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ABSTRACT

Three integration strategies are developed and tested for the stiff, ordinary differential equation (ODE)
integrators used to solve the fully coupled multizone chemical kinetics model. Two of the strategies tested are
found to provide more than an order of magnitude of improvement over the original, basic level of usage for the 
stiff ODE solver. One of the faster strategies uses a decoupled, or segregated, multizone model to generate an 
approximate Jacobian. This approach yields a 35-fold reduction in the computational cost for a 20 zone model. 
Using the same approximate Jacobian as a preconditioner for an iterative Krylov-type linear system solver, the 
second improved strategy achieves a 75-fold reduction in the computational cost for a 20 zone model.  The 
faster strategies achieve their cost savings with no significant loss of accuracy.  The pressure, temperature and 
major species mass fractions agree with the solution from the original integration approach to within six 
significant digits; and the radical mass fractions agree with the original solution to within four significant digits.  
The faster strategies effectively change the cost scaling of the multizone model from cubic to quadratic, with 
respect to the number of zones.  As a consequence of the improved scaling, the 40 zone model offers more than 
a 250-fold cost savings over the basic calculation.

INTRODUCTION

Predicting the performance of an internal combustion engine solely through simulation is one of the most 
challenging goals of computational science. The large span of length and time scales is simply too great at this 
time to completely resolve the physical phenomena in the multi-dimensional, turbulent, chemically reacting 
flow present in-cylinder.  Ambitious efforts are underway to resolve the smallest turbulent length scales and 
chemical time scales in a laboratory-scale flame using direct numerical simulation (DNS) and detailed chemical 
kinetics methods on petascale computing architecture [1].  Without significant algorithmic improvements , the 
necessary computational resources for simulating this level of detail will not appear in the desktop computer of 
an engine designer in industry for at least another two decades given current trends in hardware development.  
In the interim, the practice of simplifying the physical models for complex in-cylinder flows to the level of 
available computational resources will continue.  Such practices commonly depend on one or more of the 
following: reduced dimensionality and geometric detail, reduced chemical kinetic mechanisms, simplified 
turbulent transport models, and simplified bulk fluid dynamics. The multizone model is an example of the last 
type of simplification.

The multizone model approximates the in-cylinder flow as a series of coupled, well-mixed reactors.  The model 
does not consider the fluid velocity in the cylinder; only the conservation laws for mass, energy and species are 
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included in the governing equations.  With no bulk fluid motion to resolve, costly CFD calculations of the 
reacting flow may be avoided allowing most of the computational effort to be dedicated to resolving the
detailed chemical kinetics. This makes the multizone model particularly well-suited to approximate reacting 
flows with nearly homogenous species compositions where the reactions are limited by the chemical kinetics 
instead of the mixing process.  Consequently, the multizone model is used by many investigators [2-7] to study 
the homogeneous charge compression ignition (HCCI) operating regime because the engine performance is 
dominated by the chemical reaction rates.

Several different schemes for coupling the zones in the multi-zone model have been successfully applied to 
HCCI engine operation.  Aceves et al. [2] obtained good agreement between the multizone model and 
experimental HCCI engine data.  In the multizone model in [2], the pressure is assumed to be uniform
throughout the cylinder, which couples all the zones to each other at every point during the cycle. Further, the 
multizone model [2] assumes no transport between the zones as a result of any differences in mass, energy, or 
species concentration.  This assumption is made because the heat release event in HCCI operation generally 
occurs rapidly and uniformly across the cylinder.  Komninos and Hountalas [7] also showed good agreement 
between the multizone model and experimental HCCI engine data, albeit using a different set of modeling 
assumptions.  In particular, the pressure is only taken to be uniform across the zones after the reactions in each 
zone have been updated.  This approach effectively decouples the zones during the time integration of the 
chemical kinetics reducing the basic solution cost; however, the rate of pressure equilibration across the 
cylinder is now connected with the numerical time step used to march the solution. The multizone model in [7] 
does include transport between adjacent zones.  In particular, mass transport between zones is used to achieve a 
uniform cylinder pressure at the end of each chemical reaction step; and a conduction type model is used to 
capture any energy transport between zones.

The multizone model has recently been applied by Havstad et al. [8] to investigate the multi-cycle instabilities 
arising from the chemical kinetics during the transition from HCCI to spark ignited (SI) operation.  In order to 
approximate the flame propagation through the cylinder during SI operation, a phenomenological mixing model 
is used to allow transport between zones in the multizone model of Aceves et al. [2].  The characteristic 
timescale of the mixing model is adjusted to match the experimental pressure rise rate reported by Wagner et al. 
[9].  The multi-cycle multizone model is able to reproduce several of the patterns found in the experimental 
cycle-to-cycle variations.

The focus of this investigation is to develop computationally efficient integration strategies for the type of 
multizone model used in [8].  The engine performance is obtained with the multizone model by integrating a set 
of first-order, ordinary differential equations (ODEs) representing the conservation of mass, energy and species 
in each zone.  A detailed chemical kinetics mechanism generally involves a wide range of characteristic 
timescales, the fastest of which are several orders of magnitude smaller than the period of the engine cycle.  It is 
therefore impractical to use an explicit ODE integrator (e.g. Runge-Kutta) because the time step is limited for 
numerical stability by the smallest timescale in the system.  When a large range of timescales exists in the 
system of ODEs, the system is said to be "stiff."  Stiff ODE integrators are designed to take larger implicit time 
steps.  However, updating the system state after an implicit time step typically requires a solution to a non-linear 
system of equations arising from the discretization of the time derivative.  This adds an appreciable amount of 
complexity to the design of the stiff ODE integrator.

The purpose of this investigation is not to create a new stiff ODE integrator, but rather find out which 
integration strategies, using existing stiff ODE integrator packages yield the greatest performance gains for the 
fully-coupled multizone model.  The most expensive part involved in the integration of the multizone model is 
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the construction and linear system solution associated with the Jacobian matrix.  The Jacobian matrix is used in 
stiff ODE integrators to iterate toward the non-linear solution that updates the system state after an implicit time 
step. Based on the structure of the Jacobian matrix for the multizone model, three integration strategies are 
proposed here to accelerate the computation.  These include: (i) approximating the Jacobian as a banded matrix; 
(ii) using a set of quasi-independent well-mixed reactors to estimate the block diagonal terms of the Jacobian 
matrix; and (iii) using the quasi-independent well-mixed reactor estimate of the Jacobian as a preconditioner in 
an iterative Krylov-type linear system solver.

The three integration strategies are compared to the original approach in [2] using the basic features of the 
DVODE integrator developed as part of the EPSIODE/ODEPACK/VODE family of integrators at Lawrence 
Livermore National Laboratory [10-13].  The first strategy, based on the banded Jacobian, is considerably 
slower than the original.  The second strategy, using a decoupled multizone model to generate an approximate 
Jacobian, yielded a 35-fold reduction in the computational cost for a 20 zone model.  By using the same 
approximate Jacobian in the second strategy as a preconditioner for an iterative Krylov-type linear system 
solver, the third strategy achieves a 75-fold reduction in the computational cost for a 20 zone model.  The faster 
strategies achieve their cost savings with no significant loss of accuracy.  The pressure, temperature and major 
species mass fractions agree with the solution from the original integration approach to within six significant 
digits; and the radical mass fractions agree with the original solution to within four significant digits. The faster 
strategies effectively change the cost scaling of the multizone model from cubic to quadratic, with respect to the 
number of zones.  Even greater performance gains can therefore be achieved for multizone models with more 
than 20 zones. As tested in this investigation, the 40 zone model offers more than a 250-fold cost savings over 
the original calculation. This integration strategy for the coupled multizone model now offers the opportunity 
to calculate hundreds of cycles in the time it used to take the original method, which allows the multi-cycle 
stability simulations conducted in [8] to be performed in a few hours instead of several days.

It is worth noting that the reductions in computational cost cited above are based on comparisons between the 
different integration schemes with no modifications to the ODE integrator source code.  As distributed, the 
source code for the EPSIODE/ODEPACK/VODE family of integrators includes linear system solvers based on 
the older LINPACK linear algebra library.  The newer LAPACK linear algebra library [14] has largely 
superseded LINPACK offering marked improvement on modern computer architectures especially for large 
matrices.  For the largest matrices involved in the ODE integration of the coupled multizone model, the 
LAPACK linear system solvers are approximately 15 times faster than the original LINPACK library.  
Modifying the ODE integrator source code to use LAPACK for the original integration strategy in [2] results in 
a 2.4-fold reduction in cost for a 20 zone model, and a 4.3-fold reduction in cost for a 40 zone model.  The 
proposed integration strategies achieve a significant cost reduction by reducing the size of the linear systems 
solved in the implicit ODE integration.  The matrices in the proposed strategies are sufficiently small that there 
is no appreciable performance difference between LINPACK and LAPACK.  Therefore, the performance 
improvements offered by the proposed strategies are now somewhat lower using LAPACK: a 28-fold reduction 
in the computational cost for a 20 zone model; and a 60-fold reduction in the computational cost for a 40 zone 
model.  The LAPACK library tested is tuned specifically for the architecture of a 2.4 GHz Intel Quad Core
processor, which is used in all the LAPACK-based calculations presented here.  The choice of linear algebra 
library does not impact the asymptotic trends presented.  The original strategy for the coupled multizone model 
in [2] still scales as O(Nz

3) and the proposed strategies scale as O(Nz
2), with the number of zones Nz.  Unless 

stated otherwise, the performance gains discussed here refer to the different integration strategies using the 
original source code for the ODE integrator built with the older LINPACK library. 
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MODEL DESCRIPTION

The multizone chemical kinetics model for internal combustion represents a single cylinder of an engine as a set 
of Nz coupled well-mixed reactors or zones.  A schematic of the model showing the zone interactions is given in 
Figure 1.  Each zone (i = 1, … Nz) has a temperature Ti, mass mi and species composition associated with it.  
The species composition of the ith zone is given as a set mass fractions yi,1, yi,2, …, yi,Ns for the Ns species 
considered in the chemical mechanism.  The time evolution of these flow quantities for the trapped mass 
captured in the cylinder between intake valve closing and exhaust valve opening is given by the following set of 
coupled, first-order, ordinary differential equations for each zone (i = 1, … Nz):

dmi

dt
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Equations (1-3) are the conservation laws for mass, species and energy, respectively.  The terms Fi
(m), Fi

(y) and 
Fi

(T) represent the transport of the mass, species and energy (respectively) to the ith zone from adjacent zones (i-
1 and i+1 - excluding the first and last zones).  In the remaining terms, the subscript i refers to the property in 
the ith zone, the subscript j refers to the property for the jth species, and the overbar refers to a mixture averaged 
property.  Here i,j is the species molar production rate, Wj is the molecular mass,  is the fluid density, cp,i is 
the specific heat at constant pressure, p is the global cylinder pressure, and hi,j is the specific enthalpy.  The term 
Qw,i in (3) represents the volumetric heat loss rate to the wall, which is modeled here using a simplified 
Woschni correlation [15].  The computational speedup achieved in this investigation for the multizone model is 
not affected by the choice of the wall heat transfer model; therefore, any of the more recent heat transfer models 
developed specifically for HCCI may be used as well (see [16] as an example).

By selecting only adjacent zones for transport coupling, as is done here, the in-cylinder distribution of the fluid 
properties is assumed to be one-dimensional.  One can imagine the zones as either a set of disks stacked in the 
direction of the piston motion, or as set of concentric shells depending on the effective area and associated time 
constants governing the transport between the zones.  The treatment of the zone-to-zone transport terms can 
vary significantly between different instances of the multi-zone model while still showing agreement with 
experimental engine performance data.  As an example, the transport terms are taken to be zero in the HCCI 
cycle model validated by Aceves et al. in [2].  More detailed treatments of the transport phenomena, such as the 
conduction type model used by Komninos and Hountalas [7] for energy exchange between zones, are also 
found to perform similarly well.  The computational speedup achieved in this investigation is expected to apply 
to any choice of the zone-to-zone transport model including higher dimension zone coupling schemes. 

One of the main assumptions of the multizone model considered here is that the engine does not experience 
knock, and the in-cylinder pressure is therefore uniform across all the zones.  This is equivalent to saying the 
flow induced by local pressure gradient has a minor impact on the overall engine performance, which is



Page 5 of 20

Figure 1.  Schematic of the fully-coupled multizone model.

consistent with omitting the conservation of momentum from the governing set of equations (1-3). Using the 
uniform pressure assumption and the ideal gas law, the pressure derivative appearing in (3) can be expressed in 
terms of quantities that are solved directly. Specifically,
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where the rate of change of the cylinder volume dV/dt is given in terms of the engine speed and geometry (i.e.,
bore, stroke and compression ratio) using the slider-crank equation.  It is important to note that as a 
consequence of the uniform pressure assumption, each reacting zone is coupled to all the others through the 
pressure derivative (4).  It is this pressure coupling across all zones, and not the coupling from the transport 
terms, that leads to most of the computational cost of the multizone method using the basic solution tools.

The remaining terms in the governing set of equations (1-3) are determined from the system variables (zone 
mass mi, temperature Ti and species mass fractions yi,j) using the ideal gas law, thermodynamic relationships 
and the user-defined reactions in the chemical kinetics mechanism.  The cylinder pressure is obtained from the 
sum of partial pressures exerted on the system by each zone; that is,
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The mixture density in the ith zone is then given by
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and the specific heat at constant pressure of the mixture (mass units) is


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sN

j
jpjiip cyc

1
,,, . (7)

The mixture is assumed to be thermally perfect; that is, the individual specific heats cp,j and enthalpies hi,j of the 
species are only a function of the zone temperature Ti. The exact temperature dependence for the 
thermodynamic variables cp,j and hi,j is typically supplied as a database of empirical fitting functions, such as the 
one calculated for the NASA chemical equilibrium code CEA, developed by Gordon and McBride [17-18].  The 
final term needed to solve the governing equations (1-3) is the molar production rate i,j.  The molar production 
rate in each zone can be calculated as a function of pressure, temperature and species mass fractions with the 
user-specified chemical kinetics mechanism and the associated reaction rates (see Chapter 2 of [20] for more 
details on the calculation).

BASIC SOLUTION METHODOLOGY

The governing equations (1-3) are a system of coupled, first-order, ordinary differential equations (ODEs).   
The molar production rate i,j appearing in (2-3) typically varies by several orders of magnitude across the 
chemical system for engine combustion problems.  As a consequence, the system of ODEs is referred to as 
being "stiff" because of the large range timescales that must be resolved in a solution. Explicit ODE integrators 
are straightforward to develop, but are computationally inefficient for stiff systems because the explicit time 
step is limited to the smallest timescale for numerical stability.  Implicit ODE integrators are able to reduce the 
total number of time steps by removing the stability limit and taking larger steps.  However, obtaining the 
updated system variables at the end of the larger, implicit time step requires a solution to a system of non-linear 
equations based on the governing ODE system (1-3) and the discretization scheme for the time derivatives.  
Implicit ODE integrators for stiff systems are much more complicated to develop than their explicit 
counterparts.  Fortunately, a number of well-established and freely-distributed stiff ODE integrators are 
available, such as the EPSIODE/ODEPACK/VODE collection developed at Lawrence Livermore National 
Laboratory [10-13].

The organization of the numerical tasks needed by an implicit ODE integrator is given in Figure 2.  The value 
appearing in the parentheses below each task name is the fraction of the total simulation time spent on the task 
and any associated subtasks for the basic coupled multizone model with 20 reacting zones.  Although only the 
DVODE integrator (a double precision variant of the VODE integrator described in [12]) is shown in Figure 2, 
the basic tasks are essentially the same for most implicit ODE integrators.  The only differences would be in the 
choice of the numerical method to solve the linear system, and the means to construct the Jacobian matrix of the 
system.

In the coupled multizone model, almost all the computation effort is spent in the ODE integrator.  Most robust 
integrators are built on a function that integrates the ODE system in a single time step, in DVODE this function 
is called DVSTEP.  The function DVSTEP is a general time stepper that manages the necessary function calls 
(or subtasks) to complete the integration and controls the method order and time step size to maintain the 
solution accuracy to within user-specified tolerances.  The computational cost of an implicit time step is due 
almost entirely to the nonlinear system solver - the tasks associated with the error control account for only 0.1% 
of the total simulation cost. 
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Figure 2.  Hierarchal organization of the numerical tasks in the implicit ODE integrator used for the basic 
multizone calculation in this investigation.  The values given in the parentheses are the fraction of the total 

simulation time spent performing a given tasks and all included subtasks.

To illustrate why a nonlinear system solver is needed and the role of the Jacobian matrix in its solution, consider 
a general system of N ordinary differential equations with N state variables,
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The Jacobian matrix J for the system in (8) is defined as
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The eigenvalues of the matrix J characterize the behavior of the system.  In particular, the following eigenvalue 
properties are related to the basic system dynamics: (i) the magnitude of an eigenvalue determines the rate of 
change for its associated eigenmode; (ii) the presence of an imaginary eigenvalue pair indicates an oscillatory 
eigenmode; and (iii) the sign of the real part of all the eigenvalues determines if the system remains bounded.  It 
is the first property that is of the most interest to the numerical integration of ODE systems.  The magnitude of 
an eigenvalue is inversely proportional to the characteristic time of its associated eigenmode; and, for explicit 
integrators, the maximum stable time step is limited by this characteristic time.

In order to integrate the system (8) numerically, the time derivative on the left hand side must be discretized. 
Robust ODE integrators tend to have variable order methods capable of efficiently using high-order 
approximations to the time derivatives [10-13].  However, to illustrate here the role of the Jacobian in ODE 
integration, only the first-order Euler approximation is considered [19]; specifically,
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where t is the time step and the superscript n refers to the value of the system variable at the nth step. Note that 
the ideas discussed for the Euler approximation can be extended in a straightforward manner to encompass any 
order of approximation. With the discretization of the time derivative in (10) substituted into the ODE system 
(8), the future system state is determined directly from
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Since future system states are determined explicitly from the past values, this type of ODE integrator (11) is 
called explicit.  The advantage of explicit ODE integrators is that they are easy to implement; however, the size 
of the time step must remain below the smallest characteristic time of the system.  Stated alternatively, the time 
step t in (11) must remain below |max|-1 in order for the numerical solution to be stable, wheremax| is the
magnitude of the largest eigenvalue of the Jacobian matrix [19].  For ODE systems involving chemical 
reactions, it is not uncommon for |max|-1 to be smaller than 10-12 s.   As a consequence, the explicit integration 
of the ODE system (8) for the chemically reacting flows found in an IC engine requires trillions of time steps or 
more to maintain numerical stability over a single engine cycle, which is computationally prohibitive.

If the discretization in (10) is taken to approximate the time derivative at the future point t(n+1) instead of t(n)

(referred to as the backward Euler method), the future system state is then determined from
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The resulting backward Euler integrator has no stability limit on the time step (i.e., asymptotically stable, see 
[19]); the desired accuracy of the numerical solution is the only constraint.  In practice, the function fi is not 
invertible with respect to xi; and, as a consequence, the future system state xi

(n+1) can no longer be determined 
explicitly. The solution to (12) must then be determined numerically using an iterative nonlinear system solver. 
Since the solution to the future system state appears implicitly in (12), ODE integrators such as the backward 
Euler method are called implicit integrators.  The advantage of implicit integrators is that they tend to have 
significantly greater numerical stability than explicit integrators allowing much larger time steps to be taken 
during the solution.  This is essential for solving the stiff ODE systems associated with chemically reacting 
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flows over a period of time of practical interest.   The drawback is that the solution of the future system state is 
now more complicated and must be determined implicitly using a nonlinear system solver.

One of the most common techniques for solving a system of nonlinear equations is the iterative Newton-
Raphson method [19].  Given a nonlinear system S(U) = Q, with an unknown vector U and vector-valued 
function S(U) , the Newton-Raphson method starts with an initial guess of the system state U0 and generates a 
series iterations U1, U2, ... using the following relation

UUU kk 1 , (13)

where the update vector U is determined from the solution to the linear system
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The matrix S/U in (14) is the compact representation of the Jacobian matrix of the system with respect to U
evaluated at U = Uk.  Returning to the problem of solving for the future system state of the ODE system in (12), 
the unknown vector U in (13-14) is taken to be the future system state U = (x1

(n+1), ..., xN
(n+1))T yielding the 

following update to the kth iteration for the future system state
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Here (Uk) = (f1, ..., fN)T represents the functions from the right hand side of the ODE system in (8) evaluated at 
time t(n+1) for Uk, I is the identity matrix and J is the Jacobian matrix of the ODE system defined in (9).  The 
linear system solution to (15) represents the fundamental step of the Newton-Raphson nonlinear solver; and 
hence, the implicit ODE integrator as a whole.  It is important to note that the linear system solution in (15) 
does not necessarily produce the exact future system state; rather it provides one iteration toward the implicit 
update.  The Newton-Raphson method converges quadratically; often providing a sufficiently accurate 
approximation for the ODE integrator in one or two iterations, in practice.

Almost the entire cost of an implicit ODE integrator rests in the solution to (15).  In essence, the additional 
derivative information provided by the Jacobian matrix (9) is used to determine the future system state at a 
much greater time step than would otherwise be possible by only considering the local time derivatives, as is 
done with an explicit integrator.  Therefore, an implicit ODE integrator is only practical when the added cost of 
solving (15) is offset by a significant reduction in the number of time steps needed by the equivalent explicit 
approach (11).  In the DVODE integrator, as with any implicit approach, the formulation in (12) for the future 
state is extended to higher order accuracy using a family of backward difference approximations involving 
additional past system states (xi

(n-1), xi
(n-2), ...).   For these higher order approximations, the basic computational 

task for the nonlinear solver is the same as (15) except there is an additional constant multiplying the time step 
t and the right hand sided is computed using the higher order discretization.  It should be stressed that the 
description given here for implicit ODE integrators is merely illustrative and is not recommended for actual 
implementation.  Greater details describing how the Jacobian matrix is used in an efficient variable-order, stiff 
ODE integrator can be found in [10-13].

At the most basic level of usage, one only needs to provide the ODE integrator a means to evaluate the right-
hand side of the equations (1-3) in terms of the system variables (zone mass mi, temperature Ti and species mass 
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fractions yi,j).  This evaluation requires the calculation of the molar production rate and the thermodynamic 
properties cp,j and hi,j of the reacting species for which a modified version of the CHEMKIN II library [20] is 
used in this investigation.  All the procedures used to solve the non-linear system of equations associated with 
the implicit update of the system variables are handled internally by the ODE package.   This includes the 
construction of the Jacobian matrix J using finite difference approximations to the derivatives in (9).

To illustrate the major computational costs associated with the multizone mode l, the system of ODEs (1-3) is 
integrated for one complete engine cycle using the DVODE integrator.  The engine is operating in a spark 
ignition mode (ignition at -18º ATDC) with a near stoichiometric mixture of iso-octane and air.  The chemical 
kinetics mechanism tested is a reduced iso-octane mechanism developed by Chen and Tham [22] containing 63 
active species, 152 quasi-steady state species and 964 reactions.  Note that this reduced mechanism is used for 
all the multizone calculations presented in this investigation.  The SI model is selected here to provide a more 
rigorous demonstration case to highlight the performance gains achieved.  The proposed strategies to accelerate 
the coupled multizone model all rely on decoupling the zone interactions within the stiff ODE integrators.  
Aceves et al. [2] have shown that accurate HCCI predictions may be obtained without considering zone -to zone 
transport.  In contrast, SI operation typically involves more zone-to-zone coupling through the transport terms 
in order to model the flame propagation.  If any of the decoupling strategies were to introduce a systematic 
error, it would be more readily identifiable in the SI model.

A breakdown of the ODE integrator cost for a 10 and 20 zone model is given in Figure 3, using the basic 
features of a stiff ODE integrator.  In the multizone model, the four most expensive operations in terms of 
computation time either relate to the construction of the Jacobian matrix elements (calculation of the molar 
production rate and thermodynamic properties of the species), or the solution of the linear system associated 
with Jacobian matrix (LU factorization and backward substitution [23]).  These four operations account for 
more than 94% of the total computational cost of the multizone mo del for the 10 and 20 zone cases.

Figure 3.  Computational cost breakdown of the multizone model by function on a single processor: ( left) 
simulation cost as measured by the elapsed wall clock time; and (right) simulation cost as a fraction of the total 

cost. 

The total size Nt of the complete Jacobian matrix for the multizone model described in equations (1-3) is Nt = 
(Ns+2)Nz.  As illustrated in Figure 3, the cost of calculating the LU factorization of the Jacobian matrix is over 
60% of the total computational effort.  For a dense matrix, this operation scales as O(Nt

3), which is consistent 
with the seven-fold increase in the computational cost going from the 10 zone model to the 20 zone model.  The 
cost of constructing the matrix elements and performing the backward substitution to solve the factorized 
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system is expected to scale as O(Nt
2), which accounts for 30% to 35% of the remaining solution cost at these 

model sizes.  As the system size grows larger, the LU factorization will dominate yielding a cubic cost scaling 
relationship with respect to the number of zones and species. Since the costs of the O(Nt

2) and O(Nt
3) operations 

are similar at these model sizes, increasing the number of zones from 10 to 20 results in a factor of 6.4 increase 
in the computational cost, which lies between the two dominant scaling laws.  As noted earlier, improved linear 
algebra libraries will reduce the total cost associated with the linear system solution for a given number of 
zones, but will not change the asymptotic trends of the various numerical tasks.  The results shown in Figure 3 
are still applicable for improved libraries; however, the relative cost distribution of the tasks now applies to a 
larger number of zones.

STRATEGIES TO ACCELERATE THE COMPUTATION

Any effort to accelerate the computation of the multizone model must focus on reducing the cost of constructing 
the Jacobian matrix and solving the associated linear systems for the non-linear Newton-Raphson solver used in 
the stiff ODE integrator. Fortunately, the complete Jacobian matrix (9) is not always necessary to accurately 
integrate the ODE system.  In practice, only an approximation to the Jacobian needs to be supplied by the user, 
as noted in [10].  Selecting a suitable approximation requires some insight into the structure of the Jacobian 
matrix.  It also requires the user to provide the ODE integrator the necessary code to calculate the Jacobian 
approximation, which increases the development on the part of the user beyond the most basic level needed in 
the original multizone calculations discussed in the previous section.

The structure of the Jacobian matrix for the 20-zone model is shown in Figure 4 at four different crank angle 
positions, which bounds the main heat release event (-20º ATDC, -17º ATDC,  -6º ATDC and -1º ATDC).  The 
relative magnitude of the matrix elements is given on a logarithmic scale over 16 decades corresponding to the 
machine accuracy for double precision computations.  The magnitude of the matrix elements are represented on 
a grayscale with the largest elements appearing as black and the smallest elements as white. Over the range of 
crank angle positions, a block diagonal structure is clearly visible, where the size of the blocks is the same as 
the number system variables in each zone (Ns+2).  The block structure indicates that the Jacobian elements 
related to the system variables from the same zone tend to dominate the direction that the system state evolves.  
If each zone in the model were independent (i.e., no zone-to-zone transport or pressure equilibration), then the 
Jacobian matrix would possess a true block diagonal structure where all the terms not contained in the block 
diagonal are zero. 

In addition to the block diagonal structure, a regularly spaced grid pattern appears for the large matrix element 
in the upper left corner of each zone block indicating some degree of coupling between every zone.  This is a 
consequence of the uniform pressure assumption across the zones, and the coupling it introduces in equations 
(3-4).  As the fuel in a zone begins to react, the off-diagonal terms due to the zone-to-zone transport grow until 
the burn is complete in the adjacent zones. At -17 º ATDC, the zones corresponding to the first three block 
rows of the Jacobian matrix have consumed, in order, 100%, 77% and 1% of the available iso-octane, which is 
illustrated in Figure 4(b).  At -6º ATDC, the zones corresponding to the first eight block rows have consumed 
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Figure 4.  Jacobian matrix structure of the multizone model using 20 zones with a 63-species, reduced iso-
octane mechanism at four crank angle positions: (a) -20º ATDC; (b) -17º ATDC; (c) -6º ATDC; and (d) -1º 

ATDC. 

100% of the fuel and show little zone-to-zone coupling because they are all at a similar post-reaction state.  
Unlike the model at -17º ATDC where the iso-octane reaction is limited to the first three zones, the iso-octane 
in all the remaining zones has started to react, thereby increasing the extent of the zone-to-zone coupling 
observed in Figure 4(c) at -6º ATDC.  Before -1º ATDC, the fuel is consumed in every zone resulting in similar 
post-reaction states across the model with little zone-to-zone coupling due to transport, as shown in Figure 4(d).  
Consequently, the Jacobian structure before (-20º ATDC) and after (-1º ATDC) the main heat release is 
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essentially the same, except that the matrix elements after the heat release are typically larger in magnitude due 
to the elevated temperature and pressure.

Given the presence of the block diagonal structure in the Jacobian matrix throughout the engine cycle, it serves 
as a suitable place to focus the search for more computationally efficient approximations to the Jacobian. 
Further, the block diagonal structure has a much lower cost associated with its construction and linear system 
solution than the full dense Jacobian matrices used in the previous section.  Three strategies are considered to 
accelerate the computation of the multizone model, based on the block diagonal structure; in particular, these 
include: (i) approximating the Jacobian as a banded matrix; (ii) using a set of quasi-independent well-mixed 
reactors to estimate the block diagonal terms; and (iii) using the quasi-independent well-mixed reactor estimate 
as a preconditioner in an iterative Krylov-type linear system solver.

The first strategy uses the same DVODE integrator except that only the Jacobian matrix elements within a band 
around the diagonal are assumed to be non-zero.  The width of this band is taken to be twice the number of 
system variables in each zone (Ns+2).  This allows for each diagonal zone block appearing in Figure 4 to be 
fully contained within the banded matrix approximation.  Since only the matrix elements within the diagonal 
band need to be calculated, the cost of constructing this Jacobian approximation is expected to improve by a 
factor of O(Nz).  The cost of solving the linear system associated with the banded matrix scales as O(NzNs

3) 
yielding an even greater cost savings factor of O(Nz

2) when compared to the full dense calculation.

The second strategy requires more user development in order to provide the ODE integrator with an alternate 
approximation of the Jacobian. In particular, the multizone model is modified to yield a system of ODEs that 
have a strict block Jacobian structure.  The Jacobian from this modified model is then used as an approximation 
to the true Jacobian for the ODE system (1-3).   It should be stressed that the original ODE system is still 
solved, only now the cost per iteration of the non-linear solver is significantly smaller because of the 
approximate Jacobian.  The modified multizone model treats the reacting zones as a set of uncoupled control 
masses.  Pressure is still assumed to be uniform across the zones, but now it is treated as an external system 
parameter.  Stated alternatively, the pressure is allowed to vary in time as a parameter external to the ODE 
integration, but it does not change with respect to any of the local system variable derivatives used to construct 
the Jacobian in (9).  This means the reactors are coupled through the pressure equilibration assumption, but at a 
different timescale than resolved internally by each step of the ODE integrator, which is why the approximate 
system is referred to here as a set of quasi-independent well-mixed reactors. The set of governing differential 
equations for this approximate system is given by

0
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dmi , (16)
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Here p* refers to the cylinder pressure updated after each external time step of the ODE integrator; ui,j is the 
internal energy of the jth species in the ith zone and is calculated using the same CHEMKIN II package [21] as 
the other thermodynamic properties; and the volume of each zone Vi is given by
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The Jacobian matrix associated with the system of ODEs in (16-18) is strictly block diagonal, so the cost 
savings for constructing the matrix and solving the resulting linear system is expected to have the same scaling 
as the banded solver previously discussed.  Although the scaling is the same, the cost reduction will be even 
greater for the strict block diagonal structure because it has half as many non-zero elements to construct and 
then handle in the linear system solution.

The third strategy studied in this investigation takes the approximate Jacobian obtained from the quasi-
independent well-mixed reactor system (16-18) and uses it as a preconditioner to solve the linear system 
associated with the complete Jacobian matrix using an iterative Krylov type solver (e.g. GMRES [23]).  There is 
an inherent appeal to this approach because the solution of the linear system based on the Jacobian really
represents a single iteration of the non-linear Newton-Raphson solver.  Therefore, the linear system solution 
only needs to be slightly more accurate than the current non-linear solver iteration. Combined with the fact that 
the ODE integrator has its own prescribed solution tolerance, it then seems probable that a greater cost savings 
may be achieved by using a small number of Krylov iterations to approximate the linear system solution instead 
of using the complete LU factorization of the dense matrix.  To test this strategy for accelerating the multizone 
computation, the DVODE integrator is replaced by the DLSODPK integrator.  The DLSODPK integrator 
distributed with the ODEPACK collection [11] provides a framework for which the user can specify the 
construction of approximate Jacobian elements and preconditioners for an ODE integrator with a Krylov-type 
iterative linear system solver. The details about this method, from the developers Brown and Hindmarsh, can 
be found in [13]. In addition, a general review about the use of a Krylov-type solver with a non-linear Newton-
Raphson solver is provided in [24], which also includes some discussion of preconditioning strategies. 

The difference between the second and third strategies proposed in this investigation is subtle.  They both use 
the same approximation to the Jacobian based on the quasi-independent set of well-mixed reactors.  The second 
strategy uses the approximate Jacobian directly in the non-linear solver. In contrast, the third strategy uses the 
approximate Jacobian only as a preconditioner to obtain the solution to the full Jacobian matrix of the original 
system of ODEs (1-3).  If the approximate Jacobian from the modified system (16-18) was exact, then the 
second and third strategies would perform the same.  As the differences increase between the approximate and 
full Jacobian, the second strategy will typically have to take smaller implicit steps because the approximate 
Jacobian is not able to reliably estimate perturbations from the system state (10) as large as the full Jacobian.  
Since the third strategy uses the full Jacobian there is no reduction in the implicit time step; however, the 
approximate Jacobian used for the preconditioner will have to be applied repeatedly to obtain the iterative 
solution to the linear system of the full Jacobian.  Therefore, the better of the two strategies will depend on the 
tradeoff between taking more implicit time steps (second strategy), and evaluating the linear system of the 
approximate Jacobian more frequently in an iterative Krylov-type solver (third strategy).

It is important to note that none of the three proposed strategies changes the underlying system of ODEs (1-3) 
being solved for the multizone model.  All the strategies attempt to decouple some of the zone interactions in 
the model to reduce the cost of constructing the Jacobian and solving the associated linear system.  This zone 
decoupling in the Jacobian only affects how the stiff ODE integrator iterates to a future system state. The 
system variables at the future state, however, must still satisfy the user-specified convergence tolerance for the 
original system of ODEs regardless of the method used by the integrator.  As a consequence, the solution to the 
fully coupled, multizone model of the cylinder (1-3) should be in agreement between the three proposed 
strategies to within the local tolerance specified by the user.
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RESULTS

The three strategies for accelerating the computation of the fully-coupled multizone model (1-3) are initially 
compared to the results obtained for the 20 zone model presented earlier for the SI cycle using iso-octane.  The 
elapsed wall clock time for the serial implementation of each of the proposed strategies is given as a function of 
the crank angle in Figure 5.  Differences between Figures 3 and 5 in the total time of the original calculation 
using the full Jacobian in the ODE solver is due to using different processors.  All the results and comparisons 
presented in this section are performed on the same processor (2.4 GHz Intel Quad Core) with the same 
compiler and optimization levels.  Furthermore, the ODE integrators are all set to the same user-specified 
tolerance levels (10-8 relative and 10-13 absolute). The first strategy proposed, approximating the full Jacobian as 
a banded matrix, shows an eight-fold reduction in cost during the first half of the main heat release (at -8.5º
ATDC).  However, the banded approximation performs very poorly during the second half of the heat release 
when the zone coupling is the greatest.  In fact the simulation was terminated before reaching the end of the 
cycle after the elapsed time exceeded the original calculation by a factor of 10.

Figure 5. Comparison of the simulation cost of the 20 zone mode for the SI cycle using iso-octane.

The second strategy proposed, using the block Jacobian for the quasi-independent reactor model (16-18) as an 
approximation to full Jacobian, shows a 35-fold reduction in the overall simulation cost of the multizone model
in Figure 5.  Using the same block Jacobian as the second strategy, but now as a preconditioner to an iterative 
Krylov-type linear system solver, the third strategy shows an even more substantial 75-fold performance 
improvement.  The additional improvement offered by the third strategy indicates that the penalty for 
calculating additional solutions of the preconditioner is not as great as the advantage gained by taking larger 
time steps, when compared to the use of the approximate Jacobian in the second strategy.

The second and third strategies achieve their performance gains by approximating the Jacobian with the smaller 
matrices found in the block diagonal system.  The cost of solving the linear system is reduced by a factor of Nz

2 

with the block diagonal Jacobian structure for an Nz-zone model. This effectively eliminates from consideration 
the cost of solving the linear systems when analyzing the performance of the coupled multizone model.  If this 
was the only benefit of the second and third strategies, then these strategies would only yield a 3-fold cost 
reduction at best for the 20 zone model based on the results in Figure 3.  However, the block diagonal 
approximations to the Jacobian have an additional advantage as they reduce the now dominant cost of 
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constructing the Jacobian in an Nz-zone model by a factor of Nz.  The combined effect of these two cost savings 
is a 75-fold improvement in performance for the 20 zone model.

The 75-fold performance improvement is only of value if the proposed strategy still produces the same solution 
as the original multizone model.  To assess the level of accuracy of the integration strategy, the relative 
difference between the solutions is calculated; that is, the difference between the two methods is normalized by 
the value obtained from the original model based on the full Jacobian calculation.  The relative solution
difference is given in Figure 6 for the cylinder pressure, and for the zone temperature, mass fraction of CO2 and 
mass fraction of HCO in the high temperature core (zone 1) and the crevice region (zone 20).  Note that only 
mass fractions greater than 10-10 are considered in the relative difference calculation.  For the cylinder pressure, 
zone temperatures and mass fractions of CO2, the proposed strategy agrees to within six significant digits of the 
original calculation over the entire cycle.  Even the mass fraction of the formyl radical (HCO) agrees to within 
four significant digits overall, and five digits during the expansion portion of the cycle.  The level of agreement 
shown in Figure 6 between the proposed strategy and original calculation is observed across all zones and 
critical species tested.

Figure 6. Relative difference between the original multizone model calculation using the full Jacobian matrix 
and the proposed strategy that achieves a 75-fold reduction in computation cost.  The proposed strategy uses the 

quasi-independent reactor model to produce an approximate Jacobian with a block diagonal structure for 
preconditioning the iterative Krylov-type linear system solver in the stiff ODE integrator. 

To determine the performance scaling of the methods, the fastest proposed strategy is compared to the original 
method using a range of zones for the same SI engine cycle previously tested.  The original method using the 
full Jacobian matrix exhibits an O(Nz

3) scaling due to the large cost associated with performing the LU 
factorization for the linear system solution.  In contrast, the approximate Jacobian with the block diagonal 
structure exhibits an O(Nz) scaling for the LU factorization applied during the preconditioner calculation.  The 
dominant operation is now the O(Nz

2) QR factorization [23] that is performed at each iteration of the Krylov-
type linear system solver, as shown by the scaling in Figure 7.  The proposed strategy has reduced the overall 
cost for the fully-coupled multi-zone model from a cubic to quadratic scaling, with respect to the number of 
zones Nz.  The performance gains therefore continue to improve as the number of coupled zones in the 
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multizone model increases.  At the largest number of zones tested (N = 40), the proposed strategy is more than 
250 times faster than the original calculation, and more than 60 times faster than the tuned LAPACK version.  

Figure 7. Comparison of the solution cost highlighting the cubic scaling of the original multizone model 
calculation using the full Jacobian matrix and the proposed strategy that achieves quadratic scaling with respect 

to the number of zones.

SUMMARY/CONCLUSIONS

Three integration strategies were developed for the stiff ODE integrators used to solve the fully coupled 
multizone model. Two of the strategies tested were found to provide more than an order of magnitude of 
improvement over the original, basic level of usage for the stiff ODE integrator. One of the faster strategies 
used a decoupled multizone model to generate an approximate Jacobian. This approach yielded a 35-fold 
reduction in the computational cost for a 20 zone model. Using the same approximate Jacobian as a 
preconditioner for an iterative, Krylov-type linear system solver, the other improved strategy achieved a 75-fold 
reduction in the computational cost for a 20 zone model.  The two faster strategies achieved their cost savings 
with no significant loss of accuracy.  The pressure, temperature and major species mass fractions were found to 
agree with the solution from the original integration approach to within six significant digits; and radical mass 
fractions were found to agree to within four significant digits.  The faster strategies effectively changed the cost 
scaling of the multizone model from cubic to quadratic, with respect to the number of zones.  As a consequence 
of the improved scaling, the 40 zone model offered more than a 250-fold cost savings over the original 
calculation.  Using a machine-tuned LAPACK linear algebra library instead of the default solvers provided with 
the ODE integrator did not change the asymptotic performance of the integration strategies.  However, it did 
make the original integration strategy more efficient because of the large matrices involved in the calculation.  
Consequently, the performance improvements offered by the proposed strategies were somewhat lower using 
LAPACK: a 28-fold reduction in the computational cost for a 20 zone model; and a 60-fold reduction in the 
computational cost for a 40 zone model.  
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DEFINITIONS/ABBREVIATIONS

ipc , specific heat at constant pressure of the mixture in the ith zone

cp,j specific heat at constant pressure of the jth species

Fi
(m) mass flow rate into the ith zone

Fi
(y) rate of change of the species mass fraction due to transport into the ith zone

Fi
(T) rate of change of the temperature due to transport into the ith zone

hi,j specific enthalpy of the jth species in the ith zone

mi mass of the ith zone

p cylinder pressure

p* cylinder pressure in the quasi-independent, well-mixed reactor model

Qw,i volumetric heat loss rate to the wall from the ith zone

Ru universal gas constant

Ti temperature of the ith zone

ui,j specific internal energy of the jth species in the ith zone

V total cylinder volume
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Vi effective volume of the ith zone  

Wj molecular weight of the jth species

yi,j mass fraction of the jth species in the ith zone

i mass density of the ith zone

i,j molar production rate of jth species in the ith zone




