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On the accuracy of techniques for determining neutron compound-nucleus
formation cross sections

Frank S. Dietricha

Lawrence Livermore National Laboratory, L-414, P.O. Box 808, Livermore, CA 94551, USA

Abstract. We consider three methods for determining neutron nonelastic cross sections: direct measurement

by transmission of neutrons through a spherical shell; subtraction of the angle-integrated elastic cross section

from the total cross section; and a modification of the subtraction technique using Wick’s limit that in favorable

cases can significantly reduce the errors in the subtraction method. We show new results using the modified

subtraction technique for nonelastic cross sections at 21.6 MeV neutron energy over a wide mass range, and

discuss criteria that should be satisfied in order for the modified subtraction technique to be reliable.

1 Introduction

Total neutron cross sections can be measured fairly eas-
ily to an accuracy in the neighborhood of 1%. However,
the nonelastic (or reaction) cross sections, which are more
relevant than the totals for calculating compound-nuclear
reactions, are rather poorly known experimentally; mea-
surements typically scatter by 5 to 10%. Herein we discuss
three techniques that can be used to determine nonelastic
cross sections, and show examples of the results that may
be obtained with them. For simplicity we limit the discus-
sion to spherical nuclei, although extensions to deformed
nuclei are straightforward.

The classic technique for direct determination of non-
elastic cross sections is by measurement of transmission
through a spherical shell surrounding the detector. This
method has been widely applied, but requires extreme care
to details such as detector stability and corrections for ab-
sorption and multiple scattering. A well documented set
of measurements in the 8–26 MeV range [1–4] was made
at Livermore circa 1960; results of their measurements at
14.2 MeV are shown in Fig. 1. A smooth curve could be
drawn through these data that would be consistent with the
claimed ≈3% uncertainty. On the other hand, the complete
set of sphere-transmission measurements on Fe, shown in
the bottom part of Fig. 2, shows significantly greater un-
certainties.

As an alternative method for determining the nonelas-
tic cross section, we consider the direct subtraction of the
angle-integrated elastic scattering from the total cross sec-
tion,

σreac = σtot − σelas, (1)

where the nonelastic cross section is designated by σreac.
This method is subject to enhancement of uncertainties
arising from the subtraction of two numbers, and is also de-
pendent on the reliability of the systematic error estimates
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Fig. 1. Measurements at 14.2 MeV of the compound formation

cross section by the sphere-transmission technique, as reported

in Ref. [3].

in two experiments of very different type. In the present
work we use a set of total cross sections over a wide mass
range [5,6] believed to have uncertainties in the neighbor-
hood of 1%, as well as a 2% measurement on natCe [7].

We have found a modification of the subtraction tech-
nique that in favorable cases can significantly reduce the
uncertainties. By using the definition of Wick’s limit, we
can induce correlations between the two terms in the sub-
traction expression. We give a brief description of this tech-
nique, which has been developed and applied to several
cases (208Pb, 54,56Fe, 232Th, and 238U) in Refs. [8–10]. We
define σW

0
, the Wick’s limit value for the c.m. zero-degree

differential elastic cross section, and η, the fractional de-
viation of the true zero-degree cross section σ0 from its
Wick’s limit value by

σW

0 =

(

k

4π
σtot

)2

and η =
σ0 − σ

W

0

σW

0

. (2)
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Fig. 2. Top: Nonelastic cross sections for 54,56 Fe using the modi-

fied subtraction technique; angular distributions used to calculate

the F factor are identified in Ref. [9]. Bottom: Nonelastic cross

sections for these nuclei from CSISRS database.Solid curves rep-

resent the global optical potential of Koning and Delaroche [11].

We also define a quantity

F =
σelas

σ0

=
1

σ0

∫

dΩ
dσelas

dΩ
, (3)

which is determined entirely by experiment. Using these
definitions for η and F we can rewrite Eq. 1 as

σreac = σtot − (1 + η)F

(

k

4π

)2

σ2
tot, (4)

which expresses the nonelastic cross section in terms of
three independent quantities, σtot, η, and F. The fractional
uncertainties due to uncertainties in these quantities, which
are to be added in quadrature, are
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In the energy range of interest here, the nonelastic cross
section is approximately equal to the nuclear area, and the
total cross section oscillates with energy about twice this
value. Thus the quantity between straight brackets in Eq. 5
is typically very small, and can even be zero at specific en-
ergies; the sensitivity to errors in σtot is consequently very
weak. A similar argument indicates that the expressions
in parentheses in Eqs. 6 and 7 are approximately unity.
The dependence on η, which is calculated from an opti-
cal model, introduces a model dependence which has been
studied in [8] and shown to be very weak over a wide range
of target masses and energies. In this method the largest

uncertainty typically comes from the factor F, which is
computed from experimental elastic scattering angular dis-
tributions by Legendre-polynomial fitting to extrapolate to
zero degrees and to determine the angle-integrated elastic
cross section. Sufficiently accurate extrapolation to zero
degrees requires angular distributions with many angular
points and with a rather small minimum angle (≈10–15
degrees).

Results for 54,56Fe are shown in the upper portion of
Fig. 2, together with sphere-transmission measurements ob-
tained from the CSISRS database in the lower portion. Both
are compared with the predictions of the Koning-Delaroche
global optical-model potential [11]. The results from the
modified subtraction technique exhibit smaller errors than
those from CSISRS, and the cross sections are significantly
larger. There is good agreement between the new results
near 14 MeV and those from the Livermore sphere trans-
mission measurements [1]. There is also rather good con-
sistency between the results using F factors calculated with
angular distributions from different laboratories.

It is evident that the sources of uncertainty in the three
techniques are very different. As noted, the uncertainty in
the modified subtraction method is dominated by F. This
quantity is independent of the absolute normalization of
the underlying angular distribution measurement; however,
the reliability of the extrapolation to zero degrees is cru-
cial. The direct subtraction has the opposite properties: the
normalization of the angular distribution is the dominant
error, while the extrapolation to small angles carries very
little weight in the integration of the differential cross sec-
tion over solid angle.

2 New results and discussion

We have continued the study of the modified subtraction
method by calculating the nonelastic cross sections from
the angular distributions measured at the Studsvik labo-
ratory [12] at 21.6 MeV and the total cross sections of
Refs. [5–7]. The Wick deviation η was calculated from the
Koning-Delaroche global potential [11]. The angular dis-
tributions were measured for 13 elemental samples from
Mg to Bi. The results are shown in the upper portion of
Fig. 3, and the results using direct (i.e. unmodified) sub-
traction are shown in the lower portion. As seen in the
original study of Pb [8], the results of the two methods
are consistent (although just barely for Cr), but the uncer-
tainties in the modified-subtraction results are significantly
smaller.

There are now enough results from the modified sub-
traction technique to allow some criteria to be developed
to obtain reliable measurements. The most important is
that the extrapolation of the angular distribution to zero
degrees should be stable. An example of a favorable case
is shown in Fig. 4, for a 15.2 MeV angular distribution
measured [13] on Fe. With increasing L, the maximum or-
der of the Legendre polynomial fit, the χ2 per degree of
freedom has a sharp knee beyond which it is stable. At the
same critical value of L (12 in this example), the value of
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Fig. 3. Nonelastic cross sections derived from angular distribu-

tions of Ref. [12] at 21.6 MeV neutron energy. Top: Results from

modified subtraction. Bottom: Results from direct subtraction.

The line is a power-law fit to the results using modified subtrac-

tion.

Fig. 4. χ2 per degree of freedom (crosses) and the factor F (solid

circles) as a function of the maximum order of the Legendre fit

to the angular distributions for 15.2 MeV neutrons on natural Fe

[13].

F stabilizes, and larger values of L only yield larger uncer-
tainties for F. The critical L is roughly proportional to kR,
the grazing angular momentum for the incident neutron.
An empirical expression based on this relation can be used
to predict the energy and mass dependence of the critical
value of L.

Fig. 5. Ratio of zero-degree cross section from Legendre fits to

value using Wick’s limit (obtained from experimental total cross

section), corrected by optical-model calculation.

A useful check on the validity of the extrapolated zero-
degree cross section can be obtained by comparing it with
an estimate of the zero-degree cross section determined
from the total cross section and the Wick deviation η. This
quantity is

σest

0 = (1 + η)

(

k

4π

)2

σ2
tot, (8)

in which the factor 1 + η is just the factor that converts the
Wick limit to the the true zero-degree cross section, calcu-
lated from an optical model. The ratio of the extrapolated
zero-degree cross section to this estimate is shown in Fig. 5
for the 13 angular distributions in the Studsvik 21.6 MeV
measurements. The ratios are close to unity, and the er-
rors are dominated by the approximately 5% normalization
uncertainty in the angular distribution measurements. We
note that the low point in the A ≈ 50 region corresponds to
Cr, which also showed a slight discrepancy in the reaction
cross sections determined by the direct and modified sub-
traction methods. These results, together with the fact that
the Cr angular distribution does not show a suitably well-
developed a knee and subsequent flat behavior in the χ2

and F values as a function of L, suggests that the modified-
subtraction value of the nonelastic cross section for Cr may
be questionable.

3 Summary and conclusions

In the present work we have continued a study of alterna-
tive methods to the sphere-transmission technique for de-
termining nonelastic cross sections. These methods are the
direct subtraction of the elastic from the total cross section,
and a modification in which uncertainties are reduced by
introducing Wick’s limit to correlate the quantities being
subtracted. We have applied these methods to a new set of
data, based on a set of angular distribution measurements
at 21.6 MeV neutron energy over a wide mass range. We
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have also discussed tests and criteria that should be applied
when employing the modified subtraction technique. Three
of these are:

– The Legendre extrapolation of an angular distribution
to zero degrees should be stable for polynomial orders
above a critical value, as indicated in the discussion of
Fig. 4.

– Since the two methods have very different sources of
error, both should be employed and consistency of the
results be demanded.

– The extrapolated zero-degree cross section should be
consistent with the value obtained from the total cross
section, using Wick’s limit and an optical-model cor-
rection, as shown in Eq. 8.

In order for the last two of these tests to be useful, total
cross sections should be used that have uncertainties much
smaller than the normalization uncertainties of the angu-
lar distributions. It is also important that the model depen-
dence of the modified subtraction technique be small; this
means that the optical-model calculation of the Wick devi-
ation η should be well determined; this issue is discussed
in Ref. [8], which indicates the regions of neutron energy
and target mass for which the technique is suitable.

This work was performed under the auspices of the U.S. Depart-

ment of Energy by Lawrence Livermore National Laboratory un-

der Contract DE-AC52-07NA27344.
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