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Executive Summary

This report explores the question of whether meaningful conclusions can be drawn regard-
ing the transmission relationship between two microbial samples on the basis of di�erences
observed between the two sample's respective genomes. Unlike similar forensic applica-
tions using human DNA, the rapid rate of microbial genome evolution combined with the
dynamics of infectious disease require a shift in thinking on what it means for two sam-
ples to �match� in support of a forensic hypothesis. Previous outbreaks for SARS-CoV,
FMDV and HIV were examined to investigate the question of how microbial sequence
data can be used to draw inferences that link two infected individuals by direct transmis-
sion. The results are counter intuitive with respect to human DNA forensic applications
in that some genetic change rather than exact matching improve con�dence in inferring
direct transmission links, however, too much genetic change poses challenges, which can
weaken con�dence in inferred links. High rates of infection coupled with relatively weak
selective pressure observed in the SARS-CoV and FMDV data lead to fairly low con�-
dence for direct transmission links. Con�dence values for forensic hypotheses increased
when testing for the possibility that samples are separated by at most a few intermediate
hosts. Moreover, the observed outbreak conditions support the potential to provide high
con�dence values for hypothesis that exclude direct transmission links.

Transmission inferences are based on the total number of observed or inferred genetic
changes separating two sequences rather than uniquely weighing the importance of any
one genetic mismatch. Thus, inferences are surprisingly robust in the presence of se-
quencing errors provided the error rates are randomly distributed across all samples in
the reference outbreak database and the novel sequence samples in question. When the
number of observed nucleotide mutations are limited due to characteristics of the outbreak
or the availability of only partial rather than whole genome sequencing, indel information
was shown to have the potential to improve performance but only for select outbreak
conditions. In examined HIV transmission cases, extended evolution proved to be the
limiting factor in assigning high con�dence to transmission links, however, the potential
to correct for extended evolution not associated with transmission events is demonstrated.
Outbreak speci�c conditions such as selective pressure (in the form of varying mutation
rate), are shown to impact the strength of inference made and a Monte Carlo simulation
tool is introduced, which is used to provide upper and lower bounds on the con�dence
values associated with a forensic hypothesis.
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Introduction

The ever decreasing time and costs to sequence microbial isolates provides the opportu-
nity to collect tremendous amounts of genetic data linking current and historic microbial
transmission events with their infected hosts. If readily available microbial genome se-
quence data could then be used to infer host to host transmission links, it would have
profound impact on the microbial forensics �eld. Yet the precise utility of microbial
genome sequence data in forensic investigations remains very much an open question. A
statistical framework for inferring host to host transmission from genetic sequence data
was introduced in part 1 of this report [25]. The goal of the framework is to estimate the
probability that two microbial sequence samples are linked by a host transmission event.
The basic probability functions that are required to estimate the probabilities of various
transmission relationships are derived from known outbreaks of the disease in question.
This leads to two potential sources of error. First, there is always uncertainty in the
value of parameters derived from empirical data. Secondly, parameters describing the
rate of genetic change over the transmission network and certain statistical properties of
the transmission network itself are assumed to be representative of the (new) outbreak
under investigation. Since every outbreak has unique features, the assumption of the
representativeness may be unwarranted. Moreover, there is uncertainty expected to come
from inherent limitations in genome sequencing technology as well as knowledge gaps in
microbial evolution and epidemiology. Therefore, in this report (Part 2) we investigate
the strength and reliability of inferring host transmission links in the presence of a number
of potentially confounding factors. The work lays the groundwork for developing accurate
microbial genetic inference tools, which use the evolution of microbial genomes as evi-
dence able to pass the rules of admissibility set out in the trilogy of cases initiated by the
supreme court ruling on Daubert v. Merrell Dow Pharmaceuticals, Inc. [1]. To provide
a tool of value to forensic investigators, the framework is designed to quantify error rates
that measure the uncertainty associated with the weight of evidence assigned to a speci�c
forensic hypothesis.

This is the �rst report to our knowledge that attempts to systemically characterize
the utility of microbial genome data for use as forensic evidence in linking two hosts by
transmission from the sequenced microbial infections. To ground the work in real world
cases, three viruses are examined, each capturing distinct characteristics of past RNA viral
outbreaks, Foot and Mouth Disease Virus (FMDV), Severe Acute Respiratory Syndrome
Coronavirus (SARS-CoV), and Human Immunode�ciency Virus (HIV). These viruses are
examined through their spread in previous outbreaks, reported in published literature
(described in the context of addressing public health concerns), the FMD 2001 outbreak
in Britain, the 2003 SARS outbreak in Singapore and two HIV case studies.
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Parameters tied to inferring host transmission links are examined to consider how
changes in underlying assumptions may a�ect the reported con�dence values for drawing
inferences from sequence data. The errors sources we consider are listed below:

• Uncertainty in mutation rate

• Using whole versus partial genome sequence

• Sequencing error rate

• Delay in sample collection with respect to host infection

• Choice of genetic distance measure

• Constraints on viral evolution

The availability of genome sequence data connected to contact tracing and other epidemi-
ological parameters gives the ability to generate models and predictions based on past
outbreak events. In addition, simulation models are constructed to estimate the magni-
tude of change to outbreak parameters needed to invoke signi�cant changes in the types
of inferences made among related sequences.

Simulation tool

A simulation tool was developed to use both observed epidemiological parameters associ-
ated with past outbreaks and observed genome sequence evolution rates to examine the
precise e�ects that di�erent outbreak parameters have on inferring transmission links.
Moreover, the simulated genomic sequence data generated by the model can be compared
with predictions made from past outbreak cases to better understand potential errors in
the epidemiology data.

The model takes as input an outbreak transmission tree representing the spread of the
virus observed in a past outbreak. For FMDV, the transmission tree includes 20 farms
[4] and for SARS 194 human transmission contacts [12]. Sequences associated with each
node in the network are generated using a �xed per time unit (e.g. day or year) mutation
rate, which can be estimated using time stamp information associated with sequence
samples and common assumptions of homogeneous evolution rates [6]. (In most cases,
mutation rates published in previous studies are used.) In addition, a function is given
describing the timing patterns of the infected host prior to transmission to the target host.
The approach is derived from the concept of a SEIR contact model, which describes the
host in four states: susceptible (S), exposed (E), infectious (I), and recovered (R) [19].
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Figure 1: Graphical model for viral intra-host evolution and inter-host transmission.
Bottom right box shows the equivalent (simpli�ed) inter-host transmission tree.

Focus is given to using the model parameters, which can be obtained from past outbreak
data, which include past exposed (E) and infectious (I) components. Both parameters
are uniquely de�ned by the outbreak type. Figure 1 shows the graphical model for a
viral outbreak. Each host node is a pair of subgraphs, representing the exposed and
infectious periods respectively. Each node in the subgraph represents a snapshot of the
viral population at a discrete time. The viral population is currently represented by a
single consensus sequence. The graph has the structure of a linear chain representing the
progress of time. The number of nodes in the subgraph is determined by the length of the
infection in each of the two phases (exposed and infectious). Inter host transmission is
represented by an edge from a node from the infectious subgraph to the initial host viral
population node in the exposed subgraph of the receiving host. For the example given in
Figure 1, Host A transmits the virus to Host B and Host C at two di�erent time points.

For the SARS 2003 Singapore outbreak, the observable data gives the time between the
presentation of symptoms between the transmitting and receiving host. This is reported
to be a mean time of 8.3 days with standard deviation of 3.8 [17], which is approximated
to be normally distributed. In addition, there are previous e�orts to estimate the virus
incubation time - the time between the initial infection and the presentation of symptoms.
This corresponds to the �E� component of the SEIR model. The time of infection is
deduced by subtracting the predicted incubation time from the observed time between
the two contact's respective presentation of symptoms. The predicted incubation time
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is an estimate derived from observed cases in Singapore 2003, which are �t to a Weibull
distribution with scale parameter 5.44 and shape parameter 1.91, which gives a mean
incubation time of 4.83 days [15].

In the case of FMD, the exposed (E) host period is described by a gamma distribution
with smoothing parameter 1.67 and shape parameter 3.0 [4]. The infectious (I) period
begins with the initial symptom presentation and continues to the culling (or isolation) of
the farm. This distribution takes the form of a smoothed histogram using a probability
density estimator based on the observations taken from a portion of the 2001 UK FMD
outbreak [4]. The duration of the outbreak occurs approximately over an 80 day period.
SARS simulations are drawn from an approximate time duration of 90 days.

Model comparisons to sequenced outbreak data

A summary statistic is taken to be the average probability of an inferred host transmission
link for all observed values of δ e.g. ¯P (M) =

∑
δ P (M |δ)/|δ| where M = 1 is the direct

transmission case and |δ| is a count of the total number of distinct values observed for δ.
The posterior probability de�ned in part 1 of the report is given as:

P (M = 1|s1, s2) =

[
1 +

P (s1, s2|M > 1)

P (s1, s2|M = 1)
× P (M > 1)

P (M = 1)

]−1

(1)

where δ = δ(s1, s2) re�ects the genetic distance between sequences s1 and s2. The default
measure used unless noted, is the observed number of nucleotide substitutions between
the two sequences. (The impact of di�erent genetic distances is discussed later in this
report.)

A value of P (M̄) = 1 implies complete con�dence in asserting a transmission link
for all observed values δ associated with all true direct transmission cases and complete
con�dence in ruling out linkage for all other values of δ, where all values of δ are assumed
to be equally likely. A lower and upper bound is taken from the distribution of P (M̄)
using 99.99% con�dence intervals drawn from independent random trials (100 for FMD
and 50 for SARS). Figure 2 shows the distribution for the posterior probability of direct
transmission as a function of the number of nucleotide di�erences observed between two
sequences. Independent Poisson distributions are used to estimate values for P (s1, s2|M >
1) and P (s1, s2|M = 1) in Equation 1. A later section (Nonparametric model estimation)
will discuss the strengths and weaknesses of using Poisson distributions compared to
empirical and other parametric distribution forms. While the slope of the lower and
upper bound curves are similar, the observed sequence model shown in black in Figure 2 is
right shifted, suggesting a higher expected number of mutations separating two sequences
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Figure 2: FMD simulated outbreak model versus observed.

linked by direct transmission in the actual 2001 UK outbreak compared to the simulation
case. This discrepancy could be explained by a number of factors. The reported direct
transmission links from the actual outbreak are in most cases estimates, thus sequence
pairs presumed to be related by direct transmission could in fact be separated by one or
more farms. In part 1 we showed that about half the putative M = 1 linkages were more
consistent with M > 1. Alternatively epidemiological parameters or sequencing error
rates could explain the reduced simulated substitution rates. We will revisit potential
explanations later in this report. Despite this discrepancy, the simulation model provides
a useful baseline for comparing the relative impact of di�erent genetic and epidemiology
parameters on overall forensic hypothesis testing.

Figure 3 shows the equivalent case for Singapore 2003 SARS outbreak. Here, the
observed outbreak data (shown in black) more closely matches the model based on the
reported epidemiology transmission events, however, the slope of the inference curves
di�er somewhat with the observed transmission links in some cases having larger genetic
distances than expected.

Uncertainty in mutation rates

Obtaining precise measurements of mutation rates is di�cult considering the complexity
of microbial evolution. In many cases estimates can only be con�ned to a range of likely
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Figure 3: SARS simulated outbreak model versus observed.

values. For the case of FMDV, two inferred mutation rates are examined, which re�ect
di�erent magnitudes of uncertainty depending on the amount of available sequence used to
infer the mutation rate. Figure 4 shows the a�ect for a range of published mutation rates
for FMDV estimated from two di�erent genomic data sets [3, 4]. In one case the average
mutation rate is 2.26×10−5 with a 95% con�dence bounds of [1.75×10−5, 2.8×10−5] and
the second range includes a larger mutation rate range [5.739× 10−6, 3.509× 10−5]. The
uncertainty re�ects a potential 4 fold decrease and up to a 1.55 increase in the mutation
rate with 95% con�dence bounds around the estimated average mutation rate. Figure 4
shows the probability estimate of direct transmission (y-axis) given the observed genetic
distance (x-axis) measured in terms of the number of nucleotide di�erences. The plots
show the lower bound estimate for P (M = 1) (direct transmission) with 99.99% con�-
dence. The �gure shows a degradation of inferential power with the lower mutation rates
in inferring direct transmission. However, the strength of excluding direct transmission
events remains similar. For example, the probability of direct transmission between virus
pairs with more than 7 observed mutations is extremely low regardless of mutation rate.

For the SARS outbreak of 2003, an estimated average mutation rate of 5.7 × 10−6

with a potential range of [1.48× 10−6, 1.04× 10−5] based on numerous published reports
studying the virus mutation rate [28, 24, 2, 27]. On average the SARS-CoV is expected
to have slightly less mutations per site per day, than FMDV and therefore based on our
model would expect to have slightly weaker direct transmission inferential power. Figure
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Figure 4: Variation in mutation rates in FMDV. Red=5.739 × 10−6, Blue=1.75 × 10−5,
Green=2.26× 10−5, Orange=2.8× 10−5 and Yellow = 3.509× 105.

Figure 5: SARS-CoV mutation rates.
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Figure 6: Host transmission triangle principle for transmission inference.

5 shows the posterior probability curve for direct transmission for the range of mutation
rates. There appears to be dramatic improvement in the ability to infer direct transmission
events under the higher mutation rate assumption. And in all cases, exclusion of direct
transmission would be predicted at around 7 observed mutations.

Direct transmission with no mutation weakens genetic inference claims

Figure 6, illustrates the �host transmission triangle� principle for inferring direct trans-
mission from genetic variation. Genetic distance values d0 and d1 represent the variation
between the source host (node labeled �Source� in Figure 6) and the two respective vic-
tims, (labeled �Victim 1� and �Victim 2�). Genetic distance d2 represents the distance
between the two victims (assuming a uni-directional distance measure). Direct transmis-
sion inference is only possible when d2 > d0 > 0 and d2 > d1 > 0. Assume a simple
discrete instantaneous time substitution model with x = min(d0, d1) and single genotype
population in each host, where the virus is transmitted to each victim within close time
proximity followed by sub-sequence parallel host evolution. Assuming each nucleotide
mutation is equally likely, the expected number of nucleotide positions where the two
victims evolved genome copies with the same shared mutations, distinct from the source,
is x/9L2 where L is the length of the genome. Thus, d2 = (d0 + d1) − x/9L2 and under
simple assumptions of evolution, d2 is expected to be greater than both d0 and d1.

When a source host transmits the virus to its victim and no mutations are observed
to distinguish between the two sequenced samples (taken from source and victim), an
increase in uncertainty is introduced when asserting direct transmission. For example,
when d0 = 0, then d2 = d1 and distinguishing which host, �Victim 1� or the �Source�
transmitted the virus to �Victim 2� is not possible. Moreover, this ambiguity is propagated
to adjacent host nodes in the transmission graph. Figure 7 shows this a�ect, which
contrasts the results for Figure 4 where 0 mutation transmission events are excluded. As
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Figure 7: FMDV transmission models with 0 mutation events.

the mutation rate decreases, the probably of a 0 mutation transmission event increases and
as a consequence the probability to distinguish direct transmission pairs decreases. It is
important to note here that incubation time, in addition to mutation rate, will determine
precisely the gradient observed for the probability of 0 mutation transmission events.
The results show that mutation rates on the lower end of estimates (≤ 1.75× 10−5) have
substantially weaker direct transmission inferences. The general principle is that when the
probability to observe k length transmission chains with 0 mutation events is statistically
signi�cant, the ability to positively assert transmission chains with path length < 2 × k
becomes limited.

Preserved, however, is the inferential power to exclude direct transmission as a likely
hypothesis. For example, when more than 6 mutations are observed between two se-
quences the probability of direct transmission is predicted to be very low, a factor, which
is very similar to the case where at least 1 mutation per transmission event is assumed (7
mutations).

Weakening transmission linkage hypothesis

To positively assert a host to host transmission link between two sequenced samples under
rapidly spreading outbreak conditions that allow for the 0 mutation host transmission
events will likely require weakening the hypothesis to allow for the possibility of a few
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Figure 8: Posterior plots with 0 or more intermediate farms separating two transmission
linked farms in FMDV. Left and right panel shows lower and upper bound con�dence
values respectively.

intermediate hosts. The question becomes one of determining the upper bound on the
number of potential intermediate hosts involved in a host transmission chain for which a
con�dent assertion can be made, given the observed number of genetic mutations between
the observed sequence samples.

Figure 8 shows the a�ect of weakening the forensic hypothesis tested from, direct
transmission (marked 0 in both �gures) to allow for the possibility of up to 3 intermediate
farms. The left panel in Figure 8 shows the lower bound con�dence values, where the
probability jumps from 55% to 78% when the test hypothesis is relaxed to allow for up
to 1 intermediate farm. The probability value increases to 97% with up to 3 intermediate
farms. Even allowing for the possibility of 3 intermediate farms, the conservative model
suggests that no more than 9 substitutions should be observed between the two linked
farms. In contrast, using the model derived from the observed outbreak shows non-zero
probability of linkage with up to 15 substitutions. The right panel shows the upper bound
con�dence values for direct linkage. Interestingly, it is the hypothesis, which considers
transmission linkage with up to 1 intermediate farm, under the optimistic model, which
most closely resembles the observed direct transmission posterior probability plot. The
model suggest that even when taking the upper bound con�dence values, there is a strong
probability that some of the observed sequenced samples are indeed not directly linked,
a possibility suggested by Cottam et al. [4]. The results suggest the plausibility that
the collection of sequenced samples are linked by at most one intermediate farm, but the
potential for some cases where even more intermediate farms are involved remains high.
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Figure 9: Distribution of δ (delta) values (FMDV) for outbreak cases representing the
lower (Low) and upper bound (High) on the distribution P (M).

Excluding direct linkage between sequence pairs

When presenting evidence at trial it may be desirable to present a conservative estimate
for the probability of the hypothesis being true and it is important to note that the
de�nition for the conservative estimate changes for some hypotheses. In inferring direct
transmission linkage, �conservative� is de�ned by using the model with the weakest con�-
dence for inferring direct transmission to provide a lower bound on the measured strength
of inference given. Figure 9 points out that under slower evolution scenarios, inferring
direct transmission is most di�cult. The �gure shows the distribution of pairwise ge-
netic distance values (δ) for the two extreme ends of the average strength of inference,
P (M), from independent random trials. (Figure 2 shows the corresponding upper and
lower bound distributions for assigning con�dence to direct transmission assertions.) The
expected number of observed substitutions associated with direct transmission is shown
to be higher than the estimate given using the conservative con�dence model. Therefore,
when changing the hypothesis type to pose a question, which asks whether two samples
can be excluded from direct transmission linkage, a conservative con�dence value must
be derived from the case where the probability of direct transmission is highest. In this
scenario, the expected number of mutations associated with direct transmission linkage
increases, thus raising the threshold on the number of observed mutations needed to in-
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Figure 10: Posterior probability functions for excluding direct transmission linkage in
SARS and FMD.

fer two sequences are not linked. This value can be calculated as 1 minus the posterior
probability for the upper bound posterior probability for direct transmission. Figure 10
shows the two upper bound distributions used to measure con�dence to exclude direct
transmission for SARS and FMD. The predicted cuto� value di�ers by one nucleotide
between the two cases (8 and 9). Among the pairwise direct transmission linked cases
from the 2001 FMD outbreak, 6 pairs (31%) have between 11 and 14 distinguishing muta-
tions. This apparent contradiction is explained with an examination of the reconstructed
phylogeny for the sequenced strains. Figure 11 shows a schematic adapted from a max-
imum likelihood tree [11] for a portion of the tree containing two sequences related by
direct farm to farm transmission. Four farms F, G, I and J are linked by a chain of
direct transmission events shown by the arrows. Cottam et al [4] looked at sequenced
strains linked by direct transmission and assumed that the inferred most recent common
ancestral strain was the donor genome for the recipient farm rather than the sequenced
strain taken from the donor farm. The presumption being that the sequenced strain is
the product of continued evolution after transmission to the recipient farm. This point is
illustrated in Figure 11 where although, farm F is thought to be the source of farm G's
infection, there appears to be considerable parallel evolution with the sequenced strain
taken from F shown by the branch length of 0.0345. Thus, the sum total branch lengths,
(or similarly nucleotide substitutions) separating F and G is relatively large. Using the

14



Figure 11: Phylogenetic tree for four FMDV sequences. Arrows mark farm to farm
transmission links.

genetic distance from the ancestral strain, however, reduces the observed upper bound
on the number of nucleotide changes between two direct transmission linked farms to 8.
In the model used to generate the estimate for Figure 10, the sequenced strain is in fact
modelled to be the direct ancestor of the sequence taken from the recipient farm, which
explains how the simulation tool predicts an upper bound value of 9 for a threshold of
high con�dence in excluding direct transmission links.

Non-random sampling from the SARS outbreak weakens con�-
dence of direct transmission inference

The optimal strategy for inferring the P (M = k|δ) transmission model requires a random
sampling from the outbreak. Using the 194 person contact tracing graph published from
the 2003 SARS outbreak in Singapore [12], provides an opportunity to consider a�ects of
sampling strategy and size. Figure 12 shows random sampling of direct transmission pairs
(e.g. k=1) taken from the Singapore outbreak, which span the duration of the outbreak.
The results show that with a random sampling strategy, very small sample sizes provide
relatively robust lower bounds measuring strength of inference for direct transmission.
For example, the di�erence between a sample size of 25 direct transmission pairs and 50
direct transmission pairs is relatively small. Figure 13 shows the distribution of P (M = 1)
for the di�erent sample sizes, which shows that there is a wider range of possible values
at smaller sample sizes with variation leveling o� at 25. The key challenge is designing a
sampling strategy that maximizes the likelihood of taking a random sample.

The �worst case� a�ects of a non-random sampling are illustrated with a strategy that
picks a single index case, and follows the subsequent spread from the individual for a
limited duration. The P (M = 1) distribution for random and non-random transmission
pair sampling is shown in Figure 14. The potential pitfall of this strategy is particularly
evident in the SARS outbreak where super spreader nodes persist throughout the outbreak
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Figure 12: Random sampling for di�erent sample sizes. 5, 10, 25 and 50 randomly sampled
transmission pairs in SARS-CoV.

Figure 13: Sampling size distribution for P (M = 1) shows the variance increases as sample
size decreases.
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Figure 14: Average distribution for random and non-random sampling.

and such cases may occur in other outbreaks [18]. The non-random sampling strategy
collects transmission pair data from the index case for approximately 30 days, which
in this case leads to modelling just the relationship between a super-spreader and their
contacts, rather than multiple infected individuals from throughout the outbreak. The
result is a skewed view of how genetic distance correlates with direct transmission.

Sequencing data minimally requires draft coverage

Figure 15, shows the impact of sequencing error on strength of direct transmission in-
ference for FMDV. Seven di�erent average per nucleotide error rates are shown plus the
observed outbreak data is shown for reference (black line in both �gures). The left and
right panel re�ect the lower and upper bound values on the P (M = 1) respectively. The
green line in Figure 15 represents the classic error rate associated with 'Finished' quality
sequence de�ned for the human genome sequencing project which de�nes an error rate of
1 nucleotide in every 10,000 bases [22]. For comparison, 'High_Quality' refers to an error
rate of 1 nucleotide every 100,000, which could be possible to achieve with higher read
coverage. Higher error rates are given for various levels of draft sequencing including:
Draft (2× 10−4), raw Sanger reads with an error rate estimate of 3× 10−4 [26], an inter-
mediate �Low_Quality� error rate of 4×104 and a lower bound 454 read error estimate of
1× 10−4[9]. There is virtually no di�erence between no error and high quality sequence,
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Figure 15: Sequencing error in FMDV for lower bound (left panel) and upper bound (right
panel) of P (M = 1|δ).

but there is a noticeable change in the model with �Finished� error rates, where a higher
number of mutations are expect to be associated with direct transmission. Higher error
rates found in draft and rough draft sequence show substantial alterations, with increas-
ing numbers of pairwise compared sequences with large numbers of distinct substitutions
while still being linked by direct transmission. The lower bound shows that lower quality
results in an overall reduced con�dence in the model. For the lower bound P (M = 1)
model, the lower error rates appear to yield unusable estimates. The distribution that
most closely matches the model derived from observed outbreak data comes from the
upper bound P (M = 1) model associated with the �Draft� sequencing error rate of 1 in
every 5000 bases.

Whole genome versus partial genome input

The question of how much of the genome is needed to infer direct transmission links was
examined in the context of the SARS-CoV genome. Inferred mutation rates from time
stamped sequenced genomes were used to infer two distinct rates of evolution, a slower rate
corresponding to the larger ORF1a and ORF1b regions, and a faster rate corresponding to
the Spike protein and other downstream transcribed genes [21]. With the observed rate of
mutation being roughly twice the rate of the slower evolving regions, the potential impact
of limiting sequence comparison just to the faster evolving regions was examined. Such
an approach could provide su�cient information for the relatively �rapid spread� time
duration for the SARS outbreak. Figure 16 shows two very similar posterior probability
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Figure 16: Posterior probability using whole and partial genome sequence.

curves for whole genome and the 7 kilobase (kb) fast evolving region, with the expected
�right-shift� of the whole genome, which re�ects the fact that more mutations are counted
with whole genome comparisons. In contrast, a noticeable decrease in inferential power
emerges when taking just 1 kb of the fast evolving region (orange curve), or taking a 7 kb
region of the slower evolving region. It is important to note here that the mutation rates
used for this estimate are higher than the published reports, which only give an �average�
whole genome mutation rate. Thus, the actual mutation rate for the faster evolving region
could be closer in practice to the weak inferential power displayed by the example 7 kb
�slow� evolving region (green curve). Here, additional time stamped genome sequence
data could be useful in calibrating the true rate of evolution.

Even assuming the more �ideal� faster mutation rate, Figure 17, highlights an increase
in uncertainty for the 7 kb based model versus the whole genome model. Note that the
distribution for the whole genome data is skewed right. This is caused by the fact that
more mutations are counted, thus increasing the range of observed mutations and a larger
range of mutation counts for which higher con�dence inferences are drawn. Nevertheless,
it is evident that the width of the distribution is wider for the 7 kb region implying
greater variation in the strength of inference that might be drawn from similarly randomly
distributed outbreak conditions. This is presumably due to the fact that sampling from the
smaller space of candidate distinguishing sequence comparisons, increases the probability
for variation in the number of observed mutations important to de�ning the transmission
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Figure 17: Distribution for P (M = 1|δ).

linkage between two sequences.

Di�erences in genetic distance measures

The importance of di�erent genetic distance measures depends on a number of factors, in-
cluding the evolutionary time scale: chronic versus acute infection [13]; the viral genome
evolution process: strict nucleotide mutation based versus inclusion of short oligimer
insertion and deletion (indel) events. To better understand the impact of using indel in-
formation for inferring transmission linkage, the SARS-CoV genome was examined where
insertions and deletion events are observed within the outbreak.

Figure 18 gives a lower and upper bound of the Area Under the Curve (AUC) value for
Receiver Operator Characteristic (ROC) curves drawn from sampling transmission sub-
graphs in the SARS Singapore 2003 outbreak. The higher the AUC value, the higher the
overall true positive to false positive ratio observed in inferring direct transmission pairs.
Indel rates were inferred by aligning time stamped sequenced genomes and computing the
number of distinct observed pairwise indels and de�ning a per day indel rate as the aver-
age number of observed pairwise indels divided by the number of days separating the two
samples. Previous work has shown that over short evolutionary time scales this approach
can give reasonably accurate rate estimates[14]. A second parameter modelled the length
of the indel assuming a normal distribution. The observed mutation rate (denoted Ob
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Figure 18: Comparison of genetic distance measures.

in Figure 18) were estimated from the sequence samples using the BEAST software [7].
Using default parameters (right-most column in Figure 18) shows little di�erence between
the three genetic distances: PairHMM, which uses a pair hidden Markov model (HMM)
[8] to incorporate both mutation and indel di�erences in the genetic distance measure; a
count of nucleotide di�erences between two sequences; and branch lengths between two
leaves of a maximum likelihood tree inferred using default parameters for the phyloge-
netic inference program Phylip [10]. The pair HMM genetic distance measure shows an
improvement when the mutation rate is reduced by a factor of 5 (two left-most columns).
The results show that when less information is available from nucleotide mutation di�er-
ences, the indel information had a positive a�ect. A reduction of the inferred mutation
rate by 5 brings the mutation rate in line with the published mutation used in Figure 5
(5.7× 10−6), which suggests the use of indel information could be of some practical use.
However, a more accurate measure of the indel rate could be useful in providing additional
support for this observation. It is also important to note that some viruses such as FMDV
show little evidence for the presence of indels.

Delays in sample collection for chronic infection (HIV)

Figure 19 shows a HIV transmission tree for infected individuals established from personal
interviews with each of the infected individuals [16]. The two digit number gives an
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Figure 19: Transmission tree for HIV case study. Letters refer to a unique host (human)
identi�er. The two digit code refers to the suspected year of infection. Square nodes refer
to sequence samples taken from the host.

estimate for the year of initial infection for each individual. Circle nodes re�ect the
infected host individual and their initial year of infection, square nodes show years in
which env gene sequence samples were taken. In this study it is unclear which of the
two earliest infected individuals, A or B, were the originators of the infection. Without
loss of generality, a direction is assigned since the genetic distance measures employed are
time reversible. This example shows the challenge of making transmission inferences from
genetic data for cases involving chronic infection. Many of the sequence samples for the
direct transmission cases were taken many years after the initial infection. For example,
although host A infected host F, sequence samples were taken 8 years after infection
for host A (1996) and 7 years after infection for host F, allowing for considerable parallel
evolution in each of the hosts, which could lead to substantial sequence divergence between
the two samples and therefore weaken inference claims of direct transmission using genetic
distance measures. A common approach used to account for extended evolution is to look
at the topology of the inferred phylogenetic tree to check the relationship between the
most recent common ancestor for the two sequences in question. The limitation to this
approach is that the tree construction is not explicitly linked to inferred transmission
links and therefore quantifying the certainty associated with the inference claims is not
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well de�ned.
Figure 20 describes in greater detail the transmission links introduced in Figure 19.

This illustrates an alternative approach, which uses both the quantitative distance mea-
sure, phylogenetic information from the tree, and is linked to the transmission hypotheses
of interest. Inferring a direct transmission link between host A and F, suggests that the
amount of genetic change associated with direct transmission should measure the change
in viral population from host A in 1995 (hexagonal node A95) to host F in 1995 some-
time after the virus has adapted to the new host. The di�culty of course is that timely
sample collection in most cases is not practical. However, use of inferred transmission
timing windows in conjunction with inferred ancestral sequence can be used to link the
phylogenetic data with transmission hypotheses.

To illustrate the potential utility of this approach, a simpli�ed version of this idea was
implemented, which estimates the amount of genetic change between the inferred initial
viral population from the source host, compared to the population after the initial infec-
tion of the victim. This is accomplished by mapping the most recent common ancestor
for any two leaves in the phylogenetic tree to the estimated point of initial infection of the
host. For example, when comparing sequence samples �A96pop� and �F02pop�, the most
recent common ancestor is mapped to A88 as shown in Figure 21. The measured genetic
distance now re�ects just the evolution in the suspected source host prior to transmis-
sion, with subsequent evolution associated with delays in sample collection ignored. The
improvement is seen in the distribution of observed genetic distance values, the summary
ROC curve and the derived posterior probability estimate shown in Figure 22. Note that
the posterior probability (bottom right panel) in Figure 22 re�ects an estimate using
probability density functions instead of a Poisson or Negative Binomial to better model
the continuous value distributions. Details of this method are given in the next section.

Nonparametric model estimation

Recall that the posterior probability estimate de�ned by Equation 1 incorporates two
independent distance based probability models: P (δ|M = 1) and P (δ|M > 1) (where δ is
the genetic distance measure and M = 1 is the direct transmission hypothesis linking two
sequenced samples). Results in this report are based primarily on the classic parametric
modelling approach where the data is assumed to be drawn from a known distribution,
chosen here to be either a Poisson or a Negative Binomial distribution.

A limitation of the Poisson and Negative Binomial distribution models is the assump-
tion of a discrete random variable, which poses a challenge for modelling continuous value
distance measures, such as those derived from phylogenetic tree branch lengths. Moreover,
there does not appear to be a clear continuous value parametric analog to the discrete
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Figure 20: Alternative view of HIV transmission tree. Host nodes contain sub trees, with
circle nodes representing initial infection times, rectangular nodes, sequence samples, and
hexagonal nodes representing inferred in-host population snapshots.
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Figure 21: Mapping phylogenetic tree to transmission tree. Right tree shows a portion
of a phylogenetic tree, with leaf nodes F02pop and A00pop and their common ancestor
node, mapped to the transmission tree on the left.

Figure 22: Corrected phylogenetic distance measure compared to traditional branch length
distance measure.
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value case. To address this issue, a nonparametric approach is considered: a probabil-
ity density estimate (PDE). The PDE is used to generate the posterior probability plot
for the HIV case study in Figure 22, which uses phylogenetic tree branch lengths. The
mathematical background for the PDE is given in [20] and the software module is imple-
mented in Python in a freely available software library package [5]. The model estimation
procedure can be thought of as an extension of the histogram, which partitions the range
of possible values for a random variable into equal size bins of width 2h. The probabil-
ity density estimate for a sample point x is given by the number of samples which fall
within the same bin as x divided by the total training set size n and 2h. Since the true
probability density for a random variable X is by de�nition:

f(x) = lim
h→0

1

2h
P (x− h < X < x + h)

the probability value can be estimated by counting the number of samples in the training
set that fall in the interval [x− h, x + h]. The naive estimator for f(x) is then de�ned to
be

f̂(x) =
1

n

n∑
i=1

1

h
w(

x− xi

h
)

where

w(t) =

{
1
2

|t| < 1
0 |t| ≥ 1

}
To avoid the stepwise behavior exhibited by the function w, a replacement kernel

function K is used, with integral 1 (
�∞
−∞K(x)dx = 1), which is symmetric and non-

negative (not a requirement in all cases but assumed for now). A standard kernel function,
the Epanechnikov kernel, is chosen and de�ned to be

K(t) =

{
3
4
(1− t2) |t| < 1

0 |t| ≥ 1

}

The one free parameter (once the kernel function is chosen) is h, which determines the
�smoothness� of the density estimate. The goal is to calculate a globally optimal value
taken to be the minimal mean integrated square error (MISE) between the estimate f̂(x)
and the true density f(x). There is a trade o� in the optimization between reducing
the bias of the estimator by increasing h and reducing the variance of the estimator by
decreasing h - both of which contribute to the MISE. In practice, an asymptotic mean
integrated square error is minimized, which depends on the number of observations n
and the standard deviation σ of the sample data. The error minimization is taken with
respect to a reference distribution (normal) assumed to be the true distribution. Under

this assumption and using the Epanechnikov kernel, the optimal value for h is σ(40
√

π
n

)
1
5 .
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χ2for M=1 χ2 for M>1
Pois Neg Bin Dens Pois Neg B Dens

SARS-CoV 3.4:4? 3.4:4? 2.2:4? 10696:30 115:27 54:28‡
FMDV 13:12? 13:12? 4:11? 303:20 276:21 16:26?
HIV env 141:22 136:22 16:22? 690099:69 1870:69 314:69
HIV gag 119:22 118:22 14:22? 53836095:64 438:64 223:64

Table 1: Model Fit.?=no support against, ‡=moderate support against. Pois=Poisson,
Neg Bin=Negative Binomial, Dens=density estimator.

Table 1 shows χ2 values, which compare the observed frequency of occurrence of δ
given M = 1 or M > 1 to the expected values estimated from the two parametric models
(Poisson and Negative Binomial), or the PDE. The table shows support for the parametric
direct transmission models (columns 2 and 3) for SARS-CoV and FMDV but no support
for selected direct transmission pairs of HIV data samples in 100 paired HIV gag gene
sequences and 162 paired HIV env gene sequences [23]. Considerably less support is
shown for the indirect M > 1 case when using the default estimator for P (δ|M > 1),
which does not rely on a priori knowledge of the transmission tree beyond the observed
direct transmission links. Here P (δ|M > 1) is estimated by simply counting the observed
frequency of each δ value over all non-linked pairs. Since,

P (δ|M > 1) =
N∑

M=2

P (δ|M)P (M)

where N is the maximal path length separating two sequences s1, s2 for δ = δ(s1, s2).
Thus, there is a better chance at inferring accurate models for each P (δ|M) for 2 ≤ M ≤ N
rather than attempting to model the sum of the constituent distributions. Figure 23 shows
χ2 values for each of the three model estimation methods Poisson, Negative Binomial
(Negative_Bin), and Probability Density Estimate (Density) on P (δ|M)for 1 ≤ M ≤ 6.
The fourth line marked �Signi�cance�, shows an upper bound on the χ2 distribution (P-
value=0.001). It is important to note that the degree of support for the null hypothesis
(that deviation is attributed to random error) is dependant on the degrees of freedom,
which di�er for each path length. For example, there is a drop in χ2 values for M = 6,
which is due to a drop in the number of observed paths of length 6 in the FMD outbreak
tree. The key feature to notice, is the di�erence between the upper bound χ2 and each
estimator all of which fall below the upper bound. The �gure shows a relatively constant
di�erence from the upper bound for all path lengths. These results highlight the potential
improvement in model estimation, when having the complete transmission tree available
(or possibly even an estimate). It is important to note that while the density estimator
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Figure 23: Multiple χ2 values. Path lengths=# of intermediate hosts +1 between two
nodes in the transmission tree.
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shows the lowest χ2 values in all cases, it may be subject to over �tting of the data,
making additional cross-validation testing desirable.

Conclusion

Applying the P (M |δ) framework to observed outbreak data and simulated data revealed
a number of �ndings that point both to the positive potential of using microbial sequence
data to infer transmission links as well as potential limitations and areas for improvement.
Comparing strength of inference with SARS data and HIV show striking di�erences be-
tween the two infection types. SARS shows a slower evolving, acute, and rapidly spreading
infectious disease for which strength of inference di�ers from the more rapid evolution and
extended time period characteristic of reviewed chronic HIV infections. These data sets
point to two ends of the extreme, which pose signi�cant but distinct challenges to sup-
porting transmission hypotheses from genetic data. On the one hand, too little evolution
on the part of the virus eliminates the potential to infer direct transmission links, an e�ect
which permeates the entire outbreak. The challenge becomes one of estimating the upper
bound on the number of intermediate hosts separating two sequenced samples, for which
a transmission link hypothesis is likely. On the other extreme, increased rates of evolution
increase the overlap between δ values associated with direct and non-direct transmission
cases, particularly when the sample collection times vary signi�cantly. Even for the 2001
FMD UK outbreak where the overall duration of the outbreak was relatively short (e.g.
several months), the potential for parallel evolution appeared to be a factor that could
lower con�dence values on inferring direct transmission when not correctly taking this
variation into account. Other than ensuring that indels information is used, there are
no sequence analysis methods that can get around the problem of too little evolution to
strengthen inference of transmission, however, in such instances, in addition to relaxing
the hypothesis test, exclusion hypothesis testing should still lead to strong con�dence
values. For the issue of extended evolution, our preliminary results show the potential in
correcting for extended sequence changes not associated with the transmission event and
this is an area for targeted improvement.

Hidden variables play an important role to support the hypothesis test by providing
con�dence bounds on varying conditions unique to the outbreak of interest. Mutation
rate, for example, is an important hidden variable, for which obtaining precise estimates
is challenging - particularly when sequencing errors must be taken into account. Host
incubation time is another important hidden variable that may not be easily ascertained.
In the ideal case, with su�cient training data from past outbreaks, these hidden variables
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need not be made explicit. However, our results show that the precise strength of direct
transmission inference is a�ected by these underlying biological processes and therefore
extra care must be taken to obtain a truly representative sampling from past outbreaks
with respect to a number of these outbreak features. For example, the con�dence of the
direct transmission hypothesis being true for two substitutions separating two FMDV
query sequences, can go from < 20% probability to > 60% probability, depending on
the underlying mutation rate. To guard against imperfections in the sampling process
or changes in future outbreaks, estimating values for hidden parameters using the past
outbreak data and the simulation tool will provide lower and upper bound estimates on
con�dence. This serves to quantify con�dence in the face of uncertainty with respect to the
underlying epidemiology and viral evolution parameters. Even when the value of hidden
variables are not in question, random sampling (from either simulated or observed data)
appears to be an important procedure to provide a range of con�dence values from which
a conservative estimate can be chosen. An area targeted for improvement is to more
closely integrate the observed sequence data associated with the hidden variables that
a�ect inferring transmission links. This will provide an additional measure of con�dence
by comparing values assigned to hidden variables with estimates made from other sources.
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