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Abstract—Many large-scale clusters now have hundreds
of thousands of processors, and processor counts will
be over one million within a few years. Computational
scientists will want to take advantage by scaling appli-
cations to run on these new clusters. The goal oftime-
constrained scaling, which is often used, is to hold total
execution time constant while increasing the problem size
along with the processor count. However, determining
the input parameters to use to achieve time-constrained
scaling is not necessarily straightforward due to complex
interactions between parameters, the processor count, and
execution time.

In this paper we develop a novel gray-box, focused
regression-based approach that assists the computational
scientist with maintaining constant run time on increasing
processor counts. Combining application-level information
from a small set of training runs, our approach allows
prediction of the input parameters that result in similar
per-processor execution time at larger scales. Our exper-
imental validation across seven applications showed that
median prediction errors are less than 13%.

I. I NTRODUCTION

Nearly all applied sciences today make use of par-
allel computation. Applications from a wide variety of
domains run on large systems with tens or hundreds of
thousands of processors, such as ORNL’s Jaguar [33],
ANL’s Intrepid [2], LANL’s Roadrunner [20] and
LLNL’s BG/L [18]. However, these systems are a scarce
resource in high demand. For example, we experimented
on LLNL’s Thunder cluster and found that the worst-
case node acquisition time increased roughly exponen-
tially with the number of nodes, with the acquisition of
256 nodes (roughly one-quarter of the total) taking up to
a month. We anticipate that on larger clusters, acquiring
a similar fraction of the system will take a similar time,
so the user may not easily get a “second chance” to
determine the correct input parameters (for this paper,
input parameters refer to those values input by the user
that contribute significantly to execution time).

This paper focuses ontime-constrained scaling[30].
Instead of using a larger number of processors to
solve a problem faster, larger problems are solved and
overall execution time is kept constant. Unfortunately,
understanding how programs scale is difficult. While
time-constrained scaling for simple applications seems
simple (just increase the total problem size by the same
factor as the number of processors), several factors com-
plicate it in the general case. These include nonlinear
effects in computation and communication, along with
non-obvious relationships between input parameters and
execution time.

In this paper we develop a regression-based technique
that allows accurate time-constrained scaling of appli-
cations. We use a gray-box technique, taking as input
a small amount of application-level information. Our
basic idea is to choose a small series of training runs,
varied over different, smaller processor counts, and then
to usefocused regressionto make predictions of input
parameters to use to achieve time-constrained scaling.
The training runs always use a processor count no more
than half of the target number; to reduce training time,
iterative applications can be executed for just a few
timesteps. The scientist (or compiler/run-time system)
must indicate the number of input parameters, whether
they represent the dimensions of the main data structure
or are unrelated, and whether the processor grid is
part of the parameterization. Our focused regression
technique allows a small number of training runs and
also improves prediction accuracy.

This paper makes two primary contributions. First,
we provide a technique that the computational scientist
can use to guide time-constrained scaling accurately. It
builds on our prior work [5], which usesnon-focused
regression to predict execution time using strong scaling
(rather than time-constrained scaling). Second, we show
that our focused regression technique makes accurate
time-constrained scaling predictions with little (and



often no) program-level information—predictions that
are better in some cases by a wide margin compared to
naive ones. Specifically, over all applications, median
prediction error is within 13%. This includes appli-
cations for which there exists a complex interaction
between multiple input parameters and execution time.

The rest of this paper is organized as follows. Sec-
tion II provides motivation for this work. Section III
describes our statistical techniques, in particular focused
regressions. Next, Section IV describes our experi-
mental methodology and results on seven applications.
Finally, Section V places our approach in the context of
prior work, while Section VI summarizes our findings
and future directions.

II. M OTIVATION

The computational scientist (“scientist” for the re-
mainder of this paper) has several options when more
processors become available. The first option is to use
strong scaling[36], where one runs thesameprogram
instance, i.e., uses identical input parameters. This is
the most frequent type of scaling that appears in the
computer science literature. However, it is becoming
more commonplace to usetime-constrained scaling, a
term coined by Singh et al. [30], in which the scientist
attempts to keep total run time constant. This allows
solutions to problems that were previously unexplored
and is generally more intuitive from the scientist’s
perspective.

Strong scaling is preferred when a specific problem
must be solved as quickly as possible. However, the
amount of parallelism available is immutable and, there-
fore, strong scaling will fail to reduce runtime after
a sufficiently large processor count has been reached.
Time-constrained scaling, on the other hand, avoids
limits imposed by Amdahl’s law and allows scientists to
to solve problems at the limit of their system capacity.
For example, a scientist often tries to run a problem
twice as large when given twice as much computing
power.

However, time-constrained scaling poses many diffi-
culties. First, most scientists assume that thedata set
size per processorshould be fixed (which is usually
referred to asweak scaling[36] and has as its goal
making computation time per processor constant), as the
processor count increases. Due to communication time,
though, weak scaling alone will not keep total execution
time constant.

Second, even if communication is insignificant for a
given application, proportionally increasing the problem
is often not well defined. For example, consider an
application that has a two dimensional data structure,
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Figure 1. Computation and communication times for CG as the
number of processors increases. The ratio ofSIZE/P is fixed; SIZE
ranges from 40,000 to 2,560,000, andP ranges from 16 to 1024. The
value ofNONZERis held constant.

defined by (global) dimensionsN1 and N2, that are
partitioned among the processors at a given processor
count. Given twice as many processors, it is not clear
how N1 andN2 should change.

Worse, the dimensions might not be correlated. In
the above example, we knew thatN1 × N2 should be
doubled when the processor count doubles. Some ap-
plications do not have an obvious relationship between
the parameters (e.g., CG from the NAS suite [3]).

Finally, overall execution time may not remain con-
stant even when we know how to increase the prob-
lem size proportionally based on the input parameters.
Computation time or communication time (or both) can
increase at a greater than linear rate (which may not
be obvious to even the experienced scientist). Figure 1
shows the complexities of time-constrained scaling for
CG from the NAS suite. Here,both computation and
communication times increase when holdingSIZE/P,
where P is the number of processors, constant for a
given value ofNONZER. In general, scientists would
benefit from tools that help navigate through the com-
plexities of time-constrained scaling.

III. F OCUSEDREGRESSION

This section discusses our focused regression tech-
nique. First, we describe the general idea. Then, we dis-
cuss our basic model, which we use for applications for
which it needs no program-level information. Finally,
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we discuss extensions that handle more complicated
applications.

A. Overall Technique

The scientist is responsible for providing appropriate
input. Our current prototype requires the scientist to
present the application and input parameters used on the
largest processor count that is smaller than the target
number of processors (denotedPt). For example, in
this paperPt is always 1024, so the scientist must
present the input parameters used on the 512 processor
version. In addition, the scientist is responsible for
certain application-level information, which is in Table I
and described further below. The output is the set
of input parameters—or sets, when there are multiple
input parameters—that will result in application run
time that is equal to that of the program executing on
Pt/2 processors. To find these parameters, we must in
part run experiments on smaller numbers of processors.
While we expect that some of these experiments will
already be run (e.g., the scientist has run the program
with the desired input parameters on 512 processors,
and now wants to scale to 1024), a few others will
need to be executed. To control training time, these will
be executed for only a limited number of timesteps.
Therefore, we assume the timestep loop is known.

With the value of Pt input by the scientist, our
technique proceeds as follows. For simplicity, we first
present the case where there is only one input parameter.
We assume that the scientist provides us with data from
points with time≈ T , at bothP = Pt/2 andP = Pt/4.
Then, we sample points (assuming that this data is not
made available by the scientist) where the times are
≈ 1.1×T and≈ 0.9×T . We determine the appropriate
value of the input parameter to achieve this through
inspection of the data that is provided by the scientist.
From this point, we use the techniques described in
the next two subsections (basic and general regression
models) to predict the value of the input parameter onPt

processors that will result in an execution time of≈ T .
To extend this technique to multiple input parameters,
please see the procedure described in Section III-C.

B. Basic Model

In order to determine the proper input parameters
for constant run time atPt, we need a model that
predicts total run timeT of a given application. This
model expressesT as a function of the values of its
input parameters andPt. Aside fromPt, the other key
characteristic for determining run time in programs with
low amounts of communication is the computation time,
denotedW . For simple programs,W can often be easily

Program Parameter Processor
Relatedness Grid Used

BT Yes No
LU Yes No
SP Yes No
CG No No

Miranda Yes No
SMG No Yes

Sweep3d Yes Yes

Table I
APPLICATION-LEVEL INFORMATION NEEDED FROM THE

SCIENTIST FOR OUR SEVEN PROGRAMS.

determined from the input parameters (i.e., all that is
significant is the product of the parameters (zi’s), or
W = f(z1 × z2 × . . . zn)), and T is approximately
proportional toW/P . More generally, we have

log(T ) = β0 + β1log(W ) + β2log(Pt) + ǫ (1)

whereβ0, β1, and β2 are coefficients to be estimated
from examining a set of observed (T,W,Q) triplets,Q is
the number of processors used in a training run (Q <
Pt), andǫ is the error. Theβ’s are generally estimated
in a way that minimizes the error between the predicted
values and the observed values.

Specifically, to collect the (T,W,Q) triplets, we ex-
ecute the program onQ processors, whereQ ∈
{2, . . . , Pt/2}. We vary the values ofW andQ on the
sample runs and then use regression to generate Equa-
tion 1. Because it is easier to acquireQ processors than
Pt, it is reasonable to perform multiple instrumented
runs for different configurations of the input variables.

Note that the prediction of run time is performed in
log-scale. This is common because the errors in predic-
tion are well known to be proportional to the expected
time—we are concerned with relative errors. Working
in log-scale implicitly handles this. The base of the log
makes no fundamental difference; we uselog2 in this
paper for mathematical convenience. The coefficientsβ1

and β2 in Equation 1 measure the relative increase in
time due to changes in computation. Finally, working
in log-scale implicitly handles interactions between the
different terms in Equation 1 (e.g., time is proportional
to the quotient ofW andPt).

While the model in Equation 1 is relatively simple, it
works quite well for applications that can be described
with computation-dominated, simple-array based pro-
grams. The applications we used to evaluate our focused
regression technique in this paper (see Section IV) are
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listed in Table I. The first three are well predicted with
Equation 1: BT, LU, and SP (from the NAS suite [3]).
All three have a high computation-to-communication
ratio and have a single input parameter.

C. General Model

For more complex applications, simply applying
Equation 1 will be insufficient, for several reasons:

1) In some applications, computation time (W ) is not
easily determined in advance. Rather, there are
input parameters whose values can be specified
in advance, and these parameters determine com-
putation in an unknown, or at best non-obvious
way. In such cases, one may need to examine
a number of potential predictor parameters to
determine which are significant predictors of time,
and to model the relationship betweenT and
these variables. This occurs in CG, as indicated
by Table I.

2) For applications with a significant amount of time
spent in communication, modeling only total ex-
ecution time will produce inaccurate predictions.
This is because computation and communication
can scale at different rates, which the training runs
will capture only if modeled separately. As men-
tioned earlier, this situation is shown in Figure 1.
Currently, we do not subdivide further into phases,
either computation or communication. For the
most part, with our applications prediction qual-
ity is good without further subdividing. We are
currently investigating breaking computation and
communication into smaller phases. One ex-
ample would be breaking communication calls
into groups that have similar scaling behavior
(e.g., logarithmic-scaling collectives versus linear-
scaling collectives).

3) For applications in which the program specifies
a processor grid to allow the scientist to control
the data distribution,T is not only a function of
Pt, but also ofP1, P2, . . ., Pn, wheren is the
number of processor grid dimensions andPt is the
product of thePi’s. Both SMG and Miranda fall
into this category. Parameterizing this in a mean-
ingful way can be difficult and depends to some
extent on knowledge of the program structure.
In cases where this knowledge can be exploited,
significantly better fits can be obtained by using
the values of the processor dimensions rather than
just P . In such cases, in addition to providing
time estimates for various input combinations, the
models can be used to give scientists insight as to

what processor configurations, for a fixedW and
Pt, allow the programs to run most quickly.

Our prototype handles each of these possibilities as
follows.

Case 1: If the input parameters are not obviously
related, we instead use the more general equation for
execution time:

log(T ) = β0 + β1z1 + β2z2 + . . . +

βnzn + βn+1log(Pt) + ǫ (2)

Here,zi is theith input parameter describing the data.
We will use additional training runs to determine which
of the zi are important in predictingT , as well as to
model the functional form of these variables (similar to
what was done by Lee et al. [19]).

Case 2: If communication is significant, we use
separate regressions for computation and communica-
tion. Both follow the same form of either Equation 1
(if the input parameters are related) or 2 (if they are
not, as in case 1 above). Our current prototype splits the
regressions only if the percentage of time spent in com-
munication is greater than 50% at the largest number of
processors used for training (512); we found that with
smaller percentages it is sufficient to regress only on
total time. We collect computation and communication
time using the PMPI profiling layer of MPI.

Case 3: The most interesting case occurs when
the application uses a processor grid. We considered
simply extending Equation 2 by replacing thePt term
with terms forP1, P2, etc. However, while intuitive, ex-
periments showed that this is not an effective technique.
Specifically, the problem is that the data distribution, as
specified by the processor grid, greatly affects applica-
tion execution time (as will be shown in Section IV)
and in a nonlinear manner. Using a single regression
will therefore result in significant errors.

Instead, we restrict the sample runs used in the
regression to a narrow range orfocal regionaround the
processor grid at the target number of processors,Pt.
In general, the focal region is trivial when the number
of input parameters is small (e.g., 1); in this case, using
a fixed execution time to determine the focal region
suffices. However, for nontrivial applications with sev-
eral input parameters, such as SMG and Sweep3d, it is
necessary to use the input parameter space to determine
a focal region. This is because the input parameter space
is large, and it is quite difficult to cluster sample runs
around execution time.

In the focal region, then, Equation 1 or Equation 2
is used, depending on whether the input parameters are
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related or not, as described above. One interesting aspect
here is that the typical strategy when creating regression
models is to use more data to achieve a better result.
However, in our particular case, more data is worse, if
it is not nearby in the processor dimension space on
Q < Pt processors. Also, while the focal region idea is
quite useful and necessary when handling an application
that uses a processor grid, it also improves regression
quality for all applications. Therefore, we use the focal
region idea in general—restrict tests to those around the
values of the input parameters (adjusted for processor
count) presented by the scientist.

Consider an example, with one of our applications,
SMG, which has six input parameters—three processor
dimensions,Px, Py, and Pz, along with three grid
dimensions,x, y, andz. We next illustrate what predic-
tions our prototype makes, along with what focal region
it selects to make each prediction. Suppose the scientist
has run SMG on 512 processors using a processor grid
where Px = 1, Py = 16, and Pz = 32, denoted
for convenience as(1, 16, 32). We assume that if the
scientist wants to use time-constrained scaling of SMG
to 1024 processors, then a doubling of one of these three
processor dimensions will result.

For each prediction, we use adifferent regression
based on experiments in the focal region. Figure 2
shows two different focal regions, one of which,
(1, 32, 32), would be used in the preceding example.
The figure shows that our prototype uses those processor
grids (shown in black) at lower (total) numbers of
processors which are most proportionally similar to the
grid at the target number of processors. As the results
in the next section show, if we include data from grids
that are not proportionally similar, the results degrade.
Note that this figure setsPx = 1, because ifPx is also
varied, the picture becomes quite complex. However,
our prototype handles the general three-dimensional
case.

IV. RESULTS

This section discusses results of our focused regres-
sion prototype in making time-constrained scaling pre-
dictions. For evaluation, we used two different clusters
at Lawrence Livermore National Laboratory: theAtlas
cluster and theHera cluster. The former has 1152
four-socket, dual-core AMD Opteron nodes with 16GB
RAM, while the latter has 864 four-socket, quad-core
AMD Opteron nodes with 32 GB RAM. We used Hera
(which is similar to Atlas) to execute Miranda because
of time constraints on Atlas. Each Opteron node is a
NUMA architecture; each socket has local memory, and
all others are accessed through longer-access remote

memory controllers. Our experiments use four cores on
each node (one per socket on Atlas and Hera) to avoid
potential variance if all cores are in use [26]. Note that
in the rest of this section, we use the term processor to
refer to a core.

To eliminate potential NUMA effects, we used
cpu_bind to ensure that Linux allocates memory for
each core out of the socket’s local memory. Without
binding, Linux may allocate remote memory (arbitrar-
ily), which introduces significant variance across runs.

A. Methodology

Our prototype collects results for each instrumented
training run; these runs occur on a variety of processor
counts, but never on the target processor count (Pt). We
use the PMPI layer to collect computation and commu-
nication times; we count any time in the MPI library
as communication time. While this is not completely
precise, to get finer-grain results (e.g., omitting blocking
time and collecting only network and copying time)
requires instrumenting the entire MPI library. Then, we
use measured execution times to fit a linear model. We
use the statistical package SAS for all regressions. We
emphasize that we run the program only on a small
subset of the many possible input parameter/processor
combinations; this conserves machine time as well
as produces better results by using focal regions (as
described in the previous section).

An important assumption that we make is that an
application can be run with the input parameters set
to values of our choosing. Essentially, the parameter
space is quite large and sparse for applications like
SMG (5 free parameters). Without the ability to execute
the program in configurations of our choice, we may
not be able to collect the data that we need to make
accurate predictions. This essentially means that we are
assuming that scientists write programs that are flexible
and provide meaningful timing results, if not physical
results, for any combination of the input parameters.

For evaluation, we executed the program at the target
processor count (1024 processors), and we find the input
parameters that are predicted to cause the program to
run in the same time as the 512-processor run (which is
the goal). We measure effectiveness by reporting error
based on the relative difference between the observed
execution times on 1024 and 512 processors.

B. Applications

We tested our techniques using seven applications.
Four are from the NAS suite [3]; these include BT,
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Figure 2. Processor grids (only shown down to 64 processors)used in SMG to predictPx = 1, Py = 32, and Pz = 32, and Px = 1,
Py = 128, andPz = 8, respectively. For all vertices in the graph,Px = 1.

SP, CG, and LU1. CG is a conjugate gradient program,
and LU, BT and SP solve PDEs using three different
techniques: lower-upper symmetric Gauss-Seidel, block
tridiagonal, and scalar pentadiagonal. The two others,
SMG and Sweep3d, are from the ASC suite; the former
is a three-dimensional multigrid solver, and the latter
is a three-dimensional neutron transport code. The last
application is Miranda, which is an industrial-strength
hydrodynamics application.

C. Summary of Results

We make the following general observations. First,
prediction quality is quite good; median prediction error
ranges from 3% to 12.2%, and predictions are almost
always within 20% and usually much better. Second, for
the three more complex applications, it is clear that we
must generate different regressions for different focal
regions to achieve accuracy. In particular, if one does
not use a focal region, the median errror can be as high
as 75%.

D. Single Parameter Programs

First, we studied three programs that have only
one important parameter: BT, SP, and LU. These pro-

1The others (FT, IS, MG, EP) are unsuitable for our approach
because either they restrict the input sizes to the extent that there
is insufficient data available, or, in the case of EP, it is trivial (one
parameter and zero communication).

Program Focused Proportional
Regression Error Scaling Error

BT 1.8% 17%
LU 5.3% 11%
SP 5.2% 3.6%

Table II
PERCENTAGE ERROR BETWEEN ACTUAL AND PREDICTED TIMES

FOR ONE-PARAMETER PROGRAMS(BT, SP,AND LU) WHEN USING

512 PROCESSORS FOR TRAINING. FOR REFERENCE, THE ERROR

WHEN SCALING PROPORTIONALLY IS SHOWN. ALL PREDICTIONS

ARE FOR PROGRAMS EXECUTING ON1024PROCESSORS.

grams are computation intensive; they serve as pro-
grams for which the scientist could perform accurate
time-constrained scaling in a straightforward manner.
Proportional scaling, which we define as increasing
the parameter by an identical factor as the number of
processors increases, will be relatively effective.

Table II shows the results of all three programs.
Focused regression produces predictions within 6% of
the actual time, whereas predicting using simple pro-
portional scaling of the single input is over 17% for
BT and 11% for LU. For SP, proportional scaling is
slightly better, 3.6% to 5.2%, but both predictions are
quite good.

These results show focused regression performs well
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and avoids the larger errors incurred by proportional
scaling. More importantly, it shows that performing
time-constrained scaling even on seemingly simple ap-
plications is not necessarily trivial.

E. Multiple Parameter Programs

Next, we studied four programs that have at least
two important parameters: SMG, Sweep3d, CG, and
Miranda. All of these applications serve as challenges
for our focused regression approach; time-constrained
scaling is difficult either because the parameters have
nontrivial interactions or the application specifies pro-
cessor grid dimensions. We compare our results to an
approach, denotednon-focused, in which we use all the
sample runs below 1024 processors, which is creating
a single monolithic regression. We study SMG first and
in depth because it presents the most challenges.

SMG: SMG has six input parameters: three processor
dimensions,Px, Py, and Pz, along with three grid
dimensions,Nx, Ny, andNz. The application specifies
grid dimensions in terms of a per-processor local grid;
one can recover the global grid by taking the product
of each grid dimension with the associated processor
dimension. For time-constrained scaling, four of the six
input parameters are unconstrained, which still leaves
many different ways to scale SMG. Note that SMG is
not symmetric in all dimensions [8], so modeling it is
not at all straightforward.

We chose to scale the global grid equally in all three
dimensions (e.g., if we double the processor count,
we increase each global grid dimension by a factor
of 3

√
2), which corresponds physically to decreasing the

grid point resolution by a factor of 2. Furthermore,
we assume that if the user is scaling a program with
processor dimensionsPx, Py, andPz, that one of these
dimensions will increase by a factor of 2. Therefore, we
make predictions for all three possibilities.

As described in Section III, with SMG, we must
create a regression for different focal regions; specif-
ically, there is one different regression that predicts for
each processor configuration. For these results, we used
six of the possible processor configurations at 1024
processors.

Figure 3 shows the median errors for all program
execution times that we predicted using each of the three
techniques, and Table III summarizes the results.

In the particular case of SMG, using focused regres-
sions allows accurate predictions, while the non-focused
technique is clearly inferior. Also, the median error is
just 5.6% for all the points predicted. The non-focused
technique has median prediction errors that are higher
(76%). Furthermore, the worst case has an even larger

disparity—up to 117% with the non-focused approach.
While the worst case for focused regression is 34%, we
note that 90% of the predictions are within 10%.

Finally, for SMG we do not give the prediction error
when using proportional scaling. This is because it is
completely unclear what it means to do proportional
scaling when there are six input parameters, and some
of them have strict restrictions on their values (the
processor grid dimensions).

Sweep3d:Sweep3d has fewer input parameters (five)
than SMG (six) because its processor grid is only two
dimensional. In addition, the specification of the grid
is global, not local. For time-constrained scaling, three
of the five input parameters are unconstrained, which
means that like SMG, there are many ways to scale
Sweep3d. We chose the same approach for scaling as
SMG (see above), and used focal regions in exactly the
same way.

Figure 3 and Table III summarize the results. The re-
sults are similar to those of SMG; the median prediction
error is quite low for our focused regression (5.0%) and
poor for the non-focused regression (36%).

CG: Figure 3 shows the results when applying fo-
cused regression to CG, and Table III summarizes this
data. The figure shows that we produce predictions
whose median error is 12%, and the worst-case error
is less than 23%. For comparison, we also show the
error when using a non-focused regression—for CG,
we focus the regression on different values of theNZ
input parameter, along with splitting computation and
communication and regressing on them separately. Pre-
diction quality is much better with focused regression.

We also investigated the naive time-constrained scal-
ing prediction. However, the question is, if not using
our approach, how would the programmer scale CG
to keep the execution time constant? As mentioned
earlier, CG has two parameters:SIZE and NONZER.
There are three intuitive potential choices: doubleSIZE,
holding NONZERconstant; doubleNONZER, holding
SIZEconstant; or increase each by

√
2. We ruled out the

third case, for two reasons: (1) as CG is at its core a one-
dimensional data structure (sparse matrix), increasing
both parameters by

√
2 seems physically unrealistic,

and (2) CG requires both parameters be integers, and
increasingNONZERby

√
2 will lead to experiments

that we cannot actually run.
Therefore, we investigated the first two possibilities.

When doublingSIZE and holdingNONZERconstant,
the average error is 53%; When doublingNONZER
and holdingSIZE constant, the average error is 13%.
Both are worse than the average error with focused
regression, and the potential for large error exists.
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Figure 3. Scatterplots showing prediction error for focused and non-focused regressions for SMG, Sweep3d, CG, and Miranda.

Miranda: Figure 3 shows the results from Miranda
for both focused and non-focused regressions, and Ta-
ble III summarizes this data. In this case, there are

only two processor grid dimensions that are varying,
which cuts down the number of processor grids at 1024
processors substantially.
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Prediction SMG Sweep3d CG Miranda
Error (%) Max Avg Median Max Avg Median Max Avg Median Max Avg Median
Focused 34 7.1 5.6 12 4.9 5.0 22 12 12 20 3.7 2.2

Non-
focused 117 75 76 53 33 36 53 27 27 21 3.7 3.2

Table III
MAXIMUM , AVERAGE, AND MEDIAN PREDICTION ERROR INSMG, SWEEP3D, CG, AND M IRANDA FOR FOCUSED AND NON-FOCUSED

REGRESSIONS.

The data shows that prediction quality is quite good
with either technique. The median is slightly better
when using the non-focused approach, while we have
fewer prediction errors over 10% (17 to 11). Recall,
however, that for SMG, prediction quality was much
better with focused regression, and the non-focused
regression produced consistently poor results.

V. RELATED WORK

Extensive study into methods to predict the perfor-
mance of parallel applications has explored a variety
of approaches. Prior work has frequently focused on
cross-platform predictions in which the processor count
is held constant but the system under consideration
is changed. Other research has used extensive manual
analysis to derive analytic models. We extend a signif-
icant body of prior work that has developed statistical
methodologies to predict performance.

First, this work extends our previous work on pre-
dicting strong scaling used black-box predictions and
regression [5]. Our work here is different in multiple
ways: it uses focused regressions, is targeted to time-
constrained scaling (which in many ways proves more
difficult than strong scaling), and uses gray-box tech-
niques.

Another approach uses machine learning to make
predictions on multicore machines [35]. Also in a
similar vein, Curtis-Maury et. al. predict the power-
performance tradeoff on single multicore machines [11].
These are similar to our approach, but they are limited
to single multi-core processors and does not address the
mulitprocessor or cluster cases.

The other work most closely related to ours uses
regression to predict application performance across a
range of input parameter values. This includes neural
networks [15] and piecewise regression [19]. Neither
performs extrapolation, which is our focus.

Similarly, other black-box modeling approaches offer
at best limited abilities to extrapolate to larger processor
counts. Yanget al.predict performance across platforms
through partial execution of iterative programs but only
for system sizes used for the partial executions [39].

Lyon et al.use the theoretical approach of Taylor expan-
sions to understand execution behavior, including scal-
ability properties [21]. Combining static and dynamic
analysis to predict performance on different architec-
tures for different inputs offers greater possibilities for
extrapolating across process counts than these other
statistical methods [22]. Later work showed that the
technique could locate performance bottlenecks [23]).
In contrast, Our framework only requires relinking of
the application with the PMPI library to gather data
during training runs.

There are a variety of simulation- or trace-based
approaches to performance modeling [31], [32], [17].
Although techniques could extrapolate those traces to
larger numbers of processors, our approach to scaling
predictions is more direct.

White-box approaches typically require detailed anal-
ysis of data structures and program constructs, such as
loop nests [16]. Several other researchers have explored
white-box scalability analysis approaches that provide
algorithmic or architectural perspectives [13], [38], [25],
[9], [30], [37]. In general, they derive application or
architecture specific models through detailed analysis,
which requires significant effort that is not readily auto-
mated. In a strongly related white-box approach, Brehm
et al. use regression and explore separating computa-
tion and communication [7]. However, their approach
requires detailed analysis to create the computation and
communication models. Other white-box approaches
that predict workload and memory requirements, such
asmodeling assertions[1], require code modifications.
Our techniques at most use the MPI profiling interface
for instrumentation, which only requires relinking the
application.

Analytic modeling of parallel machines include
LogP [10] and BSP [34]. Another approach that requires
no user intervention to create a static cost model [4] has
only been applied to simple programs and architectures.

Several tools trace or analyze MPI performance
through the MPI profiling interface, including Vam-
pirTrace [24], svPablo [12], TAU/ParaProf [6], and
Paraver [27]. These tools generally focus on providing
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assistance in optimizing applications, particularly for
very large processor counts [28]. We build on algorithms
to capture the critical path in MPI programs hat were
developed to support optimization [14], [29].

VI. SUMMARY

This paper has described the design, implementation,
and evaluation of an approach that usesfocused re-
gression, which assists computation scientists in scaling
their application so that execution time is kept constant.
Only a small amount of application-level information
need be provided by the scientist—specifically whether
the input parameters are related and if a processor grid
is used. Then, our approach provides values of input
parameters that will yield approximately the same exe-
cution time on a larger number of processors. Notably,
our technique never requires a run of the application at
the scale at which the scientist desires.

Future work is proceeding in several directions. First,
we are investigating breaking computation and com-
munication into smaller phases. In particular, different
computation or communication phases may scale quite
differently; the idea is analogous to dividing total time
into computation and communication time—which im-
proved prediction accuracy. The challenge is to ensure
that phases are combined when their execution time
is sufficiently small, to protect against variance that is
more striking in small phases. Second, we are looking at
more applications that have many input parameters with
complex relationships. While our approach is effective
for all applications in our set, we may yet find that dif-
ferent techniques are required to achieve accurate time-
constrained scaling predictions on other applications.
Finally, we are investigating how to further reduce the
number of experiments needed at smaller scales through
the use of a field of statistics called experimental design.
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