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Abstract�

A wide range of numerical methods are available to integrate coupled�

di�erential equations of �rst�order decay networks� When greatly�

di�ering decay rates exist in a reaction network� the sti�ness of�

ordinary di�erential equations arises and requires additional e�ort to	

obtain solutions numerically� Although analytical solutions are�


preferred� they are limited to relatively simple reaction networks and a��

small number of species� In this paper� we propose a methodology to��

formulate analytical solutions of ODEs for a unlimited number of��

species and more generalized reaction networks� including��

multi�daughter branching and multi�parent converging reactions� The��

solution scheme can be further applied to obtain analytical solutions of��

transport systems coupled by complex decay networks���
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Nomenclature��

a Concentration in transformed domain �ML���
A First�order reaction matrix �T���
bi�j Number of branches between species i and j
c Concentration �ML���
co Initial or boundary concentration �ML���
c Vector of concentrations �ML���
co Vector of initial or boundary concentrations �ML���
D Dispersion coe�cient �L�T���
f Analytical solution of a single�species transport ���
i Species index ���
j Species index ���
k First�order decay rate �T���
Kd Partitioning coe�cient �L�M���
m Species index of a species� ancestor ���
M Total number of species ���
ni�j Number of generations between species i and j ���
np Number of parent species ���
R Retardation factor ���
s Solid�phase concentration �MM���
S Transformation matrix ���
S� Inverse transformation matrix ���
t Time �T�
t��� Half�life time �T�
v Flow velocity �LT���
x Distance �L�

��

Greek Symbols��

� Branching factor ���
� Branching factor ���
�i Intermediate parameter of solution �Bear� �	
	�
� Branching index ���
� Diagonal matrix containing all decay rates �T���
� Porosity ���
�b Bulk density �ML���

��

�� Introduction��

Modeling of reactive transport coupled with complex decay networks is compu���

tationally expensive� even impossible� when the number of species is large or sti���

reactions are involved� Operator�splitting is a practical approach to simulate trans���

port system coupled with reactions �Valocchi and Malmstead� �		�
 Lu et al�� �		�
�	

Barry et al�� �		�
 ������ To overcome the sti�ness of reactions and to enhance�


computational e�ciency� Geiser ������ �rst coupled a closed�form solution �Sun et��

al�� �			� of a �rst�order decay chain with the numerical solution of transport in his��

operator�splitting scheme� However� the OS procedure of Geiser ������ is limited to��

a typical case of a sequential and unimolecular reaction chain� Therefore� there is a��

need to investigate a generalized closed�form solution approach for a wide range of��



�

decay networks���

A generic decay network is composed of M di�erent species� All decay reactions��

are assumed to be �rst order� The reactants and products of a reaction are referred��

to as parent and daughter species� The reaction network with a single parent and a�	

single daughter is called as sequential�reaction network �Bateman� �	��
 Sun et al���


�			�� The reaction network with multiple parents and a single daughter is called as a��

multi�parent converging network� The reaction network with one parent and multiple��

daughter species is called as a multi�daughter branching network� The branching��

factor is de�ned as the proportional productivity for a speci�c daughter from a given��

parent���

In the absence of spatial dependence� the ordinary di�erential equations of sequen���

tial �rst�order reactions are usually solved numerically by using ODE solvers �Clement��

et al�� �		�
 Clement� ����
 Yamamoto et al�� ���
�� To get a numerically accurate��

solution� the ODE system is expected to be well�conditioned� Often� when �rst�order�	

reaction rates of neighboring species span many orders of magnitude� the decay sys��


tem may become sti� and require small time steps to meet the convergence standard��

�Thomas and Barber� �		�����

The solution of a decay network can be symbolically described using the matrix���

exponential format �Moler and van Loan� �	
�
 Thomas and Barber� �		�
 Yamamoto��

et al�� ���
�� There are various approaches to compute the matrix exponential of de���

cay equations� Those approaches include the fourth�order Runge�Kutta�Gill method��

�Radhakrishnan and Hindmarsh� �		��� the Pad�e approximant and the Taylor�series��

expansion of matrix exponential �Thomas and Barber� �		��� the Bateman analytical��

solution �Bateman� �	���� and the matrix decomposition method �Pressyanov� ����
�	

Lu et al�� ������ Compared to numerical solutions� analytical solutions of �rst�order�


decay networks provide an accurate and reliable prediction� However� the Bateman��

��	��� analytical solution is limited to the sequential �rst�order reaction system���

Laplace transforms are often used for solving di�erential equations �Bateman� �	��
��

Pressyanov� ������ However� the Laplace approach relies on in�nite integrals� When��

the number of species is large or a branching network is involved� the inverse Laplace��

transforms� if possible� become inconvenient� In fact� the original Bateman equations��

can be solved using matrix mathematics �Moral and Pacheco� ����
 Lu et al�� ����
��

Sun et al�� ����
 Yuan and Kernan� ���
�� As anticipated by Moral and Pacheco��

������� the algebraic approach can be extended to solve branching reaction networks��	

In order to achieve the computational e�ciency and accuracy� we propose a gen��


eralized approach of the analytical matrix decomposition for a wide range of decay��

networks� The objective of this paper is to describe and demonstrate the decomposi���

tion method for analytical solution development of decay networks in batch reactors���

Then� the analytical solutions are coupled with transport models using analytical for���

mulation and operator�splitting methods� The methodology is applicable to transport��

coupled by radionuclide decay� biodegradation of chlorinated solvents� denitri�cation���

etc���

�� Model Development��

The mass balance equations of a �rst�order decay network can be expressed com��	

pactly using matrices as�


dc

dt
� A c �����



�

where c is the vector of species concentrations and A is the �rst�order reaction matrix��

de�ned by the reaction network architecture and decay rates� The solution of Eq� �����

can be symbolically expressed as��

c � exp �At� co �����

where co is the vector of initial concentrations� The calculation of the concentration��

vector mainly relies on the evaluation of the exponential matrix���

The singular�value decomposition of a �rst�order reaction matrix establishes the��

relationship between the coupled�reaction system in the real�world system and its in��	

dependent system in the transformed domain �Clement� ����
 Lu et al�� ������ Instead	


of using numerical methods� we prefer to develop an analytical formulation system�	�

described in this section for the singular�value decomposition� The transformation	�

matrices are formulated based on the reaction network architecture�	�

���� Sequential Reaction Network	�

In order to illustrate the generalized transformation� we start with the sequential�	�

reaction network �Bateman� �	��
 Sun et al�� �			
 Clement� ����
 Bear and Cheng�	�

����� p������� The sequential�reaction network is also called as a dominant�daughter	�

reaction chain and has been extensively studied� Both analytical and numerical so�	�

lutions of the reaction chain are available in the literature and can be used for com�		

parison purposes� As shown in Figure �� every daughter product has only one parent�



and every parent has only one dominant daughter product��
�

1 2 3 4 5 M...

Figure �� Sequential�reaction network of TCE degradation� Every daughter species except the very
�rst ancestor has only one parent species and every parent species except the end product has only
one daughter species�

�
�

Then� the �rst�order reaction matrix� A� is expressed as�
�

A �

�
���������

�k� � � � � � �
k� �k� � � � � �
���

���
���

���
���

� � � � ki�� �ki � � � �
���

���
���

���
���

� � � � � kM�� �kM

�
���������
� ����
�

Equation ��� can be solved analytically �Sun et al�� �			� and numerically �Clement�
�

et al�� �		��� The focus of this paper is to generalize the solution scheme of analytical�
�

solutions for various reaction networks� The hypothesis for this approach is that the�
�

reaction matrix A can be analytically described as�
�

A � S�S�� ����
	

where � is an M �M diagonal matrix containing the eigenvalues of A� S is a matrix��


whose columns are linearly independent eigenvectors of A� S� is the inverse matrix���

of S� and the diagonal components of � are the exact decay rates of the species� We���

expect a closed�form expression for S and S�����



�

Substituting Eq� ��� into Eq� ��� and multiplying by S�� Eq� ��� becomes���

da

dt
� �a� a � S�c� ������

Each ODE in Eq� ��� is independent of other ODEs and has exactly the same format���

as the standard exponential function as its closed�form solution �Sun et al�� ���������

S� and S are called transformation matrices between the concentration domain and���

the transformed domain and are expressed analytically as �nite products of fractions��	

of the form��


S�i�j �

ni�jY
l��

km�l�

km�l� � ki
������

Si�j �
kj

ki � kj

ni�j��Y
l��

km�l�

km�l� � kj
�
����

where i is the current species index and j is an ancestor of species i� m�l� is the species���

index of lth ancestor of i� and ni�j is the generation number from species j to i� If j���

is not an ancestor of i� S�i�j and Si�j are de�ned as zero� S�i�j � Si�j � � when i � j����

The component S�i�j is interpreted as the inheritance of species i from its ancestors���

from j to i� �� For example� for i � � and j � � in the �ve�species sequential chain����

where m�l� � l and n��� � �����

S���� �

�Y
l��

kl
kl � k�

�
k�

k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� �����	

Equation ��� shows four fractions of the sequential inheritance from species � to ����


Figure � shows the formulation concept of S���� and S�������
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Figure �� Graphic interpretation of S���� and S�������



�

The component Si�j is interpreted as how much of the descendants �between j and���

i� of species j inherit from j� For example� for i � � and j � ����

S��� �
k�

k� � k�

�Y
�

kl
kl � k�

�
k�

k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� �	����

The �rst fatcor takes a di�erent format from the rest and describes the direct relation���

between species � and � as indicated by �� Then� S� and S for the �ve�species���

sequential reaction chain can be explicitly expressed���

S� �

�
������

� � � � �
k�

k��k�
� � � �

k�
k��k�

� k�
k��k�

k�
k��k�

� � �
k�

k��k�
� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

� �
k�

k��k�
� k�
k��k�

� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

�

�
������������	

S �

�
������

� � � � �
k�

k��k�
� � � �

k�
k��k�

� k�
k��k�

k�
k��k�

� � �
k�

k��k�
� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

� �
k�

k��k�
� k�
k��k�

� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

�

�
������ �������


The transformation matrices S and S� derived here for the sequential �rst�order���

decay chain are� respectively� identical to S and T matrices of Moral and Pacheco���

������� Eq� ��� itself is equivalent to the transformation of Sun et al� ��			� from���

the coupled concentration domain to the independent one� For the inverse transform���

from �a� to �c�� Sun et al� ��			� used the sequential substitution based on Eq� �������

For this reason� the closed�form solution of Sun et al� ��			� in the real concentration���

domain is limited to simple sequential or non�converging reaction networks� In order���

to facilitate the formulation of more generalized decay networks with a unlimited���

number of species� both S and S� are formulated� Note that a slight format di�erence��	

is necessary before the product sign in Eq� �
����


���� Multi�parent Converging Network���

If multiple species decay to produce the same daughter product� the reaction���

network is called a multi�parent converging network� Compared to the sequential����

reaction chain� the ordinary di�erential equation of the converging daughter product���

is coupled by more than one parent concentrations� This issue has been discussed in���

the literature since Bateman ��	���� Recently� numerical decomposition �Clement����

����� and case�speci�c analytical decomposition �Lu et al�� ����
 Sun et al�� ��������

have been used to solve those converging networks����

An example of a converging�reaction network is illustrated in Figure � �Peterson��	

et al�� ���
� and expressed as��


1 2

3

4 5






Figure �� A converging decay network �Peterson et al�� ���
�����

A �

�
�����
�k� � � � �
k� �k� � � �
� � �k� � �
� k� k� �k� �
� � � k� �k�

�
����� � �������

Species � and � decay to produce the same species �� Using Eqs� ��� and �
�����

the reaction matrix ���� of the coupled converging reactions can be decomposed as���

A � S�S�� where � is a diagonal matrix with exactly the same components as in���

matrix A����

S� �

�
�����

� � � � �
k�

k��k�
� � � �

� � � � �
k�

k��k�
� k�
k��k�

k�
k��k�

k�
k��k�

� �
k�

k��k�
� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

�

�
����� �������

S �

�
�����

� � � � �
k�

k��k�
� � � �

� � � � �
k�

k��k�
� k�
k��k�

k�
k��k�

k�
k��k�

� �
k�

k��k�
� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

�

�
����� ��������

���� Multi�daughter Branching Network��	

In addition to the sequential and converging reaction patterns� we now consider��


the multi�daughter branching reaction nature in this subsection� As shown in Figure���

�� Lu et al� ������ provides a simple TCE degradation with sequential� converging����

and branching features� A parent species may decay to produce multiple daughter���

products����

 TCE

1

c−DCE

2

1−DCE

3

t−DCE

4

  VC

5

Figure �� TCE decay series �Lu et al�� ������ TCE�trichloroethylene� c�DCE�cis�dichloroethylene�
t�DCE � trans�dichloroethylene� ��DCE � ����dichloroethylene� VC � vinyl chloride�

���

The branching factors from species � to species �� �� � are expressed using ��� ������

and �� with �� � �� � �� � �� Three branches are involved in the relation between���

species � and �� Therefore� the basic forms of S� �Eq� �� and S �Eq� 
�� are modi�ed���

as��	

S�i�j �

bi�jX
���



��

ni�jY
l��

km�l�

km�l� � ki

�
������




�

Si�j �

bi�jX
���



��

kj
ki � kj

ni�j��Y
l��

km�l�

km�l� � kj

�
�������

where � is the branch number index and bi�j is the number of branches to connect���

species i and j����

The reaction matrix of TCE degradation is written �Lu et al�� ����� as���

A �

�
�����
�k� � � � �
��k� �k� � � �
��k� � �k� � �
��k� � � �k� �
� k� k� k� �k�

�
����� � ��
����

Taking S���� as an example� the generation number between species � and �� n�������

is � and branching number� b���� is �����

S���� �

���z 	� �
��

k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

�

���z 	� �
��

k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

�

���z 	� �
��

k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

�������

S��� �

���z 	� �
��

k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

�

���z 	� �
��

k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

�

���z 	� �
��

k�
k� � k�� �z 	
���

� k�
k� � k�� �z 	
���

� ��	���	

The transformation matrices derived using Eqs� ���� and ���� are identical to S��	


and S matrices of Lu et al� ��������	�

S� �

�
������

� � � � �
��k�
k��k�

� � � �
��k�
k��k�

� � � �
��k�
k��k�

� � � �
k�

k��k�

�
��k�
k��k�

� ��k�
k��k�

� ��k�
k��k�



k�

k��k�
k�

k��k�
k�

k��k�
�

�
������ �����	�

S �

�
������

� � � � �
��k�
k��k�

� � � �
��k�
k��k�

� � � �
��k�
k��k�

� � � �
k�

k��k�

�
��k�
k��k�

� ��k�
k��k�

� ��k�
k��k�



k�

k��k�
k�

k��k�
k�

k��k�
�

�
������ � �����	�

���� Retardation Consideration�	�

Ordinary di�erential equations of a �rst�order decay network can be explicitly�	�

expressed as�	�

dci
dt

�

npX
j��

kjcj � kici� �i � �� � � � �M �����	�



	

dsi
dt

�

npX
j��

kjsj � kisi� �i � �� � � � �M �����	�

where ci �ML��� and si �MM��� are liquid and solid concentrations of species i� and�		

np is the number of parents of i� If np � � for all species except the very �rst ancestor��



Eq� ���� alone is the Bateman model ��	�����
�

The concentration of the adsorbed species is often expressed as a linear function�
�

of its liquid�phase concentration�
�

si � Ki
dci� �i � �� �� � � � �M �����
�

where Ki
d is the partitioning coe�cient� Therefore� the derivative of the solid�phase�
�

concentration ���� can be described as�
�

�b
�

dsi
dt

�

npX
j��

�bK
j
d

�
kjcj � �bK

i
d

�
kici� �����
�

Combining ���� and ������
�

Ri
dci
dt

�

npX
j��

Rjkjcj �Rikici� �i � �� � � � �M �����
	

where Ri � � � �bK
i
d	�� Then���


dci
dt

�

npX
j��

Rj

Ri
kjcj � kici� �i � �� � � � �M ��
����

Equation ��
� is di�erent from the standard ODEs solved by Bateman ��	�������

The ratio of retardation factors of a parent species to its daughter contributes to the���

concentration prediction of the daughter species� Correspondingly� the transformation���

matrices are modi�ed as���

S�i�j �
Rj

Ri

bi�jX
���



��

ni�jY
l��

km�l�

km�l� � ki

�
�������

Si�j �
Rj

Ri

bi�jX
���



��

kj
ki � kj

ni�j��Y
l��

km�l�

km�l� � kj

�
��	����

Taking the converging network in Figure � as an example� the reaction matrix� S�����

and S matrices are��	

A �

�
�����
�k� � � � �
R�

R�
k� �k� � � �

� � �k� � �

� R�

R�

k�
R�

R�

k� �k� �

� � � R�

R�
k� �k�

�
����� ������




��
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R�

� k�
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R�
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R�
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� k�
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� k�
k��k�

R�

R�
� k�
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�

�
������������

S �
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�� Applications���

The purpose of this section is to demonstrate the decomposition method using���

text�book parameters rather than to model a speci�c reactive transport system� The���

�rst�order decay rates and half lives of selected species are selected and assumed as���

listed in Table � �Peterson et al�� ���
�����

Table �� Half Lives and Decay Rates

Species Number Figure Half�life Decay Rate �yr���
� � 	�� y 
�
�������
� � �� y ����������
� � �	�� y ����������
� � ��� h ���		����
� � ���� y ��	�������
� � �� My ���������	
� � �	 m 	��������
� � �
�� y ���
������
� � �� d ���������

 � �	 y ���	������
� � � h ���������
� � 
��� y 	���
�����
� � ��� y ����������
� � ��� d �����

 � ������ y ���������

� � ��� d ���������
� � ����� y ����������
� � ��� d ���������
� � �� y 
��

�����
� � ���� By �������������
	 � 
�� My 	�
����������
� � ������ y ����
�
������
k � ln���	t���� where t��� is the half�life time�
The time units are de�ned as� y� years
 My� million years

By� billion years
 m� minuets
 h� hours
 d� days�
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���� Radioactive Decay Networks in Batch Reactors���

In this subsection� we consider radioactive decay networks in the spatial�independent��	

systems� such as a rock sample or a batch reactor� As shown in Figure �� the yield��


�branching� factor from species � to species � is ����� The matrices S� and S� Eqs����

���� and ����� of the converging decay network ���� are modi�ed accordingly to Eqs����

���� and ����� Then� the solution of the decay network� c � S exp��t� �S�co�� can���

be explicitly expressed as��� �
�����

c�
c�
c�
c�
c�

�
����� �

�
�����

� � � � �
�k�

k��k�
� � � �

� � � � �
�k�

k��k�
� k�
k��k�

k�
k��k�

k�
k��k�

� �
�k�

k��k�
� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

�

�
��������

�

�
�����

e�k�t � � � �
� e�k�t � � �
� � e�k�t � �
� � � e�k�t �
� � � � e�k�t

�
��������

�

�
�����

� � � � �
�k�

k��k�
� � � �

� � � � �
�k�

k��k�
� k�
k��k�

k�
k��k�

k�
k��k�

� �
�k�

k��k�
� k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

� k�
k��k�

k�
k��k�

�

�
�����

�
�����

co�
co�
co�
co�
co�

�
����� ��������

If the initial concentrations of species � and � are assumed to be �� the relative con����

centration pro�les are calculated using the analytical solution ����� ode�� �the nonsti���	

ODE solver� Mathworks� ������ and ode��s �the sti� ODE solver� Mathworks� �������


with default values of relative and absolute error tolerances ������� and �����
�����

Because of the contrast decay rates between species � and �� the ode�� fails to pro����

duce converged results� The concentrations calculated using the analytical solution���

and ode��s are compared as shown in Figure �� Although the numerical solution is���

seen to be essentially identical to the analytical one� it requires �
 times more CPU���

time����
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Figure 	� Relative concentrations of species in the converging decay network of Figure � as functions
of time� Circles and solid lines� respectively� represent numerical �using matlab ode��s� and the
analytical solution �Eq� ����

���

In addition to the demonstration of the single�converging �Figure �� decay network����

we further apply the matrix decomposition to a double�converging network� As shown��	

in Figure �� species � and � decay to produce a single daughter product� species ����


and species � and 
 decay to produce species �� The corresponding transformation���

matrices are derived using Eqs� ��� and �
� as shown in Appendix A����

1 2 3

4

5 6

7

8 9

Figure 
� A double converging decay network �Peterson et al�� ���
�����

When the initial concentrations of three original species ��� �� and 
� are assumed���

to be one� the relative concentrations of all species are calculated as shown in Figure���
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Figure �� Species concentrations in the double converging decay network of Figure �����

Figure � is a typical example with sequential� multi�parent converging� and multi����

daughter branching structure� In the decay network� a large contrast in the half lives��	

between species � ��	 minutes� and species 
 �������� yrs� cause the ODE system to��


be sti�����



��

1 

2 

3  

4 

5 

6 7 8 

Figure �� A sequential� branching� and converging decay network����

Using Eqs� ���� and ����� the transformation matrices S� and S are derived as���

shown in Appendix B� The concentration pro�les� relative to the �rst species concen����

tration� are calculated in Figure 	����
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Figure 
� Species concentrations in the sequential� branching� and converging decay network of
Figure ��

���

���� Transport Coupled With Decay Networks���

The decomposition concept and methodology are applicable to reactive transport���

systems� If the analytical solution of a single�species transport with �rst�order decay is��	

available� the solution can be expanded to the transport of coupled reaction networks���


For example� the standard analytical solution of Bear ��	
	� p������ for transport in a���

semi�in�nite column can be applied to each independent subsystem in the transformed���

domain as���

ai � aoi fi� �i � �� �� � � � �M �������

where aoi is the boundary concentration in the transformed domain �ao � S�co�� co���

is the vector of the boundary concentrations����

fi �
�

�
exp

� vx

�D


 �
exp���ix�erfc
�i � exp��ix�erfc


�
i

�
� �������

�i �

�
v�

�D�
�

ki
D

����

� erfc��� � �� erf��� �
�p
�

Z
�

�

exp��
��d
����



��


�i �
x� �v � �kiD����t

��Dt����
� 
�i �

x� �v � �kiD����t

��Dt����
� �i � �� �� � � � �M���	

In Eq� ����� x �L� is the distance� v �LT��� and D �L�T��� are �ow velocity and��


dispersion coe�cient� Using c � S a� the solution of the reactive transport system���

in the �c� domain is expressed analytically� The concentrations of the converging���

network �Figure �� are calculated� as functions of distance at �� and ��� years� as���

shown in Figure ������
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Figure ��� Spatial concentration distribution in the converging decay network of Figure � as
functions of distance at �a� �� and �b� ��� years� v � ��� m�yr and D � ��� m��yr� Note that
low values of velocity and dispersion coe�cient are used to demonstrate the decay reactions and to
exaggerate daughter species concentrations�

���

�� Discussion and Conclusions���

A generalized decomposition method has been developed and mathematically for����

mulated for a wide range of �rst�order decay networks� The method can be used���

for systematically deriving closed�form solutions of �rst�order reactions� Then� the��	

closed�form solutions can be coupled with transport in the operator�splitting scheme��	


Through benchmark problems� it is shown that the generalized decomposition method�	�

is computationally e�cient� accurate� and robust��	�

The decomposition method has been demonstrated using sequential� converging��	�

branching decay networks� For comparison purposes� the generalized decomposition�	�

process is developed for the single�parent and single�daughter decay chain �sequential��	�

and the derived transformation matrices are identical to those derived using singular�	�

value decomposition �Sun et al�� �			�� The transformation matrices of complex re��	�

action networks are derived accordingly to the relative position in the decay network��	�

Using the analogy of a generic family tree� the behavior of a daughter product comes�		

from parent species and all ancestors� A component of transformation matrices repre��



sents the relationship between the daughter species and its ancestor� The relationship�
�

is quanti�ed using the �rst�order decay rates and branching factors��
�

Although the exact solution of a decay network provides more accurate simulation�
�

results� the decay rates are uncertain in reality� The uncertainty of decay rates can be�
�

propagated and accumulated from parent to daughter species� The proposed solution�
�

scheme� which requires much less computational e�ort� is ideal for quantifying the�
�

uncertainties and evaluating uncertainty propagation��
�

Compromise is often made by modelers between transport and reactions� In order�
�

to facilitate the simulation of reaction networks� �ow and transport are often sim��
	



��

pli�ed� Sometimes� when transport is focused� reaction networks have to be treated��


as unrelated species� Since the proposed method provides exact solutions for reac����

tions with single�step calculations� for a given computational e�ort� transport can be���

modeled in greater detail����
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Appendix A� Transformation Matrices of Figure � Decay���

Network���

Transformation matrices S� and S of Figure � decay network are formulated as���	
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Appendix B� Transformation Matrices of Figure 	 Decay���

Network���

Transformation matrices S� and S of Figure � decay network are formulated as����
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