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Abstract

A wide range of numerical methods are available to integrate coupled
differential equations of first-order decay networks. When greatly
differing decay rates exist in a reaction network, the stiffness of
ordinary differential equations arises and requires additional effort to
obtain solutions numerically. Although analytical solutions are
preferred, they are limited to relatively simple reaction networks and a
small number of species. In this paper, we propose a methodology to
formulate analytical solutions of ODEs for a unlimited number of
species and more generalized reaction networks, including
multi-daughter branching and multi-parent converging reactions. The
solution scheme can be further applied to obtain analytical solutions of
transport systems coupled by complex decay networks.

Keywords Reactive transport - Decay - Ingrowth - First-order reaction - Decom-
position
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Nomenclature
a Concentration in transformed domain (ML™?)
A First-order reaction matrix (T~!)
b;;  Number of branches between species ¢ and j
c Concentration (ML™?)
c? Initial or boundary concentration (ML™?)
c Vector of concentrations (ML™?)
c’ Vector of initial or boundary concentrations (ML™?)
D Dispersion coefficient (L2T~1)
f Analytical solution of a single-species transport (-)
i Species index (-)
J Species index (-)
k First-order decay rate (T 1)
K, Partitioning coefficient (L3M~1)
m Species index of a species’ ancestor (-)
M Total number of species (-)
n;; Number of generations between species ¢ and j (-)
n,  Number of parent species (-)
R Retardation factor (-)
s Solid-phase concentration (MM™1!)
S Transformation matrix (-)
S~  Inverse transformation matrix (-)
t Time (T)
t1/»  Half-life time (T)
v Flow velocity (LT™1)
T Distance (L)

Greek Symbols

TN

Branching factor (-)

Branching factor (-)

Intermediate parameter of solution (Bear, 1979)
Branching index (-)

Diagonal matrix containing all decay rates (T 1)
Porosity (-)

Bulk density (ML™2)

1. Introduction

Modeling of reactive transport coupled with complex decay networks is compu-
tationally expensive, even impossible, when the number of species is large or stiff
reactions are involved. Operator-splitting is a practical approach to simulate trans-
port system coupled with reactions (Valocchi and Malmstead, 1992; Lu et al., 1996;
Barry et al., 1996; 2000). To overcome the stiffness of reactions and to enhance
computational efficiency, Geiser (2001) first coupled a closed-form solution (Sun et
al., 1999) of a first-order decay chain with the numerical solution of transport in his
operator-splitting scheme. However, the OS procedure of Geiser (2001) is limited to
a typical case of a sequential and unimolecular reaction chain. Therefore, there is a
need to investigate a generalized closed-form solution approach for a wide range of
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decay networks.

A generic decay network is composed of M different species. All decay reactions
are assumed to be first order. The reactants and products of a reaction are referred
to as parent and daughter species. The reaction network with a single parent and a
single daughter is called as sequential-reaction network (Bateman, 1910; Sun et al.,
1999). The reaction network with multiple parents and a single daughter is called as a
maulti-parent converging network. The reaction network with one parent and multiple
daughter species is called as a multi-daughter branching network. The branching
factor is defined as the proportional productivity for a specific daughter from a given
parent.

In the absence of spatial dependence, the ordinary differential equations of sequen-
tial first-order reactions are usually solved numerically by using ODE solvers (Clement
et al., 1998; Clement, 2001; Yamamoto et al., 2007). To get a numerically accurate
solution, the ODE system is expected to be well-conditioned. Often, when first-order
reaction rates of neighboring species span many orders of magnitude, the decay sys-
tem may become stiff and require small time steps to meet the convergence standard
(Thomas and Barber, 1994).

The solution of a decay network can be symbolically described using the matrix-
exponential format (Moler and van Loan, 1978; Thomas and Barber, 1994; Yamamoto
et al., 2007). There are various approaches to compute the matrix exponential of de-
cay equations. Those approaches include the fourth-order Runge-Kutta-Gill method
(Radhakrishnan and Hindmarsh, 1993), the Padé approximant and the Taylor-series
expansion of matrix exponential (Thomas and Barber, 1994), the Bateman analytical
solution (Bateman, 1910), and the matrix decomposition method (Pressyanov, 2002;
Lu et al., 2003). Compared to numerical solutions, analytical solutions of first-order
decay networks provide an accurate and reliable prediction. However, the Bateman
(1910) analytical solution is limited to the sequential first-order reaction system.

Laplace transforms are often used for solving differential equations (Bateman, 1910;
Pressyanov, 2002). However, the Laplace approach relies on infinite integrals. When
the number of species is large or a branching network is involved, the inverse Laplace
transforms, if possible, become inconvenient. In fact, the original Bateman equations
can be solved using matrix mathematics (Moral and Pacheco, 2003; Lu et al., 2003;
Sun et al., 2004; Yuan and Kernan, 2007). As anticipated by Moral and Pacheco
(2003), the algebraic approach can be extended to solve branching reaction networks.

In order to achieve the computational efficiency and accuracy, we propose a gen-
eralized approach of the analytical matrix decomposition for a wide range of decay
networks. The objective of this paper is to describe and demonstrate the decomposi-
tion method for analytical solution development of decay networks in batch reactors.
Then, the analytical solutions are coupled with transport models using analytical for-
mulation and operator-splitting methods. The methodology is applicable to transport
coupled by radionuclide decay, biodegradation of chlorinated solvents, denitrification,
etc.

2. Model Development

The mass balance equations of a first-order decay network can be expressed com-
pactly using matrices as

de
—Z=A 1
p c (1)
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4

where c is the vector of species concentrations and A is the first-order reaction matrix
defined by the reaction network architecture and decay rates. The solution of Eq. (1)
can be symbolically expressed as

c = exp[At]c’ (2)

where c¢? is the vector of initial concentrations. The calculation of the concentration
vector mainly relies on the evaluation of the exponential matrix.

The singular-value decomposition of a first-order reaction matrix establishes the
relationship between the coupled-reaction system in the real-world system and its in-
dependent system in the transformed domain (Clement, 2001; Lu et al., 2003). Instead
of using numerical methods, we prefer to develop an analytical formulation system,
described in this section for the singular-value decomposition. The transformation
matrices are formulated based on the reaction network architecture.

2.1. Sequential Reaction Network

In order to illustrate the generalized transformation, we start with the sequential-
reaction network (Bateman, 1910; Sun et al., 1999; Clement, 2001; Bear and Cheng,
2010, p.~480). The sequential-reaction network is also called as a dominant-daughter
reaction chain and has been extensively studied. Both analytical and numerical so-
lutions of the reaction chain are available in the literature and can be used for com-
parison purposes. As shown in Figure 1, every daughter product has only one parent
and every parent has only one dominant daughter product.

1 2 3 4 5 ——@—v

Figure 1. Sequential-reaction network of TCE degradation. Every daughter species except the very
first ancestor has only one parent species and every parent species except the end product has only

one daughter species.

Then, the first-order reaction matrix, A, is expressed as

“k 0 0 0
ki —ko 0 0
| 0 0 kv—1  —ku |

Equation (1) can be solved analytically (Sun et al., 1999) and numerically (Clement
et al., 1998). The focus of this paper is to generalize the solution scheme of analytical
solutions for various reaction networks. The hypothesis for this approach is that the
reaction matrix A can be analytically described as

A =SAS™, (4)

where A is an M x M diagonal matrix containing the eigenvalues of A, S is a matrix
whose columns are linearly independent eigenvectors of A, S~ is the inverse matrix
of S, and the diagonal components of A are the exact decay rates of the species. We
expect a closed-form expression for S and S—.
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Substituting Eq. (4) into Eq. (1) and multiplying by S, Eq. (1) becomes

Z—? = Aa, a=S"c (5)
Each ODE in Eq. (5) is independent of other ODEs and has exactly the same format
as the standard exponential function as its closed-form solution (Sun et al., 2008).

S~ and S are called transformation matrices between the concentration domain and
the transformed domain and are expressed analytically as finite products of fractions
of the form

_H ke
- - 6
ni;—1
ki Y K1)
S = — _ml) (7)
T

where i is the current species index and j is an ancestor of species i, m(l) is the species
index of Ith ancestor of i, and n; ; is the generation number from species j to ¢. If j
is not an ancestor of ¢, S;; and S; ; are defined as zero. S;; = S;; =1 when i = j.

The component S; ; is interpreted as the inheritance of species ¢ from its ancestors
from j to i — 1. For example, for ¢ = 5 and 7 = 1 in the five-species sequential chain,
where m(l) =1 and ns; = 4,

_ ﬂ ke ki ke ks ks ®
5.1 iy ky — ks ki —ks ko—ks ks—ks ka—ks
15 255 355 45

Equation (8) shows four fractions of the sequential inheritance from species 1 to 5.
Figure 2 shows the formulation concept of Sy and Ss ;.

Figure 2. Graphic interpretation of S5 ; and S5 1.
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The component S; ; is interpreted as how much of the descendants (between j and
i) of species j inherit from j. For example, for i =5 and j =1

The first fatcor takes a different format from the rest and describes the direct relation
between species 1 and 5 as indicated by =. Then, ST and S for the five-species
sequential reaction chain can be explicitly expressed

1 0 0
e 1 0 0
ki ke ks
_ L
S - kl—k3 k2—k3 kz—k3 1 0
k1 ) ko ) k3 ko . k3 ks 1
ki—ks  ko—ka  ks—Fk ko—Fks  ks—Fk ks—Fk
kl 1 4k 2 4]{) 3 4](:4 k 2 4k 3 4]{) k 3 4](:4 k4

. 2 . 3 . 2 . 3 . 4 3 .
k1—ks ko—ks kz—ks ka—ks ko—ks kz—ks ka—ks kz—ks ka—ks ka—ks

1 0 0 0

k1
By TR 1}2 ; 0
S = ks—k1  ka—ky k3 —ko 1 0
ki . _ka k3 ko ~ . ks k3 1
klkrklkzkrkl kgkgfklk4 k2k4fk2 . k37k2k4 kakrkg b b

L k5—ki ko—Fki ks—k1 ka—ki ks—ka ks—kz ka—k: ks—ks ka—ks ks—Fka
The transformation matrices S and S~ derived here for the sequential first-order
decay chain are, respectively, identical to S and T matrices of Moral and Pacheco
(2003). Eq. (6) itself is equivalent to the transformation of Sun et al. (1999) from
the coupled concentration domain to the independent one. For the inverse transform
from “a” to “c”, Sun et al. (1999) used the sequential substitution based on Eq. (6).
For this reason, the closed-form solution of Sun et al. (1999) in the real concentration
domain is limited to simple sequential or non-converging reaction networks. In order
to facilitate the formulation of more generalized decay networks with a unlimited
number of species, both S and S~ are formulated. Note that a slight format difference
is necessary before the product sign in Eq. (7).

2.2. Multi-parent Converging Network

If multiple species decay to produce the same daughter product, the reaction
network is called a multi-parent converging network. Compared to the sequential-
reaction chain, the ordinary differential equation of the converging daughter product
is coupled by more than one parent concentrations. This issue has been discussed in
the literature since Bateman (1910). Recently, numerical decomposition (Clement,
2001) and case-specific analytical decomposition (Lu et al., 2003; Sun et al., 2004)
have been used to solve those converging networks.

An example of a converging-reaction network is illustrated in Figure 3 (Peterson
et al., 2007) and expressed as

= o O O O

= o O O O

(10)
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Figure 3. A converging decay network (Peterson et al., 2007).

~k 0O 0 0 0
kv —ky 0 0 0
0 0 —ks O 0 |. (12)
0 ke ks —ky O
0 0 0 ki ~—ks

Species 2 and 3 decay to produce the same species 4. Using Eqs. (6) and (7),
the reaction matrix (12) of the coupled converging reactions can be decomposed as
A = SAS~, where A is a diagonal matrix with exactly the same components as in
matrix A.

r 1 0 0 0 0 7
b 1 0 0 0
1—k2
S — 0 0 1 0 0 (13
k1 A ko ko ks 1 0
k1—ksa ko—ka ko—ka k3 —ka
ky ks "~ _ka ko . ka ks | __ka k4 1
L ki1—ks ko —ks kqs—ks ko—ks kqs—ks ks —ks kqa—ks kqs—ks
r 1 0 0 0 07
k1
e 1 0 0 0
S = 0 1 0 0 1].14)
ki ko ko k3 1 0
k47k1 kz*kl k47k2 k47k3
kl . k2 . k4 k2 . k4 ks . k4 k4 1
L ks—k1  ka—k1  ka—Fk1 ks—ko ka—ke  ks—ks ka—ks ks—ka d

2.3. Multi-daughter Branching Network

In addition to the sequential and converging reaction patterns, we now consider
the multi-daughter branching reaction nature in this subsection. As shown in Figure
4, Lu et al. (2003) provides a simple TCE degradation with sequential, converging,
and branching features. A parent species may decay to produce multiple daughter
products.

1

G0

Figure 4. TCE decay series (Lu et al., 2003). TCE=trichloroethylene, c-DCE=cis-dichloroethylene,

t-DCE = trans-dichloroethylene, 1-DCE = 1,1-dichloroethylene, VC = vinyl chloride.

The branching factors from species 1 to species 2, 3, 4 are expressed using ay, as,
and a3z with a1 + as + a3 = 1. Three branches are involved in the relation between
species 1 and 5. Therefore, the basic forms of S~ (Eq. 6) and S (Eq. 7), are modified
as

bi,;

aﬁ 0 ] (15)

= k) — ki
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bi,; k nij—1 k
Sii=3Y |ag—2 m() (16)
" 42::1 ki — k; km() — kj

where ¢ is the branch number index and b; ; is the number of branches to connect
species ¢ and j.
The reaction matrix of TCE degradation is written (Lu et al., 2003) as

—ky 0 0 0 0
a1k1 —kg 0 0 0

A= Oégk‘l 0 —k‘3 0 0 (17)
Oé3k‘1 0 0 —k‘4 0

0 k‘2 k‘g k4 _kS

Taking S5, as an example, the generation number between species 1 and 5, ni 5,
is 2 and branching number, b, 5, is 3.

¢=1 ¢=2 ¢=3

_ ky ky ky ks k1 ks
51 alk1—k5 k‘Q—k‘5+a2k1—k5 k‘3—k‘5+a3k1—k5 k‘4—k‘5 ( )

— ——
1—-5 2—5 1—-5 3—5 1—-5 4—5
¢=1 ¢=2 ¢=3

) k ks k ks

5571 = a kl k2 1 3 1 4 (19)

ey wey L Ny R S S S S N
—_—— —— —_—— —— —_—— ——

1=5 1—2 1=5 1—3 1=5 1—4

The transformation matrices derived using Eqs. (15) and (16) are identical to S~
and S matrices of Lu et al. (2003),

i 1
arky
kl_kk2
— ok
S = k1—ks
ngkl

0
0
1

S O = O
= o O O

= O O O O
—
[N}
=]
=

kl 011]\12 _+_ Ozzkg + C!gk4 kz k3 k4
k1—ks kao—ks kz—ks ka—ks ko—ks kz—ks ka—ks

r 1
aiky
ka—k
CZYZkll

S = ks—k1

C!gkl

0
0
1
ka—k1 0

o O = O
= o O O

= O O O O
—~
[N
—
~—

k1 a1 ko asks azks ko k3 ka
L ks—k1 \ ka—Fk1 k3—k1 ka—Fk1 ks—ko  ks—ks  ks—ka J
2.4. Retardation Consideration

Ordinary differential equations of a first-order decay network can be explicitly
expressed as

de; <& .
d—ct:ijCj—kiCi, VZZI,"',M (22)
j=1
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%:Zk]s]—kls“ Vz:l,’M (23)
j=1

where ¢; [ML 3] and s; [MM '] are liquid and solid concentrations of species i, and
np is the number of parents of i. If n, = 1 for all species except the very first ancestor,
Eq. (22) alone is the Bateman model (1910).

The concentration of the adsorbed species is often expressed as a linear function
of its liquid-phase concentration

s;=Khe;, Vi=1,2,--- M (24)

where Kjl is the partitioning coefficient. Therefore, the derivative of the solid-phase
concentration (23) can be described as

dsi < ppK? Kt
%d_tl = Z pbqﬁ dk‘jCj — %klcz (25)
j=1

Combining (22) and (25),

de; &
¢ = ZRjk‘jCj —Rikici, Vi = ].,---,M (26)

Ri%

=1
where R; =1+ p,K;/¢. Then,

dci o Rj .
E:Z;Ekjcj—kici, Vi=1,---,M (27)
j=
Equation (27) is different from the standard ODEs solved by Bateman (1910).
The ratio of retardation factors of a parent species to its daughter contributes to the
concentration prediction of the daughter species. Correspondingly, the transformation
matrices are modified as

b. . r n;
_ _Rj &+ = L0 ]
Sii =7 ac |l 57— (28)
YRy =i 11;11 km@y — ki
big T i1
Rj L s 0
Sy = N gt _fm) (29)
i, Rl | kz — k‘j iy km(l) — k?j

Taking the converging network in Figure 3 as an example, the reaction matrix, S,
and S matrices are

k0 0 0 0
Mk —k 0 0 0

A =| 0 0 —ks 0 0 (30)
0 f2ky ks —ky 0

0 0 0 Bap, ks
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1 0 0 0
Ry k1
yrl s 1 0 0
S™ = 0 0 1 0
Ry _ k1 ko Ry | ko Rs ks 1
Ry ki—ks Fko—ka Ry ko—ka Ra  ks—ka
1 k1 ko ka 2 ko ka Rs k3 ka Ry ka

Rs " %1—ks ko—ks Fka—ks Rs ko—ks Fka—ks Rs ks—ks ka—ks Rs Fka ks

1 0 0 0
B _k
Ry ka—k1 1 0 0
S = 0 0 1 0
B ki |k Ry | k2 Ry | k3 1
Ry ka—ki ka—k: Ry ka—ko R4  ka—ks3
Ry kq ko ka Ra ko k4 Ry k3 kq By | _ka

Rs ks—ki1  ka—ki1 ka—ki Rs ks—ko ka—ks Rs Fks—ks ka—ks Rs ks—ka
3. Applications

The purpose of this section is to demonstrate the decomposition method using
text-book parameters rather than to model a specific reactive transport system. The
first-order decay rates and half lives of selected species are selected and assumed as
listed in Table 1 (Peterson et al., 2007).

Table 1. Half Lives and Decay Rates

Species Number Figure Half-life  Decay Rate (yr—1)

1 6 900 y 7.702x 1077
4 8 13y 5.332x1072
1 8 6900 y 1.005x 104
2 8 3.2h 1.899x 103
4 6 1400 y 4.951x10~*
2 6 16 My 4.332x10°8
5 8 39 m 9.348x10°
6 8 4700 y 1.475%10~%
3 8 11d 2.302x 10"
7 6 29 y 2.390x10~2
3 6 5h 1.215%x10?
5 6 7400 y 9.367x10°°
1 3 150 y 4.621x10°3
3 3 160 d 1.582

7 8 380000y 1.824x10~¢
6 6 2.4d 1.055% 102
8 6 24000y  2.888x107°
2 3 2.1d 1.206x 102
4 3 88y 7.877x1073
8 8 446 By  1.55414x107'0
9 6 710 My 9.76264x10~1°

5 3 246000 y  2.81767x1079°

k =1In(2)/t1/2, where t, /5 is the half-life time.

The time units are defined as: y: years; My: million years;
By: billion years; m: minuets; h: hours; d: days.

= O O OO
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3.1. Radioactive Decay Networks in Batch Reactors

In this subsection, we consider radioactive decay networks in the spatial-independent,
systems, such as a rock sample or a batch reactor. As shown in Figure 3, the yield
(branching) factor from species 1 to species 2 is 0.5%. The matrices S~ and S, Eqgs.
(13) and (14), of the converging decay network (3), are modified accordingly to Eqgs.
(15) and (16). Then, the solution of the decay network, ¢ = S exp(At) [S™c?], can
be explicitly expressed as

C1 i 0 0 0 0
ak1
C2 Tz —k1 1 0 0 0
c3 | = 0 0 1 0 0
aky . ko ko ks
Ca ka—k1 ko—k1 ka—ko ka—ks3 1 0
cs aki . ko . k4 ko . ka k3 . ka ka 1
ksfkl kz*kl k47k1 ks*kz k4*k2 ks*ka k47k3 k57k4

e kit 0 0 0 0

0 e kat 0 0 0

x 0 0 ekt 0 0

0 0 0 e~ kat 0

0 0 0 0 e~ kst
1 0 0 0 0
aky
ok 1 0 0 0
X 0 1 0 0
aky ke ko k3 1 0
ki1—k ko—k ko—k kz—k

ok, 1 4 kz 2 4 k4 k2 2 4 k4 k3 3 4 k k,4 1

. . . . 4
kl—ks k2—k5 k4—k5 kz—ks k4—k5 k3_k5 k4_k5 k4_k5

If the initial concentrations of species 1 and 3 are assumed to be 1, the relative con-
centration profiles are calculated using the analytical solution (33), ode45 (the nonstiff
ODE solver, Mathworks, 2000), and ode23s (the stiff ODE solver, Mathworks, 2000)
with default values of relative and absolute error tolerances (1x1073 and 1x1075).
Because of the contrast decay rates between species 4 and 5, the ode4b fails to pro-
duce converged results. The concentrations calculated using the analytical solution
and ode23s are compared as shown in Figure 5. Although the numerical solution is
seen to be essentially identical to the analytical one, it requires 47 times more CPU
time.

Relative Concentration (-)
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Figure 5. Relative concentrations of species in the converging decay network of Figure 3 as functions
of time. Circles and solid lines, respectively, represent numerical (using matlab ode23s) and the
analytical solution (Eq. 33).

In addition to the demonstration of the single-converging (Figure 3) decay network,
we further apply the matrix decomposition to a double-converging network. As shown
in Figure 6, species 3 and 4 decay to produce a single daughter product, species 5,
and species 6 and 7 decay to produce species 8. The corresponding transformation
matrices are derived using Eqgs. (6) and (7) as shown in Appendix A.

0202 ON
000

Figure 6. A double converging decay network (Peterson et al., 2007).

When the initial concentrations of three original species (1, 4, and 7) are assumed
to be one, the relative concentrations of all species are calculated as shown in Figure
7.

Relative concetration

L L L
1 2 3 4 5 6 7 8 9

10 10 10 10 10 10 10 10

10
Time (yr)
Figure 7. Species concentrations in the double converging decay network of Figure 6.

Figure 8 is a typical example with sequential, multi-parent converging, and multi-
daughter branching structure. In the decay network, a large contrast in the half lives
between species 5 (39 minutes) and species 7 (380,000 yrs) cause the ODE system to
be stiff.
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Figure 8. A sequential, branching, and converging decay network.

Using Eqgs. (15) and (16), the transformation matrices S~ and S are derived as
shown in Appendix B. The concentration profiles, relative to the first species concen-
tration, are calculated in Figure 9.

10° ‘

._.
o\
4

Relative concetration (-)

Figure 9. Species concentrations in the sequential, branching, and converging decay network of

Figure 8.

3.2. Transport Coupled With Decay Networks

The decomposition concept and methodology are applicable to reactive transport
systems. If the analytical solution of a single-species transport with first-order decay is
available, the solution can be expanded to the transport of coupled reaction networks.
For example, the standard analytical solution of Bear (1979, p.~268) for transport in a
semi-infinite column can be applied to each independent subsystem in the transformed
domain as

ai:a;')fia V221)27>M (34)
where af is the boundary concentration in the transformed domain (a° = S~¢?), ¢°

is the vector of the boundary concentrations,

1

fi=gexp (U_) [exp(—Biz)erfey; + exp(Biz)erfey; ] , (35)

v? kY 2 ™ 2
Bi = (W + 5) , erfe(n) =1—erf(n) = ﬁ/n exp(—7°)dr,
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z + (v + 4k;D)/?t
2(Dt)1/2 ’

N z — (v + 4k; D)%t .

r = Vi=1,2,---, M.
2(Dt)1/2 ) Yi ? ) & )

In Eq. (35), = [L] is the distance, v [LT"!] and D [L*T!] are flow velocity and
dispersion coefficient. Using ¢ = S a, the solution of the reactive transport system
in the “c” domain is expressed analytically. The concentrations of the converging
network (Figure 3) are calculated, as functions of distance at 50 and 100 years, as
shown in Figure 10.
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Figure 10. Spatial concentration distribution in the converging decay network of Figure 3 as
functions of distance at (a) 50 and (b) 100 years. v = 0.4 m/yr and D = 0.4 m?/yr. Note that
low values of velocity and dispersion coefficient are used to demonstrate the decay reactions and to
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exaggerate daughter species concentrations.

4. Discussion and Conclusions

A generalized decomposition method has been developed and mathematically for-
mulated for a wide range of first-order decay networks. The method can be used
for systematically deriving closed-form solutions of first-order reactions. Then, the
closed-form solutions can be coupled with transport in the operator-splitting scheme.
Through benchmark problems, it is shown that the generalized decomposition method
is computationally efficient, accurate, and robust.

The decomposition method has been demonstrated using sequential, converging,
branching decay networks. For comparison purposes, the generalized decomposition
process is developed for the single-parent and single-daughter decay chain (sequential)
and the derived transformation matrices are identical to those derived using singular
value decomposition (Sun et al., 1999). The transformation matrices of complex re-
action networks are derived accordingly to the relative position in the decay network.
Using the analogy of a generic family tree, the behavior of a daughter product comes
from parent species and all ancestors. A component of transformation matrices repre-
sents the relationship between the daughter species and its ancestor. The relationship
is quantified using the first-order decay rates and branching factors.

Although the exact solution of a decay network provides more accurate simulation
results, the decay rates are uncertain in reality. The uncertainty of decay rates can be
propagated and accumulated from parent to daughter species. The proposed solution
scheme, which requires much less computational effort, is ideal for quantifying the
uncertainties and evaluating uncertainty propagation.

Compromise is often made by modelers between transport and reactions. In order
to facilitate the simulation of reaction networks, flow and transport are often sim-
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plified. Sometimes, when transport is focused, reaction networks have to be treated
as unrelated species. Since the proposed method provides exact solutions for reac-
tions with single-step calculations, for a given computational effort, transport can be
modeled in greater detail.
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Appendix A: Transformation Matrices of Figure 6 Decay
Network

Transformation matrices S™ and S of Figure 6 decay network are formulated as:

r1 0 0 0 0 0 0 0 0
e 1 0 0 0 0 0 0 0
1 2
R 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
ST=| Su  Ss % k4’1jk5 kl 0 0 0 0 [(36)
5671 5672 5673 5674 ks—jkﬁ 1 0 0 0
0 0 0 0 0 1 0 0
S Sp Sss Ssa Sy mem o mem 10O
L Seq Se2  Soz Soa Sos Ses Ser  mom L
_ k1 ks
53’1 ki — k3 . ke — k3
g — k1 _ ko _ ks g — ko _ ks
DLk — ks ko—ks ks—ks ™% ko—ks ks —ks
P ks ks s g _ ke ks ks
OV " ki —ke ko—ke ks—ks ks—ke' 0% ka—ke ks—ke ks — ke
_ ks ks _ k4 ks
03 ks —ke ks —ke 0" ki—ke ks —ke
g — k1 _ ko _ ks ‘ ks ‘ ke
8,1 kl — k‘g k‘2 — k‘g k?3 — k?g k?5 — k?g k?ﬁ — k?g
g — ko k3 ks ke g = ks ks ke
8’2_]{52—]{58 k‘g—k‘g k?5—k78 kﬁ—kg’ 8’3_]{?3—]{?8 k?5—k78 k‘(j—kg
g — ky _ ks _ ke g — ks _ ke
8.4 ky — kg k5 — kg k‘(j — k‘g, 85 k‘5 — k‘g k‘(j — k‘g
o kq _ ko _ ks _ ks _ ke _ ks
9.1 ki — kg ko — kg k‘3 — k‘g k‘5 — k‘g k‘(j — k‘g kg — kg
_ k2 k3 ks kg ks
So.2

? :kg—kg-k3—k9-k‘5—k‘9‘k‘6—k‘9‘k‘8—k‘9
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Sf k3 k5 k6 kS S, _ k4 k5 kﬁ k8
9 ks —ky ks —ky ke —ko ks —ko O ki—ko ks—ko ks—ko ks—ko
. ks ke ks o _ ko ks o _ K ks
9.5 k5—k9 kﬁ—kg k‘g—k‘, 9’6_k6—k9 k‘g—k‘g, 9’7_k7—k9 k‘g—k‘g
! 0 0 0 0 0 0 0 0]
L 1 0 0 0 0 0 0 0
2 1 k2
S31 TE 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
S =| Ss1  Ssp2 ﬁ ksk_‘lm kl 0 0 0 0 1]@37
Se,1 Se,2 S6,3 S64  The 1 0 0 0
0 0 0 0 0 0 1 0 0
Ssq1 Ss2  Ss3z Ssa Ssps kSkTGkG ksk+k7 kl 0
| So.1 So,2 So3 So4 So5 So.6 So,7 Foome 1
ks ko
S = ks —ky ks — Ky
g N k?l k?g k‘g S, _ k2 k?)
LT Tk ke — k1 ks — k) TP T ks — ke ks — ko
g __h ko ks ks o . _k ks ks
Ol ™ ks — Ky ko — k1 ks — k1 ks — k1 0% kg — ke ks — ko ks — Ky
ks ks _ ka ks
56’3_196—1% ks — ks’ 56’4_196—1@1 ks — ka
g = k1 ko ks ks ks
8L " ke — ki ko — k1 ks — ki ks — ki ke — ki
G . _ ks ks ks kg G . _ ks ks kg
82 T ke — ko kg — ko ks — ke kg — ko 0% ks — ks ks — ks ke — ks
g N k?4 k?5 kﬁ S . k'5 k6
8 T ke — Ky ks — ks ke — ki’ T2 kg — ks kg — ks
g N k‘l k‘Q k3 k5 kb‘ k8
S T ko — Ky ko —ky ks —ky ks — ki ke — k1 ks — Ky
s, _ k‘Q k‘3 k5 kb‘ kS
92 T ke —ky ks —ky ks — ky kg — ko kg — ko
o . _ ks ks kg ks ok ks kg ks
O3 T ko — ks ks — ks ke — ks ks — ks 0t ko —Fky ks — ks ke — ks ks — ks
k?5 kﬁ k‘g k'ﬁ k'S k7 kS
So 5 = : : So 6 = : So 7 = : .
5 T ko — ks ke —ks ks —ks 0% ko —ke ks—ke " ko —kr ks — Ky
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w Appendix B: Transformation Matrices of Figure 8 Decay

w  INetwork

345 Transformation matrices S~ and S of Figure 8 decay network are formulated as:
ro1 0 0 0 0 0 0 07
1 2
1 3
S;1 SL 0 1 0 0 0 0
347 ST = Sél 4072 k3 0 1 0 0 0 (38)
57,1 - k3:k5 P &
Sen Se2 Y63 Tacks Toohe kl 0 0
57_71 57_72 57_73 57_74 57_75 ke fk7 kl 0
L Ss1 Ss2 Ssgs 54 Ss5  Sss ok L
_ aiky ko _ azky ks
e YUk —ka k=R TP ki —ks ks — ks
§- — k1 arks k4 azks ks
. 61 k) —ke |k —ke ka—ke ks — ke ks — ke
_ k?g k?4 — k3 k5
o 6,2 ko — ke ks — kg ’ 6,3 ks — ke ks — ke
_ ky arks k4 azks ks ke
351 57 1= : ’ ’
? k‘l—k‘7 k‘z—k‘7 k?4—k?7 k‘g—k‘7 k?5—k?7 kﬁ—k'r
- __k k ko gk ks ks
2 T2 kg —ky ks —kr ke —kr’ "3 ks —kr ks —kr ke —kr
_ ky ke _ ks ke
” AT kg —ky ke —ki T ks —kr ke —ky
g — k1 aiks k4 asks ks ke kz
354 81 k) — kg |k — ks Ky —ks ks — kg ks — kg | ke — ks kv — kg
g — ko k4 ke ke g — ks ks ke ke
” 27 ks —ks ka—ks ke —ks kr—ks' "0 ky—ks ks —ks ke —ks kr—ky
g — ka4 ke k7 g — ks ke k7 g — ke k7
= 84 " ky—ks ke —ks kr—ks %" ks—ks ke—ks kr—hs' % ke —ks kr—ks
r1 0 0 0 0 0 0 07
% 1 0 0 0 0 0 0
2 1
Si1 S 0 1 0 0 0 0
4,1 4,2
& 5= s: 0 = o 1 0 0 0 (39)
56,1 56,2 56,3 kekﬁ kek_sks 1 0 0
St St2 Stz Sta Sty I 0
| Ssq Ss2  Ssps Ss.4 Ss.5 Ss.6 —kskfh 1 ]
ky arks k1 042]63
358 San 5,1

R P P MR A

T ks — Ky ks —ky
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o s, _ k?l (651 k‘2 ) k?4 + (65) k‘g ) k‘5
O ™ ke — Ky ko — k1 ko — K1 ks —ky ks — Ky
N kz k?4 _ k3 k5
Sy Sy S G Sy A S
. S _ k?l (651 k‘2 ) k?4 T Ck2k'3 ) k‘5 kﬁ
Ukt —ky Lk —k1 ka—Fkr ks —ki ks — k1] ke — k1
362 St = ka . ka . i S a = ks . ks . ko
D2 e ke kg —ky ke —ky T ke — ks ks — ks ke — ks
k‘4 k‘(j k'5 kb‘
S = . S g .
” T e Tk ke —Fks T ke — ks kg — ks
oo S _ k‘l (5] kQ ) k‘4 a2 k3 ) k5 k‘(j ) k7
8l ke — Ky ko — k) ky— Ky ks —ky ks — K| ke — k1 k7 — Ky
N G-k kb kK G._ ks ks kK
82 7 ke — ko Ky — ko ke — ks kr — ko' 0% T kg — ks ks — ks ke — ks k7 — ks
k4 ke Ky ks ke Ky ke Ky
366 Sg 4

= . . Se = = . . Se s = . .
AT ks — ks kg — kg kr— kel TP kg — ks kg — ks kr — ks’ 0% T kg — ke Ky — ke
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