
LLNL-TR-422928

Reference guide to WPP version
2.0

Anders Petersson, Bjorn Sjogreen

January 27, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Reference guide to WPP version 2.0

N. Anders Petersson1 Björn Sj̈ogreen1

January 22, 2010

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box 808, Livermore
CA 94551. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. This is contribution LLNL-TR-XXXYYY

Disclaimer This document was prepared as an account of work sponsored by anagency of the United
States government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately ownedrights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark,manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States govern-
ment or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement purposes.

1

Contents

1 Introduction 5

2 Getting started 6
2.1 RunningWPP . 6

3 Coordinate system, units and the grid 8
3.1 Geographic coordinates 9

4 Sources, time-functions and grid sizes 11
4.1 Sources and time-functions inWPP . 11
4.2 Predefined time functions 12

4.2.1 Gaussian . 12
4.2.2 GaussianInt .. 13
4.2.3 Ricker . 13
4.2.4 RickerInt .13
4.2.5 Brune . 14
4.2.6 BruneSmoothed . 14
4.2.7 Liu . 15
4.2.8 Triangle . 15
4.2.9 Sawtooth . 16
4.2.10 Ramp . 16
4.2.11 Smoothwave . 16
4.2.12 VerySmoothBump . 18

4.3 How fine does the grid need to be? 18
4.3.1 Lamb’s problem . 20

5 The material model 22
5.1 The block command .. 22
5.2 The efile command .. 23
5.3 The pfile command .. 25
5.4 The ifile command .27

6 Topography 28
6.1 Gaussian hill topography 28
6.2 Topography grid file 28
6.3 Etree topography 29

7 Mesh refinement 31

2

8 Output options 34
8.1 Setting the output directory 34
8.2 Time-history at a reciever station: the sac command 34
8.3 2-D cross-sectional data: the image command 36
8.4 Generating a bird’s eye view of the problem domain: the gmt command 37

9 Examples 39
9.1 Lamb’s problem 39
9.2 Examples from Lifelines project 1A01: Validation of basin response codes 40

9.2.1 The LOH.1 problem . 40
9.2.2 The LOH.2 problem . 42

9.3 The Grenoble basin test case 43
9.4 Modeling the October 2007, Alum Rock earthquake 46

10 Keywords in the input file 50
10.1 Basic commands .. . 50

10.1.1 fileio [optional] .50
10.1.2 grid [required] .. . 51
10.1.3 time [required] .52
10.1.4 source [required] 52
10.1.5 prefilter [optional] .. 54

10.2 The material model [required] 54
10.2.1 block . 54
10.2.2 efile . 55
10.2.3 pfile . 56
10.2.4 ifile . 56
10.2.5 material . 57
10.2.6 globalmaterial [optional] .. 57

10.3 Topography and mesh refinement 58
10.3.1 topography [optional] 58
10.3.2 refinement [optional] .. . 59

10.4 Output commands 59
10.4.1 sac [optional] .. 59
10.4.2 image [optional] . 60
10.4.3 gmt [optional] . 62

10.5 WPP testing commands [optional] 63
10.5.1 twilight . 63
10.5.2 testlamb . 63
10.5.3 testpointsource .. 64

10.6 Advanced simulation controls 65
10.6.1 supergrid [optional] 65
10.6.2 boundaryconditions [optional] . 66
10.6.3 developer [optional] .. . 66

11 File formats 68
11.1 topography 68
11.2 pfile .. . 69
11.3 ifile .. 69

3

11.4 sac 70
11.5 image .. 71

A Installing WPP 73
A.1 Supported platforms 73
A.2 Build tools, compilers and MPI-library 73

A.2.1 Mac computers running OSX .73
A.2.2 Linux machines . 74

A.3 Directory structure 74
A.4 Compiling and LinkingWPP(without the cencalvm library) 74

A.4.1 How does scons work? .. . 76
A.5 Installing cencalvm and its supporting libraries 76

B Testing theWPP installation 78
B.1 Method of manufactured solutions 78
B.2 Lamb’s problem 79

4

Chapter 1

Introduction

WPPis a computer program for simulating seismic wave propagation on parallel machines.WPPsolves the
governing equations in second order formulation using a node-based finite difference approach. The basic
numerical method is described in [9].WPPimplements substantial capabilities for 3-D seismic modeling,
with a free surface condition on the top boundary, non-reflecting far-field boundary conditions on the other
boundaries, point force and point moment tensor source terms with many predefined time dependencies,
fully 3-D heterogeneous material model specification, output of synthetic seismograms in theSAC[4] for-
mat, output ofGMT [11] scripts for laying out simulation information on a map, and output of 2-D slices of
(derived quantites of) the solution field as well as the material model.

Version 2.0 ofWPPallows the free surface boundary condition to be imposed on a curved topography.
For this purpose a curvilinear mesh is used near the free surface, extending into the computational domain
down to a user specified level. The elastic wave equations and the free surface boundary conditions are
discretized on the curvilinear mesh using the energy conserving techniquedescribed in [2]. A curvilinear
mesh generator is built intoWPPand the curvilinear mesh is automatically generated from the topography.
Below the curvilinear grid, the elastic wave equation is discretized on Cartesian meshes, which leads to a
more computationally efficient algorithm.

In version 2.0 ofWPP, Cartesian local mesh refinement can be used to make the computational mesh
finer near the free surface, where more resolution often is needed to resolve short wave lenghts in the
solution, for example in sedimentary basins. The mesh refinement is performed in the vertical direction and
each Cartesian grid is constructed from user specified refinement levels. In this approach, the grid size in
all three spatial directions is doubled across each mesh refinement interface, leading to substantial savings
in memory and computational effort. The energy conserving mesh refinement coupling method described
in [10] is used to handle the hanging nodes along the refinement interface.

Theexamples subdirectory of theWPPsource distribution contains several examples and validation
tests. Many Matlab/octave scripts are provided in thetools directory.

Acknowledgments Many people have contributed to the development ofWPPand we would like to thank
(in no particular order) Artie Rodgers, Heinz-Otto Kreiss, Stefan Nilsson, Kathleen McCandeless, Hrvoje
Tkalcic, Steve Blair, Daniel Appelö, and Caroline Bono. This work was enabled by financial support from
a Laboratory Directed Research and Development (LDRD) project at Lawrence Livermore National Labo-
ratory, as well as support from the OASCR program at the Office of Science at the Department of Energy.

5

Chapter 2

Getting started

2.1 RunningWPP

WPPcan be run from the UNIX prompt or from a script. NormallyWPPuses one argument: the name
of the input file. The input file is an ASCII text file which contains a number ofcommands specifying the
properties of the simulation, such as the dimensions of the computational domain,grid spacing, the duration
of the simulation, the material properties, the source model, as well as the desired output. To improve
readability of this document we have used the continuation character “\” to extend long commands to the
subsequent line. There is however no support for continuation characters inWPP, so each command must
be given on one (sometimes long) line in the input file.

SinceWPP is a parallel code, it is required to be run under a parallel operating environment such as
mpiexec, mpirun, or srun. For example,

shell> mpiexec -np 2 wpp test.in

tellsWPPto read input from a file namedtest.in . Throughout this document we use the convention that
input files have the file suffix.in , butWPPreads files with any extension.

Running on the Livermore Computing parallel linux clusters The srun command is currently used to
run parallel jobs on LC machines. For example,

shell> srun -ppdebug -n 32 wpp xxx.in

runs wpp on 32 processors on the debug parition using xxx.in as the input file. Note that the pdebug
partition is intended for shorter jobs and is subject to both a CPU time limit and a limit onthe number of
processors per job. Jobs requiring more computer resources must be submitted through the batch system,
currently using the msub command. Refer to the Livermore Computing web pages for detailed information
(https://computing.llnl.gov).

Running on other platforms (Linux desktop/laptop): Depending on the MPI library, you may have to
start an mpd daemon before starting your first parallel job (see mpich2-doc-user.pdf for more info). After
that, wpp can be started using the mpirun command. For example,

shell> mpirun -np 2 wpp wpp.in

runs the wpp code on two processors, usingwpp.in as the input file.

6

version information (-v) Version information for theWPPexecutable can be obtained through-v flag:

tux230.llnl.gov{andersp}186: wpp -v
--- -------------

WPP Version 2.0
Copyright (C) 2007-2010 Lawrence Livermore National Secur ity, LLC.

WPP comes with ABSOLUTELY NO WARRANTY; released under GPL.
This is free software, and you are welcome to redistribute
it under certain conditions, see LICENSE.txt for more detai ls

--- -------------
Compiled: Mon Dec 21 10:54:44 2009
By: andersp
Machine: tux230.llnl.gov
Compiler: /usr/casc/wpp/tools/tux227/bin/mpicxx
3rd party software base directory: /usr/casc/wpp/tools/t ux227

--- -------------

Note that the same information is by default printed to standard out at the beginning of every run.

7

Chapter 3

Coordinate system, units and the grid

WPP uses a right-handed Cartesian coordinate system with the z-direction pointing downwards into the
medium, see figure 3.1.WPP employs MKS (meters-kilograms-seconds) units; all distances (e.g., grid
dimensions, spacing, and displacements) are in meters (m), time is in seconds (s), seismic P- and S-wave
velocities are in meters/second (m/s), densities are in kilogram/cubic meter (kg/m3), forces are in Newton
(N), and seismic moment (torque) is in Newton-meters (Nm). All angles (e.g. latitude, longitude, azimuth,
strike, dip and rake) are in degrees.

Figure 3.1:WPPuses a right handed coordinate system with the z-axis pointing downwards.

In WPPthe computational domain is rectangular in the horizontal plane,

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax.

The topography surface
z = τ(x, y),

defines the shape of the top surface in the vertical direction.WPPcan also be run without topography, in
which caseτ(x, y) = 0. The computational domain is given by

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, τ(x, y) ≤ z ≤ zmax. (3.1)

The grid command in the input file specifies the extent of the computational domainand the grid sizeh.
When mesh refinement is enabled, this is the grid size in the coarsest grid. The most obvious way of
specifying the grid is by providing the number of grid points in each direction as well as the grid size,

grid nx=301 ny=201 nz=101 h=500.0

This line gives a grid with grid size 500 meters, which extends 150 km inx, 100 km iny and 50 km in thez-
direction. Alternatively, the grid can be specified by giving the spatial range in each of the three dimensions
and explicitly specifying the grid spacing. For example,

8

grid x=30e3 y=20e3 z=10e3 h=500.0

results in a grid which spans 30,000 meters inx, 20,000 meters iny, and 10,000 meters in thez-direction.
The grid spacing is 500 meters, which is used to compute the number of grid points in each direction:
nx=61, ny=41, and nz=21, for a total of 52,521 grid points. Note that thenumber of grid points in the
different directions will be rounded to the nearest integer value. For example

nx = (int)1.5 + x/h, (3.2)

rounds nx to be the nearest integer value of1 + x/h. The extent in thex-direction is thereafter adjusted to

x = (nx − 1)h. (3.3)

A corresponding procedure is performed in the other directions.
The third option is to give the spatial range in each of the three dimensions andspecify the number of

grid points in a particular direction:

grid x=30000 y=20000 z=10000 nx=100

In this case, the grid spacing is be computed as

h = x/(nx − 1) = 303.03.

Note that no rounding needs to take place in this case, sinceh is a floating point number. Given this value
of h, ny and nz are computed using formulas corresponding to (3.2) giving ny=34 and nz=67, for a total of
227,800 grid points. Again, the extents in they andz-directions are adjusted corresponding to (3.3). The
syntax for the grid command is given in Section 10.1.2.

3.1 Geographic coordinates

WPPsupports geographic coordinates as an alternative way of specifying spatial locations, see Figure 3.2.
The location of the Cartesian coordinte system is specified in the grid command,and if no location is given
the origin (x = 0, y = 0, z = 0) defaults to latitude 37 degrees (North), longitude -118 degrees (West),with
a 135 degree azimuthal angle from North to thex-axis. The vertical coordinate is zero (z = 0) at mean sea
level. The latitude (φ) and longitude (θ) are calculated using the approximative formulae (where lat, lon,
and az are in degrees)

φ = lat +
x cos(α) − y sin(α)

M
, α = az

π

180
, (3.4)

θ = lon +
x sin(α) + y cos(α)

M cos(φπ/180)
, (3.5)

whereM = 111319.5 meters/degree. You can change the location and orientation of the grid by specifying
the latitude and longitude of the grid origin, and the azimuthal angle between North and thex-axis. For
example:

grid h=500.0 x=30000.0 y=20000.0 z=10000.0 lat=39.0 lon=- 117.0 az=150

sets the origin of the grid to latitude 39 degrees (North), longitude -117 degrees (West), and azimuthal angle
150 degrees.

9

Figure 3.2: Geographical coordinates inWPP.

10

Chapter 4

Sources, time-functions and grid sizes

4.1 Sources and time-functions inWPP

WPPsolves the elastic wave equation in second order formulation,

ρutt = ∇ · T + F(x, t), x in Ω, t ≥ 0,

u(x, 0) = 0, ut(x, 0) = 0, x in Ω,

whereρ is the density,u(x, t) is the displacement vector, andT is the stress tensor. The computational
domainΩ is the box shaped region (3.1). By default, a free surface (zero traction) boundary condition is
enforced along the top boundary,

T · n = 0, z = τ(x, y), t ≥ 0,

wheren is the unit normal of thez = τ(x, y) surface. A super-grid damping layer surrounds the computa-
tional domain on all other sides of the computational domain.

The forcing termF consists of a sum of point forces and point moment tensor source terms. For a point
forcing we have

F(x, t) = g(t, t0, ω)F0









Fx

Fy

Fz









δ(x − x0),

wherex0 = (x0, y0, z0) is the location of the point force in space, andg(t, t0, ω) is the time function, with
offset timet0 and frequency parameterω. The(Fx, Fy, Fz)

T vector holds the Cartesian components of the
force vector, which is scaled by the force amplitudeF0.

For a moment tensor source we have

F(x, t) = g(t, t0, ω)M0 M ·∇δ(x − x0), M =









Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz









.

In this case the seismic moment of the moment tensor isM0, otherwise the notation is the same as for a point
force. Note that the moment tensor always is symmetric. A convenient way ofspecifying moment sources
is by using the dip, strike and rake angles (see Section 10.1.4 for syntax) defined in Aki and Richards [1].
In this case, the total seismic moment

∑

M0 [Nm] is related to the moment magnitude by the formula

MW =
2

3

[

log10

(

∑

M0

)

− 9.1
]

.

11

After parsing all source commands in an input file,WPPoutputs the moment magnitude using this formula.
For moment tensor sources, the functiong(t) is called the moment history time function, while its

time derivativeg′(t) is known as the moment rate time function.WPPcalculates the displacements of the
motion corresponding to the moment history time functiong(t). However, since the material properties
are independent of time, the equations solved byWPP also govern the velocities when the time function is
replaced byg′(t), i.e., the corresponding moment rate time function. For example, if the solution calculated
with theGaussianInt time function represents the displacements of the motion, the solution calculated
with the Gaussian time function corresponds to the velocities of the same motion. Hence, if you are
primarily interested in calculating velocities, you can reduce the amount of post processing by using the
corresponding moment rate time function in the source term(s).

Note that most first order formulation codes (such asE3D) are based on the velocity-stress formulation
of the elastic wave equation. These codes use the moment rate time function (i.e.,the Gaussian time
function in the above example) and solve for the velocities of the motion.

In WPPthe forcing is specified in the input file using thesource command. There needs to be at least
one source command in the input file in order for anything to happen during the simulation. Complicated
source mechanisms can be described by having many source commands in theinput file. An example with
one source command is:

source x=5000 y=4000 z=600 m0=1e15 mxx=1 myy=1 mzz=1 \
type=RickerInt t0=1 freq=5

which specifies an isotropic source (explosion) at the pointr0 = (5000, 4000, 600) with amplitude1015

Nm, using the RickerInt time function with offset timet0 = 1 s and frequency parameterω = 5 Hz. This
command sets the off-diagonal moment tensor elements (Mxy, Mxz andMyz) to zero (which is the default
value).

Note that it is not necessary to place the sources exactly on grid points. The discretization of the source
terms is second order accurate for any location within the computational domain.

4.2 Predefined time functions

The source time function can be selected from a set of predefined functions described below. All functions
start from zero (limt→−∞ g(t, t0, ω) = 0) and tend to a contant terminal value,limt→∞ g(t, t0, ω) = g∞.
In seismic applications,g∞ 6= 0 always corresponds to solving for the displacements of the motion, because
the solution will tend to a non-zero steady state solution for large times. This solution corresponds to the
final displacements due to a seismic event. Wheng∞ = 0, the solution will always tend to zero for large
times, as is expected from the velocities or accelerations of the motion due to a seismic event.

The Gaussian and the Triangle functions integrate to one (
∫

∞

−∞
g(t, t0, ω) dt = 1), while the Sawtooth,

Smoothwave, and Ricker functions integrate to zero and have maximum amplitudeone. The RickerInt
function is the time-integral of the Ricker function and integrates to zero. TheGaussianInt, Brune, BruneS-
moothed, and Liu functions tend to one (limt→∞ g(t, t0, ω) = 1).

The Triangle, Sawtooth, Ramp, Smoothwave, Brune, BruneSmoothed, Liu and VerySmoothBump func-
tions are identically zero fort < t0, so they will give reasonable simulation results ift0 ≥ 0. However, the
Gaussian, GaussianInt, Ricker, and RickerInt functions are centered aroundt = t0 with exponentially de-
caying tails fort < t0. Hencet0 must be positive and of the orderO(1/ω) to avoid incompatibilty problems
with the initial conditions. We recommend choosingt0 such thatg(0, t0, ω) ≤ 10−8 for these functions.

4.2.1 Gaussian

g(t, t0, ω) =
ω√
2π

e−ω2(t−t0)2/2.

12

Figure 4.1: Gaussian (left) and GaussianInt (right) withω = π andt0 = 0.

Note that the spread of the Gaussian function (often denotedσ) is related toω by σ = 1/ω. A plot of the
Gaussian time-function is shown in Figure 4.1.

4.2.2 GaussianInt

The GaussianInt function is often used in earthquake modeling since it leads to a permanent displacement.

g(t, t0, ω) =
ω√
2π

∫ t

−∞

e−ω2(τ−t0)2/2 dτ.

GaussianInt is the time-integral of the Gaussian. A plot of the GaussianInttime-function is shown in Fig-
ure 4.1.

4.2.3 Ricker

g(t, t0, ω) =
(

2π2ω2(t − t0)
2 − 1

)

e−π2ω2(t−t0)2 .

A plot of the Ricker time-function is shown in Figure 4.2.

4.2.4 RickerInt

g(t, t0, ω) = (t − t0)e
−π2ω2(t−t0)2 .

RickerInt is the time integral of the Ricker function, and is proportional to thetime-derivative of the Gaussian
function. The RickerInt function is sometimes used in seismic exploration simulations. Since the RickerInt
function tends to zero for large times, it does not lead to any permanent displacements. A plot of the
RickerInt time-function is shown in Figure 4.2.

13

Figure 4.2: Ricker (left) and RickerInt (right) withω = 1 andt0 = 0.

4.2.5 Brune

The Brune function has one continuous derivative but its second derivative is discontinuous att = t0,

g(t, t0, ω) =

{

0, t < t0,

1 − e−ω(t−t0)(1 + ω(t − t0)), t ≥ t0.

The Brune function is often used in earthquake modeling.

4.2.6 BruneSmoothed

The BruneSmoothed function has three continuous derivatives att = t0, but is otherwise close to the Brune
function:

g(t, t0, ω) =



































0, t < t0,

1 − e−ω(t−t0)

[

1 + ω(t − t0) +
1

2
(ω(t − t0))

2

− 3

2x0
(ω(t − t0))

3 +
3

2x2
0

(ω(t − t0))
4 − 1

2x3
0

(ω(t − t0))
5

]

, 0 < ω(t − t0) < x0,

1 − e−ω(t−t0)(1 + ω(t − t0)), ω(t − t0) > x0.

The parameter is fixed tox0 = 2.31. Plots of the Brune and BruneSmoothed time-functions are shown
in Figure 4.3. Since the BruneSmoothed function has three continuous derivatives, it generates less high
frequency noise. Compared to the Brune function, the BruneSmoothed function gives better accuracy at a
given grid resolution

14

Figure 4.3: Brune (left) and BruneSmoothed (right) withω = 2 andt0 = −1.

4.2.7 Liu

This function was given in a paper by Liu et al., [7]. It is defined by

g(t, t0, ω) =







































































































0, t ≤ t0,

C

[

0.7(t − t0) +
1.2

π
τ1 −

1.2

π
τ1 cos

(

π(t − t0)

2τ1

)

− 0.7

π
τ1 sin

(

π(t − t0)

τ1

)]

, t0 < t ≤ τ1 + t0,

C

[

t − t0 − 0.3τ1 +
1.2

π
τ1 −

0.7

π
τ1 sin

(

π(t − t0)

τ1

)

+
0.3

π
τ2 sin

(

π(t − t0 − τ1)

τ2

)]

, τ1 + t0 < t ≤ 2τ1 + t0,

C

[

0.3(t − t0) + 1.1τ1 +
1.2

π
τ1

+
0.3

π
τ2 sin

(

π(t − t0 − τ1)

τ2

)]

, 2τ1 + t0 < t ≤ τ + t0,

1, t > τ + t0.

The parameters are given byτ = 2π/ω, τ1 = 0.13τ , τ2 = τ−τ1, andC = π/(1.4τ1π+1.2τ1+0.3τ2π). The
Liu function resembles the Brune function, but the rise is somewhat steeperfor smallt− t0, see Figure 4.4.

4.2.8 Triangle

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
16ω

π2

[

sin(πω(t − t0)) −
sin(3πω(t − t0))

9
+

sin(5πω(t − t0)

25
− sin(7πω(t − t0))

49

]

,

15

Figure 4.4: Liu time function withω = 2 andt0 = 0.

with g(t, t0, ω) = 0 elsewhere. A plot of the Triangle time-function is shown in Figure 4.5.

4.2.9 Sawtooth

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
8

π2

[

sin(2πω(t − t0)) −
sin(6πω(t − t0))

9
+

sin(10πω(t − t0))

25
− sin(14πω(t − t0))

49

]

,

with g(t, t0, ω) = 0 elsewhere. A plot of the Sawtooth time-function is shown in Figure 4.5.

4.2.10 Ramp

g(t, t0, ω) =















0, t < t0,

0.5(1 − cos(π(t − t0)ω)), t0 ≤ t ≤ t0 + 1/ω,

1, t > t0 + 1/ω.

A plot of the Ramp time-function is shown in Figure 4.6.

4.2.11 Smoothwave

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
2187

8
(ω(t − t0))

3 − 10935

8
(ω(t − t0))

4 +
19683

8
(ω(t − t0))

5

− 15309

8
(ω(t − t0))

6 +
2187

4
(ω(t − t0))

7,

with g(t, t0, ω) = 0 elsewhere. A plot of the Smoothwave time-function is shown in Figure 4.6.

16

Figure 4.5: Triangle (left) and Sawtooth (right) withω = 1 andt0 = 0.

Figure 4.6: Ramp (left) and Smoothwave (right) withω = 1 andt0 = 0.

17

Figure 4.7: VerySmoothBump withω = 0.5 andt0 = 0.

4.2.12 VerySmoothBump

g(t, t0, ω) =



























0, t < t0,

−1024(ω(t − t0))
10 + 5120(ω(t − t0))

9 − 10240(ω(t − t0))
8

+ 10240(ω(t − t0))
7 − 5120(ω(t − t0))

6 + 1024(ω(t − t0))
5, t0 ≤ t ≤ t0 + 1/ω,

0, t > t0 + 1/ω.

A plot of the VerySmoothBump time-function is shown in Figure 4.7.

4.3 How fine does the grid need to be?

The most difficult parameter to choose when preparing the input file is probably the grid sizeh. It is
extremely important to use a grid size which is sufficiently small, because you must resolve the waves
which are generated by the source. On the other hand you don’t want touse an unnecessarily small grid
size, because both the computational demand and the memory requirements increase with decreasing grid
size.

The number of grid points per shortest wavelength,P , is a normalized measure of how well a solution
is resolved on the computational grid. Since the shear waves have the lowest velocities and a shorter wave
length than the compressional waves, the shortest wave lengthLmin can be estimated by

Lmin =
minVs

fmax
,

whereVs is the shear velocity of the material andfmax is the largest significant frequency in the time

18

Figure 4.8: Magnitude of the Fourier transform of the derivative of the Brune (dark blue), the Gaussian
(green), the RickerInt (red), and the Ricker (light blue) time-functions. Herefreq =1.5 for the Gaussian
and the derivative of the Brune function, andfreq =0.25 for Ricker and RickerInt.

functiong(t). Hence the number of grid points per wave length equalsLmin/h, which is given by

P =
minVs

h fmax
. (4.1)

Note thath needs to be made smaller to maintain the same value ofP if either Vs is decreased or if the
frequency is increased. In formula (4.1),minVs is found from the material properties andh is determined
by the input grid specification. The frequencies present in the solution are determined by the frequencies
present in the time function(s) in the source term(s).

Figure 4.8 displays the absolute values of the Fourier transforms of the functions Gaussian, RickerInt,
Ricker, and the time derivative of the Brune function. Inspection of the mathematical definitions of the
Gaussian and Brune functions shows that thefreq parameter specifies the angular frequency for these
functions. The relation between the fundamental frequencyf0 and thefreq parameter is given by

f0 =

{

freq, for Ricker, RickerInt, and VerySmoothBump,

freq/(2π), for Liu, Brune, BruneSmoothed, Gaussian, and GaussianInt.
(4.2)

The plots in Figure 4.8 were made with frequency parameterfreq =0.25 for the Ricker and RickerInt
functions and frequency parameterfreq =1.5 for the Gaussian andd/dt(Brune) functions. Hence,f0 ≈
0.25 for all functions in Figure 4.8. Note that the Fourier transform of the Brune function decays much
slower than the other functions for high frequencies. This is due to its lack of smoothness att = t0.

It is the upper power (highest significant) frequency in the time function that shall be used in (4.1) to
estimate the number of grid points per wave length. For practical purposesfmax is defined as the frequency
above which the amplitude of the Fourier transform falls below 5 % of its max value. We have

fmax ≈
{

2.5f0, Ricker, RickerInt, Gaussian time functions,

4f0, Brune time function.
(4.3)

19

Figure 4.9: Relative errors for different source functions 10 (left) and 50km (right) from the source. For
the Brune time function the error decays much slower than for the other time functions. Here, the number
of points per wavelength (P) was based on the fundametal frequencyf0 instead offmax, so the values ofP
should be divided by 2.5 for GaussianInt, Gaussian, RickerInt, and Ricker. For Brune,P should be divided
by 4.

In other words, simulations using the Brune function are harder to resolveon the grid and need much more
grid points to give reliable results.

Our experience is thatWPPgives accurate results for

P ≥ 15,

but the exact number depends on the distance between the source and thereciever. Note that the relation
between the fundamental frequencyf0 and the upper power frequencyfmax in (4.3) is very important. For
other time functions,fmax can be estimated using the matlab/octave scripts fcnplot and ftfcnplot in the
tools directory. A lower number forP can be used in many practical situations, for example when there
are significant uncertainties in the material properties.

4.3.1 Lamb’s problem

We now compute solutions to Lamb’s problem in a material withVp =
√

3 km/s, Vs = 1 km/s and
the density1000kg/m3. The solution is forced downward with amplitudefz=5e13 N and with a time
function centered at timet0=25 s . For various time functions the solution is recorded at receivers 10 and
50 km from the source. At the recievers the relative error

‖uexact(t) − ucomputed(t)‖∞
‖uexact(t)‖∞

,

in the horizontal component is computed and plotted in Figure 4.9. In these calculations, the grid size
was held constant and the frequency parameterfreq was varied. Note that the reported number of points
per wavelength was based on the fundamental frequencyf0 instead offmax, so the values ofP should be
reduced according to (4.3)

From Figure 4.9 we see that for all of the time functions, except the Brune function, there is a decrease
in error inversely proportional to the square of the number of points per wavelength. The errors are larger

20

for the Brune function since its spectrum decays much slower due to its discontinuous second derivative at
t = t0. The difference in the error levels between the left and the right sub-figures are due to the fact that
errors in the numerical solution accumulate as the solution propagates away from the source. For a single
harmonic wave, and a second order accurate finite difference method, the number of points per wavelength
required to achieve a certain error is proportional to the square root ofthe number of wavelengths the wave
propagates (see Chapter 3 in [5] for a detailed discussion). Thus, to get the same accuracy at five times the
distance from the source, we need to use about

√
5 ≈ 2.24 times more points per wave length. This could

be achived by reducing the grid size by a factor 2.24 in each direction, resulting in a factor of 11.1 times
more grid points and an increase in CPU time by a factor 25.

21

Chapter 5

The material model

The material model inWPP is defined by the values of the density,ρ, the compressional velocity,Vp, and
the shear velocity,Vs, at each grid point. These values can be specified by the block command (§ 5.1), the
efile command (§ 5.2), the pfile command (§ 5.3), the ifile command (§ 5.4), or by a combination of them.

Note thatWPPuses a single layer of ghost points outside the computational domain (as defined by the
grid command). The material properties must therefore be defined for the computational domain padded by
one layer of ghost points. Note, however, that the material model does not need to be defined above the free
surface. Material properties at those points are instead assigned by extrapolation from the interior of the
domain.

It is important to note that the order within the material commands (block, pfile, efile, and ifile)does
matter (unlike all other commands) in that the priority of the material command increase towards the end
of the input file. Hence, a material command in the input file can be completely or partially overridden by
subsequent material commands.

In the block, pfile, and ifile commands, material properties are assigned based on the depth below the
free surface. This means that the internal material model depends on the topography, but the material
properties along the free surface will always be the same, independentlyof the topography model. For the
efile command, material properties are defined as functions of elevation relative to mean sea level (z = 0).
Here the topography information is embedded in the material description. If you combine the efile command
with a planar topography, a linear mapping is constructed before the materialproperties are assigned to the
top (finest) Cartesian grid. The properties at the free surface are thusmapped to the top grid surface (z = 0),
and the bottom grid surface withz = zN is assigned material properties for elevation−zN . Elevation
values at intermediate grid points follow from the linear mapping. Subsequent (coarser) Cartesian grids are
not effected by this mapping procedure.

5.1 The block command

The block command can be used to specify material properties in rectangularvolumes of the computational
domain, either with constant values or linear vertical gradients. By combiningthe block command with the
sub-region options we can define a material model composed of three layers:

block vp=4000 vs=2500 rho=2000
block vp=6000 vs=3500 rho=2700 z1=15000
block vp=8000 vs=4500 rho=3300 z1=35000 z2=100000

In this case the top layer has a thickness of 15 km, the middle layer 20 km and thelower layer 65 km. Because
these block commands do not specify horizontal coordinates, the values extend to the grid boundaries in both

22

horizontal directions. To add a box shaped inclusion of a new material we could add the following line

block vp=3000 vs=2000 rho=1000 \
x1=4000 x2=8000 y1=3000 y2=7000 z1=10000 z2=70000

Figure 5.1: Examples of material models specified with the block command.

To the left in Figure 5.1 an image slice ofVp throughx = 50, 000 is displayed.
The following example combines several block commands used to generate thematerial model displayed

to the right in Figure 5.1:

block vp=8000 vs=4500 rho=3300 vpgrad=-0.01
block vp=3000 vs=2000 rho=1000 \

x1=1e4 x2=9e4 y1=1e4 y2=9e4 z1=1e4 z2=9e4 vpgrad=0.02
block vp=4000 vs=2500 rho=2000 \

x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=15e3 z2=85e3
block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=45e3 z2=55e3
block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 z1=15e3 z2=85e3 y1=38e3 y2=45e3

5.2 The efile command

The efile command is used to read in material properties from an etree database file. Etree databases use
an oct-tree data structure which allows material properties to be represented with finer spatial resolution
near the surface. Topography and bathymetry information is included in thedatabase. The same etree
database file can be used independently of the grid size, so there is no need to have a one-to-one mapping
between the etree model and the computational grid. Unfortunately, it takes amajor effort to develop an
etree database file, and we currently only have access to material data forNorthern California and the
extended San Francisco bay area. This model was developed by the USGS and can be accessed from
http://www.sf06simulation.org/geology/velocitymodel . Be aware that the database is
rather large and can take a very long time to download. The geographical extent of the etree model is given
in Table 5.1, which also is shown on a map in Figure 5.2.

In the etree database, material properties are stored as functions of geographic coordinates (latitude,
longitude, elevation).WPPuses formulas (3.4)-(3.5) to determine that information for each grid point before

23

Figure 5.2: The geographical extent of the etree models for Northern California and the San Francisco bay
area.

Detailed Model

Corner Longitude Latitude

SE -120.64040 37.04718

SW -121.91833 36.31746

NW -123.85736 38.42426

NE -122.56127 39.17461

Regional Model

Corner Longitude Latitude

SE -118.944514 36.702176

SW -121.930857 35.009018

NW -126.353173 39.680558

NE -123.273199 41.48486

Table 5.1: Geographic extent (NAD27 projection) for the central California velocity models. Both models
are defined down to 45 km depth. See http://www.sf06simulation.org/geology/velocitymodel for details.

24

it obtains the material properties from the data base. Internally toWPP, thecencalvmsoftware library is
used to query the etree database. Hence, before the efile command can beused, the corresponding software
libraries must be installed andWPPmust be configured to use them, see Section A.

It is important to note the bounds of the geographical region in the database. Assuming the computa-
tional domain is contained within the bounds of the database, it is easy to set upthe material model in the
input file:

grid x=100e3 y=100e3 z=40e3 lat=38.0 lon=-121.8 az=144 h=1 000
efile etree=/p/lscratchd/andersp/USGSBayAreaVM-08.3. 0.etree

To verify that the computational domain is inside the etree data base, we recommend checking the geo-
graphic coordinates on map before the simulation is started. We often use the google earth program for this
purpose. In the case when the computational domain is larger than the regioncovered by the efile, a block
command can be used to assign material properties to grid points outside of the efile region:

grid x=300000 y=300000 z=60000 lat=38 lon=-121.5 az=135 nx =100
block vp=8000 vs=4000 rho=1000 rhograd=0.5
efile etree=/p/lscratchd/andersp/USGSBayAreaVM-08.3. 0.etree

However, sharp jumps in material properties can lead to significant artificialscattering of seismic waves. In
some cases, better results can be obtained by reducing the size of the computational domain to match the
extent of the etree region.

To enable use of the extended SF model, the extended etree file must also be downloaded and then added
to the efile command line (names have been shortened for better readability):

efile etree=USGSBayAreaVM.etree xetree=USGSBayAreaVME xt.etree

5.3 The pfile command

The pfile command can be used to assign material properties based on depth profiles on a lattice. A pfile
contains the values of the model features (P-velocity, S-velocity, density,and Q-factors) as function of
depth at points on an equally spaced latitude-longitude lattice. The number of grid points in the depth
direction needs to be the same for all profiles, but the grid spacing does not need to be uniform and can
also be different for each profile. Material discontinuities can be represented by two material values for the
same depth value. Furthermore, layers which only occur in a subset of theprofiles can be tapered to zero
thickness in the remaining profiles. This is handled by introducing multiple data points with the same depth
and material values in a profile.

The lattice of the pfile does not need to have any relation to the computational mesh used inWPPand is
often much coarser. The material properties in the computational mesh are assigned values using Gaussian
averaging between the nearestNG × NG profiles in the latitude-longitude plane and linear interpolation
in the depth direction. Let the grid point have longitudeθ, latitudeφ and depthd. Material properties are
first linearly interpolated in the depth direction along each profile and then averaged in the latitude-longitude
plane. The number of points in the Gaussian averaging,NG, is assigned by the user in thepfile command.
For example, the following line in the input file makesWPPread a pfile namedmaterial.ppmod :

pfile filename=material.ppmod vsmin=1000 vpmin=1732 smo othingsize=4

The optionalvsmin andvpmin keywords are used to assign minimum threshold values for theP - and
S-velocities, respectively.smoothingsize=4 means thatNG = 4 in the Gaussian averaging. A larger
value ofNG (≥ 5) is particularily useful to avoid staircasing imprints when the computational gridis much

25

Figure 5.3: Thesmoothingsize parameter can be used to average out abrupt variations in the horizontal
plane (constant depth) in a coarse pfile material model.

26

finer than the pfile lattice, see Figure 5.3.smoothingsize can be set to any number greater than or equal
to one.

WhenNG is odd, the Gaussian averaging starts by finding the closest grid point on the latitude-longitude
lattice,(φi, θj). The material propertyc (ρ, Vp, Vs, etc.) is assigned by the formula

c(φ, θ) =

∑i+Q
m=i−Q

∑j+Q
n=j−Q cm,nωm,n

∑i+Q
m=i−Q

∑j+Q
n=j−Q ωm,n

, Q =
NG − 1

2
, (5.1)

where the weights are given by

ωm,n = e−[(φm−φ)2+(θn−θ)2]/α2

, α =
NG∆lat

2
√

− log 10−6
,

and the grid size in the latitude-longitude lattice is∆lat. This choice ofα makes the weightsωm,n < 10−6

for points that are further from(φm, θn) thanNG∆lat/2, which justifies the truncation of the series in (5.1).
A similar procedure is used for even values ofNG, but in this case the averaging formula (5.1) is centered
around the nearest cell center on the latitude-longitude lattice.

Data files for the pfile command are in ASCII text format, see Section 11.2.

5.4 The ifile command

The ifile command reads a file holding the depth to material interface surfaces. The material properties
between each pair of material surfaces must be defined by thematerial command. The depth must be
non-negative. Zero depth corresponds to the topography. Material surfaces are specified on a regular lattice
in gegraphic coordinates. The unit for depth is meters, while latitude and longitude are in degrees. The
ifile command may be combined with other material specifications and it isnot necessary that the lattice in
geographic coordinates covers the horizontal extent of the computational domain.

Let Nmat ≥ 1 material surfaces be known at longitudes

φi, i = 1, 2, . . . , Nlon,

and latitudes
θj , j = 1, 2, . . . , Nlat,

Note that the latitudes and the longitudes must either be strictly increasing or strictly decreasing, but the step
size may vary. Also note that the lattice points are independent of those in thetopography command.

The material surfaces should be given on the regular lattice

dq,i,j = depth to surface numberq at longitudeφi, latitudeθj .

The material surfaces correspond to material properties in the following way. At longitudeφi, latitudeθj

material number 1 (as defined by thematerial command) occupies depths0 ≤ d ≤ d1,i,j . Material number
2 occupies depthsd1,i,j ≤ d ≤ d2,i,j , and so on. Ifd1,i,j = 0, material number 1 is not used. Similarily,
material numberk > 1 is not used ifdk−1,i,j = dk,i,j . Material properties are only defined for depths down
to the last surface, i.e.,

0 ≤ d ≤ dNmat,i,j .

If the computational domain extends below the last material surface, it is necessary to use other commands
to define the material properties in those regions.

Bi-linear interpolation in longitude and latitude is used to define the material surfaces in between the
data points.

An example that uses an ifile material description is discussed in Section 9.3.

27

Chapter 6

Topography

The topography command inWPP is used to specify the shape of the top surface of the computational
domain,

z = τ(x, y).

A curvilinear grid is automatically constructed between this surface and a user specified depthz =zmax. If
no topography command is present in the input file, the top surface is taken tobe the planez = 0, and no
curvilinear grid is constructed.

Three different topography descriptions are currently implemented inWPP: a Gaussian hill (§ 6.1), a
latitude-longitude grid file (§ 6.2), or topography from an Etree data base (§ 6.3).

6.1 Gaussian hill topography

The simplest type of topography is a Gaussian hill, which allows the user to place one Gaussian hill at a
specified location in the(x, y)-plane. The user can adjust the amplitude of the hill as well as its spread in
thex andy-directions. This form of the topography command looks like this:

topography input=gaussian zmax=7.5 gaussianAmp=2.4 \
gaussianXc=3.6 gaussianYc=2.4 \
gaussianLx=0.25 gaussianLy=0.3

Note thezmax option, which tellsWPPto extend the curvilinear grid toz = 7.5. The most common use of
the Gaussian hill topography is for testing, see for example the input scriptsin examples/twilight :

gauss-twi-1.in gauss-twi-2.in gauss-twi-3.in

6.2 Topography grid file

The topography can be given on a regular lattice in geographic (lat-lon) coordinates. This approach works
well together with theblock , pfile , andifile material commands. When the material is described by
anefile command, it is better to setup the topography from the same etree database, see Section 6.3.

To setup the topography for the Grenoble basin test case described in Section 9.3, you give the command

topography input=grid file=grenobleCoarse.topo zmax=30 00 order=2

The file grenobleCoarse.topo holds the elevation (in meters) relative to mean sea level and must
conform to the simple ASCII text format described in Section 11.3. In the above case, a curvilinear grid
is constructed between the topography surface andz = 3000, and theorder=2 option specifies a second
order polynomial stretching in the curvilinear mapping function. The topography is shown in Figure 6.1.

28

Longitude

La
tit

ud
e

5.6 5.7 5.8 5.9 6

45.05

45.1

45.15

45.2

45.25

45.3

45.35

500

1000

1500

2000

2500

Figure 6.1: Topography in the vicinity of Grenoble, France.

6.3 Etree topography

The Etree data bases for the San Francisco bay area and Northern California contain topographic informa-
tion. You can setup the computational grid to follow this topography by using thecommands

topography input=efile zmax=6e3 order=2
efile query=MAXRES \

etree=/Users/petersson1/src/wpp/tests/USGSBayAreaVM -08.3.0.etree

Here, the topography command tellsWPP to read the topography from the Etree specified by theefile
command. Hence, the topography command must be accompanied by an efile command. Theorder=2
option specifies the type of stretching to use when making the curvilinear grid.A higher value makes the
curvilinear grid smoother near the bottom, but can cause a larger variation ingrid size near the top. The
zmax=6e3 option tellsWPPto extend the curvilinear grid down toz = 6000. As a rule of thumb, if the
topography surfacez = τ(x, y) varies betweenτmin ≤ z ≤ τmax (z is positive downwards), you should
use

zmax ≥ τmax + 2(τmax − τmin),

After reading the topography,WPPprints out the min and maxz-coordinates. In the topography shown in
Figure 6.2,

τmin = −1144.3, τmax = 1092.9,

which givesτmax + 2(τmax − τmin) = 5567.3 Before the curvilinear grid is generated, the topography
surface is smoothed by a Jacobi iteration. The purpose of the smoothing is toensure that the variations in
topography can be resolved on the computational grid. By default, 10 iterations are performed and this gives
a satisfactory result in many cases. It is possible to change the number of iteration by using thesmooth

29

Longitude

La
tit

ud
e

−122.6−122.4−122.2 −122 −121.8−121.6−121.4−121.2

36.8

37

37.2

37.4

37.6

37.8

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 6.2: Topography and bathymetry in the vicinity of San Jose, south ofSan Francisco. The coastline is
outlined by a thicker black line. Note the deep water in the Monterey Canyon, near the bottom corner of the
computational domain.

option in the topography command. You can inspect the result of the smoothing by saving the top grid
surface in an image file,

image mode=grid z=0 cycle=0 file=test

Note that thez coordinate (positive downwards) is saved on a grid image file, while the elevation (positive
upwards) of the raw topography is saved on a topo image file.

30

Chapter 7

Mesh refinement

The refinement command inWPPenables the user to locally refine the computational mesh in areas where
finer resolution is needed, i.e., where the wave speed is small. In order to maintain a constant resolution in
terms of the number of grid points per wavelength for a given frequency (see Equation (4.1)), the grid size
should be adjusted such that ratioVs/h becomes constant over the computational domain. However, the
mesh size also needs to vary smoothly for the numerical solution to be accurate. In WPP, we compromise
between these two requirements by using a composite grid approach consisting of a set of structured com-
ponent grids with hanging nodes on the grid refinement interfaces. This allows the grid resolution to follow
the main variations in wave speed, where each component grid has ideal wave propagation properties. An
energy conserving coupling approach is used across grid refinementinterfaces that guarentees stability of
the numerical scheme, see [10] for details.

When using mesh refinement, the extent of the computational domain is determinedby the grid com-
mand, which also specifies the grid size in the coarsest component grid,

grid h=2000 x=40000 y=40000 z=40000

The two refinement commands

refinement zmax=30000
refinement zmax=2000

specify two mesh refinement interfaces:z1 = 30000, andz2 = 2000. As a result, the composite grid
contains three component grids, where the coarsest component has grid sizeh = 2000 and covers the bottom
of the computational domain:z1 ≤ z ≤ 40000. Next refinement grid has half the grid size (h = 1000) and
coversz1 ≤ z ≤ z2. The grid size in the third component is another factor of two smaller (h = 500) and
covers the top of the computational domain:z2 ≤ z ≤ 0. The composite grid is shown in Figure 7.1, where
the grid is plotted in the verticalx = 20000 plane. Note that refinement grids are aligned in the sense that
every second grid point coincides with a grid point in the next coarser grid.

Mesh refinement can also be used together with topography. Here we usean example from the Alum
Rock simulation described in 9.4. The composite grid is setup with the commands

grid x=100e3 y=100e3 z=40e3 lat=38.0 lon=-121.8 az=144 h=1 000
refinement zmax=10e3
refinement zmax=7000
topography input=efile zmax=6e3 order=2
efile query=MAXRES vsmin=500 vpmin=768 \

etree=/p/lscratchd/andersp/USGSBayAreaVM-08.3.0.etr ee

31

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

4

y

−
z

Figure 7.1: Composite grid with two mesh refinement interfaces and three Cartesian component grids.

Hence the coarsets Cartesian grid has grid sizeh = 1000 and covers10000 ≤ z ≤ 40000. Next Cartesian
grid has half the grid size (h = 500) and covers7000 ≤ z ≤ 10000. The grid size in the finest Cartesian
component grid is reduced by another factor of two which givesh = 250. This component extends to
the bottom of the curvilinear grid, i.e.,7000 ≤ z ≤ 6000. The vertical extent of the curvilinear grid
is specified by thezmax=6000 option in the topography command, i.e., the curvilinear grid covers the
domain betweenz = 6000 and the topography,z = τ(x, y). In the horizontal directions, the grid size
in the curvilinear component is the same as the finest Cartesian component. The number of grid points in
the vertical direction is choosen such that the average vertical grid size isthe same as the grid size in the
horizontal directions. A portion of the computational grid is shown in the vertical cross sectionx = 50000,
see Figure 7.2.

The image command saves the solution on the base grid and on all refinement grids that intersect a
given image plane.

32

0 0.5 1 1.5 2 2.5

x 10
4

−20000

−15000

−10000

−5000

0

5000

−
z

y

Figure 7.2: A composite grid with two mesh refinement interfaces and topography. In this case there are
three Cartesian components and one curvilinear grid following a non-planar topography.

33

Chapter 8

Output options

8.1 Setting the output directory

The fileio command can be used to specify a directory whereWPPwrites its output files. If the directory
does not exist,WPPattempts to create it for you. The fileio command may also be used to set the level of
diagnostic messages (verbose) and how often the time step information is printed. For example,

fileio path=wpp_dir verbose=1 printcycle=10

causes all output files to be written to the directory ”./wppdir”, turns on some extra diagnostic messages (a
higher value gives more details), and prints the time step information every 10 timesteps.

Serial and Parallel file systems Some parallel machines have a dedicated parallel file system which al-
lows many processors to simulataneously write to the same file. These file systemsare often mounted on
a special directory. By default,WPPassumes a serial file system and will only let one processor write to
the same file at the same time. If you have access to a parallel file system, the I/O performance ofWPP
can sometimes be improved by allowing several processors to simultaneously write a file. You enable this
feature by using thepfs=1 option,

fileio pfs=1 path=/p/lscratcha/my_output_directory

Note that many parallel file systems are only accessible from dedicated directories. Enablingpfs=1 without
re-directing the output to a parallel file system can causeWPPto either crash or hang.

8.2 Time-history at a reciever station: the sac command

WPPcan save the time-history of the solution at a receiver station located anywhere in the computational
domain. The basic command looks like this:

sac x=100e3 y=50e3 z=0 file=sta1

Here,WPPsaves the three components of the solution at the grid point that is closest to the specified(x, y, z)
location. By default,WPPsaves the data using the binary Seismic Analysis Code (SAC) [4] format. In the
above case, thesac command results in three files:

sta1.x sta1.y sta1.z

34

The x,y,z files hold the solution time-history in the corresponding coordinate direction. Note that a positive
z-component corresponds to a downward motion.

The location of the reciever station can alternatively be given in geographic (latitude, longitude) co-
ordinates. Information about the event date, time, and station name is saved inthe header of a SAC file.
By default the date and time are set to the date and time at the start of the simulation;the default station
name is the name of the file. The default values of these fields can be changed by using theeventData ,
eventTime , andsta options,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 \
eventDate=2003/11/22 eventTime=16:17:00 sta=EKM

Note thatdepth specifies the depth of the reciever below the topography. To place a reciever at elevatione
relative to mean sea level (e is negative below sea level) you can replace thedepth option byz=−e.

By default, SAC files are written to disk every 1000 time steps, and at the end of the simulation. We
can change this frequency by using thewriteEvery option. For example, to write the SAC file every 100
time steps, you would say

sac lat=38.25 lon=-122.20 depth=0 file=sta1 writeEvery=1 00

By default,WPPoutputs the three components of the solutionu(xr, t) = (ux, uy, uz)
T . By using the

velocity=1 option,WPPinstead outputs the three components of the time-derivative of the solution, i.e.,
the velocity ifWPPis setup to solve for displacements. Thensew=1 option can also be used to tellWPP
to rotate the solution components to the East, North, and vertical (positive up)directions,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 velocity=1 ns ew=1

The angle between North and thex-axis is determined by the azimuth (az=...) angle in the grid command:

grid x=100e3 y=50e3 z=30e3 lat=37.5 lon=-122.0 az=135

To remind the user of what quantities are saved in a sac file, we modify the file name extensions accord-
ing to the following table:

velocity=0 velocity=1

nsew=0 .x, .y, .z .xv, .yv, .zv

nsew=1 .e, .n, .u .ev, .nv, .uv

WPPcan also output reciever time-histories in an ASCII text format,

sac lat=38.25 lon=-122.20 depth=0 file=sta1 sacformat=0 u sgsformat=1

The ASCII text file holds all three components in a single file namedsta1.txt . When theusgsformat=1
option is used, the file gets extension .txt independently of thensew andvelocity options. Instead the
header inside the file is modified to reflect its contents. Note that you must givethesacformat=0 option
unless you want the solution to be output in both formats.

Notes on the sac command:

• SAC files are treated in the same way on parallel and serial file systems, because the data for each
SAC file originates from one processor and is always written by that processor only.

• The binary SAC format is described in Section 11.4.

35

• The ASCII text format is outlined in the header of those files.

• The binary SAC files can be read by the SAC program. We also provide a matlab/octave script in
tools/readsac.m .

• The ASCII text file format can be read by the matlab/octave script intools/readusgs.m .

8.3 2-D cross-sectional data: the image command

The image command saves two-dimensional horizontal or vertical cross-sectional data at a specified time
level. It can be used for visualizing the solution, making the images for a movie,or checking material
properties. Each image file contains a scalar field as function of the spatial coordinates in the cross-sectional
plane. The scalar field can be either a component of the solution, a derived quantity of the solution, a
material property, or a grid coordinate, All in all,WPPcan output twenty-five different types of images, see
Section 10.4.2 for details.

The cross-sectional plane is specified by a Cartesian coordinate (x, y, or z). The image can be written
at a specific time step or at a specified time. Images can also be output at a fixed frequency, either specified
by a time step interval or a time interval.

For example, the command

image mode=ux y=500 file=picturefile cycle=1

tells WPPto output thex-displacement component of the solution along the verticaly = 500 plane. The
data is written to a file namedpicturefile.cycle=1.y=500.ux after the first time step (cycle=1).
The example

image mode=div x=1000 file=picturefile cycleInterval=10 0

outputs the divergence of the solution field in theyz-plane at the grid surface closest tox = 1000. The data
is written to the files

picturefile.cycle=100.x=1000.div
picturefile.cycle=200.x=1000.div
...

With this setup, one image file is output every 100 time steps.
Note that the divergence of the solution field does not contain shear (S) waves and the rotation (curl)

of the solution field does not contain compressional (P) waves. These options can therefore be used to
distinguish between P- and S-waves in the solution.

The hvelmax and vvelmax modes store the maximum in time of the horizontal and vertical velocity
components, respectively. As these names indicate, it is assumed that the sources inWPPare set up for
calculating displacements. The horizontal velocity is defined asmax(|uN

t |, |uE
t |), whereuN anduE are the

displacement components in the North and East directions, respectively. The vertical velocity is|wt|, where
w is the displacement component in thez-direction. For these modes, the cycleInterval or timeInterval
options only determine how often the maxima are written to disk; the actual accumulation of the maximuma
is performed after each time step.

WhenWPP is run in parallel, the data that gets saved on animage file originates from all processors
that are intersected by the image plane. For horizontal image planes, this means all processors. To improve
the I/O performance, image data is first communicated to a number of dedicated image writing processors.
By default, 8 processors write each image file to disk (or all processors ifWPPis run on fewer than 8). This
number can be changed using thefileio command,

36

fileio nwriters=4

The above command tellsWPPto use 4 processors to write each image file. For simulations which use very
large number of grid points and many processors, care must be taken to make sure that enough memory is
available to buffer the image data before it is written to disk.

Notes on the image command:

• By default, single precision data is saved. Double precision data can be saved by using the
precision=double option.

• When topography is used, an image plane along the free surface is specified by thez=0 option.

• A mode=topo z=0 image holds the elevation (negativez-coordinate) of the raw topography. It can
only be written when topography is used.

• A mode=grid z=0 image holds thez-coordinate (negative elevation) of the grid along the free
surface, which is the actual shape of the upper surface of the computational domain.

• When topography or mesh refinement is used, vertical image planes intersect all component grids in
the composite grid. In this case, cross-sectional data from all component grids are stored on the image
file.

• The images files are written in a binary format, see Section 11.5 for details.

• We provide matlab/octave scripts for reading image files in thetools directory. The basic function
is calledreadimagepatch.m . A higher level interface is provided by theimageinfo.m and
plotimage.m scripts.

8.4 Generating a bird’s eye view of the problem domain: the gmt command

The Generic Mapping Toolkit (GMT) [11] is a set of postscript image generation programs for geophysical
applications, which can be used to make plots like Figure 8.1. In the example shown here, topography
information is included as well as information on the general setup of the simulation. Note that the file
which is output fromWPPis a UNIX C-shell script, which often needs to be fine-tuned to suit the needs of
a particular application. To haveWPPwrite aGMT file, you give the command

gmt file=bolinas.gmt

37

Figure 8.1: Location of the source and stations for the Barnwell simulation. This figure was generated using
the GMT command, see Section 10.4.3 for details.

38

Chapter 9

Examples

This chapter describes most of the the input scripts in the directoryexamples . The output associated with
input filexyz.in is given inxyz.out .

9.1 Lamb’s problem

The version of Lamb’s problem [6] considered here consists of a singlevertical time-dependent point force
acting downward on the surface of a homogeneous half-space. In this section, we use the analytical solution
from Mooney [8] to test the accuracy of the numerical solution.

In the following example, the elastic half-space consists of a Poisson solid (λ = µ) with S-wave velocity
Vs = 1000 m/s, P-wave velocityVp = 1000 ·

√
3 m/s, and densityρ = 1500 kg/m3. The elastic half-space

is truncated to the computational domain

(x, y, z) ∈ [0, 8000] × [0, 8000] × [0, 4000].

The source is placed on the free surface in the center point of the horizontal plane: (4000, 4000, 0).
The time dependency of the forcing is a “RickerInt” (see Figure 4.2) withω = 1 Hz, t0 = 2 s and
magnitude1013 N. The above setup is created with the input file shown below, which can be found in
examples/lambtests/seismic1.in

grid nx=161 x=8000 y=8000 z=4000
time t=5.0
fileio path=seismic1-results
block vp=1.7320508076e+03 vs=1000 rho=1500
source type=RickerInt x=4000 y=4000 z=0 fz=1e13 freq=1 t0= 2
Time history of solution
sac x=4000 y=5000 z=0 file=sta1

The vertical displacement at the reciever (x = 4000, y = 5000, z = 0) and the error for three grid sizes
can be found in Figure 9.1.

The waveforms are all smooth and the problem appears to be well resolved. We present the max-norm
of the errors in the vertical displacement in Table 9.1. The ratio between errors as the grid size is halved
approaches 4 for the finest grid, indicating that the numerical method and the discretization of the point force
are second order accurate. The center frequency in the RickerInt timefunction isf0 = 1 Hz. Following
(4.3), we estimate the highest significant frequency to befmax = 2.5 Hz. In this case the formula for the
number of grid points per wave length (4.1) becomesP = 1000/(2.5h). Note thatP = 16 gives a relative
max-norm error of about 3.5 percent.

39

0 1 2 3 4 5 6
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time

V
er

tic
al

 d
is

pl
ac

em
en

t

nx=161−error
nx=321−error
nx=641−error
Exact

Figure 9.1: Lamb’s problem: Vertical displacement at recieverx = 4000, y = 5000, z = 0. The black line
shows the exact solution, while the magenta, red and blue lines show the errors in the numerical solutions
with different grid resolution.

Nx h P ‖uz − Uz‖∞/‖Uz‖∞ ratio

161 50 8 1.12 · 10−1 –

321 25 16 3.54 · 10−2 3.16

641 12.5 32 9.47 · 10−3 3.74

Table 9.1: Max norm errors in the vertical displacement at reciverx = 4000, y = 5000, z = 0.

9.2 Examples from Lifelines project 1A01: Validation of basin response
codes

The following examples are taken form the Lifelines project 1A01: Validationof basin response codes,
see [3]. A detailed description of the setup of the Layer over halfspace (LOH) problems can also be found
in [3]. To enable a direct comparison with those results, theWPPsimulations are set up to calculate velocities
as opposed to displacements.

9.2.1 The LOH.1 problem

The LOH.1 problem, defined in the input scriptexamples/scec/LOH.1.h50.mr.in , has a layered
material model where the top 1000 meters (z ∈ [0, 1000m]) has different properties than the rest of the
domain. The computational domain is taken to be(x, y, z) ∈ [0, 30000]2 × [0, 17000]. The grid size in
the base (coarsest) grid is choosen to beh = 50m and the material properties in the different layers are
described by

grid h=50 x=30000 y=30000 z=17000 extrapolate=2

40

block vp=4000 vs=2000 rho=2600
block vp=6000 vs=3464 rho=2700 z1=1000

The problem is forced by a single point moment source, positioned in the lower half-space. The time
function in this problem is a Gaussian (if setup as in the input file, the Gaussiansource is equivalent to
using a Brune time function followed by a post processing deconvolution step, as is described in [3]). The
advantage of using the Gaussian is that no post processing is necessary before comparing to the results
in [3], and the Gaussian function produces less high wave number waveswhich are poorly resolved on the
computational mesh. Note thatfreq=16.6667 corresponds to the spreadσ = 0.06 in the Gaussian time
function. The lines to setup the source and the time duration of the simulation are:

time t=9
source x=15000 y=15000 z=2000 Mxy=1 m0=1e18 t0=0.36 freq=1 6.6667 \
type=Gaussian

The layered velocity structure makes this problem an ideal candidate for mesh refinement. We align the
refinement level with the material discontinuity by specifying

refinement zmax=1000

As a result the grid size in the top 1000 meters (0 ≤ z ≤ 1000) will be h = 25 meters. The
extrapolate=2 option in the above grid command tellsWPP to extrapolate material properties to
the ghost point and the point on the interface. This gives uniform materialproperties on each compo-
nent grid and allows the jump conditions across the material discontinuity to be handled accurately. The
extrapolate option should only be used when the grid interface is perfectly aligned with thematerial
discontinuity.

The solution is recorded in an array of receivers:

sac x=15600 y=15800 z=0 file=sac_01
sac x=16200 y=16600 z=0 file=sac_02
sac x=16800 y=17400 z=0 file=sac_03
sac x=17400 y=18200 z=0 file=sac_04
sac x=18000 y=19000 z=0 file=sac_05
sac x=18600 y=19800 z=0 file=sac_06
sac x=19200 y=20600 z=0 file=sac_07
sac x=19800 y=21400 z=0 file=sac_08
sac x=20400 y=22200 z=0 file=sac_09
sac x=21000 y=23000 z=0 file=sac_10

Numerical velocity time histories for station 10 are shown in Figure 9.2 together with a semi-analytical
solution. We conclude that most features in the solution are very well captured on this grid. As is customary
in seismology, the velocity components have been rotated to polar componenets,with the origin at the
source. Thesac command outputs theux, uy anduz-components of the velocity. These components are
rotated to radial and transverse components using the transformation,

urad = 0.6ux + 0.8uy, utran = −0.8ux + 0.6uy.

The vertical component is given byuz (positive downwards).
By using formulas (4.1)-(4.3), we can calculate the number of points per wave length for this simulation.

Since we are using a Gaussian time-function, the center frequency isf0 = 1/(2πσ) ≈ 2.6526 and we

41

0 2 4 6 8 10
−2

0

2

R
ad

ia
l

0 2 4 6 8 10
−2

0

2

T
ra

ns
ve

rs
e

0 2 4 6 8 10
−2

0

2

V
er

tic
al

Time

Figure 9.2: LOH.1: The radial (top), transverse (middle) and vertical (bottom) velocities for receiver number
10. Here the numerical solution is plotted in red while the semi-analytical solution isrepresented by dashed
black lines.

estimate the upper power frequency to befmax ≈ 2.5f0 = 6.6315 Hz. The material model hasminVs =
2000 m/s where the grid size ish = 25 m, and we arrive at

P =
2000

25 · 6.6315
≈ 12.1.

From our discussion in Section 4.3, 12.1 points per wave length is on the low side, but visual inspection of
Figure 9.2 indicates very good agreement of the wave forms.

9.2.2 The LOH.2 problem

The geometrical setup of the LOH.2 problem is identical to that of LOH.1, but the LOH.2 problem models an
earthquake along a fault plane. The slip along the fault is modeled by a largenumber of point moment tensor
sources with the time dependency given by the Gaussian function with different offsets in time (depending
on distance from the hypocenter). The fault plane coincides with the y-z-plane in the computational grid.
The input files for LOH.2 can be found inexamples/scec/LOH.2.h50.mr.in .

As for LOH.1, a semi-analytical solution is available forσ = 0.06 corresponding to the frequency
parameterfreq=16.6667 in all source commands. This leads to the same number of grid points per

42

wave length as for LOH.1.
P ≈ 12.1.

In Figure 9.3, we evaluate the error in the solution at station 10, by comparingvelocitiy time-histories in
the numerical solution to a semi-analytical solution. We conclude that most features in the solution indeed
are captured on this grid, in particular before timet ≈ 5.5. At later times, artificial effects of the outflow
boundary dominate the solution error. These effects are larger than in LOH.1 because the sources are
distributed in space so some sources are closer to the outflow boundary than in LOH.1.

0 2 4 6 8 10 12
−0.2

0

0.2

R
ad

ia
l

0 2 4 6 8 10 12
−0.2

0

0.2

T
ra

ns
ve

rs
e

0 2 4 6 8 10 12
−0.2

0

0.2

V
er

tic
al

Time

Figure 9.3: LOH.2: The radial (top), transverse (middle) and vertical (bottom) velocity components recorded
at station number 10. Here the dashed black line is a semi-analytical solution and the red line is the numerical
solution.

9.3 The Grenoble basin test case

This example uses realistic topography and mesh refinement to model a scenario earthquake near Greno-
ble, France. TheWPP input file for this simulation is calledGrenoble.in and can be found in the
examples/ifile directory.

Grenoble is located in a Y-shaped valley in the foothills of the Alps. The extentand geographic orienta-
tion of the computational domain is described by

grid x=40e3 y=43e3 z=40e3 lon=5.52 lat=45.01 az=0 h=200

43

Hence, thex-axis points in the direction of North (az=0) and they-axis is directed due East. With this
orientation, thelon and lat options specify the location of the South-West corner of the computational
domain.

To setup the topography we give the command

topography input=grid file=grenobleCoarse.topo zmax=30 00 order=2

The filegrenobleCoarse.topo holds the elevation (in meters) above mean sea level on a regular grid
in geographic (lat-lon) coordinates. A plot of the topography can be found in Figure 6.1. The material
properties are described by a heterogeneous model with granite and sediment. The properties of the granite
are assumed to only depend on depth, and are setup using block commands,

block vp=5600 vs=3200 rho=2720
block vp=5920 vs=3430 rho=2720 z1=3e3
block vp=6600 vs=3810 rho=2920 z1=27e3
block vp=8000 vs=4450 rho=3320 z1=35e3

Since the material commands are read in the order they occur, the propertiesof the top 3000 meters are
described by the firstblock command, and the subsequentblock commands describe the properties
deeper into the earth because their extent is restricted by thez1 option (note thatz1 andz2 correspond to
depth in the presence of topography).

The geometry of the sedimentary basin is described by theifile command,

ifile filename=bedrock_surface.dat

In this case, the filebedrock_surface.dat holds the depth of the sedimentary basin on a regular grid
in geographic (lon-lat) coordinates. Note that this grid is unrelated to the computational grid and the grid
used in the topography file. The format of this ASCII text file is described inSection 11.3. Theifile
command can be used to describe the depths of several material surfaces, but in this case we only have one.

For each material surface in theifile command, there must be amaterial command with a unique
id number. The material properties between the free surface and the first material surface in theifile
are defind by thematerial command with the lowestid number, and so on. Theifile command only
assigns material properties down to the depth of the last material surface.

In our case, the material properties of the sediment, i.e., between the free surface and the single material
surface in theifile command are described by

material id=1 vs=300 vp=1450 vpgrad=1.2 rho=2140 rhograd= 0.125

Note that the depth of the material surface is relative to the topography, which means that no sediment is
present where the depth is zero. By plotting the compressional wave speed along the top surface and in a
vertical cross-section, we can see both the horizontal extent and the variable depth of the sedimentary basin,
see Figure 9.4.

The slowest shear speed in the model is 300 m/s (in the sediment) and the fastest compressional speed
is 8,000 m/s (in the granite deeper than 35 km). To reduce the ratio between the shortest and longest wave
in the solution, we can impose a minimum threshold on the material velocities through the command

globalmaterial vpmin=800 vsmin=500

The slow material in the sedimentary basin sets the grid size requirement for thesimulation. To reduce
the total number of grid points, we use local mesh refinement to coarsen outthe computational grid below
the curvilinear grid (that extends tozmax= 3000),

44

Longitude

La
tit

ud
e

5.6 5.7 5.8 5.9 6

45.05

45.1

45.15

45.2

45.25

45.3

45.35

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

y

−
z

Compressional velocity

0 1 2 3 4

x 10
4

−10000

−8000

−6000

−4000

−2000

0

2000

0

1000

2000

3000

4000

5000

Figure 9.4: Grenoble basin model. Top: compressional velocity along the free surface, illustrating the extent
of the sedimentary basin. Bottom: compressional velocity in the vertical cross-sectionx = 20, 000 (latitude
≈ 45.2◦). The black horizontal lines mark the bottom of the curvilinear grid and the mesh refinement
interfaces for the Cartesian component grids.

45

refinement zmax=3500
refinement zmax=4000

Since the base grid has grid sizeh = 200 m, the two refined Cartesian grids get grid sizesh = 100m and
h = 50m, respectively. The average grid size in the curvilinear grid, which covers the sedimentary basin, is
thereforeh = 50 m.

The source mechanism in this small (Mw = 2.9) scenario earthquake corresponds to case W1 in the
ESG2006 benchmark,

source lat=45.2167 lon=5.9167 topodepth=3e3 m0=2.8184e1 3 \
strike=45 dip=90 rake=180 type=GaussianInt \
freq=188.56 t0=0.06

Note the very high angular frequency in the GaussianInt time function, corresponding to a center frequency
of f0 ≈ 30.0 Hz. The corresponding upper power frequency would befmax ≈ 75 Hz. With a minimum
shear speed threshold of 500 m/s, this corresponds to a smallest wave length of Lmin = 500/75 ≈ 6.67
m, making a fully resolved simulation extremely challenging. Instead of artificially lowering thefreq
parameter, we choose to filter the source time function with a two-pass two-poleButterworth filter with
corner frequency 1 Hz,

prefilter fc=1.0

The resulting motion is identical to running the simulation with the original time function followed by time
filtering the motion at all points in space using the same filter.

If we use this corner frequency to estimate the shortest wave length, we get Lmin ≈ 500 m, and the
curvilinear grid sizeh = 50 should provide acceptable resolution withP = 10 grid points per wave length.

In order to avoid incompatibilities due to the exponentially decaying tails in the filtered source time
function,WPPautomatically adjusts the starting time of the simulation fromt0 = 0 to t0 ≈ −3.97. As a
result the requested 15 seconds of simulation time corresponds to final timet0 +15 ≈ 11.03. The calculated
displacement time history at one station as well as the peak horizontal velocitiesalong the free surface are
shown in Figures 9.5-9.6.

The input fileGrenoble.in is setup to report the motion at many other stations, and to save several
different image files of the material model and the solution. We encourage thereader to run this case for
themselves, and explore the results further.

9.4 Modeling the October 2007, Alum Rock earthquake

This example uses both realistic topography and mesh refinement. The materialproperties and topography
are obtained from an Etree data base developed by the USGS. Hence, before you can run this case, you must
download the data base from the USGS website, see Section 5.2. It is also necessary to configureWPPto
use the efile command, see Section A.5.

The input scripts are located in the directorywpp-version-2.0/examples/efile :

Alumrock.in Alumrock-2.in

The main difference between these input files is the grid size. The case in theAlumrock.in file uses only
about 729,000 grid points and can easily be run on a workstation. The gridsize in the top grid ish = 500
m, so this simulation can only be expect to capture very long period motions (frequencies up to 0.1 Hz).
TheAlumrock-2.in case uses half the grid size, leading to about 5.4 Million grid points and captures
frequencies up to 0.2 Hz. This case can also be run on a workstation as long as it has enough memory, but

46

Longitude

La
tit

ud
e

5.6 5.7 5.8 5.9 6

45.05

45.1

45.15

45.2

45.25

45.3

45.35

2

4

6

8

10

12

14

16

x 10
−5

Figure 9.5: Grenoble scenarioMw = 2.9 earthquake. Peak horizontal velocity [m/s] for lowpass filtered
motion with corner frequecyfc = 1.0 Hz. Note the elevated velocity levels in the sedimentary basin.

−2 0 2 4 6 8 10
−4
−2

0
2
4

x 10
−5

E
as

t

−2 0 2 4 6 8 10

−2
0
2

x 10
−5

N
or

th

−2 0 2 4 6 8 10

−1

0

1
x 10

−5

V
er

tic
al

Time

Figure 9.6: Grenoble scenarioMw = 2.9 earthquake. Velocity time history at reciever station R06 located
at (lon=5.8210, lat=45.2086, depth=0).

47

will take about 16 times longer to execute once the material properties have been read from the Etree. Note
that the Etree can take a long time to read, so be patient while the material model is being setup.

The source model for this magnitudeMw ≈ 5.4 earthquake is discretized by many moment tensor
sources distributed over the fault plane with variable strength and initiation times. Similar to previous
examples, the input files are setup to save several image and sac files. As an example, in Figures 9.7-9.8, we
show peak horizontal velocities along the top surface as well as the time historyof the motion. The reader
is encouraged to run this case by him/herself to further explore the results.If you have access to a larger
parallel machine, you can easily capture higher frequencies in the motion byreducing the grid size in the
grid command and increasing the corner frequency in the prefilter command.

Longitude

La
tit

ud
e

Max horizontal velocity

−122.6−122.4−122.2 −122 −121.8−121.6−121.4−121.2

36.8

37

37.2

37.4

37.6

37.8

1

2

3

4

5

6

x 10
−3

Figure 9.7: Alum RockMw ≈ 5.4 earthquake. Max horizontal velocity for lowpass filtered motion with
corner frequecyfc = 0.2 Hz. The coast line of southern San Francisco bay and the Pacific oceanis outlined
with a thicker black line.

48

−10 0 10 20 30 40
−1

0

1
x 10

−3

E
as

t

Velocities at station 1427

−10 0 10 20 30 40
−5

0

5

10
x 10

−4

N
or

th

−10 0 10 20 30 40

−2

0

2

x 10
−4

Time

V
er

tic
al

Figure 9.8: Alum RockMw ≈ 5.4 earthquake. Simulated velocity time history at station 1427 (lon=-
122.025, lat=37.402, depth=0).

49

Chapter 10

Keywords in the input file

The syntax of the input file is

command1 parameter1=value1 parameter2=value2 ... parame terN=valueN
comments are disregarded
command2 parameter1=value1 parameter2=value2 ... parame terN=valueN
...

Each command starts at the beginning of the line and ends at the end of the sameline. Blank and comment
lines are disregarded. A comment is a line starting with a # character. The order of the parameters within
each command is arbitrary. The material commands (block, ifile, pfile, and efile) are applied in the order
they appear, but the ordering of all other commands is inconsequential. Also note that the entire input file is
read before the simulation starts.

Parameter values are either integers (-2,0,5,...), floating point numbers (20.5, -0.05, 3.4e4), or strings
(wpp, earthquake, my-favorite-simulation). Note that there must be no spaces around the = signs and strings
are given without quotation marks and must not contain spaces. Depending on the specific command, some
parameter values are required to fall within specified ranges.

A breif description of all commands is given in the following sections. The commands marked as
[required] must be present in all WPP input files, while those marked as [optional] are just that. Other com-
mands, such as those specifying the material model can be given by (a combination of) different commands
(block, pfile, efile, or ifile). UnlessWPPis run in one of its test modes, the material must be specifed by at
least one of these commands and at least one source must be specified.

10.1 Basic commands

10.1.1 fileio [optional]

Syntax:
fileio path=... verbose=... printcycle=... pfs=... nwrit ers=...
Required parameters:
None

50

fileio command parameters

Option Description Type Default

path path to a directory where all output will be written string .

verbose sets the level of diagnostic messages written to stan-
dard out

int 0

printcycle sets the interval for printing the cycle, time, dt info int 100

pfs assume a parallel (1) or serial (0) file system when
writing image files (several processes can simulta-
neously write the same file on a parallel file system)

int 0

nwriters set the number of processes that write an image fileint 8

10.1.2 grid [required]

Syntax:
grid nx=... ny=... nz=... x=... y=... z=... h=... lat=...
lon=... az=...
Required parameters:
See below.

The grid command specifies the extent of the computational domain and the grid size in the base grid. When
grid refinement is used, the base grid is the coarsest grid. Optionally the grid command also specifies the
latitude and longitude of the origin and the azimuth angle between North and thex-axis.

There are three basic ways of specifying the extent of the computational domain and the grid size:

• number of grid points in all three dimensions and the grid size:nx=... ny=... nz=... h=...

• spatial extents in all three dimensions and the grid size:x=... y=... z=... h=...

• spatial extents in all three dimensions and the number of grid points in one direction (the x-direction
in this example):x=... y=... z=... nx=...

It is not allowed to over specify the grid size. For example, ifx=... is given, you can not specify bothh=...
andnx=.... Similarly, it is not allowed to over specify the extent of the computational domain. For example,
whenh=... is given, you can not prescribe bothy=... andny=....

51

grid command parameters

Option Description Type Units Default

x physical dimension of grid in the x-direction float m none

y physical dimension of grid in the y-direction float m none

z physical dimension of grid in the z-direction float m none

h grid spacing float m none

nx number of grid points in the x-direction int none none

ny number of grid points in the y-direction int none none

nz number of grid points in the z-direction int none none

az clockwise angle from North to the x-axis float degrees 135.0

lat latitude geographic coordinate of the origin float degrees 37.0

lon longitude geographic coordinate of the origin float degrees -118.0

10.1.3 time [required]

Syntax:
time t=... steps=...
Required parameters:
t or steps

The time command specifies the duration of the simulation in seconds or the number of time-steps. The size
of the time step is computed internally byWPP. You can not over specify the duration of the simulation, i.e.,
you can not give botht=... andsteps=....

time command parameters

Option Description Type Units Default

t duration of simulation float s none

steps number of cycles (time-steps) to advance int none none

10.1.4 source [required]

Syntax:
source x=... y=... z=... lat=... lon=... depth=... topodep th=...
m0=... mxx=... mxy=... mxz=... myy=... myz=... mzz=... f0= ...
fx=... fy=... fz=... rake=... strike=... dip=... t0=... fr eq=...
type=... ncyc=...
Required parameters:
See below.

There can be multiple source commands in an input file. Each source command either sets up a point force
or a point moment tensor source and should follow the following rules:

52

• The location of the source must be specified by either a Cartesian location (x, y, z) or by geographical
coordinates (lat, lon) together with (depth or topodepth). Heredepth equals thez-coordinate, while
topodepthspecifies the depth below the topography.

• Select a point force or a point moment tensor source:

– Point force: give at least one component of the force vector (fx, fy, fz) and optionally the ampli-
tudef0.

– A point moment tensor source can be specified in one of two ways:

1. Seismic momentm0, and double couple focal mechanism,strike/dip/rake angles (see [1]).

2. At least one component of the moment tensor (mxx, mxy, etc.) and optionally a scaling
factorm0.

source command parameters

Option Description Type Units Default

x x position of the source float m none

y y position of the source float m none

z z position of the source float m none

depth depth of the source (below z=0) double m none

topodepth depth of the source (below free surface) double m none

lat latitude geographic coordinate of the source double degrees none

lon longitude geographic coordinate of the source double degrees none

m0 moment amplitude float Nm 1.0

mxx xx-component of the moment tensor float none 0.0

myy yy-component of the moment tensor float none 0.0

mzz zz-component of the moment tensor float none 0.0

mxy xy-component of the moment tensor float none 0.0

mxz xz-component of the moment tensor float none 0.0

myz yz-component of the moment tensor float none 0.0

f0 point force amplitude float N 1.0

fx forcing function in the x direction float none 0.0

fy forcing function in the y direction float none 0.0

fz forcing function in the z direction float none 0.0

strike Aki and Richards strike angle float degrees none

dip Aki and Richards dip angle float degrees none

rake Aki and Richards rake angle float degrees none

t0 offset in time float s 0.0

freq frequency float Hz or rad/s 1.0

type selects a particular time dependent function string none RickerInt

53

Options for the time function (type) are: GaussianInt, Gaussian, RickerInt, Ricker,
Ramp, Triangle, Sawtooth, Smoothwave, VerySmoothBump, Br une, BruneSmoothed ,
andLiu .

10.1.5 prefilter [optional]

Syntax:
prefilter fc=... maxfreq=...
Required parameters:
None

The prefilter command modifies the time functions in all source commands. If themaxfreq parameter is
given, thefreq parameter in all time function is first limited by this value. If thefc parameter is given,
all source time functions are then filter by a 2-pole 2-pass acausal Butterworth filter. In order to avoid an
abrupt start, a minimum threshold on thet0 parameter in all source time functions is set to be6/fc before
the filtering is performed. The prefilter command can be used to ensure that the solution is well resolved on
the computational grid, and is particularly useful for computing reliablehvelmaxandvvelmax image files.

prefilter command parameters

Option Description Type Units Default

fc corner frequency in Butterworth filtering of all
source time functions

float Hz None

maxfreq Enforce a max threshold value in thefreq parameter
in all sources

float Hz or rad/s None

10.2 The material model [required]

It is required to define the material model in the entire comutational domain. This can be accomplished by
using one or more of the commands in this section.

10.2.1 block

Syntax:
block vp=... vs=... rho=... vpgrad=... vsgrad=... rhograd =...
x1=... x2=... y1=... y2=... z1=... z2=...
Required parameters:
vp, vs, rho

The block command specifies material properties that are constant or varylinearly with depth. By default,
the material properties apply to the entire computational domain. By using the optional parametersx1=...,
x2=..., etc., the material properties are only assigned in parts of the computational domain. When used
together with thetopography command,z1=...andz2=...specify depths below the free surface rather than
z-coordinate.

The gradient parametersvpgrad, vsgrad, and rhograd specify linear variations in thez-direction
(downward). The units forvpgrad andvsgrad are 1/seconds, which can be interpreted as m/s per m, or

54

km/s per km. The linear variation is relative to the properties at the free surface (z = 0 or depth=0 with
topography), e.g.,

Vp(z) = vp + z vpgrad.

Note that whenvpgrad is specified together withz1 = z1, Vp(z1) = vp+ z1 vpgrad. Hence, the material
properties at the top of the block (z = z1) can be very different fromvp whenz1 vpgrad is large.

block command parameters

Option Description Type Units Default

vp P-wave velocity float m/s none

vs S-wave velocity float m/s none

rho density float kg/m3 none

vpgrad vertical gradient for vp float s−1 none

vsgrad vertical gradient for vs float s−1 none

rhograd vertical gradient for rho float kg/m4 none

x1 minimum x-dim for the box shaped sub-region float m -max x

x2 maximum x-dim for the box shaped sub-region float m 2 max x

y1 minimum y-dim for the box shaped sub-region float m -max y

y2 maximum y-dim for the box shaped sub-region float m 2 max y

z1 minimum z-dim for the box shaped sub-region float m -max z

z2 maximum z-dim for the box shaped sub-region float m 2 max z

10.2.2 efile

Syntax:
efile etree=... xetree=... logfile=... query=... vsmin=. ..
vpmin=... access=... resolution=...
Required parameters:
etree

efile command parameters

Option Description Type Units Default

logfile name of file where output from etree file read will
go

string none none

vsmin minimum threshold for the s velocity in solids float m/s 0

vpmin minimum threshold for the p velocity in solids float m/s 0

query type of query to perform string none MAXRES

resolution for FIXEDRES, the resolution to sample the data float m none

access can be set to parallel or serial string parallel

etree full path to the etree database file string none none

xetree full path to the extended etree database file string none none

55

The query option can be set to one of the following:

Query Option Description

MAXRES This will sample the data at the maximum resolution available in the database,
which is the default query type for the efile option.

FIXEDRES This will sample the database at the requested resolution, even ifthe database
contains values at a higher resolution. This option defaults to the grid spacing
h, or can be specified with the resolution option.

For example, to set the data to be fixed at a 1km sampling:

efile query=FIXEDRES resolution=1000 etree=USGS-SF1906 .etree

Note: If you would like to find out the locations of grid points which are foundto be outside the etree
database domain, the logfile option can be used to track which points were notfound. It will report points it
found outside the domain, as well as points it did not have data for (i.e., air just above water or a material).

10.2.3 pfile

Syntax:
pfile smoothingsize=... vpmin=... vsmin=... rhomin=... f latten=...
filename=... directory=...
Required parameters:
filename

pfile command parameters

Option Description Type Units Default

filename name of input pfile string none none

directory name of directory for the input pfile string none .

smoothingsize smooth data over stencil of this width int none 5

vpmin minimum threshold value forVP float m/s 0

vsmin minimum threshold value forVS float m/s 0

rhomin minimum threshold value for density float m/s 0

flatten Flatten earth model (T or F) string none F

10.2.4 ifile

Syntax:
ifile filename=...
Required parameters:
filename

The ifile command specifies the depth of material surfaces as function of longitude and latitude, and must
be used in conjunction with thematerial command. The format for this file is described in Section 11.3.

56

ifile command parameters

Option Description Type Default

filename name of input file holding material surfaces string None

10.2.5 material

Syntax:
material id=... vp=... vs=... rho=... vpgrad=... vsgrad=. ..
rhograd=... vp2=... vs2=... rho2=...
Required parameters:
id, vp, vs, rho

The material command is used to define material properties together with theifile material surfaces, see
Section 11.3.

material command parameters

Option Description Type Default

id material ID number> 0 int None

vp P-wave velocity float None

vs S-wave velocity float None

rho Density float None

vpgrad P-velocity gradient float 0.0

vsgrad S-velocity gradient float 0.0

rhograd Density gradient float 0.0

vp2 P-velocity quadratic coefficient float 0.0

vs2 S-velocity quadratic coefficient float 0.0

rho2 Density quadratic coefficient float 0.0

10.2.6 globalmaterial [optional]

Syntax:
globalmaterial vpmin=... vsmin=...
Required parameters:
None

The globalmaterial command is used to put threshold values on theP - andS-velocities in the material
model. These thresholds are enforced after material properties have been assigned to all grid points.

globalmaterial command parameters

Option Description Type Default

vpmin Minimum P-wave velocity(> 0) float None

vsmin Minimum S-wave velocity(> 0) float None

57

10.3 Topography and mesh refinement

10.3.1 topography [optional]

Syntax:
topography input=... file=... resolution=... zmax=... or der=...
smooth=... gaussianAmp=... gaussianXc=... gaussianYc=. ..
gaussianLx=... gaussianLy=...
Required parameters:
input, zmax
Alse see discussion below.

The topography command specifies the shape of the free surface boundary, the vertical extent of the curvi-
linear grid below the free surface, and optionally the order of the grid mapping. The topography is given as
elevation (in meters) relative to mean sea level, i.e., positive above sea level and negative below sea level.
The curvilinear grid is located between the topography andz = zmax (recall thatz is directed downwards).
If the elevation of the topography ranges betweenz = −emin and z = −emax, we recommend using
zmax ≥ −emin + 2|emax − emin|.

There are three ways to specify the topography:

• input=file Read the topography as function of latitude and longitude. The file name must be specified
by thefile=... parameter. The format for this file is described in Section 11.1.

• input=efile Read the topography from the Etree data base. The Etree data base must be specified by
anefilecommand (see below). The spatial resolution for querying the Etree data base can be specified
by theresolution=... parameter.

• input=gaussianBuild an analytical topography in the shape of a Gaussian hill. The amplitude is
specified bygaussianAmp=..., the hill is centered atgaussianXc=..., gaussianYc=..., and the half
width of the hill in thex andy-directions are specified bygaussianLx=..., andgaussianLy=....

topography command parameters

Option Description Type Units Default

input Type of input: file, efile or gaussian string none none

file File name if input=file string none none

resolution Resolution for querying the efile if input-efile float meters none

zmax z coordinate of the interface between Cartesian and
curvilinear grid

float m 0

order Interpolation order (2, 3 or 4) int none 3

smooth Number of smoothing iterations of topography grid
surface

int none 10

gaussianAmp Amplitude for a Gaussian hill topography float meters 0.05

gaussianXc x-coordinate of center for a Gaussian Hill float meters 0.5

gaussianYc y-coordinate of center for a Gaussian Hill float meters 0.5

gaussianLx Width of the Gaussian hill in the x-direction float meters 0.15

gaussianLy Width of the Gaussian hill in the y-direction float meters 0.15

58

10.3.2 refinement [optional]

Eachrefinement command corresponds to a mesh refinement patch forz ≤ zmax. The grid size in each
refinement patch is half of the next coarser grid size. The grid size in the coarsest grid is prescribed by the
grid command.

Syntax:
refinement zmax=...
Required parameters:
zmax

refinement command parameters

Option Description Type Unit Default

zmax maximum z-coordinate for the refinement region float m None

10.4 Output commands

The output commands are optional but unless you are only doing timing studiesof the WPP code, you
probably want some data to be saved. Thesaccommand saves a time series of the solution at a recording
station, which can be read by the SAC program [4] or the readsac.m Matlabscript in thetools directory.
Theimagecommand is used to save a two-dimensional cross-section of the solution, the material properties,
or the grid. The image files can be read by the readimagepatch.m Matlab scriptin thetools directory. The
gmt command outputs a shell script file containing the location of allsacstations and the epicenter, i.e. the
location of the firstsourcecommand. This shell script file can be used for further postprocessing by the
GMT program [11].

10.4.1 sac [optional]

Syntax:
sac=... x=... y=... z=... lat=... lon=... depth=...
topodepth=... sta=... file=... type=... writeEvery=...
eventDate=... eventTime=... nsew=... velocity=... usgsf ormat=...
sacformat=...
Required parameters:
Location of the receiver in Cartesian or geographic coordinates.

The file format is described in Section 11.4.

59

sac command parameters

Option Description Type Units Default

x x position of the receiver float m none

y y position of the receiver float m none

z z position of the receiver float m none

lat latitude geographic coordinate of the receiver float degrees none

lon longitude geographic coordinate of the receiver float degrees none

depth depth of the receiver (below topography) float m none

topodepth depth of the receiver (same as depth) float m none

sta name of the station string none file

file file name header of the SAC file string none sac

type write out a binary or ascii SAC file string none binary

writeEvery cycle interval to write out the SAC file to disk int none 1000

eventDate date the event occured: YYYY/MM/DD int/int/int none date of run

eventTime time the event occured: hours:minutes:seconds int:int:int none time of run

nsew output East-West, North-South, and vertical (−z)
components

int none 0

velocity output time derivative of solution int none 0

usgsformat output all components in an ASCII text file int none 0

sacformat output each component in a SAC file int none 1

10.4.2 image [optional]

Syntax:
image=... x=... y=... z=... time=... timeInterval=... cyc le=...
cycleInterval=... file=... mode=... precision=...
Required parameters:
Location of the image slice (x, y, or z)
Timing interval (time, timeInterval, cycle, or cycleInterval)

The file format is described in Section 11.5.

60

image command parameters

Option Description Type Units Default

x x location of visual plane float m none

y y location of visual plane float m none

z z location of visual plane float m none

time simulation time to output image, will be closest de-
pending on dt taken

float s none

timeInterval simulation time interval to output series of images float s none

cycle time-step cycle to output image int none none

cycleInterval time-step cycle interval to output a series of imagesint none none

file file name header of image string none image

mode specifies which field is written to the image file string none rho

precision precision of image data on file (float or double) string none float

modecan take one of the following values:

61

image mode options

Value Description

ux displacement in the x-direction

uy displacement in the y-direction

uz displacement in the z-direction

rho density

lambda lambda

mu mu

p p velocity

s s velocity

div divergence (div) of the displacement

curl magnitude of the rotation (curl) of the displacement

veldiv divergence (div) of the velocity

velcurl magnitude of the rotation (curl) of the velocity

velmag magnitude of the velocity

lat latitude (in degrees)

lon longitude (in degrees)

hvelmax maximum in time of the horizontal velocity (North-East components)

vvelmax maximum in time of the vertical velocity

topo topography or elevation [only available with efile input]

grid grid coordinates in the plane of visualization (e.g.y-z plane if x=const)

uxerr error between computed and exact solutions in the x-direction

uyerr error between computed and exact solutions in the y-direction

uzerr error between computed and exact solutions in the z-direction

fx Forcing in the x-direction

fy Forcing in the y-direction

fz Forcing in the z-direction

10.4.3 gmt [optional]

Syntax:
gmt file=...
Required parameters:
None.

gmt command parameters

Option Description Type Default

file name of output file for gmt c-shell commands string wpp.gmt.csh

62

10.5 WPP testing commands [optional]

10.5.1 twilight

Syntax:
twilight=... errorlog=... omega=... c=... phase=... mome ga=...
mphase=... amprho=... ampmu=... amplambda=...
Required parameters:
None

The twilight command runsWPP in a testing mode where forcing functions are constructed to create a
known smooth analytical solution. The error in this solution should beO(h2) when this solution is suffi-
ciently well resolved on the computational grid. Example scripts are providedin examples/twilight .

twilight command parameters

Option Description Type Default

errorlog Outputs error log in file twilighterrors.dat int 0

omega Wave number in solution float 1.0

c Wave speed float 1.3

phase Solution phase coefficient float 0.0

momega Wave number in material float 1.0

mphase Material phase coefficient float 0.4

amprho Density amplitude float 1.0

ampmu Materialµ amplitude float 1.0

amplambda Materialλ amplitude float 1.0

10.5.2 testlamb

Syntax:
testlamb=... x=... y=... cp=... rho=... fz=...
Required parameters:
Location of the forcing(x, y).

The testlamb command solves Lamb’s problem, i.e., the displacement due to a vertical point forcing on a
flat free surface, located at(x, y). The material has homogeneous properties and the ratio between the com-
pressional and shear velocities is

√
3, i.e.,λ = µ. Hence the shear velocity isCs = Cp/

√
3. Furthermore,

the time function is averySmoothBump with freq=1 andt0=0. Note that the vertical component of the
exact solution is available along the free surface (z = 0), and images of the error can be saved with the
image command using the optionstype=uzerr z=0 . At the end of the run, the error in the solution are
reported measured in max andL2 norms.

63

testlamb command parameters

Option Description Type Default

x x-coordinate of point source float 0.0

y y-coordinate of point source float 0.0

cp P-wave velocity float 1.0

rho Density float 1.0

fz Magnitude of the forcing float 1.0

10.5.3 testpointsource

Syntax:
testpointsource x=... y=... z=... cp=... cs=... rho=... m0 =...
mxx=... mxy=... mxz=... myy=... myz=... mzz=... f0=... fx= ...
fy=... fz=... freq=... t0=... type=...
Required parameters:
None

This command solves the displacement due to a point source in a whole space.The reported errors are only
reliable before the solution has reached the outflow boundaries.

64

testpointsource command parameters

Option Description Type Default

x x-coordinate of point source float 0

y y-coordinate of point source float 0

z z-coordinate of point source float 0

cp P-wave velocity float
√

3

cs S-wave velocity float 1

rho Density float 1

m0 Moment amplitude float 1

mxx xx-component of moment tensor float 0

mxy xy-component of moment tensor float 0

mxz xz-component of moment tensor float 0

myy yy-component of moment tensor float 0

myz yz-component of moment tensor float 0

mzz zz-component of moment tensor float 0

f0 Point force amplitude float 1

fx Magnitude of the forcing in the x-direction float 1

fy Magnitude of the forcing in the y-direction float 1

fz Magnitude of the forcing in the z-direction float 1

freq Frequency of the forcing float 1

t0 Offset in time float 1

type Type of the source: SmoothWave, VerySmooth-
Bump,Ricker

string Ricker

10.6 Advanced simulation controls

Most users will never need to use the commands in this section.

10.6.1 supergrid [optional]

Syntax:
supergrid thickness=... damping coefficient=...
Required parameters:
None

65

supergrid command parameters

Option Description Type Default

thickness Thickness of the supergrid region float 15 h

dampingcoefficient Damping in supergrid region float 0.15

10.6.2 boundaryconditions [optional]

Syntax:
boundary conditions lx=... hx=... ly=... hy=... lz=... hz=...
Required parameters:
None

Boundary conditions parameters

Option Description Type Default

lx Boundary condition atx = 0 int 0-5 5

hx Boundary condition atx = xmax int 0-5 5

ly Boundary condition aty = 0 int 0-5 5

hy Boundary condition aty = ymax int 0-5 5

lz Boundary condition atdepth = 0 int 0-5 2

hz Boundary condition atz = zmax int 0-5 5

boundary condition type options

Value Type

0 Clayton-Enquist boundary

1 Energy absorbing boundary

2 Stress-free boundary

3 Dirichlet boundary

4 Neumann boundary

5 Supergrid boundary

10.6.3 developer [optional]

Syntax:
developer cfl number=... output load=... output timing=...
interpolation=... ctol=... cmaxit=... log energy=...
print energy=... mpiio=... iotiming=...
Required parameters:
None

66

Warning: you need to be intimately familiar with the inner workings ofWPPto use this command. Look in
the source code to get a full understanding of what this command really does.

developer parameters

Option Description Type Default

cfl number CFL number float 0.8

output load Output lad info (0 or 1) int 0

output timing Output timing info (0 or 1) int 0

interpolation Interpolation type at grid refinement boundaries string conservative

ctol Relative tolerance for iterative solution of conservative grid re-
finement

float 1e-3

cmaxit Max number of interations for solving conservative grid refine-
ment equations

int 20

log energy File name for saving energy info string none

print energy Save energy information (0 or 1) int 0

mpiio use standard MPI-I/O (1) or Bjorn’s I/O (0) routines for saving
image files

int 0

iotiming output timing info after each image is written to disk. (0 or 1) int 0

67

Chapter 11

File formats

11.1 topography

Topography is specified as elevation above mean sea level on a regular lattice in gegraphic coordinates. The
unit for elevation is meters, while latitude and longitude are in degrees. A topography file must cover the
entire horizontal extent of the computational domain.

Let the elevation be known at longitudes

φi, i = 1, 2, . . . , Nlon,

and latitudes
θj , j = 1, 2, . . . , Nlat,

Note that the latitudes and the longitudes must either be strictly increasing or strictly decreasing, but the step
size may vary.

The elevation should be given on the regular lattice

ei,j = elevation at longitudeφi, latitudeθj .

The topography file should be an ASCII text file with the following format. Thefirst line of the file holds
the number of longitude and latitude data points:

Nlon Nlat

On subsequent lines, longitude, latitude and elevation values are given in column first ordering:

φ1 θ1 e1,1

φ2 θ1 e2,1

...
...

...

φNlon θ1 eNlon,1

...
...

...

φ1 θNlat e1,Nlat

φ2 θNlat e2,Nlat

...
...

...

φNlon θNlat eNlon,Nlat

68

11.2 pfile

The header has 7 lines and follows the following format:

Line Column 1 Column 2 Column 3 Column 4

1 Name (string)

2 ∆ [deg] (real)

3 Nlat (integer) Latmin [deg] (real) Latmax [deg] (real)

4 Nlon (integer) Lonmin [deg] (real) Lonmax [deg] (real)

5 Ndep (integer) dmin [km] (real) dmax [km] (real)

6 Ised (integer) IMoHo (integer) I410 (integer) I660 (integer)

7 Q-available? (logical)

Lines 3 and 4 contain the number of lattice points as well as the starting and ending angles in the latitude
and longitude direction, respectively, . Line 5 contains the number of depthvalues in each profile, followed
by the minimum and maximum depth measured in km. Line 6 supplies information about the index of
some material discontinuities in each depth profile. Give -99 if not known. Note that the index for each
discontinuity (sediment, MoHo, 410, 660) indicates the row number within eachprofile, for the material
property just above the discontinuity. Hence, the subsequent entry in each profile should have the same
depth value and contain the material property just below the same discontinuity.Line 7 should contain the
single letter T if the subsequent data contains quality factors (QP andQS); otherwise it should contain the
single letter F.

The header is directly followed byNlat × Nlon depth profiles, according to the pseudo-code

for i = 0, 1, . . . , Nlat − 1
for j = 0, 1, . . . , Nlon − 1

Lati = Latmin + i∆;
Lonj = Lonmin + j∆;
(save depth profile forLati, Lonj)

end
end

The first line of each depth profile contains its latitude and longitude (in degrees as real numbers), and the
number of depth values which must equalNdep. The subsequentNdep lines have the following format:

Index (integer) depth [km] (real) Vp [km/s] (real) Vs [km/s] (real) ρ [g/cm3] (real) QP (real) QS (real)

Note thatQP andQS should only be present when indicated so by theQ-availability flag on line 7 of the
header.

11.3 ifile

The material surface file (ifile) should be an ASCII text file with the following format. The first line of the
file holds the number of longitude and latitude data points, as well as the number of material surfaces:

Nlon Nlat Nmat

69

On subsequent lines, longitude, latitude andNmat surface depth values are given in column first ordering:

Lon1 Lat1 d1,1,1 . . . dNmat,1,1

Lon2 Lat1 d1,2,1 . . . dNmat,2,1

...
...

...
...

LonNlon
Lat1 d1,Nlon,1 . . . dNmat,Nlon,1

...
...

...

Lon1 LatNlat
d1,1,Nlat

. . . dNmat,1,Nlat

Lon2 LatNlat
d1,2,Nlat

. . . dNmat,2,Nlat

...
...

...
...

LonNlon
LatNlat

d1,Nlon,Nlat
. . . dNmat,Nlon,Nlat

It is required thatdq,i,j ≤ dq+1,i,j .

11.4 sac

SAC files hold the time history of one component of the solution at a fixed point in space. A detailed descrip-
tion of the SAC format can be found athttp://www.iris.edu/manuals/sac/manual.html . In
the tools directory, we provide a simplified Matlab reader of SAC files calledreadsac.m . Note that
only some of the header information is parsed by this reader:

% READSAC
%
% Read SAC receiever data.
%
% [u,dt,lat,lon,t0] = readsac(fname, format)
%
% Input: fname - Name of SAC file
% format - Little endian (’l’) or big endian (’b’)
% byte order for binary data. Default is ’l’.
%
% Output: u - The data component on SAC file
% dt - Uniform time step for u
% lat, lon - Lat and Lon of the SAC station.
% t0 - Start time for time-series
%
function [u,dt,lat,lon,t0] = readsac(fname, format)
if nargin < 2

format = ’l’;
end;

fid = fopen(fname,’r’,format);
if fid < 0

disp([’Error: could not open file ’ fname]);
else

70

dt = fread(fid,1,’float32’);
fseek(fid,4 * 4,0);
t0 = fread(fid,1,’float32’);
fseek(fid,25 * 4,0);
lat = fread(fid,1,’float32’);
lon = fread(fid,1,’float32’);
fseek(fid,2 * 4,0);
evlat = fread(fid,1,’float32’);
evlon = fread(fid,1,’float32’);
fseek(fid,4,0);
evdepth = fread(fid,1,’float32’);
disp([’Begin time (t0) = ’ num2str(t0)]);
disp([’Event lat lon = ’ num2str(evlat) ’ ’ num2str(evlon)]);
disp([’Event depth ’ num2str(evdepth) ’ km’]);
fseek(fid,4 * 40,0);
npts=fread(fid,1,’int’);
fseek(fid,78 * 4,0);
u=fread(fid,npts,’float32’);
fclose(fid);

end

11.5 image

Images files hold two-dimensional data on a composite grid and are written in a binary format. The header of
the file starts with two integers: the precision (4 for single precision, 8 for double precision), and the number
of patches. After that follows header info for each patch, consisting ofthe grid sizeh (a double precision
floating point number) and four integers holding the starting and ending indices for each patch. The header
is followed by the two-dimensional data on each patch, consisting of one single or double precision floating
point number for each grid point, stored in column-first order.

The exact format follows from the Matlab function tools/readimagepatch.m which is provided in the
source distribution ofWPP:

% Returns image patch nr. ’inr’ on file ’fil’ in ’im’,
% corresponding grid returned in ’x’ and ’y’
function [im,x,y]=readimagepatch(fil, inr)

fd=fopen(fil,’r’);

% Precision of image data (4-float, 8-double)
pr=fread(fd,1,’int’);

% Number of image patches on file
ni=fread(fd,1,’int’);
if inr > ni

disp(’Error image nr too large’);
else
% For each patch read grid spacing and index bounds.
% For patch nr. p: ib(p) <= i <= ie(p) and jb(p) <= j <= je(p)

71

for i=1:ni
h(i) = fread(fd,1,’double’);
ib(i) = fread(fd,1,’int’);
ie(i) = fread(fd,1,’int’);
jb(i) = fread(fd,1,’int’);
je(i) = fread(fd,1,’int’);

end;
% Want patch nr. inr, skip the first inr-1 image patches.

for i=1:inr-1
fseek(fd,(ie(i)-ib(i)+1) * (je(i)-jb(i)+1) * pr,0);

end;
% Read wanted image patch, single or double precision.

if pr == 4
im = fread(fd,[ie(inr)-ib(inr)+1 je(inr)-jb(inr)+1],’f loat’);

else
im = fread(fd,[ie(inr)-ib(inr)+1 je(inr)-jb(inr)+1],’d ouble’);

end;
% Corresponding Cartesian grid

x = ((ib(inr):ie(inr))-1) * h(inr);
y = ((jb(inr):je(inr))-1) * h(inr);
fclose(fd);

% transpose im and return result
im = im’;

end;

In this implementation,fd is a file descriptor variable. The Matlab functionsfopen andfread perform
binary I/O similarly to the C functions with the same names.

Note that the above matlab function reads one image patch from an image file into theMatlab matrix
im . The corresponding Cartesian coordinates are returned in the Matlab vectorsx andy .

72

Appendix A

Installing WPP

TheWPPsource code is released under the GNU general public license and can be downloaded from:

https://computation.llnl.gov/casc/serpentine/softwa re.html

A.1 Supported platforms

WPPand its supporting libraries have been built on Intel based desktops and laptops running LINUX and
OSX. It has also been built on various supercomputers such as the largeLinux clusters at LLNL (currently
zeus, hera and atlas), as well as IBM BG/L and BG/P. We have builtWPPusing Gnu, Intel, or IBM com-
pilers. Our experience is thatWPP is likely to build if the underlying third party libraries can be built.
Currently, we are using the following compiler versions:

Gnu: g++/gcc/gfortran versions 4.1.2-4.4.2
Intel: icpc/icc/ifort versions 9.1-11.1
IBM: version info currently unavailable

A.2 Build tools, compilers and MPI-library

WPPis built using a software construction tool called SCons (scons). SCons performs both configuration
and compilation/linking through thescons command, and is in that respect different from the more com-
mon configure/make process. BeforeWPPcan be built, you must install SCons, which relies on the scripting
language Python (v2.3.5 or higher fromwww.python.org). You must also have access to functioning
C++ and Fortran compilers, and a compatible version of the MPI-2 library for parallel communication.

A.2.1 Mac computers running OSX

We recommend using the MacPorts package manager for installing the required compilers, libraries and
scons program. Simply go to www.macports.org, and install macports on your system. With that in place,
you can use theport command as follows

shell> port install gcc44
shell> port install mpich2
shell> port install scons

Here, gcc44 refers to version 4.4 of the Gnu compiler suite. Compiler versions are bound to change with
time. Before you install gcc, make sure it is compatible with the mpich2 package.

73

A.2.2 Linux machines

Assumingpython is already installed , it is straightforward to installscons . First download it from
the websitewww.scons.org (v1.20) and unpack it. To install SCons, simply invoke the following
command from the top level directory:

shell> python setup.py install --prefix=/dir/of/your/ch oice

Note: scons andpython can be installed anywhere in your path. Typically people have them installed
in /usr/local/bin , but if you don’t have root access any other directory reachable byyour UNIX path
will work.

A.3 Directory structure

To unpack theWPPsource code, you place the downloaded file wpp-version-2.0.tar.gz in thedesired location
and issue the following commands:

shell> gunzip wpp-version-2.0.tar.gz
shell> tar xvf wpp-version-2.0.tar

Afterwards, you will find a new directory namedwpp-version-2.0 , which contains several files and
subdirectories:

• LICENSE.txt License information.

• INSTALL.txt Information about how to buildWPP.

• KNOWN-BUGS.txt List of known problems, porting issues, or bugs.

• README.txt

• TPL.txt Build instructions for third party libraries.

• configs Directory containing scons configuration files.

• src C++ and Fortran source code ofWPP.

• tools Matlab scripts for post processing and analysis.

• examples Sample input files.

• SConstruct A SCons ”makefile” (don’t change this file!).

• wave.py Python script used to print ”WPP Lives” at end of successful builds.

A.4 Compiling and Linking WPP (without the cencalvm library)

The best way of getting started is to first buildWPPwithout the cencalvm library. This process should be
very straight forward and the resultingWPPexecutable supports all commands except theefile command.
If you need to use theefile command, it is straight forward to recompileWPPonce the cencalvm and
supporting libraries have been installed (§ A.5).

Start by familiarizing yourself with the wpp source code by going to the main wppdirectory and listing
it

74

shell> cd wpp-version-2.0
shell> ls

Go into the configs directory:

shell> cd configs

Use your favorite text editor to inspect the available configuration files anddetermine which file most closely
resembles your system: amac.py is used on an Intel Mac, tux.py is used on a Linux workstation, and atlas.py
is used on a large Linux supercomputer. Make a copy of this file (amac.py in this case):

shell> cp amac.py my.py

You need to assign the environment variableWPPCONFIG, which enablesWPPto find your configura-
tion file. Add a line in your̃ /.cshrc file (or equivalent):

setenv WPPCONFIG /my/installation/dir/wpp-version-2.0 /configs/my.py

Open up a new shell (command window) and verify that WPPCONFIG was assigned properly:

shell> printenv WPPCONFIG

Using your favorite text editor, you need to modify themy.py file to properly reflect the directory structure
of your system, the names and locations of your compilers, and the location ofthe mpich library. You may
also need to modify the compiler flags.

shell> cd /my/installation/dir/wpp-version-2.0/config s
shell> emacs my.py
...

Note that you should only uncomment the line which adds-DENABLE_ETREEto CXXFLAGSafter the
cencalvm library has been installed (i.e., not now).

To compileWPP, you go to the main wpp directory and issue the scons command:

shell> cd /my/installation/dir/wpp-version-2.0
shell> scons

If all goes well, the “WPP lives banner” is shown after the scons command iscompleted:

‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘’-.,_,.-’‘‘’-.,_,.=’‘‘‘‘’-. ,_,.-’‘‘’-.,_,.=’‘‘

____ __ ____ .______ .______
\ \ / \ / / | _ \ | _ \

\ \/ \/ / | |_) | | |_) |
\ / | ___/ | ___/

\ /\ / | | | |
__/ __/ | _| | _|

__ __ ____ ____ _______ _______. __
			\ \ / /	____	/		
			\ \/ /		__	(----‘	
			\ /	__	\ \		
‘----.		\ /		____.----)		__	
_______		__	__/	_______	_______/ (__)		

75

If the scons command results in some error, carefully review these messages. First make sure that scons
was able to find your configuration file (my.py). If not, review the above steps for setting the WPPCON-
FIG environment variable. If you still have problems, make sure thatmy.py contains correct locations of
compilers, libraries, and that appropriate compiler and link flags have beenset.

By default, theWPPexecutable is located in

/my/installation/dir/wpp-version-2.0/optimize_v2.0/ wpp

It can be convenient to add this directory to yourPATHenvironment variable (i.e., modify your.cshrc
file).

You can also build a debug version ofWPPby adding thedebug=1 option toscons ,

shell> cd /my/installation/dir/wpp-version-2.0
shell> scons debug=1

That executable will be located in

/my/installation/dir/wpp-version-2.0/debug_v2.0/wpp

A.4.1 How does scons work?

The main input file for scons is

wpp-version-2.0/SConstruct

This file tells scons to initialize some variables and then invokes your setup file

wpp-version-2.0/configs/my.py

The SConstruct file then finalizes the variables controlling the compiling and linking stages. It is at
this point it scansCXXFLAGSfor DENABLE_ETREE, and if found adds three extra libraries:cencalvm ,
etree , andproj . The actual compiling and linking is controlled and preformed by

wpp-version-2.0/src/SConscript

which holds the list of all source code files that are needed to construct the WPP executable. Refer to
www.scons.org for a detailed user’s guide to the scons build system.

A.5 Installing cencalvm and its supporting libraries

The cencalvm library was developed by Brad Aagaard at USGS. Both thecencalvm library and the Etree
data base files with the material model of Northern California can be downloaded from

www.sf06simulation.org/geology/velocitymodel

The installation process which is outlined below is described in detail in the document

www.sf06simulation.org/geology/velocitymodel/queryd oc/INSTALL.html

Note that three libraries need to be installed: euclid (etree), proj4, and cencalvm. In order forWPPto use
them, they should all be installed in the same directory and you should assign that directory to the WPPTPL
environment variable. Add a line in your˜/.cshrc file (or equivalent):

setenv WPP_TPL /my/third/party/directory

76

As before, you need to open a new shell or source your .cshrc file before these changes take effect.
Note that the euclid library must be installed manually by explicitly copying all include files to the

include directory and all libraries to the lib directory,

shell> cd euclid3-1.2/libsrc
shell> make
shell> cp * .h ${WPP_TPL}/include
shell> cp libetree. * ${WPP_TPL}/lib

The proj4 library should be configured to be installed in WPPTPL. This is accomplished by

shell> cd proj-4.7.0
shell> configure --prefix=${WPP_TPL}
shell> make
shell> make install

The cencalvm library should also be configured to be installed in WPPTPL. You also have to help the
configure script finding the include and library files for the proj4 and etree libraries,

shell> cd cencalvm-0.6.5
shell> configure --prefix=${WPP_TPL} CPPFLAGS="-I${WPP _TPL}/include" \

LDFLAGS="-I${WPP_TPL}/lib"
shell> make
shell> make install

To verify that the libraries have been installed properly, you should go to the WPPTPL directory and
list the lib subdirectory. You should see the following files (on Mac OSX machines, the .so extension is
replaced by .dylib):

shell> cd $WPP_TPL
shell> ls lib
libetree.so libetree.a
libproj.so libproj.a libproj.la
libcencalvm.a libcencalvm.la libcencalvm.so

Furthermore, if you list the include subdirectory, you should see include files such as

shell> cd $WPP_TPL
shell> ls include
btree.h etree.h etree_inttypes.h
nad_list.h projects.h proj_api.h
cencalvm

Note that the include files for cencalvm are in a subdirectory with the same name.
Once you have successfully installed all three libraries, it is easy to re-configure WPP to use them.

Simply edit the scons configuration file (my.py) to add -DENABLEETREE to CXXFLAGS, i.e.,

env.Append(CXXFLAGS = ’ -DENABLE_ETREE’)

You then need to re-compileWPP. Go to the wpp main directory and re-run scons:

shell> cd /my/installation/dir/wpp-version-2.0
shell> scons

As before, if all goes well, the “WPP lives banner” is shown after the scons command is completed.

77

Appendix B

Testing theWPP installation

OnceWPPhas been installed, it is a good idea to verify that the code works properly.For this purpose,
we provide test scripts in theexamples directory. With each input filexyz.in , there is a corresponding
output file namedxyz.out . Note that whenWPP runs in parallel, some of the output can appear in a
different order. The most important aspect of these tests is to verify the reported errors in the numerical
solutions, which is reported near the end of the output files. These numbers should be independent of the
number of MPI processes on a given machine, but can vary slightly fromone type of hardware to another,
due to roundoff errors in floating point arithmetic. Note that some of the tests use a significant number of
grid points and will only fit in memory on larger machines.

B.1 Method of manufactured solutions

The method of manufactured solutions (also know as twilight zone testing) provides a general way of testing
the accuracy of numerical solutions of partial differential equations, including effects of heterogeneous
material properties and various boundary conditions on complex geometries. The test scripts can be found
in the directory

.../wpp-version-2.0/examples/twilight

In the twilight zone testing module ofWPP, we take the material properties to be

ρ(x, y, z) = Aρ (2 + sin(ωmx + θm) cos(ωmy + θm) sin(ωmz + θm)) ,

µ(x, y, z) = Aµ (3 + cos(ωmx + θm) sin(ωmy + θm) sin(ωmz + θm)) ,

λ(x, y, z) = Aλ (2 + sin(ωmx + θm) sin(ωmy + θm) cos(ωmz + θm)) .

The internal forcing, boundary forcing and initial conditions are chosen such that the exact (manufactured)
solution becomes

ue(x, y, z, t) = sin(ω(x − cet)) sin(ωy + θ) sin(ωz + θ), (B.1)

ve(x, y, z, t) = sin(ωx + θ) sin(ω(y − cet)) sin(ωz + θ), (B.2)

we(x, y, z, t) = sin(ωx + θ) sin(ωy + θ) sin(ω(z − cet)). (B.3)

The values of the material parameters (ωm, θm, Aρ, Aλ, Aµ) and the solution parameters (ω, θ, ce), can
be modified in the input script. Since the exact solution is know, it is possible to evaluate the error in
the numerical solution. By repeating the same test on several grid sizes, it ispossible to establish the
convergence order of the numerical method.

The basic twilight tests use a single grid, a flat topography, and cover the computational domain
(x, y, z) ∈ [0, 5]3. These cases are provided in the three scripts:

78

Nx h ‖w − we‖∞ ratio

31 1.667 · 10−1 1.25 · 10−1 –

61 8.333 · 10−2 3.28 · 10−2 3.81

121 4.167 · 10−2 8.67 · 10−3 3.78

Table B.1: Twilight test: Max norm errors in the vertical displacement component.

gen-twi-1.in gen-twi-2.in gen-twi-3.in

The numerical solution is simulated up to timet = 4.8 on a grid with313, 613, and1213 grid points,
respectively. The corresponding results are given in the three outputfiles

gen-twi-1.out gen-twi-2.out gen-twi-3.out

The errors in max andL2 norm in the numerical solution is reported at the bottom of these files and some
of these numers are summarized in Table B.1.

To test mesh refinement on a geometry with flat topography, we provide the scripts

mref-twi-1.in mref-twi-2.in mref-twi-3.in

Again the numerical solution is simulated up to timet = 4.8 on a grid with313, 613, and1213 grid points,
respectively. A refined mesh with half the grid size is used near the free surface, in0 ≤ z ≤ 2. The
corresponding results are given in the three output files

mref-twi-1.out mref-twi-2.out mref-twi-3.out

Non-planar free surfaces are tested by the scripts

gauss-twi-1.in gauss-twi-2.in gauss-twi-3.in

In this case, the free surface is a Gaussian hill and the numerical solution issimulated up to timet = 0.8 on
a grid with313, 613, and1213 grid points, respectively. The curvilinear grid covers the domain betweenthe
free surface andz = 0.25, and a single Cartesian grid covers the remainder of the computational domain
(0.25 ≤ z ≤ 1). The corresponding results are given in the three output files

gauss-twi-1.out gauss-twi-2.out gauss-twi-3.out

Note that some image files are generated by these scripts and placed in the sub-directoriesgauss_31 ,
gauss_61 , andgauss_121 , respectively. We encourage the user to look at these image files, for example
by reading them into matlab/octave using the scripttools/readimagepatch.m .

B.2 Lamb’s problem

TheWPPinstallation can be tested further by solving Lamb’s problem, i.e., the motion due to avertical point
force applied on the free surface. Here, we only have access to the vertical component of the exact solution
along the free surface, when the source time function is of the type “VerySmoothBump” with freq=1. This
problem tests the implementation of a point force and (to some extent) the supergrid far field boundary
condition. The input files can be found in the directory

79

shell> cd wpp-version-2.0/examples/lambtest
shell> ls
Lambtest1.in Lambtest2.in Lambtest3.in Lambtest4.in

Here we provide input files with four different grid sizes, with1162 × 59, 2312 × 116, 4612 × 231, and
9212 × 461 grid points, respectively. Be aware that the finest grid uses about 391Million grid points and
can only be run on a sufficiently large machine. The corresponding output files are given in

Lambtest1.out Lambtest2.out Lambtest3.out Lambtest4.ou t

The most important information is near the end of these files, where the error inthe numerical solution is
reported. You migth also find it interesting to compare your execution times with theones we got.

80

Index

block parameters
vp, vs, rho, vpgrad, vsgrad, rhograd, x1, x2, y1,

y2, z1, z2, 55
boundaryconditions parameters

lx, hx, ly, hy, lz, hz, 66
boundaryconditions values

clayton-engquist, energy-absorbing, stress-free,
dirichlet, neumann, supergrid, 66

command
block, 54
boundaryconditions, 66
developer, 66
efile, 55
fileio, 50
globalmaterial, 57
gmt, 62
grid, 51
ifile, 56
image, 60
material, 57
pfile, 56
prefilter, 54
refinement, 59
sac, 59
source, 52
supergrid, 65
testlamb, 63
testpointsource, 64
time, 52
topography, 58
twilight, 63

command line options
-v version info, 7

coordinate system, 8

developer parameters
cfl number outputload, outputtiming, interpo-

lation, ctol, cmaxit, logenergy, printenergy,
mpiio, iotiming, 67

efile parameters
logfile, vsmin, vpmin, query, resolution, access,

etree, xetree, 56
examples, 39

earthquake, 46
grenoble, 43
lambs, 39
scec, 40

fileformats, 68
ifile, 69
image, 71
pfile, 69
sac, 70
topography, 68

fileio parameters
path, verbose, printcycle, pfs, nwriters, 51

geographic coordinates, 9
globalmaterial parameters

vpmin, vsmin, 57
gmt parameters

file, 62
grid parameters

location - az, lat, lon, 52
size - x, y, z, h, nx, ny, nz, 52

grid size, 18
gridsize, 11

ifile parameters
filename, 57

image mode options
ux, uy, uz, rho, lambda, mu, p, s, div, curl, vel-

div, velcurl, velmag, lat, lon, hvelmax, vvel-
max, topo, grid, uxerr, uyerr, uzerr, fx, fy,
fz, 62

image parameters
file, mode, precision, 61
location - x, y, z, 61
timing - time, timeInterval, cycle, cycleInterval,

61

81

installation, 73
basic, 74
cencalvm, 76
directories, 74
efile, 76
platforms, 73
tools, 73

material, 22
material parameters

id, vp, vs, rho, vpgrad, vsgrad, rhograd, vp2,
vs2, rho2, 57

mesh refinement, 31

output options, 34

parallel execution, 6
pfile parameters

filename, directory, smoothingsize, vpmin, vs-
min, rhomin, flatten, 56

prefilter parameters
fc, maxfreq, 54

refinement parameters
zmax, 59

sac parameters
location - x, y, z, lat, lon, depth, topodepth, 60
sta, file, type, writeEvery, eventDate, eventTime,

nsew, velocity, usgsformat, sacformat, 60
source parameters

Aki and Richards - strike, dip, rake, 54
location - x, y, z, depth, topodepth, lat, lon, 54
moment - m0, mxx, myy, mzz, mxy, mxz, myz,

54
point force - f0, fx, fy, fz, 54
t0, freq, type, 54

source time dependence
GaussianInt, Gaussian, RickerInt, Ricker, Ramp,

Triangle, Sawtooth, Smoothwave, VeryS-
moothBump, Brune, BruneSmoothed, Liu,
54

sources, 11
srun, 6
supergrid parameters

thickness, damping, 66

testing, 78
lambs, 79

twilight, 78
testlamb parameters

x, y, cp, rho, fz, 64
testpointsource parameters

x, y, z, cp, cs, rho, m0, mxx, mxy, mxz, myy,
myz, mzz, f0, fx, fy, fz, freq, t0, type, 65

time parameters
t, steps, 52

topography, 28
topography parameters

gaussianAmp, gaussianXc, gaussian Yc, gaus-
sianLx, gaussianLy, 58

input, file, resolution, zmax, order, smooth, 58
twilight parameters

errorlog, omega, c, phase, momega, mphase,
amprho, ampmu, amplambda, 63

units, 8

82

Bibliography

[1] K. Aki and P.G. Richards.Quantitative Seismology. University Science Books, second edition, 2002.

[2] D. Appelö and N. A. Petersson. A stable finite difference method for the elastic waveequation on
complex geometries with free surfaces.Comm. Comput. Phys., 5:84–107, 2009.

[3] S. M. Day et al. Test of 3D elastodynamic codes: Final report for lifelines project 1A01. Technical
report, Pacific Earthquake Engineering Center, 2001.

[4] P. Goldstein, D. Dodge, M. Firpo, and L. Miner.International Handbook of Earthquake and Engineer-
ing Seismology, volume 81B, chapter SAC2000: Signal processing and analysis tools for seismologists
and engineers, pages 1613–1614. International Association of Seismology and Physics of the Earth’s
Interior, 2003.

[5] B. Gustafsson, H.-O. Kreiss, and J. Oliger.Time dependent problems and difference methods. Wiley–
Interscience, 1995.

[6] H. Lamb. On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Roy. Soc.
London, Ser. A, 1904.

[7] P. Liu, R. J. Archuleta, and S. H. Hartzell. Perdiction of broadbandground-motion time histories:
Hybrid low/high-frequency method with correlated random source parameters.Bulletin of the Seismo-
logical Society of America, 96:2118–2130, 2006.

[8] H. M. Mooney. Some numerical solutions for Lamb’s problem.Bulletin of the Seismological Society
of America, 64, 1974.

[9] S. Nilsson, N.A. Petersson, B. Sjögreen, and H.-O. Kreiss. Stable difference approximations for the
elastic wave equation in second order formulation.SIAM J. Numer. Anal., 45:1902–1936, 2007.

[10] N. A. Petersson and B. Sjogreen. Stable grid refinement and singular source discretization for seismic
wave simulations. LLNL-JRNL 419382, Lawrence Livermore National Laboratory, 2009. submitted
to Comm. Comput. Phys.

[11] P. Wessel and W. H. F. Smith. New, improved version of generic mapping tools released. InEOS trans.
AGU, volume 79, page 579, 1998.

83

