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Abstract 
 

In this final report we discuss the development of the Statistical 
Radiation Detection System ( SRaDS), the next-generation radiation 
detection software system capable of  extracting all available physics 
information, photon-by-photon, employing Bayesian model -based 
sequential statistical processing te chniques and capable  of making a 
decision when statistically justified.  It is a system of computational 
algorithms consisting of a simple photoelectron processor for the basic 
system with a combined photoele ctron/downscatter processor for the 
advanced system. Both algorithms  have been demonstrated on  
laboratory data and are  available for integration into standard 
radiation detectors and acquisitio n systems as well as specia lized 
embedded processing hardware for real-time operations. 
 

This report incorporates the basic rese arch performed leading to 
the development of SRaDS in the  form of attached publica tions 
discussing the theory, deve lopment and validation of the processor 
and subsequent designs for this po werful solution to the detec tion 
problem plaguing the radiation area for a long time. 
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Introduction/Background 
 
 
 

Radionuclide detection is a critical first line defense employed by 

Customs and Border Protec tion (CBP) to detect the transportation of 

radiological materials by potential terrorists. Detection of these 

materials is particularly difficult  due to the inher ent low-count 

emissions produced. These low-count  emissions result when source s 

are shielded to hide or disguise  their existence or, when being 

transported, are in relative moti on with respect to the sensors.  

Radionuclide identification fr om low-count gamma ray emissions is a 

critical capability that is very diffi cult to achieve, moreover, this 

methodology must cope with back ground noise, finite de tector 

resolution, and the heterogeneou s media along tra nsport paths 

between the sources and detectors. De tection/identification, therefore, 

becomes a questio n of increasing signal-to-noise ratio (SNR) since 

low-count emissions become “buried” in the background and Compton 
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scattering noise, rendering a  meaningful and ti mely detection hig hly 

improbable. 

 

Detection of threat radiological mate rials is a difficult problem 

primarily because of low  observable count rates and short detection  

intervals available. For inst ance, semi-trailer vehicles move through 

portal systems allowing less than 10 seconds for the initial scree ning. 

Shielding materials from packaging and adjacent cargo present major 

difficulties in thes e low-count, hos tile environments. Low-count 

detection is a challengi ng problem made difficult because of 

background noise, measurement system inadequacies, and the 

heterogeneous transport paths between source and detector. Even the 

modern methods of gamma-ray sp ectrometry incorporating high 

resolution detectors are challenged  by the low-count problem. These 

traditional spectrum analysis system s only take the distribution of 

energies into account and discard the important arrival  time 

information. Thus, the basic problem we solve with SRaDS is the 

detection and identification of radi oactive contraband from low-c ount 

measurements using all of the statistical information available. 

 

The identification of  radionuclide sources from t heir gamma ray 

emission signatures is a well-estab lished discipline using spectroscopic 

techniques and algorithms. Numerous  tools exist to aid the analyst 

interpreting these signatures. Historically, sufficient time existed to 

accumulate the data necessary to re asonably identify these sources.  

Furthermore, highly accurate detect ors exist that yield an accurate 

spectrum. Unfortunately, these techniques fail on low-count  

measurement data. Contemporary tool s reveal that the underlying  

algorithms rely upon heuristic appr oaches based upon the experience 
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of analysts. Most of these tools may even require the intervention of a  

trained practitioner to analyze the results and guide the interpretation 

process. In a terrorist type scenari o, this is not acceptable, since 

timely and accurate performance is imperative. 

 

Currently gamma-ray spectromet ry is used to identify 

radionuclides by estimating the ene rgy distribution or  spectrum. It  

decomposes the gamma-ray emissions into energy bins discarding the 

temporal information. The  role of the ga mma-ray spectrum is  

analogous to the role of the Fourier spectrum for identifying  sinusoidal 

spectral lines in no ise. A particul ar radionuclide can be characteriz ed 

by its “energy spectral lines” in the energy spectrum. These sharp 

lines are used to identify the corresponding energy bin, thus  

“detecting” the presence of a particular component of the radionuclide. 

In the ideal case, the spectrum consis ts only of lines or spikes located 

at the correct bins of ea ch constituent energy uniquely characteriz ing 

the radionuclide. A search of the sp ectrum for the strong presence of 

these lines is used for identification . A typical laboratory spectrum is 

shown in Fig. 1 below where the event mode sequence (EMS) or set of 

energy vs time me asurments is shown in 1a, and the c orresponding 

PHS is s hown in Fig. 1b illustra ting photo-peaks, downscattering, 

background and noise.  
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Figure 1.  Laboratory Data. (a) Measured event mode sequence (EMS) of arrivals. (b) 
Energy   histogram or pulse height spectrum (PHS). 

 
 
 
 
 
 
 
Research Activities 
 
 

SRaDS is a completely novel software system capable of rapidly 

and confidently identifying any set of pre-specified r adionuclides (RN) 

in a wide r ange of scenarios such as portal systems, first respon der 

activities, verification activities, harbor and c argo inspections a nd 

more. It represents the next generation of radiation detection software 

systems based on the no vel approach of Bayesian sequential photon 

processing. SRaDS satisfies the critical need to dev elop a fast  and 

reliable automated technique to de tect and identi fy radioactive 

materials from uncertain radionuclid e measurements especially when 

measurement time is short and the demand for confidence is high.  
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SRaDS utilizes the statistical nature  of r adiation transport as 

well as modern processing techniques to implement a ph ysics-based, 

Bayesian sequential statistical processor. Instead of a ccumulating a 

pulse-height spectrum (PHS) as is  done in current systems, each  

photon is processed indivi dually upon arriv al and then discarded.   

Upon arrival at the detector , a deci sion is upda ted and refined using 

the energy deposited as well as the photon arrival time.  Detection is  

declared when such a decision is statistically justified using estimated 

detection and false alarm probabilities specified by a receiver operating 

characteristic (ROC) curv e obtained during calibr ation.  This 

implementation results in a system  that has significantly impro ved 

detection performance with higher reliability and shorter decision time.   

 

SRaDS reliably detects and identifies  radioactive materials in a 

variety of environments and scena rios from uncertain low-count 

radiation measurement data. It represents the future of radiation 

detection systems by incorporating transport physics and sequential 

detection methods that are empowe red by newly evol ved Bayesian 

signal processing algorithms.  Because of its novel approach, SRaDS is 

capable of makin g a more rapid decision (timely) with hi gher 

confidence (reliability) than traditional radiation detection systems and 

possesses an inherent ability to quantify its performance  

(detectability). SRaDS provides a faster, more reliable way to detect  

radioactive contraband in a variety of critical screening applications. 

 

SRaDS consists of algorithms capable of being integrat ed into 

existing radiation detector system s while als o enabling high-s peed 

embedded processing hardware impleme ntations. It possesses an  

inherent parallel and distributed stru cture providing a fast and robust 
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methodology capable of perfor ming in even the harshest  

environments. SRaDS has been de veloped using modern Bayesian 

statistical signal processing techniques popularly know n as “particle 

filters” which are enabled by th e evolution of high-speed,  high 

throughput microcomputers or em bedded hardware (FPGAs). Building 

on these technique s, radiation tran sport physics are  incorporated to 

provide outstanding reliability and de tectability while minimizing fa lse 

positives.  

 

Results/Technical Outcome 

 

The key issue that SRadS adresses is d eveloping reliable 

statistical models of both emissi on and measurement processes that 

can effectively be used in the Baye sian framework. Th ese stochastic 

models of the physical proce ss must incorporate  the loss of 

information resulting from the absorp tion of energy between an ideal 

source and the detector. The und erlying probability distributions 

describe the physics of the radiation transport between the source and 

the detector.  Our approach differs from spectroscopy in that it models 

the source radionuclides by decomp osing them uniquely as a mixture 

of monoenergetic sources t hat are then smeared , scattered and 

distorted as they are transported to the detector for measurement and 

counting. The measured data consists of a  set of energy vs time 

measurements in the form of an EMS and is obta ined from pulse  

shaping circuitry available in all co mmercial radiation detectors.     

While traditional s pectroscopy ignores both the temporal information  

as well as any energy not found in  the main peaks of the spectrum, 

SRaDS uses all of the information ava ilable in each and every photon 

arrival. 
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SRaDS utilizes the  statistical nature  of radiation trans port as 

well as modern Bayesian signal pro cessing techniques to imple ment 

the processor.  SRaDS is an automated technique that “decides” when 

a particular target radionuclide is present or not based on parame ters 

that evolve fr om the physics info rmation contained in the EMS.  The 

inherent structure of the BA SIC and ADVANCED processor is shown i n 

Fig. 2. A fter the single photon is pre-processed by the acquis ition 

system, the energy and arri val time measurements are passed to the 

energy/rate discriminators to determine if the photon will be accepted 

or rejected. If acceptable, the pa rameters used by the syste m are 

updated and provided as input to improve the decision function for  

detection and ev entual identification. If rej ected, the photon is 

discarded in contrast to PHS systems. The advanced system 

incorporates the Compton (downscatte r) processor (shown in dashed 

lines). 
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Figure 2.  SRaDS BASIC and ADVANCED Bayesian radiation detection structure: 
Acquisition, pre-processing (optional), energy/rate discrimination, estimation, 
Compton processing (ADVANCED), background and extraneous line rejection, 
decision function estimation and RN identification. 
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SRaDS processes each unique component of a  target 

radionuclide in a  separate chan nel resulting in its inher ent  

parallel/distributed processor struct ure shown in Fig.  3. After the  

photon is acquired, the distributed processor: (1) discriminates the 

photon energy, identifying one of the parallel channels; (2) 

discriminates the corresponding detection rate (interarrival) parameter 

for that particular channel; (3) enhances the channel energy and 

interarrival parameters; (4 ) updates the correspond ing decision 

function; and (5) detects/identifies the target radionuclide  by 

thresholding the decision function . From the figure we observe t he 

basic processor illustrated in the upper diagram. Investigating further  

we see the SRaDS processor consists of a discriminator for both  

energy and interarrival tim e in the middle diagram. If the photon is 

accepted, it is processed further to  improve the estimates of energy, 

rate and other parameters used to update the decision function. Finally 

at the more detailed structural leve l, the lower diagram illustrates the  

parallel/distributed internal structur e utilized in performing each of 

these steps for ea ch energy component of each targeted RN. Clearly,  

SRaDS is a distributed sequential proc essor performing its operati ons 

using multiple identical channels, each with a unique set of parameters 

suited to that particular component. 
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Figure 3. SRaDS processor parallel/distributed structure: (a) Simple processing 
(upper). (b) Detailed discriminator, parameter estimation and decision function 
calculation (middle). (c) Multiple channels for multiple  lines/multiple radionuclides 
(lower). 
 
 

 

Conceptually, we depict the generic sequential  detection 

technique in Fig. 4 illustrating ea ch photon arrival along with the 

corresponding decision function an d thresholds. At eac h arrival the 

decision function is sequentially updated and compared to thresholds 

to perform the de tection --- “photon-by-photon”. The t hresholds are 

selected from a ROC curve and are based on user-selected detection 

and false alarm probabilities.  In this way, SRaDS’ performance can be 
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tailored to a wide variety of  field scenarios depending on the needs of 

the user.  If the need fo r minimizing false positives is a priority, then 

that configuration parameter can be set accordingly.  Alternately, if the 

detection probability must be high and there is less regard for the cost 

of false alarms, the system can be configured for those needs.   

TIME

D
EC

IS
IO

N
 F

un
ct

io
n

Threshold 1 

Threshold 0 

TARGET

NO TARGET

NO DECISION 
(Take another sample)

Confidence: Prob. Detect/False Alarm Performance: Receiver Operating Characteristic 

Sequential Radionuclide Detection Processor

PHOTONS 

 
Figure 4.  Conceptual implementation of the sequential Bayesian radionuclide 
detection technique. As each individual photon is extracted, it is discriminated, 
estimated, the decision function updated and compared to the thresholds to “decide” 
if the targeted radionuclide is present or not. Quantitative performance and 
sequential thresholds are determined from the estimated receiver operating 
characteristic (ROC) curve and the selected operating point (detection/false alarm 
probability). 

 
The practical implementation is accomplished in various stages: 

(1) photon discrimination; (2) monoe nergetic parameter estimation; 

(3) decision function calculation and (4) thre shold comparison for 

detection as illustrated in Fig. 5. We observe the basic st ructure in (a) 

with more details in Fig. 5 b. Operations are performed in the three 

phases: discrimination, estimation  and detection with confidence 

interval estimators performing the simple channel discrimination tasks, 

sophisticated parameter algorithms  (nonlinear Kalman and particle 
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filters) performing the estimation, updating the sequential de cision 

function and performing the threshold detection---”photon-by-photon.” 

These task details are illustrated in F ig. 6 for the single (identic al) 

channel implementation. 

 Discrimination is performed with the “true” parameters obtained 

from the tables of radionuclides (e nergy, emission probability and rate 

(interarrival)) and f rom a radiatio n transport model in the advance d 

implementation. From this i nformation we construct the confidence 

intervals to decide i f the photon arrival is valid for one of the targeted 

radionuclide components. If so, we then perform the parameter 

estimation using a  linear Kalman f ilter for en ergy (Gaussian model) 

and particle filter for rat e/interarrival (exponential model). The 

emission probability is calculated by sequentially updating valid counts 

in the channel. Wi th the pa rameter estimates available, the deci sion 

function is sequentially updated and compared to the thresholds (see 

Fig. 4). Finally, in order to calc ulate the required thresholds for 

detection we mus t generate a ROC curve from simulation or high 

fidelity calibration data and select an operating point specified by the 

desired detection and false alarm pr obabilities. The individual channel 

processor is shown in Fig. 6 illustra ting the discrimination, estimation 

and decision function update step s, while the detailed algorithm 

implementation architecture is shown in Fig. 7.  
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Figure 5.  SRaDS implementation of radionuclide detection showing discrimination, 
estimation, and detection phases: (a) Simplified flow of basic algorithm. (b) Detailed 
flow diagram illustrating major calculations. 
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Figure 6.  SRaDS Bayesian photon channel processing for radionuclide 
detection/identification including:  energy/interarrival (detection rate) discrimination, 
energy/rate parameter estimation, emission/occurrence probability estimation and 
decision function calculation. 
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Figure 7.  SRaDS BASIC detailed implementation structure of the overall sequential 
Bayesian radionuclide detection processor showing the discriminated channel inputs 
(energy/arrival time), energy/rate parameter estimates, probability distribution and 
decision function (log-likelihood) estimates with threshold detection. 
 
 

The SRaDS sequential detection paradigm wa s applied to the  

laboratory data set illustrated in Fig. 1. Based on the  experimental 

SNR, the selected operating po int (detection and false-alarm  

probabilities) was (98%, 2%) specif ying the threshol ds which were 

calculated accordingly for each ra dionuclide. The system undergoes a  

calibration phase which consists of “tuning” the processor s on 

simulated and controlled data, setting initial parameters, etc.  The 

overall results of the processing are shown in Fig. 8.  We note three  

columns of data, the first column  is the composite pulse-height 

spectrum  which we show for compar ison only. The second column is 

the composite EMS wi th the gr een circles representing the 

discriminator output photons. Notice that  the photons are chose n by 

the discriminator based on both energy and interarrival and aligns with 

the PHS energy lines. The final column is the decision function for each 
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of the targeted radionuclides  with corresponding thresholds 

determined from the ROC curves.1  
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Figure 8.  SRaDS BASIC sequential Bayesian detection and 

identification. (a) Pulse-height spectrum (after calibration). (b) EMS 
with discrimination (circles).  (c) Decision functions for 60Co (detection 
time: 3.05 sec), 137Cs (detection time: 0.678 sec) and 133Ba (detection 
time: 0.513 sec) radionuclide detection/identification (see 
SRaDS_BASIC video). 

 
 

As each photon is process ed, the decision function is updated 

until either the upper or lower thre shold is exceeded i ndicating the 

presence or absence of the target radionuclide. Note that barium is 

detected (threshold exceeded) first (0.513 sec) followed by the cesium 

(0.678 sec) and then cobalt (3. 05 sec). The corresp onding pulse-

height spectra at the time of detection, that is, when the decisi on 

                                                 
1 A video illustrating the sequential processing operations (Fig. 8) is available on the enclosed CD as an audio‐visual  
(SRaDS_BASIC.avi )  or windows media video (SRaDS_BASIC.wmv )  file. 
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threshold is crossed, is sho wn in Fig. 9. This figure illustrates not only 

the total counts in each energy spec tral line, but also the number of 

photons that were passed by both di scriminators and used to up date 

the decision function.  Clearly, co balt has the lowest count rate and 

the sequential processor must wait for enough photons to a rrive in 

order to make t he statistically justified decision (less than 10  

counts/lines), while the barium detection is faster because of its higher 

count rates.  
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Figure 9.  Pulse-height spectra of targeted radionuclides at sequential Bayesian 
detection. (a) 60Co pulse-height spectrum (at detection time: 3.05 sec). (b) 137Cs 
pulse-height spectrum (at detection time: 0.678 sec). (c) 133Ba pulse-height 
spectrum (at detection time: 0.513 sec). Line counts refer to enhanced (after 
estimation) photon lines used in decision function and arrows annotate their location. 

 
 
The performance of SRadS is evaluated using the ROC curves 

developed from our laboratory data. Rather than attempt to 

incorporate dependencies on geom etry, source emissions etc., we 
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choose to normalize the curves base d on the total number of source 

photons passed by the discriminators and used to update the decision 

function. In this way the source si ze (mass), photon emission rate,  

distance to detector, geometry, etc.  can be captured simply by  the 

number of discriminated source ph otons for a given RN elimina ting 

specifics. We show ROC curves for our 133Ba source in Fig. 10. Here we 

see SRadS performance ranging from  5 total barium photons 

(including background etc.) to 50 ba rium photons. As expected as the 

number of photons increase, the processor performance improves  

significantly yielding higher dete ction probabilities and lower false 

alarm rates. We use these ROC curves to calculate the r equired upper 

and lower thresholds for SRadS, thereby, quantifying its expected 

performance.  
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Figure 10. SRaDS ROC curves parameterized by the total number of 133Ba photon 
counts (5-50 counts) based on an ensemble of 100 measured EMS data. 
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The ADVANCED SRaDS software system processes not only the  

photoelectrons of the BASIC vers ion, but also the downs catter 

(Compton) photons providing a ma jor breakthrough in dete ction 

technology! Thus, the SRaDS ADVANCED software syst em 

incorporates the Compton downscatter in its decision function (see  

attached 2010 paper). Its d etails are more complex than the BASIC 

version, but it is simply captured in Fig. 2 (dashed lines). The results 

of incorporating the Compton rate discriminator/estimator processing 

into SRaDS is shown in Fig. 10 (similar to Fig. 8). The three column 

format remains the same: PHS, EMS data with photoelectrons (circles) 

and now downscatter photons (squares) and the thresholded decis ion 

functions for the RNs (cobalt, cesium, barium) . Because of this new 

information, the decision function s are abl e to incorporate “more 

physics” enabling the RN dete ction/identification to cross the 

thresholds even faster, that is, cobalt (2.2 sec), cesium (0.47 sec) and 

barium (0.14 sec) as shown in Fi g. 11 indicating a 33%  improvement 

(or better) in time-to-detection. T hus, we see that SRaDS truly is a  

novel innovation t hat will set the standard (and framework) for the  

next generation of radiation detection software systems.  
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Figure 11.  SRaDS ADVANCED sequential Bayesian detection and identification. (a) 
Pulse-height spectrum (after calibration). (b) EMS with discrimination (circles).  (c) 
Decision functions for 60Co (detection time: 2.2 sec), 137Cs (detection time: 0.47 sec) 
and 133Ba (detection time: 0.14 sec) radionuclide detection/identification (see 
SRaDS_ADVANCED video). 
 
 

As our fi nal tests, we performed some figur e-of-merit (FOM) 

runs to benchmark the performance of both the BASIC and ADVANCED 

processors and also comp ared their performance to the GAMANL  

radiation detection (standard) software. We s ummarize this 

comparison simply that based on an ensemble of 100 la boratory data 

files (Barium radio nuclide) that the SRaDS B ayesian processor was 

able to a chieve a detection probability of 98%, while  the G AMANAL 

processor could only achieve a 45 % probability of detection. We 

showed the ROC curves for SRaDS in  Figure 10 where we chose our 

thresholds to achieve a 98% detect ion probability at a 2% false alarm 

rate.  
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Exit Plan 
 

The plan for this exciting technology is to develop the algorithms 

further in conjunction with a variet y of instrumentation manufacturers 

either through Work-For-Others co ntracts or CRADA agr eements. We 

have submitted an R&D 100 application and expect to get exposure of 

our research through that mech anism as through the sci entific 

publications referenced subsequently. We have also applied to the DOE 

NA-22 organization for developmental funding. Currently we are team 

with the company ICx in  response to a DNDO  BAA and expe ct to 

expand the efforts to sodium-iodid e and other lower resolution but 

huge application volume detectors. Of course, our main tar get is 

licensing and royalties in a n effort to get the technology to the 

commercial sector 

 
Summary 
 
This project has progressed nicely fr om a high-risk, high payoff novel 

conceptual approach to an actual su ite of software algorithms ca pable 

of meeting all of t he initial expect ations of t he Bayesian approach. 

Besides being extremely exciting for the researche rs, it clearly 

demonstrates the teaming abil ity of mul ti-disciplinary projects 

resulting in a success and major cont ribution to radiat ion detection. 

Having access to the “old sa lts” (LLNL consultants—see 

acknowledgements) to ke ep us on  track and contribute viable 

discussion and counterpoints to our arguments, led us to the final 

prototype design whic h will even tually be constructed thr ough 

potential CRADS or WFO projects to follow (see EXIT Plan).  
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We have publ ished the foll owing papers during t he course of this 

research of this project as well as  given a multitude of presentations 

on this project. We ha ve also had two (2) provisional patents (ROIs:  

IL-11906, IL-12229) and one (1) filing to the US Patent Office (Oct,  

2008).We highlight the most important below. 2 We have also 

submitted this as a brochure to the R&D100 review committee  

(Statistical Radiation D etection System (SRaDS),  LLNL-BR-

425377, 2010). 
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