.005.0 −≈bα  

[4,5,6]. For the single-wavelength bubble amplitude applying a WKB-like approximation 

to Eq. (10) we obtained Eq. (22), a different scaling expression, predicting 

LL kAs /→η  asymptotically. We believe Eq. (22) is the simplest level 4 model – an 

explicit solution for “all” )(tg . It is of course less accurate than the level 3 model, Eq. 

(10), which described case C even after 0=g , giving Eq. (15). 

Let us now use CALE to test the scaling hypothesis with three different accelerations, 

again labeled A, B, and C for brevity. A is a constant acceleration of Eg70 ; B is a cubic 

function of t , 

3
3tgg = ,       (33) 

with 3
3 /06.0 msgg E= , so that by 20 ms Egg 480= . C is again an impulsive 

acceleration reaching a peak of Eg 500  by 1=τ ms and returning to zero after another 

millisecond. In this case a jump velocity 49.0gdtv max ===Δ ∫ τg  cm/ms is 

achieved by 2 ms and remains constant thereafter. These three acceleration profiles are 

plotted in Fig. 13a. The corresponding displacements )(txΔ  are shown in Fig. 13b, and 

the corresponding )(ts  in Fig. 13c. 
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The bubble and spike amplitudes (the latter negative in our convention) as calculated 

by CALE are shown in Fig. 14a as functions of time. All start with 13.0*0 ==ηη  cm. 

Since they all have different s)'(tg , it is not surprising to see different evolutions with 

time. Let us consider )(txΔ  and )(ts  as possible candidates for scaling. We plot the 

same data as functions of )(txΔ in Fig. 14b, and as functions of )(ts in Fig. 14c. 

Fig. 14c confirms the expected scaling of bubbles with s : Curves A and B are very 

close to each other in that figure. So is curve C until, of course, 0=g . The spikes do not 

scale with s , as reported earlier [18]. 

Fig. 14b, however, shows that spikes scale with xΔ : Spikes A and B are very close 

to each other when plotted as functions of xΔ . So is C until 0=g , i.e. 22 == τt  ms, 

by which time 49.0)2( =Δ msxC  cm only. As far as we know there has been no earlier 

determination of scaling of spikes. Dimonte and Schneider considered scaling of bubbles 

with xΔ  and abandoned it in favor of s  [5]. While bubbles do scale with s , spikes 

apparently scale with xΔ . 

It is well known that bubbles and spikes differ in shape and in time-evolution at 

moderate to high Atwood numbers. All our calculations so far were limited to 48.0≈A . 

At low A  bubbles and spikes behave similarly and therefore both must scale, if at all, 

with the same variable. We carried out a low- A  simulation ( 17.0≈A ) but could not 

determine whether )(ts  or )(txΔ  was the better scaling variable: Both were equally 

good (or poor) to within 10-20%. 

At high Atwood numbers bubbles scale with )(ts  while spikes scale with )(txΔ . We 

repeated our A, B, and C accelerations after replacing the low-density hexane ( 66.0=ρ  
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g/cm3) with air ( 0012.0=ρ  g/cm3), so that 1≈A . The resulting amplitudes are 

displayed in Fig. 15. As expected, there is now much more contrast between bubbles and 

spikes, the latter growing very large. To accommodate the late-time spikes (~9 cm) and 

bubbles (~3 cm) we doubled the height of the tank. Again, the evolution of )(tbubbleη  

and )(tspikeη  as functions of t  are different for the different s)'(tg , but spikes prefer 

scaling with xΔ  (Fig. 15b) while bubbles continue to scale with s – See Fig. 15c. 

The following argument motivates our claim that at moderate to high Atwood 

numbers spikes scale with xΔ . We have seen that for bubbles with 0>η  the curvature 

(Eq. (6))  generally asymptotes to a constant and can even be kept absolutely constant 

with the choice *0 ηη = . In contrast, for spikes with 0<η  the curvature cannot be 

kept constant and, at late times, ∞→− ket ηη ~)(2 [14]. Now, with a large )(2 tη  only 

the first and last terms in Eq. (8) contribute: 

 0)(2 =+ gηη &&               (34) 

from which 

                          xdtgdt Δ−=−= ∫ ∫ ][η                                     (35) 

confirming the scaling of spikes with xΔ . 

This single-fluid 1=A  case remains the most advanced nonlinear model – The 

governing equation is Eq. (8) with the curvature )(2 tη  given by Eq. (6). Layzer 

considered 00 =η  and bubbles only [12]. We considered arbitrary 0η , noted the 

simplification for *0 ηη = , and gave explicit solutions for the RM case with arbitrary 

0η , again for bubbles only [13]. Subsequently, Zhang proposed using the same equations 
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with negative 0η  and 0η&  for spikes [14]. It follows that the analytic solutions we had 

derived for *0 ηη <  apply to spikes also, as noted recently [10]. 

The exact RM solution to Eq. (8) is Eq. (11) in Ref. [13], valid for 0=g  and 

k3/1*0 =<ηη  (We are considering 2D; for 3D use Eq. (14) in Ref. [13].) Let us set 

00 =η  in that equation which then becomes 

⎥
⎦

⎤
⎢
⎣

⎡
+−
−+

+−=
)12)(13(
)12)(13(ln

33
1

3
2

33
22

0 Y
YYktη&     (36) 

where 

 2/132 +≡ keY η .           (37) 

As a check, at 0=t  2/3=Y  and the left- and right-hand-sides of Eq. (36) vanish. 

There are two reasons why Eq. (36) is interesting. First, Layzer obtained a first 

integral of his equation giving the bubble velocity bubbleη& by considering 00 =η  and 

.constg =  A second integral needed to obtain bubbleη  could be done only by numerical 

quadrature [12]. Had he considered 0=g , he would have obtained this second integral 

analytically: The above Eq. (36). Of course, Layzer’s paper [12] was published 5 years 

before Richtmyer’s [2] so the RM instability was not known at the time to justify  0=g  

(However, we note that Richtmyer’s original classified report was written in July 1954 

and was probably known to Layzer). 

The second reason why Eq. (36) is interesting is that since it is derived by setting 

00 =η  in Eq. (11) of Ref. [13] it applies, as is, to both bubbles and spikes. For bubbles, 

00 >η& . For spikes, 00 <η& , following Zhang’s suggestion for spikes [14]. 
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Eq. (36) is compared with a CALE simulation in Fig 16. The CALE problem, starting 

with 13.00 =η  cm, is the same as the impulsive problem C considered in Figs. 13-15, 

except the impulse is negative, i.e., g  goes from 0 to Eg500−  by 1==τt  ms, and 

returns to 0 by 22 =τ  ms. As expected, the perturbation changes phase going through 

zero at 2≈t  ms (the bubble at 2.1 ms, the spike at 1.8 ms), because the shock is now 

proceeding from the high density to the low density fluid – in other words, the tank is 

jolted up instead of down. We apply Eq. (36) starting at 2=t  ms. 

To estimate )2(0 τηη && ≡  in Eq. (36) we use the approximate expression 

              ...)30/v71(v)2( 0 +Δ+Δ= τητη kAkA&            (38) 

given in [18] and derived in the Appendix (see Eq. (A30b)). The well-known leading 

term, kAv0Δη , was given by Richtmyer and applies for ∞→g  with 0→τ . The 

second term above reflects the finite width of the pulse and comes from expanding the 

exact expression, Eq. (A26b), which involves Airy functions. We note that Eqs. (A30a,b) 

are valid for both 0v >Δ A  and 0v <Δ A . 

Setting 13.00 =η , 49.0v −=Δ A  cm/ms, 58.23.7/6 ≈= πk  cm-1, and 1=τ  

ms, Eq. (38) gives 12.0)2( ≈τη&  cm/ms. The solid curves in Fig. 16 are obtained from 

Eq. (36) after shifting t  by 2 ms and using 12.0±  cm/ms for )2( τη& . We see that 

starting from 02 =τη  the same equation, Eq. (36), with a positive (negative) τη2&  gives 

the bubble (spike) amplitude and agrees well with the CALE simulation. The insets in 

Fig. 16 show the beginning ( 0=t ) and ending ( 24=t  ms) configurations of the heavy 

fluid. Clearly, the spikes are much longer than the bubbles. A similar configuration is 

reached with constant g   (Fig. 4 in Ref. [10]). 
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The spike evolution has several applications as it is similar to that of shaped charges 

[27], ejecta [28], and of course jets [29]. 

Asymptotic bubble and spike amplitudes can be obtained from Eq. (36) using 

2/3 keY η→  for bubbles ( 0>bη ) and 2/)1( 3 keY η+→  for spikes ( 0<sη ): 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
→

22
33ln

3
2 0kt
k

b ηη
&

,    (39a) 

and 

 ts
03ηη &→ .     (39b) 

Using 22=t  ms, 12.00 =η&  cm/ms, and 58.2=k  cm-1 in Eqs. (39a,b) we find 

65.0≈bη  cm and 6.4−≈sη  cm at 24 ms, in agreement with CALE, as seen in Fig. 

16. The asymptotic bubble velocity ktb 3/2→η&  from Eq. (39a) agrees with 

kt3/2=∞η&  given in [13], and the asymptotic spike velocity 03ηη && →s  from Eq. 

(39b) agrees with the 00 =η  version of the equation 
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k
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k
s

s

s
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=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−∞→
&

&
               (40) 

given in [10]. Note that the 3  in Eq. (39b) is the largest factor one can have – it is 

replaced by 2  for 3D spikes. It is interesting that it gets even smaller if the initial 

amplitude 0η  does not vanish and reduces from 3   to 1  for large k0η . It may be 

counterintuitive that large initial amplitudes lead to smaller 0/ηη &&∞ , as in Eq. (40), but 

one must remember that 0η&  itself is an increasing function of 0η  (linearly in the linear 
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regime) so that shaped charges or ejecta or jets with larger initial amplitudes will indeed 

have larger asymptotic velocities. We ran CALE simulations with =0η 0.065, 0.13 

(shown in Fig. 16), 0.26, and 0.52 cm, obtaining s
∞η& =0.09, 0.19, 0.38, and 0.68 cm/ms 

respectively, showing almost linear dependence of s
∞η&  on 0η . Of course to get the actual 

(laboratory) speed of the tip of the jets one must add the tank velocity, 0.49 cm/ms, to 

s
∞η& . For example, for the case shown in Fig. 16 the laboratory speed of the jet is 

0.19+0.49=0.68 cm/ms. 

What happens if we reshock the tank and bring it to rest? As expected, the bubble and 

spike grow faster than the single-shock case, as shown in Fig. 17 where, starting at 10 

ms,  we sent an equal and opposite impulse lasting until 12 ms, bringing the tank to rest 

4.9 cm above its original position. By 24 ms the total extent of the jet, sb ηη + , is 

more than twice the single-shock case: 10.6 cm here vs 4.8 cm in Fig. 16. Clearly, the 

spike is by far the dominant component, making up 9.5 cm of the 10.6 cm – see Fig. 17. 

Its motion is actually quite simple to describe: Since the spike has a small cross section 

( 0/1 2 →
sη ) it is not affected much at all by the reshock and continues as before, i.e. at 

~0.68 cm/ms in the laboratory, and indeed from Fig. 17 68.0−≈sη&  cm/ms after ~12 

ms. The effect of the reshock is simply to stop the bulk motion of the tank without 

affecting the spike; this is the reason for the apparent increase in sη&  seen in Fig. 17 at 12 

ms.  Fig. 18 compares the shock and reshock cases side by side at 24 ms: In the first, 

shock-only case (left figure) the tank is moving up at 0.49 cm/ms and sη&  is apparently 

small; in the second case with reshock (right figure) the tank is at rest and sη&  is large. In 
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both cases the jet locations and speeds in the laboratory are approximately the same, ~15 

cm and ~0.68 cm/ms, respectively. 

 

V. CONCLUDING REMARKS 

Layzer’s approach can be summarized as using a simple potential in the nonlinear 

Bernoulli equation. Despite its known failures [10] it is a very powerful technique 

yielding explicit, analytic expressions valid mostly for the bubble amplitude and, as 

proposed by Zhang [14], for the spike when 1=A . Probably the best illustration of the 

model is Eq. (36), valid for both bubbles and spikes. As we reasoned, Layzer could have 

derived it had he set 0=g  in his equations because he considered 00 =η . For arbitrary 

0η  one can revert to Eq. (11) in [13], using a positive (negative) 0η  for bubbles (spikes). 

Goncharov’s extension of the model to arbitrary A  [15] works very well for bubbles, 

but fails for spikes [10]. We believe this signals a deficiency in that extension and further 

work is needed. The model has been criticized for using a potential y~φ  whose 

derivative (and hence the light-fluid-velocity) does not vanish at infinity [30], but we do 

not believe this to be essential – As Goncharov asserted, the potential is to be used near 

the interface 0≈y  only and not at ∞→y . What we have found attractive in 

Goncharov’s extension is that it allows a simple transformation to convert our earlier 

1=A  bubble results to arbitrary A . It remains to be seen if a more advanced model for 

arbitrary A  will continue to provide simple explicit solutions like Eqs. (14) and (15) for 

RT and RM instabilities. 

Similarly, the scaling of bubbles with s  and the scaling of spikes with xΔ  deserve 

more scrutiny. Experimentally, scaling has been addressed only for the turbulent mixing 
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width and only for the bubble width bh  [4,5]. We hope other simulations and 

experiments with single-scale perturbations will throw light on these issues by 

considering a variety of acceleration profiles )(tg . Even more useful will be the study of 

any scaling in the turbulent spike width sh . Turbulence, being a 3D phenomenon 

requiring intensive computational capabilities, we leave for the future. 

 

This work was performed under the auspices of the U. S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. 

 

APPENDIX 

 In this Appendix we present solutions to Eq. (1) or Eq. (10) for various s)'(tg . 

As we have repeatedly pointed out, both equations have the same mathematical structure 

and are similar to Schrödinger’s equation. Yet another analogy is the “harmonic 

oscillator with a time-dependent spring constant )(tk ,” i.e., 0)(
=+ X

m
tkX&& , X  being 

the position and m  the mass of the load attached to the spring. Despite the appearance of 

such an equation in many fields of physics and finance, a general solution valid for 

arbitrary )(tk  ( )(tg  in our case) is not known. The results for the RT ( .constg = ) and 

RM ( )(v tg δΔ= ) cases were given in the main body of this paper and will not be 

repeated. 

        1) )/(tanh)( 2 Ttgtg ∞= . For simplicity of notation we solve Eq. (1). Define 

)/(cosh2 Tty ≡  and substitute in Eq. (1) to obtain 
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       0)11(
4

)
2
1()1(

2

2

2

=−−−+− ∞ ηηη
y

kATg
dy
dy

dy
dyy .    (A1) 

Now define )(yy ση ν≡  where 4/)2/1( 2kATg∞≡−νν  and write the above 

equation as 

        0
2

))21(
2
12()1( 2

2

=−+−++− σνσννσ
dy
dy

dy
dyy .  (A2) 

This being a hypergeometric equation, its solution is a linear combination of 

hypergeometric functions with the coefficients determined by the initial conditions 0η  

and 0η& . The reader will probably recognize that we have duplicated a QM problem, 

translating  space x  in the potential )(xV  to time t  in the acceleration )(tg . 

 Of course it is simpler to solve Eq. (1) numerically than look up tables for 

hypergeometric functions. Even simpler is the scaling solution, Eq. (22), with 

  ))/ln(cosh()( TtgTts ∞= .             (A3) 

We have verified that this is an extremely good approximation to the numerical solution. 

2) )1()( /Ttegtg −
∞ −= . This was used as an example in Figs. 3 thru 6. Define 

Ttnez 2/−≡ ,             (A4) 

where kAgTTn ∞≡≡ 22γ , not necessarily an integer. Substituting in Eq. (1) we get 

           0)1(1
2

2

2

2

=−++ ηηη
z
n

dz
d

zdz
d

                        (A5) 
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where )(zηη = . The domain ∞<≤ t0  is mapped onto 0>≥ zn  with 

)()0(0 nzt ===≡ ηηη . We shall take ( ) 0/~0 ==nzdzdηη& . The solution to Eq 

(A5) is 

  )()()( 21 zJczJct nn −+=η      (A6) 

where nJ±  are Bessel functions of the first kind and 2,1c  must be determined, as usual, 

by the initial conditions 0η  and 0η& . The problem is much simplified for the case 

2/1=n  as the Bessel functions reduce to zz /sin  and zz /cos . Henceforth we 

take 2/1=n , i.e., kAgT ∞== 4/14/1 γ . Then 

  zzczct /)cossin()( 0 −+ +=ηη      (A7) 

where 96.02/)
2
1sin

2
1(cos ≈+=+c  and 28.02/)

2
1sin

2
1(cos ≈−=−c , 

satisfying 0)2/1()0( ηηη === z  and 00 =η& . 

It is interesting that asymptotically, meaning ∞→t  or 0→z , 

ttTt eeeczc γγ ηηηηη 00
4/

00 4.0))2/1sin()2/1(cos()2(/ ≈−==→ −− , 

compared with the solution to the standard RT linear problem, 

tet γηγηη 00 5.0)cosh( →= . 

 At late times the amplitude must surely be nonlinear so, instead of Eq. (A7) one 

should use 

 LLL
L

zzczc
k

t /)cossinln[(1)( 0 −+ ++=ηη     (A8) 
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where tTt
L

LL enez γ22/

2
1 −− =≡  with LLL Akg∞≡γ . Asymptotically, η  now grows 

only linearly with time with the well known asymptotic bubble velocity 

LLLL kAgk // ∞∞ == γη& . 

 What about the scaling formula, Eq. (22)? For this )(tg  one finds 

  ⎥⎦

⎤
⎢⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
−
+

+−= ∞ x
xxgTts

1
1ln2)(     (A9) 

where Ttex /1 −−≡ . It is not necessary to limit to 2/1=n  – one can vary ∞g  and 

T  independently. In other words, the above s  gives the scaling solution to the general 

equation (A5) which had Bessel functions as exact solutions. This situation is completely 

analogous to the case of the “harmonic oscillator” )1( 2
0 tgg α+= : The scaling 

solution was valid for arbitrary 0g  and α  for which the exact solution called for 

Hermite polynomials, but an exceptionally simple exact solution was obtained if 0g  and 

α  satisfied a certain relationship – See Ref. [18]. In the present case the simple solution 

is Eq. (A8) and the required relationship is kAgT ∞= 4/1  in the linear regime, and 

LLL AkgT ∞= 4/1  in the nonlinear regime. 

 Asymptotically, Eq. (A9) gives ∞→ gts  which, when substituted in Eq. (22), 

gives tkAgtk LLLL /)/( ∞=→ γη . The same result is obtained from the exact 

solution, Eq. (A8), after some algebra. 

3) n
ntgtg =)( . Eq. (1) reads 
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            02

2

=− ηη n
nkAtg
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.     (A10) 

Define mtkAgz m
n /)( 2/1≡  where 2/1 nm += , let ttF )(=η  and substitute in 

the above equation to obtain 

 0)
4

11(1
222

2

=+−+ F
zmdz

dF
zdz

Fd
    (A11) 

which is the modified Bessel equation solved in terms of mI 2/1  and mK 2/1 [31]. For 

1=n  ( 2/3=m ), which will be our 4th and last example, the solution involves Airy 

functions. 

 It is straightforward to obtain (t)sn  needed for the scaling solution: 

         2/12/

2/1
nnn

nn t
n
g

dttg(t)s +

+
== ∫ ,    (A12) 

which must be substituted in Eq. (22). From Eq. (25) the asymptotic bubble velocity is 

2/~//)( n
LL

n
nLL tkAtgkAtg = . The same result is obtained by analyzing the 

large- z  behavior of mI 2/1  and mK 2/1 . 

 Let us calculate the distance nxΔ  travelled under this acceleration: 

          2

)2)(1(
][ +

++
==Δ ∫ ∫ nn

n t
nn

gdtgdtx  ,        (A13) 

so that 

  
2
12

+
+

Δ=
n
nx(t)s nn .      (A14) 
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Since )2/()1( ++ nn  is an extremely weak function of n  varying between 

707.02/1 ≈  and 1 for ∞<≤ n0 , we conclude that tanks undergoing different 

accelerations with different s'n  will have perturbations differing by no more than about 

30% after travelling the same distance. This applies to bubbles. Of course spikes are 

expected to differ even less, if at all, if they scale with xΔ . This mental exercise suggests 

an interesting and, we believe, well-defined problem: What acceleration history )(tg  

gives minimum )( endtη  if constrained to move a given xΔ  by endtt = ? Variational 

calculus with Lagrange multipliers will probably give the optimum solution. Our 

intuition, drawing partly on Figs. 14b and 15b, favors a shock. 

4) tggtg &+= 0)( . Change variables by defining 

3/2
0 )/()( kAgkAtggz &&+≡ ,     (A15) 

and substitute in Eq. (1) to obtain Airy’s equation 

 02

2

=− ηη z
dz
d

,       (A16) 

whose solution is 

 )()()( zBizAit βαη += .      (A17) 

Ai  and Bi  are known as Airy functions [31,32]. The constants α  and β  are 

determined by 0η  and 0η&  using the explicit forms [32]: 

 
)3/2(3

1
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)0()0( 3/2 Γ
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BiAi ,      (A18a) 
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)3/1(3

1
3

)0()0( 3/1 Γ
−=

′
−=′ iBiA .           (A18b) 

Substituting these expressions into Eq. (A17) and its derivative 

)()/()()/()( ziBTziATt ′+′= βαη& , where 3/1)( −= kAgT & , we obtain 
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where we have also used the relation 3/2)3/2()3/1( π=ΓΓ . 

 If we set 00 =η&  we obtain Eq. (26) which we compared with the classical 

solution for .constg =  in Sec. III. 

 Let us concentrate on a symmetric impulse that increases linearly from 0 to 

τgg &=max  by time τ , then decreases linearly to 0 by time τ2 . On the first leg 

tgg &= , TtkAgtz /)( 3/1 == & , and we write 

)()()( 00 zBizAit βαη += ,     (A20a) 

)()()( 00 ziB
T

ziA
T

t ′+′=
βαη& ,     (A20b) 

with 

  )3/1(/3 0
6/1

0 Γ= πηα ,     (A21a) 
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)3/1(3/ 3/1
00 Γ= πηβ ,     (A21b) 

which follow from Eq. (A19a,b) after setting 00 =η& . 

 On the second leg between τ  and τ2 , )2( tgg −= τ& , and 

)()()( 2222 zBizAit βαη += ,               (A22a) 

)()()( 2
2

2
2 ziB

T
ziA

T
t ′−′−=

βαη& ,     (A22b) 

where Ttz /)2(2 −≡ τ . The constants 2α  and 2β  are determined by the initial ( τ=t ) 

conditions of the second leg, )(τη  and )(τη& , which are the final ( τ=t ) conditions on 

the first leg and are therefore given by Eq. (A20a,b): 

 )/()/()( 00 TBiTAi τβτατη +=  

            )/()/( 22 TBiTAi τβτα += ,    (A23a) 

 )/()/()( 00 TiB
T

TiA
T

τβτατη ′+′=&  

                     )/()/( 22 TiB
T

TiA
T

τβτα ′−′−= .    (A23b) 

 From these two equations we obtain 

 [ ])/()/()/(2 0002 TiBTiATBi τβτατπαα ′+′+= ,  (A24a) 

and 

 [ ])/()/()/(2 0002 TiBTiATAi τβτατπββ ′+′−= .  (A24b) 



 

 

35 

We used the Wronskian, π/1=′−′ iBiAiAiB , valid for any z , to simplify the result. 

 Since 2α  and 2β  are now known, the evolution along the second leg given by 

Eq. (A22) is also known for any time ττ 2≤≤ t . In particular, at the end of the pulse, 

i.e., at τ2=t  or 02 =z : 

 )0()0()2( 22 BiAi βατη += ,     (A25a) 

 )0()0()2( 22 iB
T

iA
T

′−′−=
βατη& .    (A25b) 

 These values of η  and η&  can be used as “initial” conditions for the third and last 

leg of the acceleration where we maintain 0=g   (see Fig. 1c) and therefore the solution 

is given by Eq. (15) for τ2≥t . 

The main results of this example are the above two equations giving the 

amplitude and its growth rate at the end of the pulse. After some algebra using Eqs. 

(A18), (A21), and (A24),  a relatively simple form emerges: 

         [ ][ ]
⎭
⎬
⎫

⎩
⎨
⎧ ′+′−+= iAiBAiBi 33

3
1)2( 0

πητη ,         (A26a) 

and 

         [ ][ ]iAiBAiBi
T

′+′+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

= 33
)3/1(3

2)2(
2

3/1
0 πητη& ,      (A26b) 

with all Airy functions and their derivatives evaluated at T/τ . The reader will recognize 

some of the bracketed terms above as )(τη  and )(τη& . In particular, 
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 )()()2( τητητη && ∝ .              (A27) 

The above expressions are valid for arbitrary T/τ , the normalized half-width of the 

pulse. To obtain the small- T/τ  relations given in [18], expand Eqs. (A26a,b) for 

1/ <<Tτ . This is a somewhat laborious procedure because most of the leading or next 

to the leading terms vanish (e.g., 0)0(3)0( =′+′ iAiB ) and one must go to higher 

order Taylor expansions to obtain a non-vanishing contribution. A third-order expansion 

is needed for )2( τη  and a sixth-order expansion for )2( τη& . The final results, however, 

are exceptionally simple: 

 ...))/(1()2( 3
0 ++= Tτητη ,     (A28a) 

and 

 ...)30/)/(71)(/()2( 332
0 ++= TT ττητη& .   (A28b) 

Using the definition 3/1)( −= kAgT &  and the relation 

     2
max

2

0

v ττ
τ

gggdt &===Δ ∫                            (A29) 

we write 

  ...)v1()2( 0 +Δ+= τητη kA ,           (A30a) 

  ...)30/v71(v)2( 0 +Δ+Δ= τητη kAkA& ,    (A30b) 

as reported in [18]. 
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We now turn to the scaling solution. On the first leg where tgg &=  Eq. (A12) 

with 1=n  gives 

 2/3

3
2

)( t
g

ts
&

=≤τ .          (A31) 

On the second leg where )2( tgg −= τ& , 

 ⎥⎦
⎤

⎢⎣
⎡ −−=≥ 2/32/3 )/2(

2
11

3
4)( τττ tgts & .   (A32a) 

In particular, 

 2/3

3
4)2( ττ gs &= .       (A32b) 

By symmetry, )(2)2( ττ ss = . 

On either leg the linear-η  scaling solution is 

 )cosh()( 0 kAst ηη = .      (A33) 

Therefore, 

 ))/(
3
4cosh()

3
4cosh()2( 2/3

0
3

0 TkAg τητητη == & .  (A34) 

When 1/ <<Tτ , this scaling solution is 

  ...)v
9
81(...))/(

9
81()2( 0

3
0 +Δ+=++= τητητη kAT   (A35) 

to be compared with the exact expansion, Eq. (A30a), giving 1 instead of 8/9 as the 

coefficient of the second term. This is surprisingly good agreement given the lengthy 
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derivation of the exact expansion and given that 0=g  at τ2=t  where one cannot 

justify the scaling solution. This is the reason why one cannot apply the scaling solution 

to η&  because it gives 0)(~ =tgη&  at τ2=t , in contrast to the exact result Eq. 

(A26b) or its expansion Eq. (A30b). 

Of course the expansions get poorer as the pulse gets wider. In Table I we compare 

equations (A26a), (A28a), (A34), and (A35). 

We believe the small-τ  expansions, Eqs. (A28) or (A35), have a wider application 

and are not limited to linearly increasing/decreasing impulses only. The reason is the 

following: We considered an impulse that increases exponentially with time, 

1~ / −Tteg  until τ=t , and then decreases exponentially to 0 at τ2=t . The exact 

solution involves Bessel functions (see example 2). The scaling solution, however, is 

quite simple and involves an elementary integration only. We omit the details. The point 

we wish to make is that when we expand )2( τη  for small T/τ  and of course define 

∫=Δ
τ2

0

v gdt , etc, corresponding to this exponential impulse, we obtain the same 

equation as (A35), with the 8/9 factor. Apparently, when the impulse is very narrow, it 

does not matter how maxg  is reached, linearly or exponentially or otherwise. 

Asymptotic nonlinear solutions are obtained by the now familiar procedure of 

Lkk → , LAA→ , and taking the logarithm. The case tgg &=  was discussed in Ref. 

[18] and will not be repeated here. Both the exact and the scaling solutions give 

LLLL kAtgtkAg /)()/( 2/12/1 =&  as the asymptotic bubble velocity ∞η& . 
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We do not investigate other examples. The “harmonic oscillator” was discussed in 

[18]. Other well known QM potentials )(xV  such as the Coulomb, Wood-Saxon, 

Hulthén, Pöschl-Teller, etc, can be converted to acceleration histories )(tg  and solved 

by similar techniques. We concentrated heavily on the linear potential because it is used 

in so many experiments and is probably the next logical step after the classic RT and RM 

instabilities. 

 

Figure Captions 

Fig. 1. Three acceleration profiles similar to the ones used in LEM experiments [5,6] and 

used in CALE simulations in this work. 

Fig. 2. The bubble amplitude )(tη , starting from 065.02/*0 ==ηη cm, for the three 

acceleration profiles shown in Fig. 1. The dashed lines correspond to CALE simulations 

which we label level 1. The two continuous lines, undistinguishable in these figures, 

correspond to level 2 and level 3 solutions. The level 2 solution is obtained from the 

coupled equations (5) and (6). The level 3 solution is obtained from Eq. (1) for *ηη ≤ , 

after which we use Eq. (10). Analytic level 3 solutions in terms of Airy functions and 

level 4 scaling solutions in terms of elementary functions can also be written down (see 

the Appendix). 

Fig. 3. Quasi-constant acceleration (in arbitrary units) given by Eq. (29), and the 

corresponding amplitudes as calculated by CALE for Egg 35=∞ , 2.1=T  ms, and the 

analytic solution Eq. (30), starting with 13.0*0 ==ηη  cm. 
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Fig. 4. Same as Fig. 3 with 52.0*40 == ηη  cm. The level 2 model, based on Eqs. (5) 

and (6), fails for amplitudes max00 )(ηη >  where, from Eq. (9), 48.0)( max0 ≈η  cm. 

The level 3 model, using Eq. (10) for all *0 ηη ≥ , gives a reasonable result. 

Fig. 5. The idealized acceleration given by Eq. (29) (thick line) and the code-calculated 

interface acceleration (thin dashed line) showing oscillations around an average value. 

Imposing deliberately large oscillations as in Eq. (31) with 1=ε  and 10/2πω =  ms-1 

varies )(tg  by %100±  around its average value of Eg35 . 

Fig. 6. The deviation in bubble amplitude with and without the large oscillations shown 

in Fig. 5 with 1=ε . Eq. (32) defines );( εδ t . 

Fig. 7. Acceleration profile for a possible double-impulse experiment. The impulses are 

equal and opposite, bringing the tank to rest at 30 ms. 

Fig. 8. The “bubble” amplitude for the double-impulse experiment with )(tg  shown in 

Fig. 7 (repeated here in dashed line and arbitrary units). The initial amplitude is 0.065 

cm. The bubble turns into a spike after 30 ms, the point where Eqs. (5) and (10) both fail. 

Snapshots in Fig. 9. 

Fig. 9. Snapshots of the interface as calculated by CALE for the double-impulse 

acceleration history shown in Fig. 7, starting with 13.00 =η  cm. We have included the 

distance travelled in the first 3 snapshots. At 30 ms the tank comes to rest 6.2 cm below 

its initial position while the perturbation continues to evolve. 

Fig. 10. An acceleration history with a weaker reshock that can induce freeze-out, i.e., 

make .)( constt =η  See Fig. 11. 



 

 

41 

Fig. 11. The bubble amplitude calculated by CALE, by Eqs. (5)+(6), and by Eq. (10), 

using the acceleration profile )(tg  shown in Fig. 10. CALE predicts complete freeze-out 

(we iterated on )(tg  to obtain this result). Eqs. (5)+(6) or Eq. (10) predict slow increase 

or decrease. The calculations start with 065.00 =η  cm. Without reshock η  would 

continue to grow, tln~η , as in Eq. (15). 

Fig. 12. Bubble amplitudes as functions of s  defined by Eq. (19). The 4 cases A, B, C, 

and D correspond to Figs. 1a, 1b, 1c, and Eq. (29), respectively (see also Fig. 3 for the 

quasi-constant acceleration D). Initial amplitude 13.00 =η  cm. Curve E is Eq. (22). 

Bubbles appear to scale with s  except after 0=g   (curve C after 5≈s  cm1/2). 

Fig. 13. Three acceleration profiles used for testing the scaling hypothesis with CALE 

simulations. A is a constant acceleration at Eg70 . B has 3
3tgg =  with 

3
3 ms/06.0 Egg = . C is an impulsive acceleration reaching Eg500  in 1 ms and 

returning to zero at 22 == τt  ms. Accelerations in units of Eg , displacements in cm, 

and scaling variables in cm1/2 are plotted in diagrams a, b, and c respectively, all as 

functions of time in milliseconds. 

Fig. 14. Bubble ( 0>η ) and spike ( 0<η ) evolutions as calculated by CALE for the 

three acceleration profiles A, B, and C displayed in Fig. 13. They are plotted as functions 

of time in (a), xΔ  in (b), and s  in (c). Bubbles appear to scale with s , while spikes 

prefer xΔ . The impulsive acceleration C does not scale after 0=g . 

Fig. 15. Same as Fig. 14 with the hexane ( 66.0=ρ  g/cm3) in the tank replaced by air 

( 0012.0=ρ  g/cm3), hence 1≈A . 
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Fig. 16. Bubble and spike amplitudes calculated by CALE (thin dashed line) and by Eq. 

(36) (thick continuous lines). The acceleration is the negative of the impulse C in Fig. 13, 

and 1≈A . The insets show the heavy fluid at 0=t  and 24=t  ms. 

Fig. 17. Same as Fig. 16 with an equal and opposite reshock added at 10 ms, as shown by 

the thin dashed line in arbitrary units. CALE simulations starting with 13.00 =η  cm. 

The spike reaches a magnitude of 9.5 cm by 24 ms, compared with 4.3 cm for the shock-

only case. 

Fig. 18. Comparison of two tanks with a single shock only (left figure, s'η  in Fig. 16) 

and for shock+reshock (right figure, s'η  in Fig. 17), both at 24 ms. The position (~15 

cm) and speed (~0.68 cm/ms) of the tip of the jet in the laboratory are approximately the 

same in both cases. The tank at left is moving up at 0.49 cm/ms, hence 

19.068.049.0 −=−=sη&  cm/ms. The tank at right is at rest, hence 

68.068.00 −=−=sη&  cm/ms. Both tanks started with 13.00 =η  cm, 00 =y  

defining the laboratory position of the initial interface, carrying a reservoir of heavy fluid 

4.4 cm thick. 

 

Table Caption 

Table I. The ratio 0/)2( ητη , often called the growth factor, for an acceleration that 

increases linearly with time reaching a maximum maxg  at τ=t  and returning to zero at 

τ2=t . Exact results are obtained from Eq. (A26a), whose expansion for small T/τ  is 

Eq. (A28a). The scaling solution is Eq. (A34) and its expansion is Eq. (A35). 
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                                                         TABLE I 

T/τ  Eq. (A26a) Eq. (A28a) Eq. (A34) Eq. (A35) 

0 1 1 1 1 

0.5            1.127             1.125              1.113            1.111 

1.0            2.159              2.000              2.029            1.889 

1.5            6.466              4.375              5.834            4.000 

2.0           24.541              9.000            21.728            8.111 
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  Fig. 14  



 

 

60 

    Fig. 15  
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