
LLNL-CONF-426251

Towards an Error Model for
OpenMP

M. Wong, M. Klemm, A. Duran,
T. Mattson, G. Haab, B. R. de Supinski,
A. Churbanov

March 24, 2010

6th International Workshop on OpenMP
Tsukuba, Japan
June 14, 2010 through June 16, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Towards an Error Model for OpenMP

Michael Wong,1 Michael Klemm,2 Alejandro Duran,3 Tim Mattson,2 Grant Haab,2

Bronis R. de Supinski,4 and Andrey Churbanov2

1 IBM Corporation 2 Intel Corporation
3 Barcelona Supercomputing Center 4 Lawrence Livermore National Laboratory
michaelw@ca.ibm.com, alex.duran@bsc.es,bronis@llnl.gov

{michael.klemm,timothy.g.mattson}@intel.com
{grant.haab,andrey.churbanov}@intel.com

Abstract. OpenMP lacks essential features for developing mission-critical soft-
ware. In particular, it has no support for detecting and handling errors or even a
concept of them. In this paper, the OpenMP Error Model Subcommittee reports
on solutions under consideration for this major omission. We identify issues with
the current OpenMP specification and propose a path to extend OpenMP with
error-handling capabilities. We add a construct that cleanly shuts down paral-
lel regions as a first step. We then discuss two orthogonal proposals that extend
OpenMP with features to handle system-level and user-defined errors.

1 Introduction

OpenMP [13] is a wide-spread and well-known programming model for parallel pro-
gramming on shared memory platforms. OpenMP’s initial focus was to provide portable
parallel programming for High Performance Computing (HPC) platforms. OpenMP’s
expressive programming model, including support for incremental parallelization, has
led application programmers in other areas (e. g., enterprise software) to consider it
for their applications. However, OpenMP’s lack of any concept of errors or support to
handle them has prevented wide-spread adoption of OpenMP by industries.

OpenMP 3.0 only requires an implement to provide best effort execution for runtime
errors. Application are often terminated and users must restart. While perhaps tolera-
ble even if undesirable for HPC users, it is clearly unacceptable to terminate enterprise
applications. Thus, programmers must implement workarounds (such as those in Sec-
tion 2) that make development and maintenance more difficult and often prevent key
compiler optimizations.

In this paper, we present the current plans of the OpenMP Error Model Subcommit-
tee to provide error handling extensions. Clean semantics for errors raised in concurrent
code paths are non-trivial [7,17,19] so we do not focus on solutions to concurrent er-
rors. We instead consider mechanisms to detect and to respond to errors (both OpenMP
runtime and user code errors). We provide our criteria and limitations for OpenMP er-
ror proposals in Section 3. We then propose a two-phase process to add error support in
Section 4. We plan to add a done construct that cleanly terminates an OpenMP region
to the next OpenMP version while our longer term strategy is considering two proposals
of catching and handling OpenMP runtime and user-defined errors.

1

1 # in c lude <omp . h>
2 # in c lude <s t d l i b . h>
3

4 vo id do by 16 (f l o a t ∗x , i n t iam , i n t i p o i n t s) ;
5

6 vo id a40 (f l o a t ∗x , i n t n p o i n t s) {
7 i n t iam , i p o i n t s ;
8 omp_set_dynamic (0) ;
9 omp_set_num_threads (1 6) ;

10 #pragma omp parallel shared (x , n p o i n t s) private (iam , i p o i n t s)
11 {
12 i f (omp_get_num_threads () != 16)
13 a b o r t () ;
14 iam = omp_get_thread_num () ;
15 i p o i n t s = n p o i n t s / 1 6 ;
16 do by 16 (x , iam , i p o i n t s) ;
17 }
18 }

Fig. 1. Setting and checking the threads count for parallel regions

2 Current State in OpenMP Error Handling

This section motivates the need for clean error handling semantics in OpenMP. We first
investigate the current OpenMP specification’s error handling requirements for errors
that arise within OpenMP implementations. We then turn to OpenMP’s features for
handling user-defined errors, i. e., C++ exceptions and return codes in C and Fortran.

2.1 OpenMP runtime errors

OpenMP has never offered clean semantics to handle errors that arise within OpenMP
runtime implementations. Fig. 1 shows Example 40.1.c, which we chose arbitrarily
from the OpenMP 3.0 specification [13]. We use this example to investigate potential
errors that arise and how OpenMP deals with them.

The code in Fig. 1 calls omp set dynamic (line 8) and omp set num threads
(line 9) to ensure that exactly 16 threads execute the following parallel region. OpenMP
does not prescribe how an OpenMP implementation should react if a programmer
passes inconsistent values (e. g., a negative thread count) to these functions. Any be-
havior, from terminating the application to using any (valid) value is compliant.

If the OpenMP runtime cannot supply the requested number of threads (e. g., due to
resource constraints) for the parallel region, OpenMP does not prescribe how the im-
plementation must react. For instance, it can terminate the program with (or without)
an error message or continue with an arbitrary thread count. Thus, programmers must
explicitly check the thread count by calling omp get num threads and take appro-
priate actions; in this example, the program explicitly aborts (line 13) if it does not get
exactly 16 threads.

Other errors can occur when the OpenMP runtime creates the threading environment
and allocates resources for the parallel region. The OpenMP specification allows the
OpenMP implementation to define how it responds to these errors. Hence, programmers
cannot portably intercept potential errors in order to take more appropriate actions.

2

1 vo id example () {
2 t r y {
3 #pragma omp parallel
4 {
5 #pragma omp f o r
6 f o r (i n t i = 0 ; i < N; i ++) {
7 p o t e n t i a l l y c a u s e s a n e x c e p t i o n () ;
8 }
9 ph a s e 1 () ;

10 #pragma omp barrier
11 ph a s e 2 () ;
12 }
13 }
14 c a t c h (s t d : : e x c e p t i o n ∗ex) {
15 / / handle except ion po in ted to by ex
16 }
17 }

Fig. 2. Non-conforming OpenMP code

OpenMP runtime support routines also have no defined error semantics. The specifi-
cation does not prescribe actions for an OpenMP implementation if routines fail, which
is also true if users supply incorrect values for OpenMP environment variables. These
unspecified behaviors complicate the implementation of resilient applications, which
must continue functioning in the presence of errors or unexpected conditions.

2.2 User-defined errors

Most mission-critical applications cannot silently ignore errors and continue execution.
Thus, error handling consumes significant application development time [15]. We now
discuss how OpenMP applications must handle C++ exceptions; we cover C and Fortran
error handling patterns at the end of this sub-section.

Sequential C++ codes usually map errors to exceptions that are thrown where the
error arises and caught by error handling code. Fig. 2 shows a simple program skeleton
that does not conform to the OpenMP specification if an exception arises in the for
construct. Several threads that execute could raise an exception and concurrently mul-
tiple might occur. Any exception would cause a premature termination of the parallel
region, which violates the Single-Entry Single-Exit (SESE) principle that is required
to all OpenMP parallel regions including those that use longjmp() or throw [13].
Exceptions also must not escape any worksharing region or critical or master section.
Thus, applications must catch all exceptions thrown within any structured block that is
associated with an OpenMP construct before the block is exited. A throw that is exe-
cuted inside an OpenMP region must cause execution to resume within the same region
and the same thread that threw the exception must catch it.

Fig. 3 shows how to handle exceptions in a parallel region correctly by catching
exceptions (line 17) so that they do not escape an OpenMP construct. For simplic-
ity, we assume that all potential exceptions inherit from C++ standard exception class
std::exception. We use a shared variable to notify other threads that the exception
occurred. As we cannot prematurely terminate the for construct (the OpenMP speci-
fication prohibits changing the loop control variable or using a break statement), we

3

1 vo id example () {
2 s t d : : e x c e p t i o n ∗ex = NULL;
3 #pragma omp parallel shared (ex)
4 {
5 . . .
6 #pragma omp f o r
7 f o r (i n t i = 0 ; i < N; i ++) {
8 / / i f an except ion occurred , cease execut ion of the loop body
9 / / (the ’ i f ’ e f f e c t i v e l y p r oh i b i t s most compi le r op t im i za t i ons)

10 i f (! ex) {
11 / / catch a po t en t i a l except ion l o c a l l y
12 t r y {
13 p o t e n t i a l l y c a u s e s a n e x c e p t i o n () ;
14 }
15 c a t c h (con s t s t d : : e x c e p t i o n ∗e) {
16 / / remember to handle i t a f t e r the p a r a l l e l reg ion
17 ex = e ;
18 #pragma omp flush
19 }
20 }
21 }
22 #pragma omp flush
23 / / i f an except ion occurred , stop execut ing the p a r a l l e l reg ion
24 i f (ex) goto t e r m i n a t i o n ;
25 ph a s e 1 () ;
26 #pragma omp barrier
27 ph a s e 2 () ;
28 t e r m i n a t i o n :
29 ;
30 }
31 i f (ex) {
32 / / handle except ion po in ted to by ex
33 }
34 }

Fig. 3. Shutting down an OpenMP-parallel region in presence of an exception

use the exception flag to skip the remaining loop body when an exception occurs; this
conditional if disables many standard compiler optimizations such as vectorization.
Thus, the compliant code will run slowly even if no exceptions arise. We check the flag
again before phase 1() is executed to ensure that we skip line 25 branching to the
termination label (line 28). We again check the flag (line 31) following the parallel
region to handle the exception consistently with the sequential semantics.

While Fig. 3 provides a method to terminate a parallel region, worksharing con-
structs and tasks require conditional tests to skip the remainder of the structured block.
Synchronization constructs such as critical can use the C++ RAII (Resource Acquisition
is Initialization) idiom with scopes locks to ensure they are properly released. However,
we know of no suitable workarounds for the sections and ordered constructs.

Most applications in C and Fortran indicate errors with special return values or
an errno variable (e. g., POSIX return codes [18]) or through an additional function
argument (e. g., MPI error codes [11]). Programmers must check these manually to
determine if an error has arisen and handle it similar to the coding pattern shown in
Fig. 3. Nonetheless, OpenMP SESE requirements often cause substantial changes to
the sequential coding pattern in these languages.

4

Fig. 4. Classification of error handling strategies

3 Design Objectives

We now discuss the major requirements for the cleaner error handling semantics that
OpenMP clearly needs. First, the new error model must support all OpenMP base lan-
guages and allow for additional ones consistently with the OpenMP philosophy of in-
cremental parallelization. Thus, it must support the methods of exception-aware (e. g.,
C++) and exception-unaware (e. g., C and Fortran) languages. The error handling fa-
cilities must tightly integrate modern exception handling while supporting traditional
techniques based on status flags and return values in order to avoid significant changes
to the sequential code.

Second, the new error model must provide exception-aware support even for excep-
tion-unaware languages since they have cleaner, stronger semantics than classic mech-
anisms (e. g., error codes). Programs cannot ignore (or forget to detect) exceptions,
which always force the programmer to respond in some way. Return codes intermix
data and errors, while exceptions decouple error handling from the primary application
functionality. Finally, exceptions simplify the reuse of error handling code and elimi-
nate repetitive, error-prone code since programmers do not have to locate error handlers
where errors arise.

The new model must support system-level errors a well as user-defined ones. Ide-
ally, an OpenMP implementation must provide notification of errors that arise within the
runtime system without requiring special checks. Further, the model must not require
the programmer to distinguish between system-level and user-defined errors although it
should allow it. Instead, programmers should rely on a single, common framework that
can handle errors from either source.

The model must be flexible and provide tools to implement different error handling
strategies. Fig. 4 classifies error-handling mechanisms into different categories. Our
goal is to support the extreme strategy and cooperative strategy. Intermediate strate-
gies are beyond the scope of our working group. However, they could be implemented
through transactional memory [9], which is a possible OpenMP extension [10].

Most importantly, the error handling features must provide backward compatibil-
ity. It cannot break existing codes that have adapted to the current “best effort” error-
handling requirements. It also must not require new applications to handle errors if they
do not involve mission-critical computations.

5

4 OpenMP Error Handling Proposals

We propose a two-phase plan to satisfy the error-model requirements. Our first step
will provide a construct to terminate OpenMP regions, which directly supports the
abrupt termination pattern for user-defined errors of Fig. 4. Section 4.1 describes the
done construct that the OpenMP Error Model Subcommittee plans to include in the
OpenMP 3.1 specification.

Our second step will support the ignore and continue, retry and delegate to handlers
strategies. We describe the two orthogonal proposals that the OpenMP Error Model
Subcommittee is considering in Section 4.2 and Section 4.3. We discuss the implica-
tions of these mechanisms, for which we target OpenMP 4.0, with a specific focus on
backwards compatibility.

4.1 The done construct

Our proposed done construct terminates innermost OpenMP regions, which provides
initial support for user-defined errors (particularly for C and Fortran). We build on prior
proposals to terminate parallel regions that were considered for the OpenMP 1.0 specifi-
cation. HP’s compiler still supports a limited pdone construct [1]. The done construct
reflects the OpenMP philosophy of incremental parallelization through compiler direc-
tives, unlike the alternative of a new runtime function, which would alter the underlying
sequential code or require conditional compilation guards.

The done construct has the syntax1

1 #pragma omp done [c l a u s e− l i s t]

with clause-list being one or more of if(expr), 2 parallel, for (C/C++), do (For-
tran), sections, single, or task. The binding set of the done construct is the
current thread team. It applies to the innermost enclosing OpenMP construct(s) of the
types specified in the clause (i. e., parallel or task).

The done construct causes the encountering thread to terminate the subset of the
innermost parallel, worksharing and task regions that correspond to the specified clause.
It conceptually sets a cancellation flag that the other team members must evaluate at no
later than the next cancellation point that they execute. Hence, other threads may not
immediately terminate execution when a thread encounters the done construct. This
delayed termination allows more efficient execution, as the mechanism does not require
interrupts or frequent polling of the cancellation flag.

We make the set of cancellation points implementation defined in order to avoid
restricting implementation choices although we are exploring a minimal set. Efficient
implementation of the done construct will likely require different cancellation points
under different OpenMP implementations. A minimal set of cancellation points could
be: entry and exit of regions, barriers, critical sections, completion of a loop chunk and
calls to runtime support routines.

1 We present the C/C++ syntax only; the Fortran syntax is similar and can easily be derived.
2 The if clause has the same semantics as the if clauses of other constructs.

6

1 vo id example () {
2 s t d : : e x c e p t i o n ∗ex = NULL;
3 #pragma omp parallel shared (ex)
4 {
5 . . .
6 #pragma omp f o r
7 f o r (i n t i = 0 ; i < N; i ++) {
8 / / no ’ i f ’ t h a t prevents compi le r op t im i za t i ons
9 t r y {

10 c a u s e s a n e x c e p t i o n () ;
11 }
12 c a t c h (con s t s t d : : e x c e p t i o n ∗e) {
13 / / s t i l l must remember except ion f o r l a t e r hand l ing
14 ex = e ;
15 #pragma omp done parallel f o r
16 }
17 }
18 ph a s e 1 () ;
19 #pragma omp barrier
20 ph a s e 2 () ;
21 }
22 / / con t inue here i f an except ion i s thrown in the ’ f o r ’ loop
23 i f (ex) {
24 / / handle except ion s tored in ex
25 }
26 }

Fig. 5. Shutting down an OpenMP parallel region with the done construct

The done construct supports elegant and robust termination of OpenMP parallel
execution, as Fig. 5 shows. If an exception is raised during execution of the workshar-
ing construct spanning lines 6–17, the catch handler can trigger a done parallel
for to shut down the worksharing construct safely. The for clause terminates the
worksharing construct while the parallel clause terminates the parallel region. Ex-
ecution continues at the if in line 23 after termination of the regions. While the done
construct cleanly terminates OpenMP regions, the programmers must still track the ex-
ceptions through pointers and apply the sequential handler. However, there is no need
for the tricky flush as the exception pointer is not accessed within the parallel region.

4.2 Modest proposal based on return codes

In the long term, we must provide features that support the existing error-handling code
in exception-unaware languages. We must also ensure backwards compatibility for ex-
isting OpenMP programs, which limits the mechanisms and API choices for our error-
handling model.

Thus, we consider the minimal functionality that an error-handling system requires.
An OpenMP error-handling mechanism must:

• Communicate to the user program that an error has occurred;
• Provide sufficient information to identify the type and source of the error.
• Support execution after the error arises with well-defined program state so that the

program can respond and continue.

7

We now discuss a modest error-handling proposal based on return codes that meets
these requirements.

In order to support continued execution, we require that the program continues at
the first statement following the end of the innermost construct when an error occurs
inside any OpenMP construct. Any variables that are created or modified inside the
construct have an undefined value.

We communicate the error condition to the program through a variable that is shared
between the members of the thread team. The omp-error-var variable is of type
omp error t and stores an error code that identifies whether any thread that executed
the preceding OpenMP construct or runtime library routine encountered an error and, if
so, the error’s type. If concurrent errors occur, the runtime system may arbitrarily select
one error code and store it in the shared variable.

Programs can query the value of this variable by calling a new OpenMP runtime
support routine:

1 o m p e r r o r t o m p g e t e r r o r (char ∗ o m p e r r s t r i n g , i n t b u f s i z e)

This function can return any value of a set of constants that are defined in the standard
OpenMP include file. While implementations can support additional error codes, we
anticipate a standard set that may include values such as:

• OMP ERR NONE
• OMP ERR THREAD CREATION
• OMP ERR THREAD FAILURE
• OMP ERR STACK OVERFLOW
• OMP ERR RUNTIME LIB

The omp get error function in addition returns an implementation-defined, zero-
terminated string in the memory area pointed to by omp err string. In the string,
an implementation may provide more information about the type and source of the error.

Fig. 6 shows an example that uses our error code handling proposal. While the code
is less elegant than approaches based on exceptions and callbacks, we can add this solu-
tion to any OpenMP base language and satisfy the backward compatibility requirement.
This error code approach is more straightforward in that it does not introduce complex
execution flows through error handlers. This directly resembles the characteristics of
error handling in C and Fortran.

4.3 The callback error handling mechanism

The next longer term proposal is our callback error handling proposal. It provides
many of the benefits of exception-aware languages to C and Fortran. This proposal,
which slightly extends a previous callback-based proposal by Duran et al. [3], achieves
its functionality through callback notifications and supports both exception-aware and
exception-unaware languages. Hence, it supports all OpenMP base languages.

The prior proposal extends OpenMP constructs with an onerror clause that over-
rides OpenMP’s default error-handling behavior, as line 8 of Fig. 7 shows. Programmers
specify a function that is invoked if any errors arise (lines 1–4) within the OpenMP
implementation (e. g., directives and API calls). The handler can take any necessary ac-
tions and notify the OpenMP runtime about how to proceed with execution (e. g., retry,

8

1 # in c lude "omp.h"
2

3 # de f i n e BUFSIZE . . .
4

5 vo id e r r o r r e s (o m p e r r o r t p e r r , char ∗ e r r s t r) {
6 / / User−wr i t t e n func t i on to clean up , repor t ,
7 / / and otherw ise respond to the e r r o r
8 }
9

10 i n t main {
11 o m p e r r o r t p e r r ;
12 char ∗ e r r s t r ;
13 i n t t e r m i n a t e = 0 , n t h s = 16 ;
14 whi le (! t e r m i n a t e) {
15 #pragma omp parallel numthreads (n t h s)
16 {
17 . . . / / The body of the reg ion
18 }
19 i f ((p e r r = o m p g e t e r r o r (e r r s t r , BUFSIZE)) != OMP ERR NONE) {
20 e r r o r r e s (p e r r , e r r s t r) ;
21 i f (p e r r == OMP ERR THREAD CREATE) {
22 n t h s = (n t h s > 1) ? (n t h s −1) : 1 ;
23 }
24 e l s e {
25 p r i n t f ("unrecoverable error\n") ;
26 t e r m i n a t e = 1 ;
27 }
28 }
29 }
30 }

Fig. 6. Using the proposal based on error codes

abort, or continue). The prior proposal also provided a set of default handlers that the
program can specify with the onerror clause to implement common error responses.
Also, the context directive associates error classes and error handlers with sequential
code regions to support errors that arise in OpenMP runtime routines. Users are not re-
quired to define any callbacks in which case the implementation will provide backward
compatibility with the current best effort approach.

Our callback proposal extends the onerror proposal to meet our OpenMP error-
handling model requirements. We add the error class OMP USER CANCEL to associate
error handlers with termination requests of done constructs, which supports volun-
tary region termination and, thus, user-defined error handling. We provide the error
class OMP EXCEPTION RAISED, so that error handlers can catch and handle C++ ex-
ceptions, either locally or globally by re-throwing. Thus, this mechanism supports the
exception-aware semantics of C++ that handle and re-throw exceptions. Finally, we are
exploring extensions such as specifying a default handler with an environment variable
so that applications can take appropriate actions for errors that occur during initializa-
tion of the OpenMP runtime or from invalid states of internal control variables.

5 Other Concurrent Programming Error Handling Models

POSIX threads (pthreads) [5] is one of the earliest concurrent programming models.
It specifies a binding for C, which all vendors have reused for C++ and Fortran. An

9

1 o m p e r r o r a c t i o n t s a v e d a t a (omp_err_info_t ∗ e r r o r , my da t a t ∗d a t a) {
2 /∗ save computed data ∗ /
3 re turn OMP ABORT; / / n o t i f y the r e so l u t i o n to the e r r o r
4 }
5

6 vo id f () {
7 my da t a t d a t a ;
8 #pragma parallel o n e r r o r (OMP ERR SEVERE , OMP ERR FATAL: s av eda t a , &d a t a)
9 {

10 /∗ p a r a l l e l code ∗ /
11 }
12 }

Fig. 7. Example of OpenMP error handling using the callback proposal

effort is currently underway to define a POSIX threads binding for C++ [16]. Four error
handling models are commonly used for threads; two apply to pthreads.

The first, and the simplest pthreads model, stops a thread when an error occurs using
pthread kill or pthread cancel for asynchronous mode. This method uncon-
ditionally stops a thread and provides no mechanism to respond by calling cleanup
actions. The Java Thread API [12] includes a similar facility, Thread.destroy or
Thread.stop. This model was reasonable for exception-unaware languages but does
not support exception-aware languages. It could corrupt a running program because a
thread may be partially completed, leaving some object or data in an incomplete state.
Although incomplete, any programming model should support this simplest termination
error handling model, which is why we add the done construct.

The second model allows the target thread to delay its response to a termination
request. The many examples of this model all use the idea of an interruption or cancel-
lation point that is a well-defined point at which the target thread must respond. The full
list of pthreads interruption points include calls to wait(), sleep(), create()
and write(). In addition, cancellation points are usually encountered when a thread
is blocked while sleeping, joining another thread or task, or waiting for a mutex, sema-
phore signal or synchronization. When a thread requests another thread to cancel itself
(with pthreads cancel in pthreads), the request is mapped in the target thread to
an exception that is checked at cancellation points and can be rethrown or handled. With
pthreads, a program can install a chain of cancellation handlers, which serve a similar
purpose as destructors in C++.

With pthreads, cancellation requests cannot be ignored or caught: the target must
stop at its next cancellation point and cancellation cannot be stopped once it has be-
gun. While acceptable for C or Fortran which lack exceptions and object destructors,
exception-aware languages like C++ require the ability to catch and recover from errors
and to continue correct execution. Since an OpenMP error handling model must support
C++, OpenMP requires a richer model than pthreads.

The third model, a (partially) cooperative model, implements error interrupts as
exceptions thrown by wait/join/sleep calls. Like pthreads, the target thread can
let destructors unwind the stack and exit. Unlike pthreads, the target thread can choose
to unwind its stack until it finds a handler that catches and handles the exception, and
then resume normal operation. Alternatively, it can catch the exception immediately and

10

ignore it. Thread.interrupt in Java and Thread.Interrupt in .NET provide
a partial cooperative model, while one is currently being prepared in C++0x [4].

The fourth model, a fully cooperative model, allows the target thread to check
whether it is the target of an interrupt anywhere, not just at cancellation points. This
cooperative model is planned for C++0x.

MPI supports error handling with a callback mechanism [11]. This mechanism pro-
vides a default behavior of aborting when errors occur within MPI as well as an addi-
tional predefined handler that allows errors to return an error code. MPI error support is
similar to our overall proposal although the issues are simpler since MPI defines error
handling as a local operation other than with the default abort behavior.

Michael Süß [14] proposes a cancellation proposal with a pragma-based user tech-
nique for stopping threads. This proposal does not define any cancellation points, and
is generally considered a cooperative exception approach. It is also limited to threads
and regions and cannot shutdown other constructs, e. g., tasks or subteams. Our done
construct is similar but simpler to use and covers all existing OpenMP constructs.

OpenMP/Java [8], JCilk [2], and TBB [6] support exception handling by setting
an internal flag. OpenMP/Java and JCilk check this flag at cancellation points, termi-
nate parallel execution, and rethrow exceptions to the sequential code. Both languages
arbitrarily select one exception if multiple arise. TBB registers the first exception and
cancels the task group; it ignores other concurrent exceptions. TBB supports exception
propagation for C++0x to pass exceptions to other threads. All three models lack a flex-
ible mechanism to react to error situations other than terminating parallel execution.
With our proposal we strive to provide a toolbox of error-handling mechanisms that
help programmers implement more sophisticated error-handling strategies.

6 Conclusions and Future work

We have presented the current directions that the OpenMP Error Model Subcommit-
tee is pursuing. OpenMP currently has no concept of errors. We have identified the
requirements of OpenMP error-handling models. The most important requirements are
the need to support all OpenMP base languages and to provide backward compatibility
for applications that assume no error-handling support is available. The first require-
ment mean that the mechanism must not require significant changes to sequential code
for exception-unaware and exception-aware languages.

We have detailed planned error-handling extensions for future OpenMP specifica-
tions. Our plans include the standardization of a done construct that supports termi-
nation of OpenMP regions, which not only supports error handling but will also prove
useful for some task-based programs. We anticipate that OpenMP 3.1 will include this
construct while we target OpenMP 4.0 for more complete error handling capabilities.
In future, we are investigating an error codes proposal that follows the characteristic
error handling in C and Fortran and a callback proposal that provides at least a partial
cooperative model.

We still have issues to resolve for the 4.0 proposals. We are exploring a minimal
set of required cancellation points. We also must integrate the proposals into the overall
standard. For example, barriers can cause deadlocks in the presence of exceptions when

11

all threads besides the one that catches an exception wait at a barrier. This behavior is
technically non-conforming code; we must resolve this inconsistency, possibly through
the minimal cancellation point set. Overall, we will continue to explore these issues and
to design solutions that will provide a complete OpenMP error-handling model.

References

1. Compaq Computer Corporation. Compaq Fortran – Language Reference Manual, September
1999. Order number AA-Q66SD-TK.

2. J.S. Danaher, I.-T. Angelina Lee, and C.E. Leiserson. Programming with Exceptions in JCilk.
Science of Computer Programming, 63(2):147–171, December 2006.

3. A. Duran, R. Ferrer, J.J. Costa, M. Gonzàlez, X. Martorell, E. Ayguadé, and J. Labarta. A
Proposal for Error Handling in OpenMP. Intl. Journal of Parallel Programming, 35(4):393–
416, August 2007.

4. P. Becker (editor). Working Draft: Standard for Programming Language C++, November
2009. Document number N3000.

5. IEEE. Threads Extension for Portable Operating Systems (Draft 6), February 1992. Docu-
ment P1003.4a/D6.

6. Intel Corporation. Intel Threading Building Blocks Reference Manual. Technical report,
July 2009. Document number 315415-003US.

7. V. Issarny. An Exception Handling Model for Parallel Programming and its Verification. In
Proc. of the Conf. on Software for Citical Systems, pages 92–100, New Orleans, LA, USA,
December 1991.

8. M. Klemm, R. Veldema, M. Bezold, and M. Philippsen. A Proposal for OpenMP for Java.
In Proc. of the Intl. Workshop on OpenMP, Reims, France, June 2006. No page numbers.

9. J.R. Larus and R. Rajwar. Transactional Memory (Synthesis Lectures on Computer Archi-
tecture). Morgan & Claypool Publishers, January 2007.

10. M. Milovanović, R. Ferrer, O. Unsal, A. Cristal, X. Martorell, E. Ayguadé, J. Labarta, and
M. Valero. Transactional Memory and OpenMP. In Proc. of the 3rd Intl. Workshop on
OpenMP: Practical Programming Model for the Multi-Core Era, pages 37–53, Beijing,
China, June 2007. LNCS 4935.

11. MPI Forum. MPI: Extensions to the Message-passing Interface, Version 2.2. Technical
report, MPI Forum, September 2009.

12. S. Oaks and H. Wong. Java Threads. O’Reilly, Sebastopol, CA, USA, 3rd edition, 2004.
13. OpenMP ARB. OpenMP Application Program Interface, v. 3.0, May 2008.
14. M. Süß and C. Leopold. Implementing Irregular Parallel Algorithms with OpenMP. In Proc.

of the Euro-Par 2006 Conf., pages 635–644, Dresden, Germany, August 2006.
15. I. Sommerville. Software Engineering. Pearson Education, Ltd., Harlow, UK, 8th edition,

April 2007.
16. N. Stoughton. POSIX Liaison Report, February 2008. Document number N2536.
17. S. Tazuneki and T. Yoshida. Concurrent Exception Handling in a Distributed Object-Oriented

Computing Environment. In Proc. of the 7th Intl. Conf. on Parallel and Distributed Systems
Workshops, pages 75–82, Iwate, Japan, July 2000.

18. The Open Group. The Open Group Base Specifications Issue 7, December 2008. IEEE Std
1003.1-2008 and POSIX.1-2008.

19. J. Xu, A. Romanovsky, and B. Randell. Concurrent Exception Handling and Resolution
in Distributed Object Systems. IEEE Transactions on Parallel and Distributed Systems,
11(10):1019–1032, October 2000.

12

bledsoe2
Typewritten Text
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

