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Abstract—The accuracy of first-order Euler and higher-order 

time-integration algorithms for grid-based Langevin equations 
collision models in a specific relaxation test problem is assessed. 
We show that statistical noise errors can overshadow time-step 
errors and argue that statistical noise errors can be conflated 
with time-step effects.  Using a higher-order integration scheme 
may not achieve any benefit in accuracy for examples of practical 
interest. We also investigate the collisional relaxation of an initial 
electron-ion relative drift and the collisional relaxation to a 
resistive steady-state in which a quasi-steady current is driven by 
a constant applied electric field, as functions of the time step used 
to resolve the collision processes using binary and grid-based, 
test-particle Langevin equations models.  We compare results 
from two grid-based Langevin equations collision algorithms to 
results from a binary collision algorithm for modeling electron-
ion collisions. Some guidance is provided regarding how large a 
time step can be used compared to the inverse of the 
characteristic collision frequency for specific relaxation 
processes. 

     
 

Index Terms— collision processes, plasmas, particle collisions, 
algorithms, computer applications.   
 

I. INTRODUCTION 
here are two popular types of algorithms for including 
Coulomb collisions in particle simulations of plasmas 
using finite-sized particles and deposition of charge and 

current densities onto a grid (particle-in-cell simulation, i.e., 
PIC simulation).   In the binary algorithm, particles in a sub-
domain, e.g., a cell, are grouped into discrete pairs of 
interacting particles such that the relative velocity is scattered 
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through an angle whose statistical variance is dictated by the 
theory of Coulomb collisions in a plasma, in the Fokker-
Planck limit [1, 2]. The post-collision velocities of the 
interacting pair conserve momentum and energy relative to the 
pre-collision velocities. In the second type of algorithm, the 
collisions are modeled by defining test and field particles; and 
the test-particle velocity is subject to drag and diffusion in 
three velocity dimensions using Langevin equations whose 
drag and diffusion coefficients depend jointly on the velocity 
of the test particle and the moments of the field-particle 
velocity distribution deposited on the configuration-space 
mesh [3, 4, 5, 6, 7].  The grid-based Langevin equations model 
conserves particle number trivially and conserves energy and 
momentum approximately in a statistical sense after averaging 
over many collisions and over the velocity distribution 
functions, although energy and momentum conservation can 
be repaired by scaling and shifting velocities after the Monte 
Carlo collisions occur on each time step.  The drag and 
diffusion coefficients are derived from the classical theory of 
screened Coulomb collisions in the Fokker-Planck limit [4, 8, 
9, 10].  It is of practical interest to assess the accuracy of the 
time integration of the collisional evolution of the plasma 
velocity distribution using these algorithms.   

We investigate accuracy issues for first-order Euler and 
higher-order time-integration algorithms for two grid-based 
Langevin equations collision models for a specific relaxation 
test problem.  In an example of practical interest using 
numerical parameters that are typical for plasma simulations, 
we find that statistical noise errors can dominate systematic 
time-step errors, argue, that statistical noise errors can be 
conflated with time-step effects, and find that using a higher-
order integration scheme may achieve no benefit in accuracy.  
We also find that when a higher-order Milstein correction [11, 
12] to the Langevin equations model is included, there is no 
significant change in the results of the collisional relaxation 
process for the specific example considered.  Results using the 
binary collision algorithm for the same collisional relaxation 
test problem have been reported by Wang, et al. [13].  In the 
Wang, et al. study it was found that the mixing of statistical 
errors with time-step effects made it difficult to obtain 
unambiguous and clear scalings of the errors with respect to 
the time step used.  Here we do not undertake a detailed 
convergence analysis of the grid-based Langevin-equation 
collision algorithm with respect to the time step and the 
particle number.  Instead we limit ourselves to the 
examination of the influence of changing the time step on the 
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results of simulations using two variants of the grid-based 
Langevin equations collision algorithm for numbers of 
particles that are typical of those used in well-resolved plasma 
physics studies. 

We also investigate the collisional relaxation of an initial 
electron-ion relative drift and the relaxation to a resistive 
steady-state in which a quasi-steady current is driven by a 
constant applied electric field, as functions of the time step 
used to resolve the collision processes.  We show that one of 
the two grid-based Langevin equations models investigated 
has an unfavorable mass-ratio scaling such that modeling 
electron-ion collisions can require a much smaller time step 
than that required using either the binary collision algorithm or 
a second Langevin equations algorithm that employs spherical 
polar velocity coordinates [6] in the example studied. 

The paper is organized as follows.  In Section II we provide 
brief overviews of the binary and test-particle, Langevin-
equations, grid-based Coulomb collision algorithms used in 
particle codes and some discussion of their properties.  In 
Section III we present results from simulations using the test-
particle, Langevin equations, grid-based Coulomb collision 
algorithms in which we have employed either a first-order 
Euler integration, a higher-order predictor-corrector time 
integration, or a first-order Euler integration including the 
Milstein correction.  In Section IV we show simulation results 
using the binary collision algorithm to study the collisional 
relaxation of a relative drift between electron and ion species.  
We also present results for the collisional relaxation to a 
resistive steady state given a constant electric field using both 
binary and test-particle, Langevin equations Coulomb 
collision algorithms.  A brief summary is presented in Section 
V. The findings here are intended to be of practical value to 
computational plasma physicists undertaking kinetic 
simulations in which Coulomb collisions are included and to 
give insight into the behavior of the collision algorithms 
considered here. 

 
II.  COLLISION ALGORITHMS IN PARTICLE CODES   
 

The use of grid-based Langevin equations to model 
Coulomb collisions is well established [3, 4, 5, 6, 7, 10].  The 
algorithms are based on the classic theory describing screened 
Coulomb collisions in the Fokker-Planck limit [8, 9, 14], 
which yields the ensemble-averaged drag and diffusion 
coefficients:  <Δv/Δt> and <ΔvΔv/Δt>.  The algorithm for a 
velocity-dependent Langevin equations collision operator in 
an isotropic Maxwellian background plasma can be 
represented in a convenient approximation [7] as follows for a 
test particle with velocity v in the local mean drift frame of the 
background field particles: 
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where lnΛ is the Coulomb logarithm, erf is the error function,  
the subscripts t and f denote test and field particles, and the z-
axis is aligned with the velocity of the test  particle before the 
collision.  Equation (1) describes the velocity increments Δvz 
and Δv⊥1,2  (in the z direction and the two binormal directions) 
acquired by the test particles due to collisions with the field 
particles in the drift frame of the field particles.  The z axis in 
Eq.(1) coincides with the velocity vector of the test particle in 
the local mean drift frame of the field particles before the test 
particle is collisionally scattered.  The scattered velocity 
vector is transformed back to the laboratory Cartesian frame 
with the rotation matrix given in Ref. 1 or 6, and the local 
mean drift of the field particles is added.  Equation (1) is a 
discretized solution of the Fokker-Planck equation for the 
probability density of velocities f(v): 
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In Eq.(1) we have corrected a minor typographical error that 

appeared in the approximation to G introduced by Sherlock in 
Eqs.(16-18) in his publication. [7] In the general circumstance 
in which the background field particle’s velocity distribution 
function is not an isotropic Maxwellian, Rosenbluth potentials 
must be constructed; and the collision operator acquires more 
structure. [4, 14]  In the simulations, the field particles are 
composed of all of the particles of a specific species, with the 
density, mean drift, and temperature moments of the particle 
velocity distribution deposited on the configuration space grid 
using an interpolation scheme (linear interpolation in our 
simulations).  The collision operator Eq.(1) conserves total 
momentum and energy approximately if we average over all 
of the particles and over an ideal distribution of  random 
numbers for all species present.  In Eq.(19) of Manheimer, et 
al., [4] a finite Δt correction to the drag Fd is introduced to 
improve energy conservation.  Energy and momentum 
conservation can be repaired by scaling and shifting velocities 
after the Monte Carlo collisions occur on each time step. [4, 6]  

Although no magnetic field effects are included in the 
formulation of Fokker-Planck collisions presented here, the 
collision formulation is applicable to magnetized plasmas in 
the following sense.  In the Fokker-Planck limit [8,9,14], 
many infinitesimal small-angle collisions are assumed to occur 
with individual collision events whose duration τ is arbitrarily 
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short so that the product of the acceleration due to 
electromagnetic Newton-Lorentz forces and the time duration 
τ is arbitrarily small compared to particle velocity.  In this 
limit the collision is unaffected by any electromagnetic fields 
present, although the overall particle trajectory is influenced 
by the electromagnetic fields.  From a computational 
perspective, this invites the use of operator splitting to 
accommodate both the collisions and the Newton-Lorentz 
forces due to electromagnetic fields, and the result of the 
collision should be insensitive to when during the time step 
the collision event is deemed to occur. 

A variant of the grid-based Langevin-equations Coulomb 
collision operator has been introduced by Lemons, et al. [6].  
The methodology in [6] scatters the velocity vector of the test 
particle using spherical polar coordinates (v, θ, φ). The 
magnitude of the velocity is subject to both drag and diffusion, 
and the polar angle is subject to diffusion.  There is an 
advantage in using spherical coordinates for scattering 
processes that are dominantly pitch-angle scattering at nearly 
constant energy of the test particle, e.g., scattering of a light 
particle by a very heavy particle.  We will illustrate this in the 
following discussion and example calculations.  The Langevin 
equations in [6] are repeated here for convenience: 
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                     (3)  
At low test-particle energies Fv and Δθ  diverge in Eq.(3). To 
resolve the divergence Lemons, et al. [6] retain the dominant 
terms in the expression for the change in the speed and derive 
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2
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Δv⊥2  ∝ v2Δθ 2  is not divergent. 
 An algorithm for binary Coulomb collisions has been 
introduced in the classic work of Takiziuka and Abe [1].  In 
the binary algorithm, equally weighted particles in a cell are 
paired; and then the relative velocity vector of the two 
particles is scattered through a random scattering angle with 
variance dictated by the theory of screened Coulomb 
collisions in a plasma [8, 9].  After the relative velocity vector 
is scattered, the two scattered particle velocities are 
reconstructed such that particle momentum and energy are 
conserved algebraically.  Particle number is conserved 
identically.  Nanbu [2] extended the algorithm of Takizuka 
and Abe [1] to allow for a larger time step by aggregating 
multiple collisions.  In Takizuka and Abe [1], the relative 

velocity of a pair is scattered through an angle Θ with variance 
related to 
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and through a random angle φ about the axis of the relative 
velocity before the scattering event. The post-collision 
velocity vectors of the scattered pair are constructed from the 
scattered relative velocity vector.  There is no separation of 
test and field particles in the binary scheme, and there is no 
assumption that the velocity distribution is isotropic and 
Maxwellian. However, there is an implicit assumption that the 
value of lnΛ derived for an abitrary velocity distribution 
(computed locally in a spatial cell) deviates insignificantly 
from the value of lnΛ derived for a Maxwellian.  This method 
conserves particle number, energy and momentum.  

Both the grid-based Langevin equations and binary collision 
algorithms generalize to relativistic collisions. Both algorithms 
are formally accurate through O(Δt1/2) and produce drag 
<Δv/Δt> and diffusion coefficients <ΔvΔv/Δt> agree with 
Spitzer-Trubnikov theory through O(Δt) assuming perfect 
statistics. 

The accuracy of both algorithms requires that the velocity 
change and the angle scattered by a test particle in one time 
step must be small.  In the binary collision algorithm we can 
easily deduce the scaling of the variance with respect to the 
charge state and mass for electon-electron, electron-ion, and 
ion-ion scattering.  We note that the reduced mass in Eq.(4), 
mee~ mei/2= mie/2<<mii, so that for low charge-state ions and 
Ti~Te, the time step for resolving the electron-electron binary 
collisions accurately is comparable to that required for 
resolving electron-ion collisions; and ion-ion collisions can be 
resolved with a substantially larger time step. However, the 
grid-based Langevin equations algorithms have different 
numerical characteristics.  From Eq.(1) one can show that the 
magnitudes of the drag and diffusion coefficients are 
monotonically increasing as the test-particle speed v goes to 
zero. In the low-velocity limit for test partcles, one can show 
that the perpendicular and parallel velocity diffusion 
coefficients for scattering a test particle on a field particle in 
Eq.(1) have the following scalings: 
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where the ion charge is Zie, 

  

! 

D"kl = #v"#v" /#t  and 

  

! 

D||kl = "v ||"v || /"t  for species k scattering on species l.  
However, for Ti~Te a thermal electron has a much larger 
velocity than a thermal ion; thus the drag and diffusion 
coefficients for electron-ion scattering should be evaluated for 
vt>>vth,f.  In the large argument limit of Eq.(1),  

  

! 

D||,tf " n f qt
2
q f
2
mt
2
v

3( )vth,f
2  

  

! 

D",tf # n f qt
2
qf
2
mt
2
vvth,t

2( )vth,t
2         (6) 



 4 

  

! 

Fd "# n f qt
2
q f
2
mt
2
vth,f v

2( )vth,f   

The drag and diffusion coefficients go to zero at different rates 
for large test-particle velocities, and 

! 

D",tf  and the drag Fd 
have no dependence on the mass of the field particles.  
However, 

! 

D||,tf "T f /mf , and thus the parallel velocity 
diffusion coefficient for electron-ion collisions is smaller than 
that for electron-electron collisions by Zime/mi for Te~Ti and 
decreases as 1/v3. We believe that the unfavorable mass-ratio 
scaling for the ratio of the electron-ion collisional diffusion to 
the electron-electron collisional diffusion in Eq.(5), 
Zi(mi/me)1/2 at low velocities, leads to requiring the use of a 
significantly smaller time step to accurately resolve the 
electron-ion collisions for the grid-based Langevin equations 
collision algorithm in Eq.(1), which is borne out in our 
simulation experience (illustrated in Sec. IV).   

In the Lemons et al. algorithm for large test-particle 
velocities 
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Compared to the algorithm based on Eq.(1) in the large 
velocity limit, the major difference is that the drag coefficient 
in the Lemons, et al., algorithm has Fv/Fd∝(mt/mf) so that the 
drag for electron-ion collisions is much smaller than for 
electron-electron collisions in the Lemons, et al. algorithm.  
Furthermore, in the Lemons, et al. algorithm the scattering of 
the low-velocity test particles, where the drag dominates the 
stochastic terms, is performed so as to remove divergences.[8]   
In the limit that me/mi→0, the scattering of electrons on ions 
should only produce angle scattering of the electron without 
changing the electron test-particle energy.  The Lemons, et al. 
[6] Langevin equations algorithm in Eq.(3) for electron 
collisions on ions is dominated by angle scattering; and the 
diffusion Dv,ei in the magnitude of the electron test-particle  
velocity and the drag Fv,ei are relatively weak.  The slowing of 
the electrons on the ions comes from the angle scattering.  
Thus, we expect that Eq.(3) should be better able to 
accommodate electron-ion scattering and allow larger time 
steps than the algorithm based on Eq.(1).  An example of 
simulating electron-ion collisions is presented in Sec. IV.  

When the collisional scattering of the velocity vector in one 
time step is too large using the grid-based Langevin equations 
algorithm based on Eq.(1), relaxation rates and energy and 
momentum conservation become inaccurate.  If only the 
scattering angle Δθ  becomes too large in Eq.(3) when the time 
step is too large, the angular diffusion rate becomes 
inaccurate, but the change in the test-particle energy may still 
be small.  In contrast, when the time step becomes too large in 
the binary collision algorithm, conservation of energy and 
momentum is still preserved; and although relaxation rates 
may not be reproduced accurately, the binary collision 
algorithm fails gracefully.   

In the work of Wang, et al.,[13] the convergence properties 
of the Takizuka and Abe, and the Nanbu binary collision 
operators with respect to particle number and time step were 
studied. It was found that the Nanbu collision algorithm 

achieved a factor of two improvement in relative accuracy 
over the Takizuka and Abe basic algorithm for the same time 
step.  The underlying properties of the Nanbu algorithm were 
studied analytically in the work of Dimits, et al. [15]. 

 
III.  CORRECTIONS TO FIRST-ORDER EULER INTEGRATION OF 
THE GRID-BASED LANGEVIN EQUATIONS COLLISION OPERATOR   
 

In this section of the paper we report results of studies of the 
grid-based Langevin equations collision operator Eq.(1) 
attempting to extend it to higher-order accuracy than first-
order Euler.  We explore several time-discretization schemes 
for the grid-based Langevin equations collision operator, 
which are represented schematically in the following finite-
difference Langevin equations fashioned after Eq.(1). In the 
cases considered in this section of the paper, only ion-ion 
collisions are considered. 

 
First-order Euler:       
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Predictor-corrector (modified Euler): 
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Predictor-corrector (two-step scheme): 
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Partial corrector: 
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subject to the constraint relations that the ensemble averages 
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(yn+1 " yn ) /#t = dy /dt
yn
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2
/#t = D(yn )  

(to lowest order in powers of Δt) are the drag and diffusion 
coefficients, respectively, for the vector components of the 
test-particle velocities given in Eq.(1). The partially corrected 
Euler algorithm [16] is a special case in the family of multi-
step Runge-Kutta methods and is closely related to the two-
stage explicit Adams method.  It has the advantages that it is 
easy to initialize and can be represented with a reduced 
number of function evaluations: the corrector-step function 
evaluations can be saved for re-use in the function evaluations 
in the next predictor step. The method may be a natural 
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"upgrade" for some codes using predictor-corrector methods; 
with little rearrangement of the code, it may be possible to 
nearly double  the efficiency of the calculation. 

Figures 1-3 show the results of a series of BZOHAR 
simulations [5] using the grid-based Langevin equations ion-
ion collision operator to study the collisional relaxation of a 
weak ion temperature anisotropy (Ty=0.95Tx, Tx=Tz) in which 
we vary the product of the characteristic ion-ion collision 
frequency 

! 

"* and the time step Δt for 1000 particles per cell 
and Np=2×106 particles in one spatial dimension, where 

! 

"* = (8 /3 # )" 0," 0 = 2#q4n ln$ / mT
3/ 2  and ν0 is the 

Braginskii [20] characteristic collision frequency for like-
species collisions. In all of the BZOHAR simulations reported 
here, the electrons are modeled as a fluid with a Boltzmann 
response; the ions are particles; there are self-consistent 
electric fields at thermal levels and particle advection; and the 
grid cell size is chosen equal to the electron Debye length.  
The value of lnΛ was scaled so that the value of 

! 

"*#t  can be 
set artificially.  The exponential relaxation rate for a weak 
temperature anisotropy is given by Trubnikov [9], 

! 

" relax = (8 /5 2# )" 0 .  Figure 1 shows results for the 
relaxation of a temperature anisotropy using the first-order 
Euler integration scheme, Eq.(4). Figures 2 and 3 show the 
corresponding results for the first predictor-corrector 
algorithm (modified Euler) and the partial corrector and, 
Eqs.(9) and (11), respectively.  In each of these figures we plot 
the relaxation of the temperature anisotropy normalized to the 
initial anisotropy as a function of time and separately the 
difference of the normalized temperature anisotropy with 
respect to the asymptotic theory, exp(-νrelaxt), for several 
different values of 

! 

"#$t .  The number of particles per cell and 
the total number of particles used here are typical of those 
commonly used in well-resolved particle simulations of many 
plasma phenomena.  In these simulations, we observe the  
weakly anisotropic Maxwellian ion velocity distributions relax 
by transferring energy to the colder velocity dimension from 
the hotter dimensions. The lower energy ions being more 
collisional tend to relax their temperature anisotropy faster 
than the more energetic ions. 

The object of the scan with respect to 

! 

"#$t  is to assess any 
trend in the convergence of the simulation results to the 
asymptotic theory.  For completeness, we list several of the 
sources that might contribute to the deviations of the 
simulation results from the theory: (i) the theory is asymptotic 
in the small parameter (Ty-Tx)/Tx, but a finite value of the 
initial anisotropy is used; (ii) the drag and diffusion 
coefficients used here are calculated from an assumed 
isotropic Maxwellian velocity distribution, which is only an 
approximation to the actual, weakly anisotropic distribution of 
test-particle velocities; (iii) errors are associated with the finite 
value of 

! 

"#$t  used in the discrete time integration; (iv) a 
finite number of test-particle velocities is used to resolve the 
velocity distribution (and the associated random numbers used 
in initializing the velocity distribution of the particles); and (v) 
there is a deviation from an ideal distribution of the finite set 
of random numbers associated with the finite number of 
collisions during any time interval.  There are systematic 
errors associated with (i), (ii), and (iii), and random errors 

associated with (iv) and (v).  Moreover, the random errors in 
(iv) and (v) are independent of one another. However, the 
error analysis has an additional complication.  We note that in 
a fixed physical time interval τ, the number of collision 
events is determined by τ/Δt.  Hence, as we increase 

! 

"#$t , the 
number of collision events and the number of random numbers 
Nr associated with the collisions in a fixed physical time 
interval both decrease proportional to τ/Δt.   For finite Nr the 
variance of the distribution of random numbers deviates from 
ideality with a standard error that scales with 1/(Nr)1/2. Thus, 
there is a random error in the time-averaged diffusion rate that 
is expected to scale with Δt1/2.  Hence, these statistical errors 
and the effects of the discrete time integration are conflated. 
The random errors in the time-averaged diffusion rate 
contribute to the time histories of collisional relaxation events. 
The purely systematic error in the discrete time integration 
would be expected to scale as a power of Δt that is higher than 
first order in Δt in keeping with the behavior of a first-order 
Euler (or higher-order) finite-difference integration of a non-
stochastic differential equation.  With these scalings, the 
statistical noise due to (iv) and (v) may dominate the 
systematic error in the time integration (iii) for any value of 

! 

"#$t  in a particular simulation diagnostic. 
Self-consistent electric fields also contribute to the total 

effective collisionality in these simulations due to the thermal 
noise and discrete particle effects [17,18,19].  An estimate for 
the effective collisionality due to noise fields has been given 
by Vu, DuBois, and Bezzerides [18] and applied in the work 
of Cohen, Vu, and Williams [19].  In the BZOHAR 
simulations for ion-ion collisions in which electric fields due 
to thermal noise are present, the arguments in Refs. [18] and 
[19] lead to an estimate for the effective ion-ion collision 
frequency νii

eff due electric field noise: 

! 

"
ii
eff

# pi
~ 1

2ni$i( ) v
v i

( )  where ωpi is the ion plasma frequency, 
vi is the ion thermal velocity, v is an ion velocity, ni is the 
number of particle ions divided by the length of the system, 
and λI is the ion Debye length.  We will evaluate the effective 
ion collision frequency due to noise for a thermal ion, v=vi. 
For the parameters in the simulations shown in Figs. 1-3, the 
effective collision frequency due to thermal noise in the 
electric fields is estimated to be νii

effΔt~2×10-4, as compared to 
the range of collision frequencies 

! 

3.5"10
#4
$ %&'t $ 9"10

#2  
used in the simulations.  Thus, only the simulations for the 
lowest values of 

! 

"#$t  are affected by the additive 
contributions of the effective collisions due to thermal electric 
field fluctuations. 

The simulation results in Figs. 1-3 do not show any 
reduction in error by using the higher-order-accurate partial 
corrector or predictor-corrector (modified Euler) algorithms.  
If there are only systematic, discrete-time-integration errors 
associated with 

! 

"#$t , then one might expect a scaling of the 
systematic time-step errors proportional to (

! 

"#$t )
r where r>1 

for the first-order Euler algorithm and proportional to a higher 
power of 

! 

"#$t
 for the higher order partial-corrector and 

predictor-corrector algorithms based on the behavior of 
integrating non-stochastic differential equations. However, 
there is no linear, quadratic or cubic scaling of the errors with 
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respect to 

! 

"#$t  observed.  The superposition of random and 
systematic discrete-time-integration errors in the stochastic 
diffusion terms obscures deducing any clean error scaling with 
respect to the time step.   The comparisons of the simulation 
results with theory do show a degradation of the agreement 
when the value of  

! 

"#$t  becomes sufficiently large.  
A lack of a clear scaling with time step also is observed for 

the binary collision algorithm reported in the work of Wang, et 
al. [13].  In [13] the binary collison models of Refs. [1] and 
[2] are employed, and convergence with respect to particle 
number and time step are investigated with the additional 
feature that ensemble averages are computed over many 
realizations of the simulations to reduce the statistical 
variance.  For fixed time step, the simulations in [13] show a 
convergence with respect to increasing the number of particles 
or the number of realizations, i.e., the variance decreases as 
1/N where N is the product of the number of particles and 
realizations.  The scaling of the errors with respect to 

! 

"t  is 
less clear, but some cases show a rough error scaling 
approximately as 

! 

"t
1/ 2  in Fig. 5 of [13]. 

In Figure 4 we show results for a series of simulations using 
the first-order Euler grid-based Langevin equations collision 
operators, combining Eq.(1) and Eq.(8) in Fig. 4a and using 
the Lemons, et al. algorithm Eq.(3) and Eq.(8) in Fig. 4b, with 
electric fields and particle advection suppressed. The initial 
condition here corresponds to a weak temperature anisotropy 
(Ty=0.95T, Tx=Tz=1.05T).  In the series of simulations we vary 
the product of the characteristic collision frequency 

! 

"* and 
the time step Δt for 600 particles per cell and Np=6×104 in one 
spatial dimension.  A single species scatters on itself to relax 
its temperature anisotropy here. We varied 

! 

"#$t  over a range 
of values 

! 

"#$t ≤3×10-3 in Fig. 4a and 

! 

"#$t ≤0.46 in Fig. 4b.  
We observe some random scatter in the relaxation of the 
temperature anisotropy and no systematic dependence on 

! 

"#$t  over the range of 

! 

"#$t  values used in both Fig. 4a and 
4b.  The relaxation of the temperature anisotropy depends 
primarily on the angle scattering of the test-particle velocity 
vector, for which both of the collision algorithms in Eqs.(1) 
and (3) for single species collisions perform relatively well at 
significant values of the 

! 

"#$t , i.e., 

! 

"#$t < 0.1 in the examples 
shown here (Figs. 1-6). 

In Figure 5 we compare the results of simulation scans using 
the grid-based Langevin equations collision algorithm Eq.(1) 
and the first-order Euler  and the second predictor-corrector 
(two step) integration schemes, Eq.(8) and (10), respectively, 
for like-species collisional relaxation of a weak temperature 
anisotropy (Ty=0.95Tx, Tx=Tz) and extending to larger values 
of 

! 

"#$t  than those in Figs. 1-3.  In these simulations there are 
333 particles per cell and Np=666000 in one spatial dimension, 
and 

! 

"#$t  is varied in the series.  The influence of thermal 
electric field fluctuations on the collisionality here is small: 
νii

effΔt~3.5×10-4, because this is small compared to the values 
of 

! 

"#$t  considered.   As the collisional time step is increased 
in the series shown in Fig. 5, the collision operator is applied 
with a discrete number of simulation time steps for the particle 
advection, electric field solve and diagnostics in between 
collision operations, which accounts for the stair steps in the 
data shown in Figs. 4-10.  Electric fields are calculated self-

consistently at thermal levels, and particles are advected.  The 
results from the two integration algorithms are similarly 
accurate, and the accuracy of the results degrades for 

! 

"#$t  > 
0.2  For 

! 

"#$t  < 0.1 the relaxation agrees well with theory, and 
there is no obvious scaling of the results with 

! 

"#$t .  We note 
that in the convergence tests of the binary collision algorithm 
reported by Wang, et al. [13], which address the same test 
problem, the relaxation of a weak temperature anisotropy, 
there is no clear scaling of errors with time step in some of the 
cases; and there is one example with scaling approximately 
proportional to Δt1/2.  There is no evidence of an error scaling 
that is proportional to Δt or Δt2 or Δt3 in the results for the 
grid-based Langevin equations collision algorithms reported 
here and for the binary collision algorithm reported in [13].   

We believe that the statistical errors dominate over the 
purely systematic errors associated with the discrete time 
integration of the collision operator for our parameters.  If the 
finite number of collisions is a significant source of error in 
the collisional relaxation of the temperature anisotropy, then 
two simulations with the same number of total collisions, 
proportional to the product of the total number of particles Np 
and the number of collisions each particle experiences, τ/Δt, 
might yield similar error magnitudes.  We illustrate this in 
Figure 6, which shows the results of a simulation with 
Np=0.33×106 and 

! 

"#$t = 0.07  compared to a simulation with 
Np=0.66×106 and 

! 

"#$t = 0.14  The influence of thermal 
electric field fluctuations on the collisionality here is again 
small: νii

effΔt≤3.5×10-4, because this is small compared to the 
values of 

! 

"#$t  considered. The simulations use the first-order 
Euler grid-based Langevin equations collision algorithm 
Eq.(1) in one spatial dimension with self-consistent electric 
fields at thermal levels and including particle advection.  Both 
simulations yield relatively good results as compared to the 
asymptotic theory, and the results exhibit similar error 
magnitudes.  

Milstein [11, 12] has derived a subtle discrete time-step 
correction in the time integration of the drag-diffusion 
stochastic differential equations.  Consider the first-order 
Euler representation of a stochastic differential equation: 

! 

yn+1 = yn + a(yn )"t + b(yn )"W ,

"W = 0, "W
2

= "t
   (12)  

where a represents the drag coefficient, b is related to the 
square root of the diffusion coefficient, and ΔW is the 
normalized diffusive step size.  The drag term on the right side 
is O(Δt) and the diffusion term is O(Δt1/2).  Given that b is a 
function of the dependent variable y, which is evolving as a 
result of infinitesimal drag-diffusion incremental changes, 
Milstein observed that by iterating the Taylor-series expansion 
of the trajectory in the diffusive term, there is a correction to 
Eq.(12) at the same order as the drag term: b(yn+O(Δt1/2))ΔW= 
b(yn)ΔW+ O(Δt). Most generally, the stochastic kicks are 
intended to accumulate as a sum of infinitesimal kicks: 
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! 

"ystoch. = dy
t

t+"t

# = b(y)d"W
t

t+"t

#

= b(yn ) d"W +
t

t+"t

#
db

dy
yn

(y $ yn )d"W + ...
t

t+"t

#

% b(yn )"W + b
db

dy
yn

"Wd"W
t

t+"t

# + ...

% b(yn )"W + b
db

dy
yn

1

2
"W 2 $ "t( ) + ...

  (13)  

where we use yn+1-yn=bΔW + higher order terms in Δt and 
iterate the Taylor-series expansion.  The expression  

           

! 

"Wd"W
t

t+"t

# $ 1

2
"W 2 % "t( )           (14) 

derives from the use of Ito calculus [12] and follows from 

    

! 

WdW =
0

t

" Wt j
Wt j+1

#Wt j( )
j=1

n

$

= 1

2
Wt

2 # 1

2
Wt j+1

#Wt j( )
2

j=1

n%&

$ = 1

2
Wt

2 # t( )
(15) 

Using Eq.(9) the drag-diffusion equation with Milstein 
correction becomes 

! 

yn+1 = yn + a(yn )"t + b(yn )"W + 1
2
b
db

dy
yn

("W
2
# "t)  (16) 

The lowest-order Langevin equations Eq.(1) with Milstein 
correction at next order in (νΔt)1/2 in the diffusion term for vz 
are then given by  

 

! 

vz
t+"t = vz

t
+ Fd"t + g"t

1/ 2
N1 + 1

2
g

dg

d v
"t (N 4

2
#1)

v$1,2
t+"t = v$1,2

t + "v$1,2

 (17) 

where Δv⊥1,2 are just the diffusion terms from Eq.(1).  The 
Milstein corrections to Δv⊥ at O(Δt) enter at higher order in 
changing the particle energy: 

! 

v
t+"t = (vz

t + "vz )
2 + "v#1

2 + "v#2
2[ ]

1/ 2

    (18) 

and are omitted.  It is important to note that <ΔW2-Δt>=<N4
2-

1>Δt=0 so that the ensemble average of <Δv/Δt> recovers the 
same Fokker-Planck drag coefficient and <ΔvΔv/Δt> recovers 
the same diffusion tensor based on either Eq.(17) or Eq.(1), 
assuming that the random kicks are ideally distributed with 
zero mean and appropriately constrained variance.  

 In Figure 7 we show the results of a series of simulations 
varying ν∗Δt over two orders of magnitude and comparing the 
results of the first-order Euler integration of Eq.(1) to the 
solution of the difference equations including the Milstein 
correction in Eq.(17) for the relaxation of a small temperature 
anisotropy as in Figs. 1-3. The influence of thermal electric 
field fluctuations on the collisionality in this series of 
simulations is mostly negligible, except at the smallest value 
of ν∗Δt used: νii

effΔt~2×10-4<

! 

"#$t .  The Milstein corrections 
are nonzero, but are so small that the results almost overlay 
one another in the plots.  The smallness of the Milstein 
corrections for Coulomb collisions in this example derives 
partly from the smallness of dg/dv over most of velocity space 
except for test-particle velocities that are comparable to the 
thermal speed of the field particles.  This significantly limits 
the influence of the Milstein correction on the calculation of 

kinetic energy moments of the distribution function which 
sample all of the velocity space.  Similarly small Milstein 
corrections have been reported by Lemons, et al. [6] in their 
simulations of Coulomb collisions. 

The derivation of the Milstein correction illustrates the Δt 
accuracy of the collision model based on the Langevin 
equations.  The Langevin equation, e.g., Eq.(8) or (12), is a 
stochastic differential equation whose next order in powers of 
Δt1/2 correction is proportional to Δt(N4

2-1) shown in Eq.(17), 
where N4 is a random number sampled from an ideal Gaussian 
distribution with zero mean and a variance equal to unity. Of 
course, any finite sample of random numbers has a sample 
mean and sample variance that differ in general from the mean 
and variance of the parent distribution.  Without the Milstein 
correction, the stochastic differential equation is accurate 
through O(Δt1/2).  Consider the diffusion term in Eq.(8) 
containing Δt1/2N1. N1 is also a random number sampled from 
a finite set of   Nr random numbers that belong to a parent 
distribution that is Gaussian. Because the variance of {N1} 
differs from unity in general, the time-averaged numerical 
diffusion rate acquires a random error and is not exactly 
consistent with the desired diffusion coefficient. Statistical 
theory asserts that the variance of the collisional velocity 
changes proportional to  Δt1/2N1 sampled over a time interval 
(and, hence, the time-averaged numerical diffusion 
coefficient) will have a relative standard error  whose size 
scales as 1/Nr

1/2..  With one collision per particle per time step, 
the number of collision events in a physical time interval τ 
will be proportional to τ/Δt; and, hence, the relative random 
error in the numerical diffusion will scale as Δt1/2 over a 
physical time interval. Thus, there is no clean separation 
between the purely systematic Δt errors in the integration of 
the Langevin equations and the random errors associated with 
the collisions. These random errors affect the time histories of 
the collisional relaxation processes.  In contrast, the lowest-
order Euler integration of a non-stochastic differential 
equation is accurate through O(Δt) with errors at O(Δt2).  The 
arguments presented here provide insight into the findings in 
the simulations that the random errors are dominant. 
 
IV.   PARTICLE SIMULATION OF ELECTRON-ION COLLISIONS  
 

Electron-ion collision processes must be accurately resolved 
in kinetic simulations to reproduce the classical plasma 
resistivity faithfully.  Classical resistivity is an important 
ingredient in the quasi-neutral response of a high-density 
collisional plasma to injected beams and driving electric 
fields.  What are the requirements on time step for resolving 
electron-ion collisions in a particle simulation? We have 
studied (1) the relaxation of a relative drift between electrons 
and ions using binary collisions and (2) the approach to a 
steady-state resistive response to a weak driving electric field 
using both the binary collision algorithm and the grid-based 
Langevin equations collision algorithms. 
 For a drifting Maxwellian electron velocity distribution the 
initial slowing-down rate for electrons on ions with 
Ti<<(mi/me)Te is given by [1] 
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! 

" s = µ(# /Te0) Te0
#( )

3 / 2

" 0,

" 0 = 4$ne4
ln%

2 2me
1/ 2
Te

3 / 2 , for Z = 1 and Te =Ti

µ = (2 /$1/ 2
) e

&'
0
x
( '1/ 2

d' = erf (x) & (2 /$1/ 2
)xe

&x
,

x = (# /Te0)
1/ 2

  (19) 

where 
  

! 

" = mevd
2
/2  is the kinetic energy associated with the 

initial electron drift and µ=0.428 for x=1. The slowing down 
of electrons is studied in a series of initial-value simulations 
using the binary collision algorithm varying ν0Δt with initial 
conditions 

  

! 

"0 = mevd0
2
/2 =Te0=Ti0. Good results for the 

initial relaxation rate are obtained for ν0Δt<0.1 (Figure 8).  In 
these simulations, electron-electron, electron-ion, and ion-ion 
collisions were simulated in a one-dimensional periodic 
domain with the electric field suppressed and with mi/me=1836 
and Zi=1.  In Ref. 2 the analysis of the slowing down of a 
drifting electron Maxwellian in the presence of only electron-
ion collisions is extended to finite time durations by invoking 
energy conservation for the electrons (valid for mi/me>>1) so 
that 

! 

" + 3Te / 2 = const. for all time, replacing the relaxation 
rate with the time-dependent expression 

! 

" s = µ(# /Te0)(Te0 /#)
3/ 2" 0 , and integrating the relaxation 

equation.  This allows the instantaneous exponential relaxation 
rate to evolve for finite time and gives the theoretical curve 
shown in Fig. 8 a decreasing slope.  There is a second 
mechanism that can contribute to a reduction in the 
exponential relaxation rate for finite time. In the small-mass-
ratio limit, the slowing-down of a drifting Maxwellian test-
particle population can be evaluated using the analytical 
solution for the evolution of a distribution function under 
Coulomb-Lorentz collisions given in [9].  The analysis shows 
that there is a decrease in the exponential relaxation rate as a 
function of time which derives from the more energetic 
electrons taking a longer time to collisionally relax than the 
less energetic electrons which then produces a deviation of the 
electron velocity distribution from a Maxwellian. Such a 
calculation was given for temperature-anisotropy relaxation in 
[15].    The decrease in the slowing-down rate after ν0t≈0.1 in 
the smallest-timestep case is qualitatively consistent with the 
analytically determined behavior for the test-electron slowing-
down problem. 
 The approach to a resistive quasi-steady state was studied in 
a series of simulations with the binary and grid-based 
Langevin equations collisions algorithms to compare their 
performance.  For a small constant applied small electric field, 
Ez=0.6 V/cm,  (e/me)EzΔt2/Δx=7×10-7 and 
(e/me)EzΔt/<vz0

2>1/2=4×10-5, with mi/me=1836, binary 
collisions, Te=Ti, and 5×104 particles of each species, we 
observe in Figure 9 that the plasma acquires a quasi-steady 
current in a time ~5ν0

−1 which satisfies the resistive relation 
[20] 

! 

Ez = "||Jz ,"|| = 0.51
me

e

1

nee# e
, 1 /# e = (4 /3 $ )% ei   (20) 

where 

! 

"
ei

= 2#Z
i

2
e
4
n
i
ln$ m

e
T
e

3 / 2
.  The relaxation is 

studied in the numerical examples varying  ν0Δt, and relatively 
good results are obtained for ν0Δt≤0.1  There are no self-

consistent thermal electric-field fluctuations in the simulations 
shown in Figs. 9 and 10.  The constant applied electric field in 
this example must be small enough so that the acceleration 
and resistive heating of the electrons is weak over the duration 
of the simulation.  In general, as the plasma electrons heat, the 
resistivity will decrease as Te increases (not allowed in our 
simulation diagnostic) and the plasma current is expected to 
increase; and high-energy electrons can run away if the 
electric field is too large.  We observe electron velocity 
distributions that evolve in the presence of the applied electric 
field to form high-energy tails because they are more weakly 
collisional and more easily accelerated. This is how “slide-
away” velocity distribution functions are formed in the 
presence of accelerating electric fields. The collisions tend to 
isotropize the electron velocity distribution. 

Simulations studying the approach to a resistive quasi-
steady state using the grid-based Langevin equations collision 
algorithms are shown in Figure 10.  In the simulations in Figs. 
10a and 10b Ez=0.3V/cm,  (e/me)EzΔt2/Δx=3.5×10-7 and 
(e/me)EzΔt/<vz0

2>1/2=2×10-5, and we used 4×104 particles of 
each species  with Te=Ti , mi/ me=1836 and singly charged 
ions.  Using Eq.(1), the expected relaxation is reproduced in 
Fig. 10a for ν0Δt=1.2×10-4 over 105Δt with a 3% growth of the 
total kinetic energy, and poor results are obtained with 
ν0Δt=9.7×10-4 with a significant loss of energy conservation: 
there is a three-fold growth of the total kinetic energy after 
104Δt. A much smaller time step, O(10-3) smaller, must be 
used here than with the binary collision operator in keeping 
with the arguments in Sec. II.   Using Eq.(3), the relaxation 
agrees with theory adequately for ν0Δt ≤ 9×10-3 and departs 
from theoretical expectation for ν0Δt ≥ 3×10-2 with more than a 
two-fold growth of the total kinetic energy in 3×103Δt.  Thus, 
the Lemons et al. algorithm Eq.(3) allows the use of a ν0Δt 
value that is O(mi/ me)1/2 larger than for the algorithm based on 
Eq.(1) in this example.  However, the value of ν0Δt can be 
chosen an order of magnitude larger for the binary collision 
algorithm compared to that using the Lemons, et al. algorithm 
in Fig.10b. 

In Fig. 10c additional results are shown for the numerical 
simulation of the approach to a resistive quasi-steady state 
using the Lemons, et al., algorithm Eq.(3) with various 
modifications to the algorithm or changes in the parameters, 
e.g., changing the time step or the number of particles.   One 
can modify the collision algorithm to enforce momentum and 
kinetic energy conservation.  After each like-particle collision 
the momenta are uniformly shifted in each cell (or globally if a  
uniform plasma problem is being studied, as is the case here) 
and the momenta are uniformly scaled relative to the average 
momentum in the cell to conserve momentum and 
energy.[4,6]  For unlike-particle collisions, e.g., electron-ion 
or ion-electron collisions, the changes in the local (or global) 
total momentum and kinetic energy of the test particles can be 
compensated for by equal and opposite changes in the field 
particles momenta and kinetic energies by means of locally 
uniform momenta shifts and scaling of the momenta relative to 
the average momentum of the field particles so that the sum of 
the total momentum and kinetic energy of the test and field 
particles is conserved.  For small time steps and good statistics 
the momenta shifts are small and the scaling is near unity.  
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Alternatively, we could shift the momenta of both the test and 
field particles to conserve total momentum, and then scale 
both the test and field particle momenta relative to the mean 
momenta of each species to conserve total energy.  The results 
in Fig. 10c show no significant improvement in the relaxation 
to a resistive steady state compared to the results in Fig. 10b 
due to restoring momentum and energy conservation after the 
Monte Carlo collisions.  However, doubling the number of 
particles for an adequately small time step results in a 
significant improvement in the comparison of the relaxation to 
the theoretical steady state in Fig. 10c. 

The traces in Fig. 10c are labeled as follows: red = {Eq.(3) 
with ν0Δt=3×10-3, Np=40000 for each species, with adjusted 
energy/momentum conservation}; blue =  {Eq.(3) with 
ν0Δt=9×10-3, Np=40000 for each species, with adjustments for 
energy/momentum conservation}; coral= {Eq.(3) with 
ν0Δt=3×10-3, Np=80000 for each species, and no adjustment 
for energy/momentum conservation};  magenta = {Eq.(3) with 
electron-ion collisions reduced to pitch-angle collisions, 
ν0Δt=9×10-3, Np=40000 for each species, and no adjustment 
for energy/momentum conservation}; light blue = {Eq.(3) 
with electron-ion collisions reduced to just pitch-angle 
collisions, ν0Δt=0.028, Np=40000 for each species, and no 
adjustment for energy/momentum conservation}; and green = 
{Eq.(3) with electron-ion collisions reduced to just pitch-angle 
collisions, ν0Δt=0.082, Np=80000 for each species, and no 
adjustment for energy/momentum conservation}. 

The reduction of the Lemons, et al. algorithm Eq.(3) to just 
pitch-angle collisions is shown to be particularly efficacious in 
the results shown in Fig. 10c.  To achieve this reduction in 
Eq.(3), one suppresses the drag and diffusion of the particle 
speed, i.e., one forces Δv=0 for collisions of electrons on ions, 
which is a very good approximation for me/mi<<1.  Only 
pitch-angle collisions of the electrons survive in this reduction. 
For larger values of ν0Δt, if an electron undergoes a large-
angle scattering event, it still conserves energy; and, like the 
binary collision algorithm, the accuracy of the collision 
algorithm fails gracefully.  Data for the relaxation to a 
resistive steady state is shown in Fig. 10c extending to much 
larger values of ν0Δt than in Fig. 10b, and good results are 
recovered compared to theory provided that there is adequate 
statistical resolution of the collisions.  Energy conservation 
with no modification of the algorithm for energy/momentum 
conservation after the inter-species collisions is within a few 
percent over 6000 time steps.  The results for the relaxation to 
a resistive steady state using the pitch-angle limit of Eq.(3) for 
electron-ion collisions are similar to those obtained using the 
binary collision operator shown in Fig. 9 with respect to time 
step, but the binary collision algorithm yields smoother time 
traces.  
 
V.  SUMMARY  
  

We have studied some of the accuracy issues for grid-based 
Langevin equations and binary collision algorithms. In an 
example of practical interest using numerical parameters that 
are typical of plasma physics simulations using first-order 
Euler and higher-order time-integration algorithms for the 
grid-based Langevin equations collision model based on 

Eq.(1), we find that statistical noise errors associated with 
finite numbers of particles and collision events are dominant 
sources of error in the computations.  We have argued that the 
statistical noise errors in the collision events can be, in 
general, conflated with time-step issues.  The dependence of 
the results on the time step in our simulation examples is weak 
for the test case of the relaxation of a weak temperature 
anisotropy. For the parameters employed in our simulations 
there is no improvement in the results achieved with higher-
order-accurate time-integration schemes, and acceptable 
accuracy can be obtained with a first-order Euler time 
integration for an appropriate choice of time step.  The 
numbers of particles per cell and total numbers of particles 
used in the simulations are representative of well-resolved 
particle simulations commonly employed to study plasma 
phenomena. We obtain similarly good results on this same 
relaxation problem using a first-order Euler integration of the 
Lemons, et al. algorithm Eq.(3) for values of 

! 

"#$t < 0.1  
Results for the same collisional relaxation problem using the 
binary collision algorithm have been reported by Wang, et al. 
[13], who also observe a weak dependence of the accuracy of 
the results on the time step. We also find that when a Milstein 
correction [11, 12] to the Langevin equations model is 
included, there is very little change in the observed results for 
the collisional relaxation of a weak temperature anisotropy 
studied here.  The Milstein correction analysis also illustrates 
the dependence of the errors in the integration scheme on Δt 
and the sampling of the random numbers.  The analysis of the 
Milstein correction and the arguments on the scaling of the 
random errors presented in Sec. III support the simulation 
findings that the random errors dominate any systematic time 
step errors. 

We have not investigated the convergence of the 
simulations of collision processes studied here with respect to 
numbers of particles or ensembles of realizations of the 
random numbers in the collision operators.  Achieving 
improved statistical resolution to a high degree can be 
challenging. To reduce the stochastic statistical errors by 
O(1/10) would require O(102)× more particles and collision 
events per particle per time step given the 1/N1/2 scaling of the 
statistical errors, which could be impractical on a routine 
basis. Moreover, if the number of collisions per particle per 
time step remains fixed at unity, a decrease in the collisonal 
time step by 1/102 would be required in order to increase the 
number of collision events by 102 over a defined time interval.  
Here again we are confronted with the conflation statistical 
errors with the time step used in the integration.  In the 
multilevel Monte Carlo methodology suggested by M. B. 
Giles [21] the linkage of the number of random collision 
events per particle per time step is relaxed by averaging over 
additional collisional integration paths with different values of 
the time step.  Giles provides estimates of the statistical error 
due to the sampling of random numbers in the collision events 
and the integration error due to 

! 

"t , and he shows how to 
balance the two sources of error while minimizing the 
computational burden.  However, Giles’ method has not as yet 
been applied to simulating collisions in plasmas. 

We have also studied the collisional relaxation of an initial 
electron-ion relative drift and the relaxation to a resistive 
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steady-state in which a quasi-steady current is driven by a 
weak applied electric field, as functions of the time step used 
to resolve the collision processes.  For a sufficiently small 
time step the particle simulations recover the initial relaxation 
rate for an electron-ion relative drift [1] and the classical 
resistivity predicted by Braginskii’s theory [20]. Because the 
grid-based Langevin equations algorithm in Eq.(1) has an 
unfavorable mass-ratio scaling at low test-particle velocities, 
modeling electron-ion collisions with this algorithm requires a 
much smaller time step than that required using the algorithm 
based on Eq.(3) or the Takizuka and Abe binary collision 
algorithm.  A significantly larger collisional time step can be 
used with the binary collision algorithm than with either of the 
unmodified Langevin equations collision algorithms for the 
example of the relaxation to a resistive steady state involving 
electron-ion collisions investigated here.  However, if the 
Lemons, et al. algorithm, Eq.(3), is reduced to just pitch-angle 
scattering for electron-ion collisions, which is a good 
approximation for me/mi<<1, then the results for the relaxation 
to a resistive steady state are nearly as good as the results from 
the binary collision operator; and both algorithms are shown to 
extend to larger values of the time step  

The binary collision model and the grid-based Langevin 
equations collision models are widely used, and good results 
can be obtained with both approaches. The binary collision 
model requires some additional computations to do the sorting 
and pairing of particles in a spatial cell as compared to the 
Langevin equations model, and the latter model is more easily 
parallelized.  However, the binary collision model described in 
[1] and [2] naturally conserves momentum and energy. The 
Langevin equations model is more restrictive with respect to 
the assumption that the velocity distribution function of the 
field particles is close to a Maxwellian (although this 
assumption can be relaxed if one is willing to calculate new 
drag and diffusion coefficients from the Rosenbluth potentials 
[4,14]).  In our experience, we have used both approaches and 
advocate letting the nature of the problem at hand drive the 
choice of which approach to use. 

Although the results presented here are not intended to be a 
detailed convergence analysis of collision algorithms in 
particle codes, significant insights are presented into the 
characteristics of the collision algorithms and their 
performance.  The simulation results presented here should be 
of value in providing guidance in choosing between the  
collision algorithms and selecting time steps for resolving 
collisional relaxation processes in particle simulations. 
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Fig. 1 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. BZOHAR simulations of like-species Coulomb 
collisions using the grid-based Langevin equations algorithm 
Eq.(1) with first-order Euler time integration to study the 
relaxation of a weak temperature anisotropy: (a) simulated 
temperature anisotropy vs. time and (b) the difference of the 
simulated temperature anisotropy from theory vs. time for 
various values of the time step. (color on-line) 
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Fig. 2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. BZOHAR simulations of like-species Coulomb 
collisions using the grid-based Langevin equations algorithm 
Eq(1) with partial corrector time integration to study the 
relaxation of a weak temperature anisotropy: (a) simulated 
temperature anisotropy vs. time and (b) the difference of the 
simulated temperature anisotropy from theory vs. time for 
various values of the time step. (color on-line) 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. BZOHAR simulations of like-species Coulomb 
collisions using the grid-based Langevin equations algorithm 
Eq.(1) with modified Euler predictor-corrector time 
integration to study the relaxation of a weak temperature 
anisotropy: (a) simulated temperature anisotropy vs. time and 
(b) the difference of the simulated temperature anisotropy 
from theory vs. time for various values of the time step. (color 
on-line) 
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Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Particle simulations suppressing the electric field and 
particle advection of like-species Coulomb collisions using the 
grid-based Langevin equations algorithms with first order 
Euler time integration to study the relaxation of a weak 
temperature anisotropy: simulated temperature anisotropy vs. 
time for various values of the time step and algorithms based 
on  (a) Eq.(1) and (b) Eq.(3). (color on-line) 
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Fig. 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. BZOHAR simulations of like-species Coulomb 
collisions using the grid-based Langevin equations algorithm 
Eq.(1) with modified Euler predictor-corrector time 
integration and two-step predictor-corrector time integration to 
study the relaxation of a weak temperature anisotropy: 
simulated temperature anisotropy vs. time for various values 
of the time step (linear and log-linear plots). (color on-line) 
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Fig. 6 

 

 

 

 

 

 

 

 

 

 

Fig. 6. BZOHAR simulations of like-species Coulomb 
collisions using the grid-based Langevin equations algorithm 
Eq.(1) with first-order Euler time integration to study the 
relaxation of a weak temperature anisotropy: simulated 
temperature anisotropy vs. time for two values of the time step 
Δt and particle number Np such that Np/Δt is held fixed. (color 
on-line) 
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Fig. 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. BZOHAR simulations of like-species Coulomb 
collisions using the grid-based Langevin equations algorithm 
Eq.(1) with first-order Euler time integration and Milstein 
correction to study the relaxation of a weak temperature 
anisotropy: simulated temperature anisotropy vs. time for four 
values of the time step Δt and particle number Np. (color on-
line) 
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Fig. 8 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Simulations of the relaxation of a relative electron-ion 
drift due to electron and ion collisions using the binary 
collision operator,  <vx(t)>/<vx(0)> vs. time for various values 
of the time step. (color on-line) 
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Fig. 9 

 

 

 

 

 

 

 

 

 

 

Fig. 9.  Simulations of the relaxation of the plasma current Jz 
to a resistive steady state in the presence of a weak, time-
independent, uniform electric field Ez with binary electron and 
ion collisions, ηJz/Ez vs. time for various values of the time 
step. (color on-line) 
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Fig. 10 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Simulations of the relaxation of the plasma current Jz 
to a resistive quasi-steady state in the presence of a weak, 
time-independent, uniform electric field Ez with grid-based 
Langevin equations for electron and ion collisions: ηJz/Ez vs. 
time for various values of the time step and algorithms based 
on (a) Eq.(1),  (b) Eq.(3) and (c) Eq.(3) with modifications for 
either energy and momentum conservation or electron-ion 
pitch-angle collisions or increased number of particles (see 
text for definitions of the color traces).  (color on-line) 
 

 

 

 

 

 

 

 
 


