
LLNL-CONF-426350

MUST: A Scalable Approach to
Runtime Error Detection in MPI
Programs

T. Hilbrich, M. Schulz, B. R. de Supinski, M.
Muller

March 26, 2010

3rd Parallel Tools Workshop
Dresden, Germany
September 14, 2009 through September 15, 2009



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



MUST: A Scalable Approach to Runtime Error

Detection in MPI Programs

Tobias Hilbrich1, Martin Schulz2, Bronis R. de Supinski2, and Matthias S.
Müller3

1 GWT-TUD GmbH, Chemnitzer Str. 48b, 01187 Dresden, Germany,
tobias.hilbrich@zih.tu-dresden.de

2 Lawrence Livermore National Laboratory, Livermore, CA 94551, USA,
schulzm@llnl.gov, bronis@llnl.gov

3 Center for Information Services and High Performance Computing (ZIH),
Technische Univeristät Dresden, D-01062 Dresden, Germany,

matthias.mueller@tu-dresden.de

Abstract. The Message-Passing Interface (MPI) is large and complex.
Therefore, programming MPI is error prone. Several MPI runtime cor-
rectness tools address classes of usage errors, such as deadlocks or non-
portable constructs. To our knowledge none of these tools scales to more
than about 100 processes. However, some of the current HPC systems
use more than 100,000 cores and future systems are expected to use
far more. Since errors often depend on the task count used, we need
correctness tools that scale to the full system size. We present a novel
framework for scalable MPI correctness tools to address this need. Our
fine-grained, module-based approach supports rapid prototyping and al-
lows correctness tools built upon it to adapt to different architectures
and use cases. The design uses P

nMPI to instantiate a tool from a set
of individual modules. We present an overview of our design, along with
first performance results for a proof of concept implementation.

Key words: Correctness Checking, MPI, Marmot, Umpire

1 Introduction

The Message Passing Interface (MPI)[1, 2] is the de-facto standard for program-
ming HPC (High Performance Computing) applications. Even the first version
of this interface offers more than 100 different functions to provide various types
of data transfers. Thus MPI usage is error prone and debugging tools can greatly
increase MPI programmers’ productivity. Many types of errors can occur with
MPI usage including invalid arguments, errors in type matching, race condi-
tions, deadlocks and portability errors. Existing tools that detect some of these
errors use one the following three approaches: static source code analysis, model
checking or runtime error detection.

Runtime error detection is usually the most practical of these approaches
for tool users, since it can be deployed transparently and avoids the potentially



exponential analysis time of static analysis or model checking. However, these
tools are generally limited to the detection of errors that occur in the executed
control flow of the application and, thus, may not identify all potential errors.
Several runtime error detection tools for MPI exist; however, our experience is
that none of these tools covers all types of MPI errors. Further, none is known to
scale to more than about 100 processes. With current systems that utilize more
than 100,000 cores it is becoming increasingly difficult to apply these tools, even
to small test cases.

This paper presents MUST, a new approach to runtime error detection in
MPI applications. It draws upon our previous experience with the existing tools
Marmot [3] and Umpire [4] and is specifically designed to overcome the scala-
bility limitations of current runtime detection tools while facilitating the imple-
mentation of additonal detection routines. MUST relies on a fine grain design
in the form of modules that are loaded into P

nMPI [5]. The next section will
present the experiences and issues that we discovered during our development
of Marmot and Umpire. Section 3 presents the goals and general design ideas of
MUST, while Section 4 covers several key design details of MUST. In Section 5
we present initial experimental results with a proof of concept implementation
of the MUST design. Finally, Sections 6 and 7 present related work and our
conclusions.

2 Experiences from Marmot and Umpire

This section presents insights into our two predecessor MPI correctness checking
tools: Marmot [3] and Umpire [4]. Marmot provides a wide range of local and
global checks and offers good usability and integration into several other tools.
Umpire’s strength is a runtime deadlock detection algorithm that detects all
actual deadlocks in MPI-1.2 as well as some potential deadlocks on alternate
execution paths. While both tools have been very successful and have helped
users debug their codes, they both are first generation MPI checker tools and
have inherent limitations, upon which we focus in the following.

In particular, our analysis focuses on two things: first, the communication
system for MPI trace records; second, the separation of tool internal infrastruc-
ture and the actual correctness checks. The communication system is necessary
for checks (e.g., deadlock detection or type matching) that require global knowl-
edge of MPI calls, i.e., data from more than one process. Thus, such checks
require a system to communicate records for MPI calls. The separation of tool
internal infrastructure and the actual correctness checks is important in order
to enhance existing checks and to add further correctness checks that are used
for new features or new versions of the MPI standard. We first analyze these
aspects for Marmot and then cover Umpire.

2.1 Marmot

Marmot is an MPI runtime checker written in C++ that covers MPI-1.2 and
parts of MPI-2. Its communication system is sketched in Figure 1. Marmot’s



Application

Client Side Server Side

Core Tool

Additional
Process

(Debug
Server)

Visual Studio
Marmot AddIn

DICE Display

MPI
Native

Profiling
Interface

Log File

TXT, HTML, ...

Marmot

Fig. 1. Marmot trace communication design.

MPI wrappers intercept any MPI call issued by the application. Marmot then
performs two steps before executing the actual MPI call: first, it checks for cor-
rectness of the MPI call locally; second, it sends a trace record for this MPI call
to the “DebugServer”, a global manager process. The application process contin-
ues its execution only after it receives a ready-message from the DebugServer. As
a result, it is guaranteed that all non-local checks executed at the DebugServer,
as well as all local, are finished before the actual MPI call is issued. This syn-
chronous checking ensures that all errors are reported before they can actually
occur, which removes the need to handle potential application crashes. The De-

bugServer also executes a timeout based deadlock detection. While this approach
can detect many deadlocks, it can lead to false positives. Also, it is not possible
to highlight the MPI calls that lead to a deadlock with this strategy. Addition-
ally, the DebugServer performs error logging in various output formats and can
send error reports via TCP socket communication to arbitrary receivers. The
main disadvantage of this synchronous or blocking communication system is its
high impact on application performance. In particular, the runtime overhead
increases significantly as the number of MPI processes increases since the De-

bugServer is a centralized bottleneck. Also, the blocking communication with the
DebugServer can lead to high latency even at small scales, which – especially for
latency bound applications – is a disadvantage.

The separation of tool internal infrastructure and the actual MPI correctness
checks is not well solved for Marmot. It uses one C++ class for each MPI call
and uses multiple abstract classes to build a hierarchy for all MPI calls. Checks
are implemented as methods of these classes and are called before the PMPI call
is issued. This has two disadvantages: First, checks for one MPI call are often
distributed to multiple objects making it hard to determine which checks are
used for a certain MPI call. Second, our experience with Marmot shows that
there is no reasonable hierarchy for MPI calls that also builds a good hierarchy
for all the different types of checks. Thus, many checks in Marmot are either
implemented in very abstract classes or are implemented in multiple branches
of the object hierarchy, which leads to code redundancy. The implementation



Thread Thread

Process 0 Process 1 Process N−1

Application
Thread

Application
Thread

Application
Thread Thread Thread

Outfielder OutfielderOutfielder Manager

MPI
Native

Profiling
Interface

Umpire
Wrapper

Processes
MPI

Fig. 2. Umpire trace communication design.

of the checks uses a multitude of static variables that are stored in the more
abstract classes of the hierarchy. These variables represent state information for
the MPI system leading to checks being very tightly coupled with Marmot’s class
hierarchy.

The development of Marmot occurred concurrently with multiple workshops
on parallel programming tools that included hands-on sessions. The experiences
from these workshops guided the development of Marmot. One of the commonly
asked-for features are integrations into widely accepted tools like debuggers,
IDEs, or performance tools. As a result, Marmot provides multiple usability
enhancing tools and integrations that help users in applying the tool. These
efforts help new users to apply the tool easily, which is an important factor for
the success of Marmot.

2.2 Umpire

The MPI correctness checker Umpire is written in C and focuses on non-local
MPI checks. It executes both a centralized deadlock detection and type matching
at a central manager. Figure 2 sketches the trace transfer that is implemented in
Umpire. The first difference to Marmot is that Umpire spawns extra threads for
each MPI process. It spawns an “outfielder” thread for all processes. In addition,
it spawns a “manager” thread on one process (usually process 0). The outfielder

thread asynchronously transfers trace records to the centralized manager, which
is executed on the manager thread.

Similarly to Marmot, Umpire’s wrappers intercept any MPI call issued by
the application. However, Umpire minimizes immediate application perturba-
tion. The application thrad only builds a trace record for the MPI call, which
it transfers to the outfielder thread of that process through shared memory.
Each outfielder thread aggregates the trace records that it receives and sends
them to the manger thread. This send happens if the buffer limit is exceeded
or when a timeout occurs. This communication is implemented with either MPI



or shared memory depending on the system architecture. Umpire’s communica-
tion system is designed to incur low runtime overhead, which is achieved with
the asynchronous transfer of trace records to the central manager. Due to the
asynchronous design, the central manager is no longer a bottleneck. However,
it still limits performance since it must analyze trace records of all processes.
Further, performance tests with Umpire show that the efficiency of the asyn-
chronous transfer depends highly on the interleaving of the communication of
the application and the MPI communication of the outfielder threads [6].

As with Marmot, the separation of internal infrastructure and correctness
checks is incomplete with Umpire. The checks that are executed at the central-
ized manager are tightly coupled to a large structure that represents internal
state as well as MPI state. All checks are directly coupled to this structure.
Also, some of the different checks of the central manager are dependent on each
other and need to use internal data from each other. This applies to a smaller
extent to local checks which tend to need less state information. Umpire cur-
rently only implements a small number of local checks. Additional local checks
may be added by extending the wrapper generation of Umpire, since checks can
be issued in the wrappers or other generated files.

3 Introduction to MUST

We present MUST (Marmot Umpire Support Tool), a new approach to runtime
MPI correctness checking. We designed MUST to overcome the limitations to
scalability and extensibility of Umpire and Marmot and their hard coded trace
communication with a centralized manager. Its design focuses on the following
goals:

1. Correctness

2. Scalability

3. Usability

4. Portability

The correctness goal is the most important one and comes with two sub-goals:
first, the tool must not give false positives; second, the tool should detect all MPI
related errors that manifest themselves in an execution with MUST. We restrict
this second sub-goal to runs in which errors actually occur, as the detection of
all potential errors would likely incur an intolerable runtime overhead, which
would limit the applicability of the tool.

The second goal, scalability, is one of the main motivations for this new
approach to MPI checking. The tool must scale at least to small or medium
sized test cases on next generation HPC systems. With the current trend towards
high numbers of computing cores, this means at least a range of 1,000 to 10,000
processes. Our goal is to offer a full set of correctness features for 1,000 processes
at a runtime overhead of less than 10%, and a restricted set of correctness features
for 10,000 processes at the same runtime overhead.



The further goals, usability and portability, are important to achieve a suc-
cessful tool that will find acceptance with both application programmers and
HPC support staff. A common problem with many HPC tools is that they re-
quire the application developer to recompile and relink the application, which
can be very time consuming for larger applications. Therefore, we aim to avoid
this requirement with MUST. Further, tools must be adaptable to special HPC
systems that impose restrictions such as no support for threads.

We address both issues with P
nMPI [5], an infrastructure for MPI tools.

P
nMPI simplifies MPI tool usage by allowing tools to be added dynamically,

removing the need to recompile and offering flexibility in the choice and combi-
nation of PMPI-based tools. Only the P

nMPI core is linked to the application,
instead of a certain MPI tool. If the MPI tools are available as shared libraries,
P

nMPI supports the application of any number of MPI tools simultaneously.
Thus, at execution time, the tool user can decide which tools he wants to apply
to an application.

P
nMPI achieves this flexibility by virtualizing the MPI Profiling interface. It

considers each MPI tool as a module and arranges these modules in stacks that
specify the order in which MPI calls are passed to the modules. These modules
may also cooperate with each other by offering services to or using services from
other modules. Further, special P

nMPI modules allow more enhanced features
like condition-based branching in stacks. This infrastructure provides flexibility
combined with advantages to tool usability. As a result, we base the design of
MUST on P

nMPI and use fine grained modules that can be composed to form
an instance of MUST. With this basic infrastructure, we can easily adapt the
MUST tool to specialized scenarios such as when only an individual correctness
check is of interest.

A further important aspect of MUST is the notion that the overall tool
will consist of three layers. The bottom layer is provided by P

nMPI and its
modules that provide the basic infrastructure and composability of the tool.
The actual correctness checks form the upper layer of MUST. The remaining
middle layer has to provide service tasks like trace record generation and the
communication of trace records to processes and threads that are exclusively
allocated to the tool, which are used to offload correctness analyses. A further
task is the management of these processes and threads for error cases, startup
and shutdown. This task is tool agnostic and needed for many HPC tools. As
a result, we want to provide this layer of functionality as a decoupled set of
modules that is also available to other tool developers. Thus, we name this layer
of functionality “Generic Tool Infrastructure” (GTI).

4 MUST Design

This section introduces some of the key design ideas of MUST. As discussed
in the last section, our design uses P

nMPI for the underlying infrastructure
along with a set of fine grain modules that implement the MPI checks. A first
important aspect of the MUST design is the ability to execute correctness checks



Process

Legend:

Process 1

Process 0

Process 2

Process 3

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����

����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����

����
����
����

Place

Check

State Tracker

Fig. 3. Example instantiation of places, checks, state trackers and a communication
network.

either in an application process itself (in the critical path) or in extra processes
or threads that are used to offload these analyses (away from the critical path).
This choice can provide a low runtime overhead while supporting portability.
The first part of this section introduces the concepts that we use to achieve
this goal. Afterwards we present an overview of the overall components of the
MUST design, and highlight their tasks. A further aspect of the design is the
communication of trace records. We present an overview of how different types
of modules combine to implement this communication. These modules are part
of the GTI layer and can be used by other tools.

4.1 Offloading of Checks

The option to execute correctness checks on additional processes or threads is one
of MUST’s most important aspects. We refer to such a process or thread by the
term “place”. Marmot and Umpire both execute some checks on an extra place
(the manager thread for Umpire and the DebugServer process for Marmot).
However, both tools do not support the selection of the place of execution freely,
as these checks are explicitly aware of being executed at a certain place. Moving
such a check into the critical path, or a check being executed in the critical path
to another place is not easily possible in either Marmot or Umpire.

The main problem is that the execution of checks often requires background
information on the state of MPI. It is possible within the application process
for a synchronous tool to query such information with MPI calls, while it is not
possible on additional processes that do not have access to the MPI library. Sim-
ilarly, if the MPI process has proceeded beyond the MPI call, the relevant state
may have changed. Also, the required information often must be gathered and
updated during application execution. For example, determining which requests
are currently active requires the sequence of request initiations and completions.



MUST Modules GTI Modules P
nMPI Modules Descriptions

GUI
Checker

Configuration
System Builder

Generated
Modules

P
nMPI Configs Startup Script

Fig. 4. Major components in MUST; arcs denote input/output dependencies.

While much of the work can be offloaded to MPI emulation, the gathering of the
basic information must take place in the application processes themselves.

MUST uses the concept of “state trackers” to solve this problem. All infor-
mation that a check requires but is not directly available from the arguments
of the MPI call that triggered this check, must be provided by state trackers.
These trackers are implemented as independent modules and may gather differ-
ent types of data during the application’s runtime and provide it to checks when
needed. If multiple checks require the same state tracker, a single instance of the
state tracker can provide this information. In order to support the placement of a
check at any place, the MUST system has to determine which state trackers are
required on each place. This strategy provides a transparent way to implement
checks that can be offloaded to places.

Figure 3 shows an example distribution of places, checks, state trackers and
a trace communication network. It uses four application processes and seven
extra places to offload checks. The checks are highlighted as little boxes in the
top right corner of the places or application processes. Each place or application
process may also need state trackers that are indicated by little boxes above the
checks.

4.2 Major Components

Figure 4 shows the main components of MUST and parts of their overall in-
teraction. The correctness checks and the tool infrastructure are provided as
modules from MUST, P

nMPI, and the GTI (top row). We summarize a fur-
ther set of components in the top right of the figure as “descriptions”, which
describe properties of some of the modules and formalize what checks apply to
the arguments of specific MPI calls. They also characterize the dependencies of
checks and state trackers. A GUI (middle left) provides users with options to
individualize MUST for their needs, e.g., to specify the checks being used, to
add extra processes/threads that offload checks, or to define the layout of the



Sender Side Receiver Side

Communication Strategy Communication Strategy

Communication Protocol

Fig. 5. Composition of places with communication strategies and communication pro-
tocols.

trace communication network. A default configuration will usually by sufficient
for smaller test cases, while large scale tests will need a specifically tailored con-
figuration. The system builder component uses the selected tool configuration,
the list of available modules and the various descriptions to create the configura-
tion files for P

nMPI and additional intermediate modules, including specialized
MPI wrappers to create and forward the necessary trace records. An additional
startup script may be provided to simplify the startup of the application with
MUST.

4.3 Trace Communication System

An important aspect of MUST’s design is its encapsulation of how to transport
trace records from one process or thread to another. An efficient communication
of trace records primarily depends on two things: first, an efficient communica-
tion medium that optimizes the use of the underlying system where possible;
second, an efficient strategy to use these communication media. Thus, we must
use shared memory when communicating on node or rely on InfiniBand instead
of Ethernet if both networks are available. It will usually be very inefficient to
transfer tiny trace records with single messages with a TCP/InfiniBand/MPI
based communication. Also, it will be more effective not to wait until the mes-
sage has been received for most media.

The GTI component of MUST solves this problem by combining two differ-
ent types of modules to implement a communication. The first type of module,
a “communication strategy”, decides when to send what information: it may
send trace records immediately or it may delay the transfer of trace records and
aggregate them into larger messages. The second type of module, a “communica-
tion protocol”, implements the communication for a particular communication
medium, e.g., TCP/IP, InfiniBand, SHMEM, or MPI.

Figure 5 shows how we compose these modules on the sender and receiver
side. By selecting appropriate combinations of these two module types, we can
provide a flexible, adaptable and high performance communication of MPI com-
munication traces. One instantiation of MUST may use multiple combinations,



e.g., a shared memory communication protocol to transfer MPI trace records to
an extra thread and a TCP/IP communication protocol to transfer trace records
from this thread to a further place used to offload checks.

5 Initial Experiments

We developed a proof of concept implementation of a subset of the MUST design
in order to verify our ideas, as well as to perform first performance studies. The
implementation provides the features necessary to use extra places and trans-
fer trace records to them. One of our early questions is the feasibility of our
runtime overhead goals. The question at hand is, whether we can transfer the
trace records from the application processes to extra places without perturbing
the application. We use initial experiments with our proof of concept implemen-
tation to study this problem. We use two different communication layouts and
three different communication strategies to study different communication ap-
proaches. Our tests intercept all MPI calls and create a trace record for each.
We send these trace records from the application processes to extra places and
measure the runtime overhead that results from this extra communication. How-
ever, the receiver side only receives and unpacks these trace records; no checks
are executed. We use NPB3.3-MPI as target applications and run our tests on a
1152 node AMD Opteron Linux cluster with a DDR InfiniBand network. Each
node has 8 cores on four sockets and 16 GB of main memory that is shared
between all cores.

As the communication protocol we use MPI itself, as it provides an easily
available and highly optimized communication medium. It also offers a simple
way to allocate extra processes for MUST. We use P

nMPI based virtualization
to split an allocated MPI COMM WORLD into multiple disjoint sets. The application
uses one of these sets as its MPI COMM WORLD, which is transparent to the applica-
tion itself. The remaining sets can be used for MUST. MPI based communication
between all of the sets is possible. We use two different communication layouts,
which are “1-to-1”, a best case layout where each application process has one
extra process that receives its trace records, and “all-to-1”, a centralized man-
ager case where all application processes send their trace records to one extra
process. The first layout helps to determine what runtime overhead to expect for
a case where checks can be well distributed and no centralized manager needs
to receive records from all processes. The second case captures the limits of a
communication with a centralized manager, as in Umpire and Marmot.

We use three different communication strategies to implement different com-
munication schemes. These are:

Ssend: Sends one message for each trace record, waits for the completion of
the receive of each message before it continues execution.

Isend: Sends one message for each trace record, does not wait for the comple-
tion of the receive of the message. With the MPI based communication
protocol this is implemented with an MPI Isend call.



Asend: Aggregates multiple trace records into one message, sends the message
when either the aggregate buffer is full (100KB) or a flush is issued. As
with Isend, the sender does not wait for the completion of the receive
of the message.

The Ssend strategy is very similar to the communication currently used in Mar-
mot. Besides its obvious performance disadvantage, it simplifies handling of ap-
plication crashes as it guarantees that trace records were sent out from the
application before a crash can occur. The Isend strategy is still simple to im-
plement and should overcome the performance problems of the Ssend strategy.
The Asend strategy, which is similar to Umpire’s communication strategy, is
our most complex strategy, but offers multiple optimizations that may provide
a low runtime overhead. In particular, we expect that this method will achieve
higher bandwidth, due to the aggregation of the trace records. However, its per-
formance benefit will depend on a good interleaving of the communication: we
expect a high runtime penalty if the aggregated messages are sent while the
application is in a communication phase. On the other hand, sending the ag-
greagated messages while the application is in a computation phase will incur
close to no runtime overhead, particularly on systems with communication co-
processors. Experiments with Umpire already highlighted the significance of this
timing behavior [6]. As a result, we instrument the NPB kernels to issue a flush
of the aggregated buffer when the application enters a computation phase. This
removes the need for an automatic detection of computation phases and repre-
sents a close to best case scenario. For a final system, we will have to apply a
heuristic to guess when the application is entering a computation phase.

Figure 6 summarizes the performance results for NPB3.3-MPI with problem
size D when using the three different types of trace communication and both
place configurations. Subfigure 6(a) shows the legend for the different communi-
cation layout and communication strategy combinations. The remaining figures
show the runtime overhead for 64 to 1024 processes for these combinations. The
all-to-1 cases fail to scale to 1024 processes for most of the kernels. Where the
Ssend and Isend versions of the all-to-1 communication even fail for 256 pro-
cesses for most kernels, the Asend strategy scales to up to 512 processes. Its
main advantage is the reduction in messages arriving at the centralized man-
ager, which leads to a lower workload. For the 1-to-1 cases, the Ssend strategy
incurs a slowdown of up to 3 and hence fails to meet our performance goals.
However, its slowdown does not necessarily increase with scale. Both the Isend

and Asend strategies for the 1-to-1 cases incur a low runtime overhead, even
at scale. These strategies only fail to achieve the desired less than 10% runtime
overhead for the kernel mg. However, the problem size D of NPB3.3-MPI is a
challenging test case at 1024 processes, as the fraction of the total execution
time spent in MPI is very high at this scale. We expect better results for most
applications.



ssend−all_1
ssend−1_1
isend−all_1
isend_1−1
asend_all−1
asend_1−1

(a) Legend

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 529 1024

(b) bt

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 529 1024

(c) sp

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 512 1024

(d) cg

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 512 1024

(e) ep

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 512 1024

(f) ft

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 512 1024

(g) is

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 512 1024

(h) lu

1.
00

1.
50

2.
00

p

sl
ow

do
w

n

64 256 512 1024

(i) mg

Fig. 6. Runtime overhead for different implementations of a trace transfer.

6 Related Work

Several other MPI message checkers exist beyond Marmot [3] and Umpire [4]
including MPI-Check [7] and ISP [8]. Both of these tools are not reported to scale
to more than a hundred processes. Especially the complex analysis of alternative
executions in ISP limits its scalability dramatically. We hope to combine our
efforts with the ones for ISP in future work, as both tools have the same basic
needs.

The generic tool infrastructure component of MUST relates to a wide range
of infrastructure and scalability work. This includes P

nMPI [5], as well as infras-
tucture tools like MRNet [9], which we may use to implement several of the GTI
components. Also, existing HPC tools like VampirServer [10] and Scalasca [11],
or debuggers like DDT [12] and Totalview [13] may implement well adapted com-



munication schemes that can be used for the GTI components. Further, these
tools, as well as upcoming tools may employ modules of the GTI to implement
their communications and may thus benefit from this component.

7 Conclusions

This paper presents a novel approach to create a runtime infrastructure for scal-
able MPI correctness checking. As far as we know, existing approaches – like
Marmot and Umpire – lack the scalability needed for large HPC systems. Fur-
ther, these tools use static communication systems that are hard to adapt to
different types of systems. Also the implementation of new checks and the ex-
tension of existing ones is hard for these tools, as their checks are tightly coupled
to their internal data structures and infrastructures. Our approach overcomes
these problems by using a fine-grained module-based design that uses P

nMPI.
We present an overview of this design and highlight our most important con-
cepts that allow the offloading of checks to extra processes and threads. Further,
we present a flexible communication system that promises an efficient trans-
fer of trace records between different processes or threads. To demonstrate the
feasibility of our design and to highlight the performance capabilities of our
communication system, we present a performance study with a proof of concept
implementation. This study shows that our ambitious runtime overhead goals
are feasible, even at scale. In particular we demonstrate full MPI tracing for up
to 1024 processes while transferring the trace records to extra processes without
perturbing the application.

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard.
http://www.mpi-forum.org/docs/mpi-10.ps (1995)

2. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface. http://www.mpi-forum.org/docs/mpi-20.ps (1997)

3. Krammer, B., Bidmon, K., Müller, M.S., Resch, M.M.: MARMOT: An MPI Anal-
ysis and Checking Tool. In Joubert, G.R., Nagel, W.E., Peters, F.J., Walter, W.V.,
eds.: PARCO. Volume 13 of Advances in Parallel Computing., Elsevier (2003) 493–
500

4. Vetter, J.S., de Supinski, B.R.: Dynamic Software Testing of MPI Applications
with Umpire. Supercomputing, ACM/IEEE 2000 Conference (04-10 Nov. 2000)
51–51

5. Schulz, M., de Supinski, B.R.: PNMPI Tools: A Whole Lot Greater Than the Sum
of Their Parts. In: Supercomputing 2007 (SC’07). (2007)

6. Hilbrich, T., de Supinski, B.R., Schulz, M., Müller, M.S.: A Graph Based Approach
for MPI Deadlock Detection. In: ICS ’09: Proceedings of the 23rd international
conference on Supercomputing, New York, NY, USA, ACM (2009) 296–305

7. Luecke, G.R., Zou, Y., Coyle, J., Hoekstra, J., Kraeva, M.: Deadlock Detection in
MPI Programs. Concurrency and Computation: Practice and Experience 14(11)
(2002) 911–932



8. Vakkalanka, S.S., Sharma, S., Gopalakrishnan, G., Kirby, R.M.: ISP: A Tool for
Model Checking MPI Programs. In: PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, New
York, NY, USA, ACM (2008) 285–286

9. Roth, P.C., Arnold, D.C., Miller, B.P.: MRNet: A Software-Based Multicas-
t/Reduction Network for Scalable Tools. In: SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing, Washington, DC, USA, IEEE Com-
puter Society (2003) 21

10. Brunst, H., Kranzlmüller, D., Nagel, W.E.: Tools for Scalable Parallel Program
Analysis - Vampir NG and DeWiz. The International Series in Engineering and
Computer Science, Distributed and Parallel Systems 777 (2005) 92–102

11. Wolf, F., Wylie, B., Abraham, E., Becker, D., Frings, W., Fuerlinger, K., Geimer,
M., Hermanns, M., Mohr, B., Moore, S., Szebenyi, Z.: Usage of the SCALASCA
Toolset for Scalable Performance Analysis of Large-Scale Parallel Applications. In:
Proceedings of the 2nd HLRS Parallel Tools Workshop, Stuttgart, Germany (July
2008)

12. Edwards, D.J., Minsky, M.L.: Recent Improvements in DDT. Technical report,
Alinea, Cambridge, MA, USA (1963)

13. Totalview Technologies: Totalview - Parallel and Thread Debugger.
http://www.totalviewtech.com/products/totalview.html (July 2009)

nijhuis2
Text Box
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.




