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Abstract 

The generalization error, or probability of 

misclassification, of ensemble classifiers has been 

shown to be bounded above by a function of the mean 

correlation between the constituent (i.e., base) 

classifiers and their average strength. This bound 

suggests that increasing the strength and/or decreasing 

the correlation of an ensemble’s base classifiers may 

yield improved performance under the assumption of 

equal error costs. However, this and other existing 

bounds do not directly address application spaces in 

which error costs are inherently unequal. For 

applications involving binary classification, Receiver 

Operating Characteristic (ROC) curves, performance 

curves that explicitly trade off false alarms and missed 

detections, are often utilized to support decision 

making. To address performance optimization in this 

context, we have developed a lower bound for the entire 

ROC curve that can be expressed in terms of the class-

specific strength and correlation of the base classifiers.  

We present empirical analyses demonstrating the 

efficacy of these bounds in predicting relative classifier 

performance. In addition, we specify performance 

regions of the ROC curve that are naturally delineated 

by the class-specific strengths of the base classifiers and 

show that each of these regions can be associated with a 

unique set of guidelines for performance optimization of 

binary classifiers within unequal error cost regimes.  

 

1 Introduction 

Effective classification technologies are vital to 

systems that learn patterns of behavior from collected 

data to support prediction and informed decision-

making. In particular, human analysts employ classifiers 

to rapidly sift through millions of samples, identifying 

those that contain signatures of interest for more in-

depth analysis. Many real-world applications that 

leverage these technologies involve binary (i.e., two-

class) classification, in which performance is measured 

via false alarms (i.e., type I error) and missed detections 

(i.e., type II error). Generally, the relative costs of these 

two types of error are inherently unequal, determined a 

priori by such considerations as limited resources (e.g., 

time, money, personnel) or actual cost, in terms of loss 

of capital, loss of life, etc. For example, when combing 

millions of documents for those relevant to a search 

query, missed detections may be regarded as an 

acceptable risk, to avoid overwhelming an analyst with 

thousands of irrelevant documents (i.e., false alarms). In 

contrast, when luggage is scanned for the presence of 

explosives, missed detections would be considered far 

more costly. Applications such as these are common, 

and hence, classification methodologies capable of 

performance optimization within unequal cost regimes 

are critical. 

In this paper, we leverage key elements of 

Breiman’s derivation of a generalization error bound 

[Breiman2001] to derive novel bounds on false alarms 

and missed detections. The ultimate objective is to 

enable the characterization and tuning of factors that 

affect classifier performance when the error costs are 

unequal. An analysis of these error-specific bounds 

leads to a natural partitioning of the ROC curve into 

three regions, each of which can be associated with a 

unique set of guidelines for performance optimization. 

These guidelines will provide insight into ensemble 

performance within unequal error cost regimes and lead 

to promising approaches for performance enhancement. 

Moreover, the bounds will be utilized to establish a 

lower bound on the entire ROC curve. 

In section 2, we will present the three performance 

regions of the ROC curve along with the bounds on 

false alarms and missed detections that hold within each 

region. We will discuss the meaning and implications of 

our bounds within each performance region and then 

expand these bounds to the entire ROC curve. In section 

3, we will apply Breiman’s Random Forest ensemble 

classifier [Breiman2001] to both the SPECTF and 

Parkinson’s datasets and show that the ROC curve 

lower bound predicts (1) the shape and trend of the true 

ROC curve and (2) the relative performance of 

competing ensembles. Conclusions are presented in 

Section 4. 

 

2 Class-Specific Error Bounds 

The concept of combining multiple models, the 

cornerstone of ensemble methods, originated as early as 

1977 with the combination of two linear regression 

models by Tukey [Tukey1977, Rokach2009]. With the 

advent of more sophisticated computer technologies, 

however, ensemble methodologies have evolved to 

leverage potentially thousands of base classifiers that 

are usually instantiations of the same underlying model 

(e.g., neural networks, decision trees).  

An ensemble makes class predictions by 

propagating a test sample through each base classifier, 

which assigns a class label, or vote, to the sample. 

Typically, the sample is then assigned to the class 

receiving the majority vote. However, in cost-sensitive 

applications, we can threshold the resulting vote 
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frequencies to enable a classification decision that is 

sensitive to differing error requirements. Bounding the 

errors associated with those decisions is of great 

interest, and is discussed in detail in the following 

sections. 

 

2.1 Generalization Error  
Since their inception, ensemble methodologies 

have proven to be highly successful at reducing the 

generalization error in classification [Rokach2009]. 

Placing a bound on the generalization error is beneficial 

both for characterizing the performance of ensemble 

classifiers in the field as well as in motivating efforts at 

ensemble classifier optimization. Generalization error 

bounds have previously been derived for ensemble 

classification methods by [Breiman2001, Garg2002, and 

Koltchinskii2003].  

The bound derived by Breiman is of particular 

interest, because it incorporates ensemble characteristics 

that are highly interpretable and may enable the 

selective tuning of ensemble performance. Specifically, 

he demonstrated that as the number of base classifiers in 

the ensemble increases, the generalization error, E , 

converges and is bounded as follows: 

 

E
1 s2

s2 ,   (1) 

 

where  denotes the mean correlation of base classifier 

predictions, and s  represents the average strength of the 

base classifiers
1
. From (1), it is immediately apparent 

that the bound on generalization error decreases as the 

base classifiers become stronger and/or less correlated. 

However, note that (1) does not explicitly characterize 

the impact of the strength and correlation of base 

classifiers on class-specific error rates. To this end, we 

have developed extensions to Breiman’s bound that 

directly address these error rates. 

 

2.2 ROC Curve Performance Regions 

As discussed in Section 2.1, vote frequencies 

generated by the ensemble are used to classify a data 

sample. When the positive and negative classes are 

associated with the labels 1 and 0 respectively
2
, these 

votes can be combined to compute a numerical score, 

given by 

 

score x
2

K
hk x

k 1

K

1,  (2)   

                                                 
1 For the sake of brevity, we will often refer to average 

strength and mean correlation as simply strength and 

correlation, respectively. 
2 Under this assumption, we will frequently refer to the 

positive and negative classes as class 1 and 0, respectively. 

where K equals the number of base classifiers in the 

ensemble and hk (x)  is the label given by k
th

 base 

classifier to the input vector x. The score lies within the 

interval [ 1,1] and relates directly to the margin 

function. 

Given a collection of votes generated by an 

ensemble, the margin function measures the degree to 

which the votes for the correct class exceed the votes for 

the incorrect class; in essence, it is a measure of 

confidence. Breiman [Breiman2001] has shown that, for 

the two-class case, the margin function for an ensemble 

classifier can be expressed as 

 

mg x, y
2

K
I hk x y

k 1

K

1, (3) 

 

where I ( )  is an indicator function and y is the true 

class label associated with data sample x. Note that for 

class 1 samples, the score is equal to the margin, and it 

can be easily shown that for class 0 samples, the score is 

the negative of the margin.  

The scores computed for each class form 

distributions that can be used to generate a ROC curve. 

Each point on the ROC curve indicates the false alarm 

and detection rates of the ensemble classifier, given a 

fixed decision threshold. Consequently, the curve can be 

generated by sweeping a decision threshold across the 

two class-specific score distributions simultaneously, as 

illustrated in Figure 1. Note that the probability mass to 

the right of this threshold for the positive and negative 

class score distributions corresponds to the detection 

and false alarm rates, respectively.  

 Breiman [Breiman2001] defines the average 

strength of the base classifiers as the expected value of 

the margin function. Leveraging the relationship 

between the score distributions and the margin function, 

we can estimate the class-specific strengths, s0  and s1 , 

by 

 

s0 0  and s1 1 ,  (4) 

 

where i  is the mean of the score distribution for class i.  

The overall strength, s, can be written in terms of the 

class-specific strengths as: 

 

s
n1s1 n0s0

n1 n0

,   (5) 

 

where n i  is the number of class i samples. Thus, the 

overall strength is a weighted average of the class-

specific strengths, and it measures the degree of 

separation between the means of the score distributions. 

The variance 
2
 of the margin function is also 

related to the strength and correlation of the base 
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classifiers, and can be expressed in general by the 

following inequality: 

 
2 1 s2 .   (6) 

 

We can write Eq. (6) in terms of the positive and 

negative classes as follows: 

 

0

2

0 1 s0

2

1

2

1 1 s1
2

 ,  (7) 

 

where i

2 is the variance of the class i score distribution 

and i  denotes the mean correlation between the base 

classifiers calculated for the class i samples. Eq. (7) 

clearly shows that for fixed class-specific strength, 

reducing (or increasing) the class-specific correlation 

between the base classifiers can yield a corresponding 

shift in the variance of the margin function (and hence, 

the variance of the score distribution) for that class. We 

will discuss this relationship further in Section 2.3.  

 

2.3 Bounding the ROC Curve 

The generalization error bound derived by 

Breiman regards all errors as equally important, and the 

decision threshold is implicitly fixed at zero. Hence, this 

represents a bound on a single point on the ROC curve. 

To extend this bound to the entire ROC curve, thus 

bounding performance across all error cost regimes, 

every decision threshold value must be considered. The 

one-tailed Chebychev inequality, shown in (8), enables 

us to derive bounds on the false alarm rate and detection 

rate in terms of the class-specific strengths and 

correlations for a given threshold, t.   

 

P Z k
1

1
k 2

2

,  for k 0  (8) 

 

For example, a bound on the false alarm rate (FAR) for 

a decision threshold t [ 0 ,1] can be derived (see 

Appendix 1 for a complete derivation) from (8) via the 

variable substitution t 0 k , and is given by 

 

FAR P Z0 t
1

1
t 0

2

0

2

,  t [ 0,1] .     (9) 

 

From the relationships given in (4) and (7), equation (9) 

can be expressed in terms of the strength and mean 

correlation for the negative class and is given by 

 

FAR P Z0 t
1

1
t s0

2

0 1 s0

2

,  t [ s0 ,1].    (10) 

 

Similar derivations can be performed for both tails 

of Chebychev’s inequality, yielding an upper or lower 

bound for both the false alarm and detection rates over 

different subintervals of [ 1,1]. These subintervals 

naturally partition the class-specific score distributions 

(and hence, the ROC curve) into three distinct regions 

 

 
Figure 1.  Performance Regions of a ROC Curve 

Score distributions for both classes are shown (left), indicating the three performance regions 

delineated by the class-specific score means. The ROC curve generated by sweeping a decision 

threshold across the score distributions is also shown (right), with the corresponding performance 

regions indicated. 
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Table 1. Bounds on the false alarm rate (FAR) and detection rate (DET) for each of three 

performance regions on the ROC curve. 

Region III 

t [ 1, s0 ] 

Region II 

t [ s0 ,s1 ]  

Region I 

t [s1 ,1]  

FAR
1

1
0 1 s0

2

t s0

2

 

DET
1

1
1 1 s1

2

t s1
2

 

FAR
1

1
t s0

2

0 1 s0

2

 

DET
1

1
1 1 s1

2

t s1
2

 

FAR
1

1
t s0

2

0 1 s0

2

 

DET
1

1
t s1

2

1 1 s1
2

 

 

that are delineated by the means 
0
 and 

1
. For 

threshold values within each region, denoted I, II, and 

III as shown in Figure 1, the corresponding false alarm 

and detection rate bounds characterize ensemble 

performance in terms of the class-specific strength and 

the correlation associated with the base classifiers. 

These bounds are presented in Table 1. 

Careful inspection of the bounds presented in 

Table 1 reveals the desired characteristics of the class-

specific strength and correlation of the base classifiers 

that will yield bounds most favorable to ensemble 

performance. For example, in Region I, when strength is 

held fixed, it is clear that decreasing the correlation for 

the negative class samples, 0 , decreases the upper 

bound for the false alarm rate, potentially resulting in 

improved performance. Similarly, increasing the 

correlation for the positive class samples, 1 , will 

increase the upper bound of the detection rate. Though 

improved performance is not guaranteed, these bounds 

suggest guidelines for tuning the ensemble to produce 

more favorable conditions for minimizing class-specific 

errors. 

It should be noted here that the region-specific 

guidelines derived from these bounds are highly 

consistent with the intuition gleaned from the score 

distribution diagram in Figure 1. As we observed in 

Section 2.2, for a fixed strength, an increase in the class-

specific correlation can lead to an increase in the 

variance of the corresponding score distribution. 

Figure 1 illustrates that when the decision 

threshold is very high in Region I, an increase in the 

spread (i.e., variance) of the class 1 score distribution, 

for a fixed mean, may increase the number of scores 

lying to the right of threshold, thus increasing the 

detection rate. This is a form of stochastic resonance, in 

which adding variability to the system improves 

performance. Intuitive arguments similar to that above 

can be made regarding the bounds in the remaining 

regions. Note that in all cases when correlation is held 

fixed, higher strength for both classes produces a greater 

separation of the score means and may yield improved  

Table 2. Tuning class-specific correlation.  

Region Guidelines 

I 0  and  1  

II
3
 0  and  1  

III 0  and  1  

 

 

DET 1 EMISS 1
EFAR 1 FAR

FAR

2
1

EFAR
0 1 s0

2

s1 s0

2
, EMISS

1 1 s1
2

s1 s0

2
,

for FAR
EFAR

EFAR 1
,1

  (11) 

 

performance. For a fixed strength, the guidelines for 

tuning class-specific correlation inferred from the 

bounds for each region are summarized in Table 2.  

We can use the error bounds derived for Region II 

to compute a lower bound for the entire ROC curve; a 

complete explanation is included in Appendix 2. This 

lower bound can be expressed as shown in (11). 

EFAR  and EMISS  are the key components of the 

derived ROC lower bound. Figure 2 illustrates the 

effects of reducing the quantities EFAR  and EMISS  on the 

lower bound of the ROC curve. Specifically, at 

sufficiently low false alarm rates, the ROC lower bound 

can only be improved by decreasing EFAR . Similarly, for 

sufficiently high false alarm rates, the lower bound can 

only be improved by decreasing EMISS . 

                                                 
3 Note that the guidelines for Region II are similar to those 

derived from Breiman’s bound, where the decision threshold 

is implicitly fixed at zero. 
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2.4 Leveraging Class-Specific Error Tradeoffs 
Because Regions I and III correspond to low false 

alarm and missed detection rates, respectively, they are 

of great interest for the many real world applications 

that involve extreme differences in error cost. Like 

Breiman’s bound, the error bounds derived for these 

regions are relatively loose; hence, they serve most 

effectively as an intuitive guide to performance 

optimization.   

As shown in Table 2, the error bounds for Regions 

I and III yield opposing guidelines with respect to class-

specific mean correlation. Specifically, if the class-

specific correlations could be effectively controlled for 

fixed means, performance within these regions of the 

true ROC curve could be explicitly traded off based 

upon relative error costs.. 

In addition, the ROC lower bound may also be 

influenced via manipulation of the class-specific 

strength and correlation, as evidenced by Eq. (11). Near 

the boundaries of Region II, decreasing the quantities 

EFAR  and EMISS  yields a shift in the ROC lower bound, 

as illustrated in Figure 2. Interestingly, the correlation 

for class 1 samples plays no role in EFAR , while the 

correlation for class 0 samples plays no role in EMISS . 

Thus, Eq. (11) suggests that to shift the bound near the 

boundary between Regions I and II, we must balance 

the strength and correlation for class 0 and increase the 

strength for class 1 as much as possible, without regard 

to the class 1 correlation. A similar argument holds for 

shifting the bound near the boundaries of Regions II and 

III.   

It is important to realize that when the positive and 

negative classes are sufficiently well separated, as 

shown in Figure 3, the entire ROC curve may reside in 

Region II, where high strength and low correlation for 

both classes result in lower error bounds. Any attempts 

to increase class-specific correlation under these 

conditions would prove counterproductive. 

Achieving a sufficient degree of control to enable 

the correlation of the base classifiers to be tuned for 

each class, as proposed above, presents a significant 

challenge in general. However, in Section 3, we will 

investigate an approach to increasing the correlation 

over both classes that applies specifically to the Random 

Forest, and we will examine its impact on the three 

performance regions. 

 

3. Empirical Analysis using Random Forests 
The Random Forest (RF) is an ensemble 

methodology that utilizes decision trees as its base 

classifiers [Breiman2001]. A decision tree is 

constructed via a series of hierarchical univariate node 

decisions. Prior to training an RF, a split dimension, m, 

is specified which determines the number of features 

considered at each node. It can be shown empirically 

 
Figure 2.  The effects of decreasing EFAR  and EMISS  

on the ROC Lower Bound are shown. 

 

 
Figure 3. Class-specific score distributions where 

the ROC curve lies entirely in Region II are 

shown. The only range of thresholds used to draw 

the ROC curve lie within the overlap between the 

distributions.  

 

that higher split dimensionality results in stronger and 

more correlated trees.  

In the following experiments, we utilized two 

publicly available data sets to demonstrate (1) the 

effects of varying the split dimension on class-specific 

strength and correlation, and (2) the ability of the ROC 

lower bound to predict the relative performance of 

competing forests (i.e., the degree to which the true 

ROC curves and their corresponding bounds are 

similarly “nested”). Each experiment consisted of 101 

trials, initiated using different random seeds, to enable 
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an assessment of statistical significance. Within each 

trial, Random Forests were trained using split 

dimensions ranging from 1 to 15. Each forest in these 

studies was composed of 500 Gini-based decision trees 

[Breiman1984], and the resulting ROC curves were 

computed using the out-of-bag samples.  

The data sets of interest in these studies come from 

the UCI Machine Learning Repository [Asuncion 

2007]. The first of these is the SPECTF Heart data set, 

consisting of features from cardiac Single Proton 

Emission Computed Tomography (SPECT) images used 

to classify patients as normal or abnormal. This data set 

consists of 267 samples and 44 features. We also 

present results for the Parkinson’s data set, which 

consists of 197 samples and 23 features (speech 

signals). The task in this case was to determine whether 

a subject has Parkinson’s Disease. 

 

3.1 The Similarity Metric 
To quantify the degree to which the true ROC 

curves and their bounds are similarly “nested”, we 

developed a similarity measure computed as described 

below.   

For each of 10,000 evenly distributed values of the 

decision threshold, t, we computed the correlation 

coefficient between false alarm and detection rates and 

their corresponding bounds across the different Random 

Forest split dimensions. The average of these correlation 

coefficients was used as a measure of similarity between 

the ROC curves and bounds at a particular t. The overall 

similarity measure was obtained by averaging the 

pointwise similarity measures over all values of t. 

To determine whether the resulting similarity was 

statistically significant, a p-value was computed from 

the 101 trials. We used p < 0.05 to determine 

significance. 

 

3.2 Predictive Capability of the ROC Bound 
The ROC curves and corresponding bounds 

obtained by applying the Random Forest to the SPECTF 

data set are shown in Figure 4. Note that all three 

performance regions contain some portion of the ROC 

curves, and it can be visually observed within each 

region that the “nesting” of the ROC curves is 

consistent for both the true curves and their bounds. 

Moreover, the trend and shape of the bounds strongly 

resemble the true ROC curves. From a quantitative 

standpoint, the median similarity measure was 0.6676, 

and was found to be statistically significant (p < 0.01).  

The ROC bounds correctly predicted that lower split 

dimensions would yield better performance in Regions I 

and II, while higher split dimensions would be favored 

in Region III.  

We can interpret these results further by 

examining the class-specific strengths and correlations, 

as well as EFAR  and EMISS , as a function of split 

dimension, shown in Figure 5. With regard to EFAR  and 

EMISS , recall that lower values reflect increased 

performance at the boundaries between Regions I and 

II, and II and III respectively. In this case, the lower 

split dimensions produced lower values for EFAR  and 

EMISS . This is consistent with Figure 4, which shows 

that lower split dimensions are superior throughout all 

of Region II, including areas near the boundaries. 

These results also demonstrate that an increase in 

the correlation between the base classifiers can benefit 

the ensemble in Region III. On this data set, increasing 

the split dimension has a negligible effect on the 

strength, but it increases the correlation of the base 

classifiers for both classes.  

In Region III, the ROC bounds produced for 

higher split dimensions are slightly favored over those 

for lower dimensions. It is shown in Appendix 3 that, 

for very low thresholds, the relative behavior of the 

ROC bounds in Region III is increasingly determined by 

the ratio EMISS / EFAR , rather than by EMISS  alone. 

Specifically, lower EMISS / EFAR  values tend to be 

associated with better performance in Region III. The 

same is true of EFAR / EMISS  for very high thresholds in 

Region I. These ratios are also plotted as a function of 

split dimension in Figure 5. We have observed that 

when both class-specific correlations are increased by 

roughly the same amount, under the assumption of fixed 

strength, the ratio EMISS / EFAR  will decrease. This 

provides strong evidence that the increase in the class-

specific correlations played a role in improving the 

bound in Region III. 

The same experiments that were performed for the 

SPECTF data were performed for the Parkinson’s data 

set, and the resulting ROC curves and bounds are shown 

in Figure 6. The bounds clearly predict the variability 

observed in the true ROC curves due to the split 

dimension. The median similarity value, 0.5004, was 

statistically significant (p < 0.01).  Note that in this 

example, no portion of the true ROC curves is present in 

Region I. Additionally, because only a few points on the 

ROC curve lie in Region III, the performance of forests 

in the low false alarm rate region will not be 

substantially improved by increasing the base classifier 

correlation for class 1 alone. 

To provide further insight, the class-specific 

strengths and correlations, EFAR , EMISS , and their ratios 

are plotted as a function of split dimension in Figure 7. 

It is clear that increasing the split dimension increases 
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Figure 4. ROC bounds predict relative RF performance across split dimensions on the SPECTF 

Data Set. ROC curves for five Random Forests trained using different split dimensions in the 

range [1,15] (lighter color implies higher dimension) are plotted for the three performance regions.  

 

 
Figure 5. Strength, Correlation, EFAR, and EMISS on the SPECTF Data Set.  
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Figure 6. ROC bounds predict relative RF performance across split dimensions on the Parkinson’s 

Data Set. ROC curves for Random Forests trained using different split dimensions in the range [1, 

15] (lighter color implies higher dimension) are plotted for each of the three performance regions.  

 

 
Figure 7. Strength, Correlation, EFAR, and EMISS on the Parkinson’s Data Set.  
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the strengths and correlations for both classes. 

Interestingly, both EFAR  and EMISS  are minimized at 

intermediate values of split dimension. This was found 

to be consistent with Figure 6, which indicates that the 

bounds for the intermediate split dimensions are 

superior across Region II.  

In this case, because there is so great a separation 

between the score distributions, there are few threshold 

values high or low enough to generate bounds in 

Regions I and III.  The bounds that can be drawn are 

very near the boundary with Region II, and behave 

much like those within Region II. 

 

4. Conclusions 

To address classification performance optimization 

for real-world applications that have unequal error costs, 

we have extended Breiman’s generalization error bound 

to the entire ROC curve.  Our analysis has shown that 

there are distinct regions of the ROC curve (Region I - 

the extreme low false alarm rate region and Region III - 

the extreme low miss rate region) in which different 

class-specific correlations are desired. Specifically, for 

decision thresholds lying in each of these regions, 

increasing the correlation on a specific class may 

improve the performance of the ensemble classifier.  

However, not surprisingly, there is a clear trade off in 

performance optimization between Regions I and III, 

because they respond to opposing guidelines with 

respect to increasing or decreasing the class-specific 

correlations. Thus, when the strengths and correlations 

are altered in a class-specific way, there should be a 

strong motivation to optimize performance in exactly 

one of these regions. 

A comparison of Random Forests, trained using 

different split dimensions, has shown that the ROC 

lower bounds are predictive of relative classifier 

performance. Specifically, comparing the ROC curves 

and corresponding ROC bounds generated from these 

different RFs, we demonstrated that the bounds are 

predictive of the actual ROC curves for all three 

performance regions of interest.  

This research suggests a number of methods for 

improving the performance of classifiers within the 

defined regions on the ROC curves. When the ensemble 

provides poor separation between distributions (and 

hence Regions I and III are defined), we expect 

techniques such as asymmetric boosting to provide a 

performance trade-off between these regions. 

Additionally, Breiman originally suggested bagging as a 

method of decreasing the correlation between base 

classifiers while preserving their strength. Our analyses 

suggest that resampling techniques that favor sampling 

of one class over the other could provide a mechanism 

for tuning class-specific correlation.   

Note, however, that these ultra-low error rate 

regions in which increased class-specific correlations 

are desirable will disappear as the performance of the 

classifier improves (i.e., score distributions become 

more separated).  Hence, methods that trade off 

performance in Region I in favor of performance in 

Region III will be ineffective (and possibly 

counterproductive) in situations where performance is 

already quite high. On the other hand, if the entire ROC 

curve lies in Region II, far from the boundaries of 

Regions I and III, improving performance on either 

class via tuning of strength or correlation will likely 

result in an improvement on the other class as well. 

For others in the community, this research may 

prove helpful for the investigation and evaluation of 

other ensemble techniques that attempt to optimize 

performance in a class-specific way (such as [Fan1999] 

and [Masnadi-Shirazi2007]). 

 

Appendix 1. Bounds on False Alarm Rates and 

Detection Rates 
When constructing the ROC curve, the False 

Alarm Rate (FAR) is the probability that a score 

exceeds some threshold t from the class 0 empirical 

score distribution. Similarly the Detection Rate (DET) is 

the probability that a score exceeds t from the class 1 

empirical score distribution.  These rates can be 

expressed as: 

 

FAR P Z0 t  and DET P Z1 t ,  (A1) 

 

where Z0  and Z1 are random variables representing the 

class-specific scores for a particular sample. 

We can place bounds on these quantities using the 

one-tailed Chebychev inequality: 

 

P Z k
1

1
k 2

2

  for  k 0 ,  (A2) 

 

for some k , where Z has mean  and finite variance 
2
.  Eq. (A2) states that values of Z are not likely to be 

much greater than the mean. Eq. (A2) can be 

transformed to a statement about the probability of a 

value being larger than a threshold t via the variable 

substitution, t k , which yields the following 

inequality: 

 

P Z t
1

1
t

2

2

  for  t .   (A3) 

 

Note that Eq. (A3) only applies to the tail of the score 

distribution where t . The other tail of this 

distribution similarly gives us a bound on P(Z t) , and 
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we can subtract both sides of the inequality from 1 to 

yield an inequality describing the region t : 

 

P Z t
1

1
2

t
2

  for  t .  (A4) 

 

Equations (A3) and (A4) now give us two limits 

on the probability that a random variable Z will be 

greater than the threshold t in terms of the mean and 

variance of the distribution.  

Now if we take Z to be the class-specific scores of 

an ensemble classifier, the variance can be related to the 

correlation between the base classifiers.    

[Breiman2001] showed that the variance of scores is 

related to the correlation between base classifiers and 

their strength, as follows: 

 
2 1 2 ,   (A5) 

 

where  is Breiman’s measure of mean correlation 

between the base classifiers in the ensemble. The 

expressions on the right hand side of inequalities (A3) 

and (A4) are monotonically increasing and decreasing 

functions of the variance, respectively (assuming 

nonzero variance). Hence, we can substitute the right 

hand side of (A5) in place of the variance in (A3) and 

(A4) without violating the inequalities.  The resulting 

bounds, in terms of the mean correlation of base 

classifiers, are given by 

 

P Z t
1

1
t

2

1 2

  for  t ,  (A6) 

 

P Z t
1

1
1 2

t
2

  for  t . (A7) 

 

As discussed in the main body of the text, Eq. (A8) 

relates the class-specific strength to the score 

distributions as follows: 

 

s0 0  and s1 1 .  (A8) 

 

Hence, we can use the expressions given by (A6 – 

A8) to bound the False Alarm Rate and Detection Rates 

in (A1) in terms of the class-specific strengths and 

correlations. This resulting bounds are summarized in 

Table 1. 

 

Appendix 2.  ROC Lower Bound 

At each value of the threshold t in Region II, the 

detection and false alarm rates must satisfy the 

expressions in Table 1. Although the value of t is 

constrained to be between s0  and s1 , it is easily shown 

that the Region II bound on detection rate goes to 0 as t 

goes to s1 , and the corresponding bound on the false 

alarm rate goes to 1 as t goes to s0 . Hence, these 

bounds can be used to generate a lower bound for the 

entire ROC curve by plotting the bound values at every 

threshold. We can derive an equation for this curve by 

first setting the Region II inequalities in Table 1 to 

equalities, then solving for t. The resulting system of 

equations can be solved to obtain the smallest possible 

value of DET as a function of FAR, given by 

 

DET  

1
1 1 s1

2

0 1 s0

2

s1 s0

0 1 s0

2

1 FAR

FAR

2
1

(A9) 

 

and the constraint s0 t s1  can be used to obtain 

constraints on the values of FAR and DET. Specifically, 

if we substitute s0  and s1 for t  into the Region II FAR 

bound found in Table 1, we obtain: 

 
1

1
s1 s0

2

0 1 s0

2

FAR 1 .  (A10) 

 

Constraints on DET can be obtained in a similar 

fashion. Finally, by substituting the values EFAR  and  

EMISS , given below,  into (A9) and (A10), we arrive at 

Eq. (11) found in the main text. 

 

EFAR
0 1 s0

2

s1 s0

2
 and EMISS

1 1 s1
2

s1 s0

2
 (A11) 

 

Appendix 3. EFAR  and EMISS  ratios in Regions I and 

III 
The same derivations performed in Appendix 2 

can be performed using the FAR and DET bounds for 

Regions I and III found in Table 1, and an expression 

for DET as a function of FAR can be derived. However 

the resulting expressions will not be upper or lower 

bounds on the entire ROC curve in these cases. For 

example, in Region I, the inequalities produced by this 

derivation are upper bounds on both DET and FAR. 

They describe the best possible DET at the worst 

possible FAR, given the class-specific strengths and 

mean correlations. However, this function does provide 
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information about the behavior of the ROC curve in 

Region I. 

For Region I, the function for the highest DET and 

highest FAR, given the class-specific strengths and 

mean correlations, are given by: 

 

DET 1
1

EMISS

EFAR 1 FAR

FAR
1

2
1

for FAR
EFmin

EFmin 1
,
EFAR

EFAR 1
,  where

EFmin

0 1 s0

2

1 s0

2

(A12) 

 

The key point to notice about equation (A12) is 

that as the FAR approaches zero, the equation for DET 

approaches 

 

DET
EMISS

EFAR

FAR

1 FAR
.  (A13) 

 

Hence, as the false alarm rate approaches zero (i.e., the 

extreme boundary of Region I), the detection rate is 

increasingly determined by the ratio of EFAR  to EMISS . 

Specifically, lower ratios of EFAR / EMISS  may produce 

better detection rates. However, this only holds for false 

alarm rates on the interval specified in (A12), so 

equation (A13) is merely suggestive of the behavior of 

the ROC curve when the threshold is very high (far 

from the boundary between regions I and II). 

Similar arguments apply to Region III, where we 

instead can calculate the function for the lowest DET 

and lowest FAR, given the class-specific strengths and 

correlations. The result suggests that far from the 

boundaries between Regions II and III, a lower ratio of  

EMISS / EFAR  is preferable. 
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