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DIRECTION-PRESERVING AND SCHUR-MONOTONIC SEMI-SEPARABLE APPROXIMATIONS OF
SYMMETRIC POSITIVE DEFINITE MATRICES

MING GU*, XIAOYE S. LI, AND PANAYOT S. VASSILEVSKI

Abstract. For a given symmetric positive definite matrixe RNN, we develop a fast and backward stable algorithm to apprateira by a
symmetric positive-definite semi-separable matrix, aaeuto a constant multiple of any prescribed tolerance. ditiad, this algorithm preserves
the product,AZ, for a given matrixZ € RN*d, whered < N. Our algorithm guarantees the positive-definiteness obémei-separable matrix
by embedding an approximation strategy inside a Cholestipifiaation procedure to ensure that the Schur complendiniag the Cholesky
factorization all remain positive definite after approxtioa. It uses a robust direction-preserving approximasioneme to ensure the preservation
of AZ. We present numerical experiments and discuss potenticiations of our work.

1. Introduction.

1.1. Motivation and background. Given any symmetric positive definite (SPD) matfAxand any tolerance
T > 0, in this paper we present a fast backward stable algorithoohstruct an SPD semi-separable matrix that
approximatesh, while preserving the producZ, for a given matrixZ € RN* for d < N. The idea of preserving
the actions ofA on certain vectors (directions) goes back to the early poget approximate factorization methods
by Dupont, Kendall and Rachford [11], Gustafsson [15], amday [23]. The motivation there was that by imposing
certain row-sum criterion to the incomplete factorizatgdnmatrices coming from finite éierence approximation of
second order elliptic equations, it can lead to improving ¢londition number of the preconditioned matrix by an
order of magnitude better than the one of the original finifiedence matrix (i.e., fron®(h2) to O(h™)). One of
our motivations here, is that an approximate factorizatiba discretization matrix can lead to Schur complement
matrices that can be viewed as coarse discretization raafiifcthey preserve the near null-space of the original fine-
grid matrix. Our goal is to have a general procedure that canre this property for any given number of directions
d. For example, in the application of 2D elasticity equatibisimportant to preserve the so-called rigid body modes
in which case we have = 3. For other applications, such as the “adaptive algebrailtignid” (cf., e.g., [2]) it is
important that the coarse space contains several “algeisasmooth” directions. Although in the present paper we
do not pursue the application of our direction preservingrapimate factorization method to algebraic multigrid (or
AMG), this is one of our main motivations to develop and sttty proposed approximate factorization technique.

In what follows we adopt the so-called semi-separable matructure which in certain applications by using
high enough rank in the approximation can lead to virtuakga factorization of the matrix. Thus, by choosing the
rank we have a whole spectrum of approximate block-facition methods that can vary in accuracy from simple
preconditioners (comparable to symmetric Gauss-Seiddlighly accurate (but potentially expensive for large jank
and virtually exact factorizations.

The semi-separable structure is a matrix analog of sensrabfe integral kernels as described by Kailath in
[17]. This matrix analog was most likely first described byhBerg, Kailath and Koltracht in [21]. In that paper it
is shown that, under further technical restrictions, an Lfattorization is possible with a complexityN wheren is
the complexity of the semi-separable description Hrttie dimension of the matrix — infieect an algorithm linear in
the size of the matrix, whenis small. In a number of papers Alpay, Dewilde and Dym intrcgla new formalism
for time-varying systems which provides for a frameworkselly analogous to the classical time invariant state space
description and which allows for the generalization of méame invariant methods to the time-varying case [9, 12].
When applied to matrices, this formalism generalizes tmm&tism used in [21] and allows for more general types
of efficient operations (by f&cient’ we mean operations that are linear in the size of thegix)aln the bookTime-
varying Systems and Computations [10], Dewilde and van @en\escribe the various operations that are possible
on time-varying systems in great detail, including tifecéent application of orthogonal transformations. In padar,
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TaBLe 1.1
Dimensions of matricesin (1.1). k; and |; are column dimensions of U; and P;, respectively.

they show how &J RV type transformation on a general, (possibly infinite diniemal) semi-separable system can be
done with an #icient recursive procedure. This procedure is based on #asidy Dewilde and van der Veen in [25]
and by Eidelman and Gohberg in [14]. In the former paper tmneotion with Kalman filtering as a special case of
the procedures is also discussed.

In the literature, variousfcient representations for rank structured matrices haee peoposed, andfécient
and accurate algorithms have been developed using thesseepations [1, 3, 7, 8, 9, 12, 21, 16, 19, 20, 17, 26, 27].
In particular, severalf&cient algorithms have been developed for approximatingransgtric matrixA by a symmetric
semi-separable matrix, accurate to a constant multiplepbaven tolerance > 0 [9, 12, 21]. Fast backward stable
algorithms have also been constructed to approxiratéh an SPD semi-separable matrix (see [24]).

This current work was also motivated by such work as well askwa construction of monotonic preconditioners
for sparse symmetric positive definite matrices. Recenkwarsuperfast direct methods for discretized matrices from
elliptic operators uses the semi-separable matrix strects a basic tool in solving discretized elliptic PDE protde
(see|[4, 3, 6, 22]). Inthe process of generalizing these oaistto construct robust an€fective preconditioners, we are
led to the problem of constructing semi-separable SPD oatitd approximate a given dense SPD marigr a very
large given tolerance > 0. Additionally, as mentioned earlier (e.g., in the AMG apation), it is often unnecessary
(potentially expensive) to maintain high order of approaiimns along a small number of known directions defined
by a given matrixZ € RN*¢. Values such as, 2 or 3 are typical fod in these cases.

1.2. The paper outline. In this paper, we present afffieient and backward stable algorithm for solving such
problem, for any given tolerance > 0. This work will form the basis of ourfcient construction of fective
preconditioners for sparse matrices arising from diseeetiPDEs. As in [24], we embed the semi-separable matrix
construction scheme of [3] inside the Cholesky factoraraprocedure foA to ensure that each approximate Schur
complement during the Cholesky factorization remainstp@sdefinite. In addition, we ensure that the matrix-matrix
productAZ remains unchanged throughout the entire procedure, uptaling errors.

To be more specific, ld be a semi-separabléx N matrix. Then there exist positive integersn, - - - , m, with
N =my +--- + m, to block-partitionA as

D;, ifi =j,
B= (Bi,j), whereB; j e R™™ satisfies B; j = UiVVi+1-~-Wj71V,-T, if j>i, (1.1)
PiRi—l"‘RjJrlQ}—, if j<i.

The sequencefJi}=t, {(VillL,, (WL, (P, (QIF, (R} and{Di}, are all matrices whose dimensions are
defined in Table 1.1. While any matrix can be representedigiféinm for large enoughk;’s andl;’s, our main focus
will be on matrices of this special form that have relativetyall values for thé;'s andl;’s (see Section 3). In the
above equation, empty products are defined to be the idenétgix. Forn = 4, the matrixB has the form

D; UV UiWeVI UpWeWaV]
) D, UV UMaV]
~ | PsRQ] PsQ] D3 UsV,
PsRsRQ]  PsRsQ)  P4Q} Da.

Throughout this paper we will assume that iiés are square matrices. It is shown in [10] that this class afrives
is closed under inversion and includes banded matrices;sgparable matrices as well as their inverses as special
cases.

The semi-separable structure of a given maBidepends on the sequente Different sequences will lead to
different representations.

If Dy is symmetricPy = Vi, Rq = W, andQy = Uy for all possible values df, thenB is a symmetric matrix.
On the other hand, iDy is upper triangular an®, = O for all possible values df, thenB is an upper triangular
semi-separable matrix.



As is well-known, the Cholesky factor of an SPD semi-seplaraiatrix is upper triangular semi-separable. Con-
versely, letR be a non-singular upper triangular semi-separable matignR"Ris an SPD semi-separable matrix.

In Sections 2 we present the construction algorithm. Ini8e&, we discuss numerical experimental results with
this construction algorithm. In Section 4 we discuss pagapplications of this work and draw some conclusions.

2. TheConstruction Algorithm. The main goal of this section is to present our semi-separahbtrix construc-
tion algorithm. To this end, we need to establish some rmtati

2.1. Notation. Let A e RN be a symmetric positive definite (SPD) matrix, with blocktjiaming

An A2 oo Aan
AIZ Agz -+ Agp
=1 . . . (2.1)
A-{,n A-Zr,n T An»”
whereA € R™™ so thatN = Yp_; mc. With a slight abuse of notation, we will denote
Ais - Ay
Axst = (Aks cee Akt) and Ai:j,s:t =] : T
Ajs - Aj
For any given matribH and a given tolerance we consider an orthogonal decomposition of the form
— —\T
H=(U U)(v V), (2.2)

where the matri>€U U) is column-orthonormal, so that™ U = 0. Throughout this paper, we will decompose various

matrices in the form of (2.2) such thét has as few columns as possible and such|ftgg = O(7). Equation (2.2)
will be our main tool for performing low numerical rank apgnmations.

2.2. Direction-Preserving Approximations. We start by considering direction-preserving low-rankragpma-
tions. LetH € R™", F ¢ R™Y andG € R™d, we seek approximations of the form (2.2) that further pnes¢he
matrix-matrix product$dF andG"H, for d < min(m, n). That is, we would like to preserve the following equaftie
whenH is approximated by V':

HF =UV'F and G'H=G'UV". (2.3)

To this end, we first QR-factorize to get
_ Re) _ (1 2)(FF
F-o ()= (@ @)(F). 24)
whereQt € R™? andQ2 € R™(™9. |t is immediate that
HF = HQLR: (2.5)
Next, we QR-factorize then x (2d) matrix (G HQ,lz) to get
1 _ 6. (Fe) oo (Re R
(G HQF)_QG(O)zQG(O O)» (26)
whereQg € R™™ andRg € R, | etRs = (R, R2), we then have

G=0Qs (Ff)é) , 2.7)

3



whereR}, € R,
Finally, we compute the matrix

A= Qe = (et ofnet) @ () annar)

Our goal is to approximatel by approximatingd instead. Note thatl = QGﬁQE.

By construction, it is sfiicient to preserve the first columns and rows ofi in order to preservelF andGTH.
Furthermore, our choices of the QR factorizations resuthénlower left corner oH being 0, as below:

0= (Hl,l Hl,Z)

- 2.8
0 Ha (2.8)

with Hy; = RZ € R@Ixd,
We now compute an orthogonal decomposition in the style &) {ar ﬁz,z:
. \Val
Hz2 = (U1 Uy) (VlT)’
2

with columns of(U; Uy) orthonormal andiVa|l2 = O(z). This leads to an orthogonal decomposition of the form)(2.2
for H with

)

SinceH = QzHQ!, we can define

| — 0
U=QG( Ul)’ U=QG(U2),
and

— —~ \T
Hy, H S T
V=QF( 6’1 Vll’-z) . and V=Q:(0 Vj) .

which leads to an orthogonal decomposition of the form (a2H with
H=(u O)(v V). (2.10)

We now show that (2.3) is true under this approximation. Tidfy¢he first part, we have

e _ Hii  Hiz )\ ~re Hii  Hi2 \(Re
UV'F _QG(O SAVA GF=Qe( g uviJ\ o

2.6 2.5
= Qe (Roé) R @ HQIR: @ HE.

To verify the second part, we have

GTHE (R 0)QLH=(RY" 0)HQL =R (M Hi)Qf .
and

@7 Hiia H. TG oG
UV DR o)l Qe A F R (A A
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Thus, the above two guantities are equal. _

It costsO((m + n)d?) flops to compute both QR factorizations; it co€8nnd) flops to computed; and it costs
O(mnr) flops to compute an orthogonal decompositionl-’fb,rz, wherer is the column dimension of;; and it costs
aboutO((m+ n)(d + r)?) flops to compute the representation (2.10). So the totalafdhis compression scheme is
aboutO(mn(r + d)) flops.

This compression scheme is humerically stable. We havectrpf@sented the scheme in such a way that every
step of the computation is known to be numerically stable l&&fge out the details of the proof for numerical stability
as they are tedious and do not provide much new insight iestheme.

2.3. Construction of Approximate Cholesky Factorization. To begin our procedure, we first recall the follow-
ing standard block Cholesky factorization procedure:
fork=1,2,---,n:
Cholesky factorize Ry, Rek := Akk;

Compute Rakein := Rep Acketn;
Schur Complement Ak+1:n,k+l:n = Ak+l:n,k+1:n - R;<r,k+l:n ’ Rk,k+1:n;
end for

For eachk, the first step in this procedure computes the Cholesky ffizetiion of thek-th diagonal block; the
second step computes the reskdh block row; and the last step computes the Schur compleafe¢he k-th block.
The output of this procedure is the upper triangular matrix

Rii Riz -+ Run
Roo -+ Ron -
R= . . suchthat A=R'R
Ran
In the following, we will modify the above procedure to find approximate Cholesky factorization satisfying
S's=A+0(lAlr) and STSZ=Az (2.11)
where
Z
Z=\". |,
Z,

and whereS is an upper triangular semi-separable matrix of the form({ct.))

D1 Si2 --- Sin
D, - Son

S= T 2.12)
Dn

with the D; s being upper triangular, arfsk; = UgWi1 - - “We_g V.
In light of the block Cholesky factorization procedure abowe begin by computing

DI D, = Az and H;, = DITA]_,z;n.
Our next step is to compute a low-rank approximatiollionithout changing?Z. Note that

AZ = (DI D]_Zl + DIHlZZ:n)

H{ G1 + Aon2nZan

whereG; = D12;. To preservédZ, we only need to find a low-rank approximationHe while preserving botti; Z,.,
andGJ] H,. Here we compute an orthogonal decompositiohipfn the style of equation (2.10) as follows:

Hi = (Ul Ul) (Ql al)T,
5



where the matri>€U1 Ul) is column orthogonal anlqﬁlllg < 7. It follows that

HI H; = QiQ] + QiQ].

According to the block Cholesky factorization procedui®, ( Hi) is actually the first block row oR. Hence
the Schur complement of the first block becomes

Ay = Agnan — H{ Hi = Apnon — QiQ] — 515{
We now approximateA; by
Ay = Agnon - QT = Ay + alalr =A+ O(Tz)-

SinceA is symmetric positive definite, both the Schur complens@niand its approximatiotd; must also be sym-
metric positive definite. We note that this approximatioroamts to adding a symmetric positive semi-definite matrix
of norm at most? to the original matrix.

We further approximatel; = Ry 2 by UlQI. Since this approximation is done on the Cholesky factok,dhe
amount of perturbation té is only O(||D4|l27) = O( V||Al|27).

After these two approximations, we obtain the first block imwhe Cholesky factor as

(D1 U:@])

and the Schur complementis nofy. We will only store the currem,. 2, andQ instead of computingf; explicitly.
To continue, partition

QT = (V;— ﬁl) .
The Schur complement becomes

~ P AA Agzn — VoH;
ﬂl = T T 1o |
(A2,3:n - Vz Hl) A3:n,3:n - Hl Hl

For approximations on the second block, we first compute
A= Ags— VoV and Agzn = Agzn— VaHi.

We then Cholesky factoriz&,, := D] D,, computeH; := D, A 3., and define

.
@2=(D1 UI13\2/2) and sz(ul I)'

With this notation and the approximationity, we can rewrite the matriA as

DID,  DIH; (ﬂl)
Ax 2 (2.13)

T
H
(H;) H, D2 Asnan

The productAZ was preserved in approximation k. In approximating(nl), we only need to preserve the
2

product of matrix on the right hand side of (2.13) ahdBut this can be done by preservi(ﬁl) Z3n andG; (:l)
2 2
Wherer = 7’{;1)221;2.



Preserving these directions, we compute an orthogonahdaeasition in the style of (2.10) as follows:

(ﬂ) - (1 T)(@ @)

where the matri, ) is column orthogonal anfi:|l, < r. As before, approximatinéﬂl) by U,Q} will not
2

change the original matrix-matrix produk¥.
We write the Schur complement 85> as

T~
Az = Aznzn — ﬁ-lrﬁl —HJH2 = Agngn — (Ei) (Ei)
= Agnzn — Q) — QQ5.
We now approximateA, by
A = Agnan — Q)
and the first two blocks of the Cholesky factor by

D UyV] UWe@]
D U@ )

where we have used the partition
_ (W2
= ).
Again this approximation ensures that the matrix-matrodarctAZ remains unchanged, and the Schur complement
A, remains SPD.

To continue this procedure by induction, we assume thatedt-th step fork < n — 1, the approximate Cholesky
factor with the firsk blocks has the form

D1 UV - UWoro W V] UWo- - WLQ]
D, N VAT .kaleT UoWs - - 'WKQI
Dy U@

and the approximate Schur complement has the form
Ay = A 1nks1n — Q@Y.
As before, partition
Q = (VI-(r+l ﬁk)
so that

ﬁ Ak+l,k+1 - Vk+1V|-(r+l Ak+l,k+2:n _ Vk+lHk
k= kel |
(Ak+1,k+2;n - Vk+lHk) Aciankian — H\I! Hk

We explicitly compute

. T . i
Ak+l,k+l = Ak+l,k+l - Vk+le+1 and Ak+l,k+2:n = Ak+l,k+2:n - Vk+lHk-
7



We then Cholesky factoriz&. 11 := D}, ;Dkr1 and compute

. -T
His1 = Dk+1Ak+l,k+2:n~

Define
Dy U1V2T U1W2---Wk_1VkT U1W2---W|(V|I+l
D, U2W3"'Wk—1v|1— U2W3"'W|<V|I+1
Dk+1= :
Dx UV
Dk+l
and
UWs - - - Wi
UoWs - - - Wi
ﬂk+1= :
Uk

We can write the matrix approximation as

Hi
@Ll@kﬂ @Llﬂkﬂ (Hk+1)
A~

= \T
Hi T
(Hk+l) ﬂk+1Dk+l Ak+2:n,k+2:n

In order to keep the matrix-matrix produsZ unchanged, we only need to prese(rﬁé'" )Zk+2;n andGLl (HH" )
k+1 k+1

for Gyl = ?{J+1@k+121;k+1- As before, we compute an (:1pproximation(32|f|k ) in the style of equation (2.10) as
k+1
follows:

() = (s ) (@ @)’ (2.14)

where the matri>€'uk+1 ﬂkﬂ) is column orthogonal an|¢5k+1||2 <.
It follows that the Schur complement for blokk- 1 is

—~ —~ T
oo He \( H
ﬂk+1 = Ak+2:n,k+2:n - Hka - H|-<r+1Hk+1 = Ak+2:n,k+2:n - ( k )( k ) .
Hk+1 Hk+1

Again, this allows us to write

T A AT
A1 = Ak+2:n,k+2:n - Qk+le+1 - Qk+lak+1,

which is then approximated by

A, T
Akr1 = Ak+2:n,k+2:n - Qk+lak+1~

Since the dierence betweerfly,; and A1 is a symmetric positive semi-definite matrisdy,; must itself be a
symmetric positive definite matrix.



After these computational steps, the approximate Cholfskgr becomes

D, U1V2T U1W2-~-Wk,1V|I U1W2---WkViLrl U1W2~-~Wkﬁk
D, U2W3-~-W|(,1VkT U2W3,---W|<V|I+1 UoWs - - - WicHk

Dk UiVis1 UkHik

Dk+1 Hk+1

Partitioning

W

in the numerical low rank approximation ()‘fjk ) (see (2.14)) leading tgk ~ Wk+1QI+1 andHy,1 = Uk+1QI+1' thus
k+1

ending up with a new approximate Cholesky factor of the form

D1 UsV] - UWor WeaV Ui WV, Ui Wk @]
Dy -+ UpWae-Wh gVl UpWa-- WV, UpWs - - WWkn Q)

D UiV UWies Q)4

Dk+1 Uk+1a1k—+1

Throughout the steps, the matrix-matrix prodAZthas always been kept unchanged.

This completes the induction far< n— 1. Fork = n— 1, the new approximate Cholesky factor still has the form
similar to above, without the last column. This is exactlg form of the matrixS defined in (2.12). This ends the
proof. o

It can easily be seen from the algorithm description thatyeapproximate Schur complement during the Cholesky
factorization is obtained by adding symmetric positive sdefinite matrices of norm at most to the true one. We
also perform an approximation of the orde¢v||Al|,7) for low-rank approximation at every step of the algorithm.
Hence the total truncation err@( \/||A||27) in equation (2.11) could b&(n) times larger thany||A||27.

Assume that each diagonal blockArhas roughly the same number of columns. p&t the maximum dimension
in all the diagonal blocks, and assume tpas bigger than the column dimension of every matiix Then the cost
for each step i©(Np?) flops, leading to a total cost @(n?p®) = O(N?p) flops for the whole construction algorithm.

As is shown in [3], the column dimensions Of in S turns out to be precisely the rank 8fx.1n, for k =
1,---,n-1. If Aixks1n has small numerical rank for the given tolerancekfer 1, - - - , n—1, the matrixS constructed
above will also have small rank in each of its uppérdiagonal blocks. Otherwise sonik’s would need to have
large number of columns.

We have presented our construction algorithm using SVDsveder, any rank-reveal decomposition satisfying
equation (2.2) will also work. Good examples are rank-rbng®R factorizations and rank-revealing modified Gram-
Schmidt procedures. It is likely that this will lead to cathesiable speed-up for a small loss in compression.

As before, this construction algorithm is numerically $taland we also leave out the details of the tedious and
yet not very insightful proof.

For the purpose of computing a preconditioner, we can fuméguire that the number of columns Wy not
to exceed a certain pre-set number, IMexRank. This is equivalent to restricting the number of columndJirin
equation (2.2) never to exceed a certain pre-set numberMaxRank. In our numerical experiments, we simply
set the submatri¥l,», = 0 in equation (2.8). This simple strategy has still led toyweffective preconditioners, see
Section 3.

3. Numerical Results. We have written a C code implementing our construction dtigor. In the following
we report the numerical results with this code. Here we cotmate on demonstrating thé&ectiveness of our semi-
separable matrix approximations as preconditioners.
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First, we consider finite-element discretizations on umifériangular mesh of sizle, with piecewise linear func-
tions of the following dffusion equation defined on the unit squére [0, 1] x [0, 1]:

—div (k(x, Y)Vu) = f(x,y), (3.2)

where the cofficientk(x, y) is a two—by—two matrix of the forral + bb" for a givene > 0 and variable direction
C(.)SQ(l - XC.OSQ) . In the test we chose = 0.01 anda = £. We assume a mixture of Dirichlet and
sina(1 - ysina) 3

Neumann boundary conditions.

We use standard lexicographic ordering of the unknowns @stnpoints). The block—structure of the matrix is
obtained by putting together evepyconsecutive nodes in a block. In the test we varied the blaeks the number
of direction vectorsd, between zero and three, and the maximum ramiote that, our algorithm requires> 2d and
the block sizep to be at least the rank We present results of two settings of block size and max, rifweksmaller one
with p = 8 andr = 2d + 2, and the larger one with = 20 andr = 2d + 10. The direction vectors correspond to the
constant vector fod = 1, and additionally = 2 andd = 3 correspond to the vectors coming from the linear functions
x andy evaluated at the nodes of the mesh. We use the thus condthlotk—factorization matrix as a preconditioner
in the preconditioned conjugate gradient (or PCG) methoelli8¥in Table 3.1 the number of iterationsfor which

the respective residuals satis{)ﬂ,rm <106, /rgro. We do not use the preconditioned residual norm since we want
to compare the dlierent preconditioners corresponding tdfelientd (the number of directions) using fixed norm.
We also include the time to construct the approximate faateconditioner. The tests were run on an 1.9 GHz IBM
Power5 machine at the National Energy Research ScientifiqgDting Center.

The results in Table 3.1 show the improvement of the numbéexdtions when increased number of directions
are used. There are only two cases where the iteration couwt £ 2 is larger than that fod = 0 ord =
Nevertheless] = 3 always achieves the lowest iteration count. It is cleat tiia preconditioner for larget is more
expensive to construct and apply. Also as expected, lasgde nresults in better approximate factorization. It is good
that the extra construction cost is acceptable—with maaa ttoubling the block size and rank, the construction time
is not more than doubled, and the increase is smaller as tisdeppn size increases.

vectorb =

p:8 r=2d+2 p=20, r=2d+10 CG
h2|d=0 time| d= d=2|d=3 time | d=0 time | d=1|d=2|d=3 time || iters
12 28 0.00 24 21 20 0.01 7 0.00 1 1 1 0.00 51

24 61 0.05| 55 51 51 0.07| 28 0.05| 24 23 20 0.13|| 116
48 | 115 0.57| 113 121 110 091 77 1.00( 65 65 53 1.14 | 240
96 | 233 852 221 216 210 13.74| 158 15.48| 139 185 118  18.49|| 479

TasLe 3.1

Number of PCG iterations for anisotropic diffusion equation: € = 0.01, « = §. Thetimes (in seconds) for constructing the preconditioner are
shownford=0andd = 3.

The purpose of the second test that we performed is to achighetolerance in the approximation, when we
factorize a dense s.p.d. matrix. We consider the model oo difusion problem (3.1), for a set of filision
direction vector®. The dense matrix under consideration is obtained as felloVe order the nodes using the nested-
dissection ordering [13, 18]. In this ordering, the last n (n = 1/h) dimensional Schur complemes, is a dense
symmetric positive definite matrix, costing traditionategit solversO(n®) operations to factorize. We approximate
this matrix byR"R, whereR is an upper-triangular semi-separable matrix with maxinufixdiagonal rank at most
2. We require that a single directi@h= (1,---,1)" be preserved under our compression schefrie.this case is a
well-known rigid-body mode of our model problem under owsadetization. This implies that we must Q}jz =
in equatlon (2. 10) at every step of compression, even ththegatrixS in consideration can be very ill- condltloned
LetS=RTSR™ Obviously,R"R is a good preconditioner vf(S) the condition number o8, is much smaller
than(S), the condition number 06. Table 3.2 summarizes our results for this problem. We olestiat«(S)
always hovers around 1, indicating highlffextiveness oR'R as a preconditioner fa8. In other words, the last
n x n dimensional dense Schur complement in the traditional €yl factorization can be well-represented by a
semi-separable representation witfrdiagonal rank 2.
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n = 200,b is unit random n = 400,b is unit random
€ 1 10 108 1012 1 104 108 1012
k(S) || 47x107 | 51x1C | 1.3x 10 | 56x1¢ | 49x10° | 29x 1% | 64x 10 | 47x 10
«(S) 2.9 13 15 1.9 32 17 2.4x 10 20
n=200,b=(10)" n=400,b = (1,0)"
€ 1 10 108 1012 1 10* 10°8 1012
k(S) || 28x 107 | 20x10° | 20x 10 | 20x 108 | 57x 107 | 40x10° | 40x 10 | 4.2x 108
(S) 2.8 16 15 1.0 3.2 2.2 1.0 1.0
TaBLE 3.2

Approximation on the Schur complements for model problem (3.1)

Finally, we considered the two dimensional linear elasstieguation

~(pat+AvTel)=T in Q=(01)x(0.1), (3.2)
—
=0 on 09, (3.3)

hereU e R?is the displacement vector fieldl andu are the Lamé constants. This PDE is very ill-conditioneémthe
ratio A/u is very large; this limit is known as the incompressible tiamd is associated with the mechanical behavior
of elastometric materials and plastic flow in metals, forregke. Iterative methods including standard geometric
multigrid converge very slowly or even diverge for very largu. However, such situations are important as they are
ubiquitous in nature; one of our chosen example problemadhgossesses this behavior in its linearized form. The
two direction vectors correspond to the two well-knowndipody modes. Leti = (u; Uz). One of the rigid-body
modes is such that all the discretizednodes are 1 and all the discretizednodes are 0; and the other is such that
all the discretized; nodes are 0 and all the discretizednodes are 1. Table 3.3 shows the PCG convergence history
and the condition number & = R TAR?, whereR is the approximate semi-separable Cholesky factor. Itdarcl
that with higher ratiol/u, the system is much more ill-conditioned, and requires nraoye PCG iterations. When
A/u = 1, preserving directions and increasing blakk size are beneficial. Wheriu = 10%, preserving directions

is generally beneficial, but larger blgcank size is not helpful.

(4, 1) h-t p=8 r=2d+2 p=20, r=2d+10 CG

d=0 KA [d=2 <A | d=0 KA [d=2 A | iters  «(A)
(1.0,1.0) 8 32 15x 10 25 97 x 10 16 29x 10 11 19x 10 68 29x 1%
16 62 64 x 10 48 47 x 107 64 86 x 107 31 20x 17 119 12x10°
32 123 25x 10° 92 17x10° 83 30x 1C° 62 12x10° 228 4A7x10°
(1.0,10%) 8 243  31x10° 236 35x 10° 12 13x 10 9 13x 10 405 57x10°
16 549 11x 1P 440 Q7x10° | 1230 17x10° | 1203 20x10C° || 1214 21x10°
32 | 1216 45x10° | 1258 43x10° | 1867 70x1CP | 1996 86x1CP || 3149 83x1C°

TasLE 3.3
Number of PCG iterations and the condition number K(K = R TAR™) for the elasticity equations. The last two columns show the number of
CG iterations and the condition number of the initial matrix A.

For the elasticity problem, we also examined the last Schurptement matrix arising from direct Cholesky
factorization with nested dissection ordering. This time, allow the maximum fi-diagonal rank to be at most 4
in the semi-separable representation, and still requireompression scheme to preserve the two rigid-body modes.
The results are shown in Table 3.4. This tim@) hovers around 1, even whé&his ill-conditioned.

To summarize, our results show that for botffulion and elasticity problems, our direction-preservaxdriza-
tion method is very #icient and achieves very good approximation for the Schumpdement matrices corresponding
to the top level separator. Our future main goal is to use figsorization algorithm to construct reduced (Schur
complement) matrices that have prescribed actions onieefitction vectors and not as much as stand-alone pre-
conditioners (as explained in the beginning of the intrdiduncof this paper).
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n =200 n = 400
Au 1 100 10° 1072 1 100 108 1012
k(S) || 17x107 | 22x10° | 22x10° | 1.5x 10" | 33x10° | 45x10° | 45x10° | 1.8x 10
«(S) 1.6 2.1 2.1 2.0 2.0 2.4 2.4 2.2
TasLE 3.4

Preconditioner effectiveness on the Schur complements for the elasticity equations.

4. Conclusions. We presented anflicient and backward stable algorithm for constructing SPDiseparable
matrices that approximate a given dense SPD marixith a guaranteed a priori given tolerance> 0. In the
literature, there are severaliirent classes of semi-separable matrices that have siowlarank structures [6, 5, 16,
19, 20]. Work has begun to extend our algorithm to such lomkrstructures. Ultimately, such algorithms will be
used to form the basis offecient algorithms to constructlective preconditioners for sparse matrices arising from
discretized PDEs.

Alternatively, giving-up on the guaranteed tolerance prop the proposed algorithm provides a SPD factorized
matrix that has the same actions as the original SPD matrix ginen set of direction vectors. More generally, the
proposed algorithm has the property that it provides agprate Schur complement (reduced) matrices that have the
same actions as the corresponding exact Schur complenteatgiiwen set of direction vectors. The latter property
offers the potential to construct coarse matrices for algelnaitigrid methods which is a topic of future research.
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