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In many scenarios, an Adaptive Optics (AO) control system operates in

the presence of temporally non-white noise. We use a Kalman filter with a

state space formulation that allows suppression of this colored noise, hence

improving residual error over the case where the noise is assumed to be

white. We demonstrate the effectiveness of this new filter in the case of the

estimated Gemini Planet Imager tip-tilt environment, where there are both

common-path and non-common path vibrations. We discuss how this same

framework can also be used to suppress spatial aliasing during predictive

wavefront control assuming frozen flow in a low-order AO system without a

spatially filtered wavefront sensor, and present experimental measurements

from Altair that clearly reveal these aliased components. c© 2010 Optical

Society of America

OCIS codes: 010.1080, 010.1285

1. Introduction

Significant advances have been made in applying advanced control systems techniques

to Adaptive Optics (AO) wavefront control. Most of these techniques are founded in

the Kalman filter and, more broadly, the linear quadratic gaussian (LQG) formalisms

and are as such model-based. Important advances in this area include the general

closed-loop Kalman filtering approach of Le Roux et al [1] and Poyneer et al’s Predic-

tive Fourier Control (PFC) [2], which uses the Kalman framework to independently

2



predict the Fourier modes of the wavefront under the assumption of frozen flow. Petit

et al experimentally demonstrated that the Kalman approach corrects tip-tilt vibra-

tion [3]. Recent work has focused on models that account for DM dynamics, such as

Looze’s [4] and Correia et al’s [5].

In this paper we use an expansion of the Kalman filter model to incorporate

measurement noise that is not temporally white. This model expansion allows us

to address two distinct problems in adaptive optics control. First, it allows us to pro-

duce a tip-tilt controller capable of advanced control (e.g. vibration rejection) of the

common path error, while at the same time rejecting non-common path error such as

vibrations that are sensed by the WFS but do not affect the science path. In his work,

Petit specifically focused on rejecting common path vibrations. He mentioned the pos-

sibility of extending his derivations to filter out non-common path disturbances (see

also [6] (reference in French)), but did not model them in the general framework of

colored noise as we do, and did not give any example where non-common path distur-

bances were present. In this paper we present the theory and give detailed simulation

results for the predicted Gemini Planet Imager (GPI) [7] tip-tilt environment.

The second application is to the PFC algorithm to deal with spatial aliasing in

the WFS. We present the theory and derive the controller structure, and present

experimental data showing that aliases can easily be detected in a low-order AO

system. We leave to further work demonstration of the effectiveness of this algorithm

via simulation.
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2. Incorporation of colored noise

In the standard formulation of the Kalman filter state space model, the measurement

noise is temporally white. This means that any specific instant of measurement noise

is temporally uncorrelated with all others. This is a reasonable assumption when

considering WFS noise due to standard CCD noise sources (i.e. photon noise and

read noise). However, noise due to another source may not be temporally white.

The AO state space model can be modified to deal with colored sources of noise. To

do so, we follow the procedure detailed in Candy, [8] (Section 5.8.2). We now present

a summary of these derivations.

The AO state space model is composed of two equations: one which describes the

temporal evolution of the state variables (AO phase to be corrected) and one which

describes the measurement process with white noise. In a very general form, the first

equation is

x[t + 1] = Ax[t] + Bw[t], (1)

where x is the state variables, A describes the temporal evolution, w[t] is temporally

white driving noise and B describes how that noise is used to generate the state. The

second equation is

y[t] = Cx[t] + Du[t] + v[t], (2)

where y[t] is the measurement (by the WFS) of the state, as described by C and v[t]

is temporally white measurement noise. The vector u[t] and matrix D are used to
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incorporate the closed-loop DM correction.

Given (1) and (2), we simply specify the variables and values, and use the Algebraic

Riccati Equation and the state equation to solve for the controller. (See, for example,

Sections 2 and 3 of Poyneer and Véran [9].)

In the case of colored measurement noise, we begin with the regular AO model

state equation, which models common path aberrations, now with slightly different

notation

xc[t + 1] = Acxc[t] + Bcwc[t]. (3)

Now the measurement equation, instead of having white noise v[t] has colored noise

z[t] instead,

y[t] = Ccxc[t] + Du[t] + z[t]. (4)

In order to use the Kalman equations on this model, we need to convert it to one

where the measurement noise is white. We do this by expressing the colored noise z[t]

with its own state space model.

n[t + 1] = Ann[t] + Bnr[t], (5)

and

z[t] = Cnn[t] + v[t]. (6)

In this model v[t] remains the temporally white measurement noise of the original

model.
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To produce the new colored measurement noise state space model (of two equations)

we augment (3) and (4) with (5) and (6). The vectors become

x[t] = (xT
c [t],nT [t])T , (7)

and

w[t] = (wT
c [t], rT [t])T . (8)

The matrices for (1) and (2) are then:

A =

⎛
⎜⎜⎜⎜⎝

Ac 0

0 An

⎞
⎟⎟⎟⎟⎠

, (9)

B =

⎛
⎜⎜⎜⎜⎝

Bc 0

0 Bn

⎞
⎟⎟⎟⎟⎠

, (10)

and

C =

(
Cc Cn

)
(11)

For use further on, we will also now define a modified measurement matrix where the

modified measurement matrix

Cmod =

(
Cc 0

)
(12)

that picks out only the common-path phase and ignores the non-common-path phase.

We can solve for the Kalman filter, which will now correct the same aberrations as

before, and deal with the colored noise in an sensible fashion.
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3. Vibration rejection for tip-tilt

As mentioned earlier, Petit has already described and experimentally demonstrated

a tip-tilt controller which rejects common-path vibration. In that formulation, each

vibration is modeled with as a second-order, real-valued process characterized by a

temporal frequency and a damping coefficient.

3.A. State space model

In our model we will control just one mode of the tip-tilt disturbance (e.g just tilt).

As such we have a single variable that represents the measured phase and the residual

error. In many scenarios this is entirely reasonable. However, analysis of an AO system

reveals correlations between tip and tilt disturbances, for best results the state space

model should incorporate both. Doing so is a simple extension of the model presented

below, so for simplicity and clarity we will only consider one variable in our model

and refer to it as tilt.

In our formulation, primarily due to its heritage from PFC, we choose to model

the vibration using a complex-valued parameter α. The magnitude of α sets the

bandwidth of the vibration and the phase of α sets the positive and negative temporal

frequency of the real-valued vibration. This is implemented with the real αr = R{α}

and imaginary parts αi = I{α} as,

⎛
⎜⎜⎜⎜⎝

ar[t + 1]

ai[t + 1]

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

αr −αi

αi αr

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ar[t]

ai[t]

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

wr[t]

wi[t]

⎞
⎟⎟⎟⎟⎠

. (13)

7



The state variable ar is used as the vibration signal. We can deal with Na vibrations,

and place their variables in a vector a = [ar,1, ai,1, · · · , ar,Na , ai,Na ]
T .

We model the other tilt components (that are not vibration), which are usually

low-temporal frequency errors due to atmospheric turbulence and windshake, with a

state vector g and transition matrix G

g[t + 1] = Gg[t] + Bgwg[t], (14)

where the driving white noise is wg[t] with noise matrix Bg. For now we leave the

order of this model arbitrary at Ng state variables.

In Poyneer and Véran [9] we presented our reduced-order closed-loop AO state

space model that dealt with arbitrary control loop delays. In this treatment we will

use the reduced state vector (which produces computational savings) and assume a

full time step delay and not utilize the arbitrary-delay features of the modes. Here

we expand our model, using the procedure outlined above in Section 2.

In this model the state vector xc contains state variables necessary for the time evo-

lution of the common-path phase aberration, in this case the atmosphere, windshake

g[t] and vibrations ar[t], ai[t], etc. In addition, it has the aberration at the previous

point in time φ[t − 1]:

xc = [gT , aT , φ[t − 1]]T . (15)
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The state transition matrix is

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G 0 0 · · · 0 0 0

0T αr,1 −αi,1 · · · 0 0 0

0T αi,1 αr,1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·

0T 0 0 · · · αr,Na −αi,Na 0

0T 0 0 · · · αi,Na αr,Na 0

1, 0, · · · 0 1 0 · · · 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

The driving noise vector wc[t] has Ng + 2Na independent Gaussian variables. The

noise covariance matrix Pw is diagonal; the exact variances will be specified when

the model is applied. The matrix Bc controls the feeding of the driving noise into the

state. This makes the matrix be Ng + 2Na columns and Ng + 2Na + 1 rows,

Bc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Bg 0

0 I2Na

0 0T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Assuming that the computational delay (WFS read, all computer calculations up to

application of the mirror commands) is one frame, u[t] is just the last mirror command

d[t − 1]. This makes the matrix D = [−1]. The measurement matrix is Cc = [0T , 1],

which is Ng + 2Na + 1 elements long and all zeroes except the last entry, which picks

out φ[t − 1]. Note that this implicitly assumes that i) pure tilt can be produced by

the device used to correct for tilt errors and ii) no other effects degrade the WFS
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measurements. In a real AO system, assumption i) is very reasonable (corrector is

a tip-tilt mirror or a deformable mirror that can produce tilt very accurately), but

assumption ii) may not be correct due to spatial aliasing on the WFS. WFS aliasing

could be rejected by the use of a spatial filter in the system, or taken into account in

our model, as explained in section 4.

For the Nb non-common path vibrations, we model them in the same way as the

common-path vibrations, using the variable b and the parameter β instead of a and

α. This makes n[t] = [br,1, bi,1, · · · , br,Nb
, bi,Nb

]T The non-common path state vector

xn[t] = [b[t]T , ρ[t− 1]]T , where ρ[t− 1] is the last total non-common phase error. The

transition matrix is then

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βr,1 −βi,1 · · · 0 0 0

βi,1 βr,1 · · · 0 0 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · βr,Nb
−βi,Nb

0

0 0 · · · βi,Nb
βr,Nb

0

1 0 · · · 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)

The driving noise r[t] for this is 2Nb independent Gaussian variables. The noise

covariance matrix Pr is diagonal; the exact variances will be specified when the model

is applied. Similarly,

Bn =

⎛
⎜⎜⎜⎜⎝

I2Nb

0T

⎞
⎟⎟⎟⎟⎠

. (19)
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For the measurement part of the non-common path state model, the measurement

matrix simply picks off ρ[t− 1] with Cn = [0T , 1], which is 2Nb +1 elements long and

all zeroes except the last entry.

At any given time, the command to be sent to the tilt correcting device is φ(t)

(unity gain feedback) since we are assuming one frame of pure delay in the system.

φ[t] can be readily computed from g1[t] and a[t] in the estimated state vector.

3.B. Determination of control

We now have all the matrices necessary to complete our state space model for cor-

recting atmosphere and windshake tilt plus common path and non common path

vibrations. All we have to do is determine the signal characteristics (i.e. for a vibra-

tion, we need to know the power level to set the driving noise variance, along with

the bandwidth and temporal frequency to set α or β.)

Given the state space model, we can apply the Kalman filter equations to update

the state vector. Given the updated state vector, we then determine the new control

signal for the wavefront correction device. As in our previous work [2, 9], we assume

that the best mirror command to apply at the next time step is φ̂[t + 1|t], which is

our best estimate of the phase at the next time step the based on all measurements

up to and including y[t].

We calculate the control as follows. We begin with the new best state estimate that
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incorporates the current measurements:

x̂[t|t] = (I − KsC)Ax̂[t − 1|t − 1] + Ks(y[t] − Du[t]). (20)

The Kalman gain vector Ks is a function of the steady-state error covariance matrix

Ps,

Ks = PsC
H(CPsC

H + Pv)
−1. (21)

This matrix is found by numerically solving the Algebraic Riccati Equation (ARE):

Ps = APsA
H + BPwBH − APsC

H(CPsC
H + Pv)

−1CPsA
H. (22)

We now obtain φ̂[t + 1|t] from x̂[t|t] as

φ̂[t + 1|t] = CmodAAx̂[t|t]. (23)

The multiplication Ax̂[t|t] produces our prediction one step ahead, and then CmodA

picks out the state components which sum to the phase φ[t + 1|t]. This is our new

command to the wavefront corrector that will be used at time t + 1, namely, d[t + 1].

In the a case of tilt we are not computationally limited as in high-order wavefront

control, so we implement the controller in matrix form via Eq. 20 and then the final dot

product to obtain φ̂[t + 1|t]. We can efficiently implement the matrix multiplications

of by taking advantage of the fact that A is sparse.

3.C. Stability and relationship to LQG

To fully assess the stability of our closed-loop control, we will consider our state

space model and control signal in the context of LQG control. We choose to follow
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the detailed treatment of Looze [10], section 2.D, though other treatments exist in

the adaptive optics literature.

Beginning with a state-space model of closed-loop AO control, the control signal

is derived as a solution to the LQG problem via the solution of two AREs. If valid

solutions exist for these two AREs, equivalently if two specific matrices are stable,

then the closed-loop controller is as well. To use this analysis, we need to recast our

model so that the control signal is incorporated into the state (as it is in Eq 7 of [10])

as opposed to in our model where it is in the measurement equation (2).

This modeling difference is easy to fix by simply augmenting the state with two

additional variables at the head of the vector, and then modifying the existing ma-

trices. We use the following definitions, where the tilde indicates a modified matrix

used for the stability analysis given in [10],

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

0 0

1 0

⎞
⎟⎟⎟⎟⎠

0

0 A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

B̃ = [1,0]T , (25)

Caug = [0,−1], (26)

C̃ = [Caug,C], (27)

and

W̃ =

⎛
⎜⎜⎜⎜⎝

0

B

⎞
⎟⎟⎟⎟⎠

. (28)
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Finally, we need to define the weighting criterion Qp = I, and calculate Q as (following

Eq 12 of [10])

Q =

⎛
⎜⎜⎜⎜⎝

CT
augQpCaug −CT

augQpCmod

−CT
modQpCaug CT

modQpCmod

⎞
⎟⎟⎟⎟⎠

. (29)

To ensure that we measure the residual error relative correctly, we use Cmod which

includes only the common-path phase as measured with Cc and not the non-common-

path as measured with Cn.

The solution to the LQG problem is given by Eq 14 of [10] - to minimize the

variance of the residual phase φ[t] − d[t]. Using this analysis, our result is that the

LQG control is exactly what we had assumed, namely Eq. 23.

To verify that our model and controller are stable, we now check three matrices.

First, as we have done before [2], we examine A. If the eigenvalues of A have mag-

nitude less than one, our model is stable. For PFC this analysis was trivial: since A

was lower triangular, the eigenvalues are on the diagonal.

For our tilt controller, A is no longer lower diagonal. However, its structure lends

itself to easy analytic calculation: the eigenvalues are 0, α and α∗ for each of the Na

vibrations, β and β∗ for each of the Nb vibrations and the eigenvalues of the matrix

G. By definition the magnitudes of the α’s and β’s are less than one. So as long as G

has eigenvalues with magnitudes less than one, the controller is stable. This is easy

to do for reasonable models of atmospheric tilt and wind shake.

To verify that the controller itself is stable, we check the eigenvalues of two other
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matrices. Following [10], we need to show that Ã − B̃G̃ is stable. Since in our case

G̃ = [0, 0,CmodAA], this is easy to calculate the eigenvalues are the same as for A.

Finally, we need to show that Ã − L̃C̃ is stable. In our case, L̃ is obtained from

solving the same ARE (with augmentations) as Eq. 22, The eigenvalues of Ã − L̃C̃

are the same as that of A(I − KsC), where the Kalman gains are solved for with

Eq. 21 and Eq. 22. So when we solve the ARE to determine the steady state Kalman

gains for the filter, we can just do a quick numerical check to evaluate the eigenvalues

to ensure stability.

In summary, our system, following the LQG treatment of Looze, applies the LQG

controller and is stable in closed loop as long as our model is stable and the results

of solving the ARE for the Kalman gains produces a stable matrix A(I − KsC).

3.D. Implementation issues

We have already described how to calculate the control law in the closed-loop system

given a specific state space model. It is necessary to estimate those model parameters.

In our previous work we have relied on a block-adaptive implementation where the

state-space parameters are estimated from closed-loop measurements (see Section 4

of [2]). This was possible due to the computational efficiency our model identification

strategy.

For tilt we plan on doing model fitting based on the same temporal PSD approach.

There are at least four issues which may require future work, if the actual GPI tip-tilt
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environment warrants it.

First is the identification of common-path versus non-common-path phase for the

model. To get any benefit from this type of control, we need to correctly classify

the different components. Because the vibrations are due to instrument environment

factors (e.g. cyro-coolers), we expect the temporal frequencies to not change, though

the power levels probably will. An environmental analysis should be sufficient to

identify the frequencies of common-path and non-common-path vibrations, which

will be used to classify the vibrations.

Second is the question of if the tip-tilt controller will be updated regularly in a

block-adaptive fashion during closed-loop operation, of if it is sufficient to do updates

irregularly during open-loop time between science targets. This will depend strongly

on how much the conditions change, and how computationally expensive the model

fit step is. As we already have a method for closed-loop identification using tem-

poral PSD estimation, the fall-back position of open-loop identification can use the

same techniques, without the closed-to-open conversion of the temporal PSDs of the

measurements.

Third, fitting the atmosphere + windshake term model to the data may be a

more involved process. In our simulation example below we have reduced the fit

to a single variable. However, if we discover that the low-order behavior of the GPI

tip-tilt environment is not so simple to fit (e.g. the cut-off varies due to the number

of layers in the atmosphere), we will have to develop an efficient model fit strategy.
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Finally, the vibration peaks can be identified using the same correlation with a

reference peak shape as is used to find layer peaks in PFC. If the vibrations have a

significant range of damping coefficients (which will change the peak width), a second

step to estimate that may have to be included in the model fit.

In summary, there are several details to be worked out in how best to do the model

identification. This will be informed, as will the final model structure, by the actual

tip-tilt environment. None of these, however, should pose a significant challenge to

implementation.

3.E. Gemini Planet Imager tilt simulation

In a high contrast AO system such as GPI, it is critical to keep the star extremely

well centered on the coronagraph [11]. Tip/tilt requirements are set primarily to

preserve GPI’s high Strehl ratio for the planetary companions; this produces a residual

image motion requirement of 10 mas (goal of 6 mas). Since 8 mas (4.8 in the goal

case) are allocated to post-wavefront sensor non-common path vibrations and other

uncontrollable sources, this leaves for our purposes just 6 mas (goal of 3.6 mas).

This imposes a very stringent requirement on residual image motion. Because we are

controlling a single variable (tilt) we assume below that the performance requirements

above apply to the single variable.

Tip-tilt errors have different sources: atmospheric turbulence and telescope wind-

shake, which are usually broad-band and originate from the environment outside the
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observatory; and vibrations, which are usually narrow-band and originate from the

telescope systems and/or the instruments. In this simulation we modeled the atmo-

spheric turbulence using a Von Karman spatial power spectrum, with a telescope

diameter D = 7.906 m, a turbulence strength of r0 = 14.5 cm at the wavelength of

0.5 microns, an outer scale of L0 = 30 m and a wind speed of 15 m/s (direction of the

wind is assumed to be the same as the direction of the tilt mode). This corresponds

to typical (median) conditions at Gemini South. Assuming frozen flow, we derived

the temporal power spectrum of the atmospheric tip-tilt from these parameters using

the approach described in Conan et al. [12].

Since there is no reliable information available for windshake at Gemini South, we

used the windshake model proposed for the Thirty Meter Telescope. This model is

based on work from reference [13], and is detailed in reference [14]. The temporal

power spectrum of the tilt error due to windshake has the same structure as that of

the atmospheric tilt, with a plateau at low frequencies and the same −17/3 ≈ −6

asymptotic power law at high frequency. To be conservative, we took the 85 percentile

TMT profile as median windshake profile for Gemini South. This profile has a total

of 35 mas RMS of tilt.

For the vibrations, we used three strong vibrations identified by us [15] in our

analysis of telemetry data from the NICI WFS at Gemini South. That analysis cannot

differentiate common path vibrations (which affect the science image and should be

corrected) from non-common path vibrations (which occur in the WFS path and
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thus should be ignored). So for the sake of this simulation, we assume that two are

common-path vibrations: 4.5 mas RMS at 81 Hz, and 2 mas RMS at 279 Hz and the

other is non-common path: 1.7 mas RMS at 170 Hz.

To model the atmospheric + windshake tilt we considered models G of different

orders. In addition to the simple first-order model, we explored using higher order

models based on Butterworth filters. The flat behavior at low temporal frequencies

is captured by the cut-off frequency of the low-pass Butterworth. The higher the

order, the sharper the drop-off with temporal frequency. We tried both a second-order

Butterworth and third-order. Though the third order best matched the input temporal

PSD, the resulting closed-loop error transfer function had a very low bandwidth that

lead to excess residual error. As such, we are using the second-order atmospheric

model, which has better bandwidth. These different models have various tradeoffs

which are very dependent on how well they fit the actual signal inputs. Due to some

uncertainty in the exact nature of the GPI tip-tilt environment [15], we will not spend

time trying to optimize the model to our assumed conditions; that is a task best left

until actual tip-tilt information from GPI is available.

For a second-order model we use two states g = [g1, g2] and the state matrix is

G =

⎛
⎜⎜⎜⎜⎝

r exp(jθ) 1

0 r exp(−jθ)

⎞
⎟⎟⎟⎟⎠

. (30)

There is only one driving noise which feeds into g2, so Bg = [[0, 0], [0, 1]]. It is impor-

tant to implement this in cascade form, as the closeness of the poles causes numerical
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errors and instability when multiplied out to direct form.

The first step in the simulation is to generate random time series based on our

assumed inputs (e.g. atmospheric tilt as described above). This will be used first to

identify the state space model parameters, and then in a closed-loop simulation. A

time series is created from the temporal power spectra for each signal using white noise

inputs through the spectral factor filtering method. These time series were 32768 time

steps long at a sampling rate of 1.5 kHz. Based on our GPI end-to-end simulation as

it stood during our Critical Design Phase, the total (tip+tilt) rms measurement noise

is 2 mas for a magnitude I = 6 natural guide star. This provides us with a moderate

SNR; the optimized gain for this case is 0.3.

We then estimated the temporal PSD of the open-loop measurements from a single

realization of the random time series. We did a model fit procedure to estimate the

state space model coefficients. For the vibrations this is the same fit procedure as

for the peaks in PFC. For the higher-order atmospheric and windshake models, the

fit first selects a cutoff frequency θ and then optimize the r’s to get a best-fit in the

mean-square sense.

These parameters (α’s and β for the vibrations, G matrix, and driving noise powers

for everything as well as measurement noise) are then used to populate the full state

space. A discrete-time closed-loop simulation on a single variable is then run, with the

predictive controller implemented as described in Section 3.B, taking advantage of the

sparse matrices. This was done for Kalman filters with and without non-common-path
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errors in their models. For comparison purposes, we also consider an optimized-gain

integral controller.

First we will examine the transfer functions of the closed-loop system to illustrate

the benefit that the extra modeling provides. Given the model parameters and the

ARE solution above, we can determine the transfer functions via numerical evaluation.

In Fig. 1, left [top?] panel, we show the error transfer functions for the optimized-

gain integral controller and of the Kalman filter with the second-order atmospheric +

windshake model. There is significantly more attenuation of low temporal frequencies

with the second order atmospheric model. This improved attenuation of the higher

order models can be exploited in high SNR situations. There are two notches in the

error transfer function which correspond to the common-path vibrations. The depth

of these will depend on the magnitude of the coefficient α used in the state space

model and also on the SNR. A magnitude closer to 1 will deepen the notch. In higher

SNR situations these notches will be deepen; in lower SNR situations they will become

more shallow.

Noise transfer functions are shown in Fig. 1, right [bottom?] panel. For the new

non-common-path Kalman filter, the deep notch in the noise transfer function now

rejects that vibration and prevents it from propagating. There are two other notches

in the noise transfer function. These are due to the common-path vibration rejection

- each notch in the error transfer function has a matched dip in the noise transfer

function, but at a slightly lower magnitude temporal frequency. The Kalman filters in
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this case all have higher noise propagation than the optimized-gain integral controller,

but the second-order atmospheric model shown here is particularly higher.

These transfer functions illustrate how the Kalman filter with a sophisticated model

can provide better low-temporal frequency rejection and correct both common path

and non-common path vibrations. When applied to the GPI tip-tilt scenario, these

controllers enable us to meet our operating goals.

To estimate performance, we ran 32 new and different random time series through

the closed-loop simulation. This discrete-time closed-loop simulation assumed a two-

step delay from measurement to control, and operated at the same 1.5 kHz as the

inputs were sampled at. For this single variable case we assumed perfect sensing of

tilt and perfect correction. We assumed a purely discrete model, where the phase

is sampled once per frame; no continuous time approximations were used. (I.e. the

phase does not change during a time step.) Based on our previous work with both

discrete simulations and Simulink [9], this is a reasonable approach for this scenario

with full-frame delays.

For each trial, the RMS error on tilt is the square root of the sample standard

deviation of the error signal over the entire run (excluding initial convergence of

the filter). Over the 32 trials, we calculated the the square root of the sum of the

squares (RSS) of the each RMS result. The results for this moderate SNR case are

given in Table 1. The optimized gain integrator produced only 0.88 mas RMS residual

error due to atmosphere and windshake. However, using the second-order atmospheric

22



model in the Kalman filter provides more rejection (as seen in Fig. 1), with a residual

of only 0.022 to 0.024 mas RMS.

As for the vibrations, the integral controller cannot provide selective rejection; it

passes through the 4.5 mas RMS common path vibrations to 5.1 mas RMS residual

error. Adding vibration rejection with Kalman filtering effectively removes the vibra-

tion, leaving 0.24 mas RMS. The integral controller also passes through the 1.7 mas

RMS non-common path vibration as 1.1 mas RMS error. Using the Kalman filter

with non-common path correction reduces this to 0.15 mas RMS.

The additional modeling terms allow us to improve correction of each different

portion of the tilt environment and reduce the total error from 5.4 mas RMS to

between 2.5 mas RMS. This moves us from just making our requirement to easily

meeting and exceeding our goal on the moderate brightness guide star.

4. Prediction of frozen flow atmosphere with aliasing noise

The second application of the colored-noise model is to high-order wavefront control.

In our previous work on PFC we developed a predictive filter that exploits the fact

that each layer of frozen flow causes a concentration of power at a specific temporal

frequency for each Fourier mode. This allows easy identification and correction of

multiple layers of turbulence.

However, in all our analysis and simulation we assumed that a spatially filtered

wavefront sensor (SFWFS) [16] was used in the AO system. The spatial filter removes
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aliasing and exposes the underlying temporal error due to incomplete correction of

the dynamic atmosphere. It is this error which PFC further reduces with prediction.

The SFWFS works well only in high-order AO systems (see original paper for more

discussion of why), though an oversized filter has been shown by Fusco et al [17] to

improve performance in a low-order AO test bench. Most present AO systems do not

have spatial filters. Rigaut et al [18] derived that for the Shack-Hartmann WFS the

aliasing error is one-third the variance of the fitting error. For a curvature WFS, its

variances is about equal to the variance of the fitting error [19]. As such, advanced

control methods to further reduce temporal error may not have a significant impact

on low-order AO systems without a spatial filter. Conversely, methods that could

reduce spatial aliasing might be very useful.

It turns out that under frozen flow aliased components can be picked out and

ignored. Below we show experimental evidence that they can be detected, discuss

how to model aliasing as a colored noise source, and finally present the control law

which predicts the atmosphere while rejecting aliasing.

4.A. Experimental observation of frozen flow aliases

In our recent work, with colleagues, we used telemetry from the Keck and Altair AO

systems to experimentally validate the frozen flow hypothesis and clearly detect mul-

tiple layers of translating turbulence [20]. Here we use some of that data obtained with

Altair to demonstrate the detection of aliases. For all the details of the observation
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nights, experimental methods, etc., please consult [20].

To understand how aliases can be detected, we must first review how frozen flow

turbulence manifests in the Fourier modes of the wavefront aberration. We begin by

considering the wavefront phase sampled on the DM actuator or WFS grid spacing

d (which are assumed to be the same). For example, GPI’s subaperture size in the

pupil is approximately d = 18 cm. The Fourier modes of the wavefront are obtained

either in the reconstruction process (i.e. with Fourier Transform Reconstruction [21]

from WFS measurements) or as an after the fact discrete Fourier transform (DFT)

on the saved telemetry of the estimated phase. It is this second approach that we

used in analyzing Altair telemetry.

The DFT is done on an N × N grid, where N is usually a few larger than D/d,

where D is the pupil diameter in meters. For the Altair data, d = 66 cm, so D/d = 12,

but we use N = 16. The Fourier modes are indexed by frequency variables k and l,

take the values −N/2,−(N/2 − 1), · · · ,−1, 0, 1, · · · , (N/2 − 2), (N/2 − 1). This gives

each Fourier mode the frequency components, in units of m−1, fx = k/(Nd) and

fy = l/(Nd). Note that the fundamental limit on the highest frequency measured by

the AO system is set by the subaperture size d; increasing the grid size N on which

we reconstruct will not change this.

Under frozen flow, each layer has a velocity vector given by vx and vy, with units of

m/s. Pure translation of the layer gives rise to an impulse in the temporal frequency
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power spectrum of a Fourier modal coefficient at

ft = fxvx + fyvy =
kvx + lvy

Nd
. (31)

When the temporal power spectrum of a Fourier coefficient of the wavefront is ob-

tained, a layer of frozen flow shows itself as a concentrated peak of power at that

characteristic frequency ft.

This equation for temporal frequency holds for all Fourier modes, even those beyond

the highest frequency set by the actuator spacing d. When a spatially filtered WFS

is used, aliasing is prevented and any phase estimate or DM command will not have

spurious content. If there is no spatial filter, aliasing will occur. In an open-loop

observation mode, spatial frequencies beyond the Nyquist limit set by the actuator

spacing d will alias down and appear in the open-loop phase estimate. In closed-loop

control, the AO system will try to correct the aliases, leading to them appearing on

the DM commands in telemetry.

A given spatial frequency above the Nyquist frequency aliases down to specific

controllable modes. This happens through a replication of the signal at multiples of

the sampling frequency. (For an introduction to sampling theory, see Chapter 7 of

Oppenheim and Willsky [22]). For a spatial frequency k, l in our controllable spatial

frequency domain, it will not only have its true spatial frequency content after sam-

pling, but will also have aliases from spatial frequencies k + Nnk, l + Nnl, where nk

and nl range from −∞ to ∞ (excluding nk = nl = 0, of course). The power level of
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these aliases will be lower than the true signal due to the response of the WFS and to

the fact that under the Kolmogorov model of atmospheric turbulence, higher spatial

frequencies have less power.

As an illustration of this, we examine telemetry data from Altair for the night of

April 4, 2008. In this case, using the algorithms described in [20], we identified a single

layer of atmospheric turbulence with velocity vector vx = 9.87 m/s and vy = −11.56

m/s at 90% likelihood. The mapping of these peaks is shown at the top left of Fig 2.

The temporal frequency as a function of spatial frequency is clearly visible.

We consider the controllable Fourier mode k = 2, l = 6, which has a layer fre-

quency ft = −4.8 Hz. The four strongest possible aliases will come from [nk, nl] =

[−1, 0], [1, 0], [0,−1] and [0, 1]. The temporal frequency of the aliased component is

determined by substituting the frequencies k + Nnk, l + Nnl into Eq. 31, resulting in

layer frequencies given by

ft =
(k + Nnk)vx + (l + Nnl)vy

Nd
. (32)

For this specific Fourier mode, the aliases are given in Table 2. Of these four possible

aliases, the last, k = 2, l = −10, should have the most power, as it has the lowest

magnitude spatial frequency.

As shown in Fig. 3, the temporal power spectrum clearly shows a secondary peak

at 12.8 Hz. Also included in the figure is the temporal PSD of the nearby mode,

k = 4, l = 7. This mode has similar behavior, with a true layer frequency of −3.8
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Hz and the alias from mode k = 4, l = −9 at 13.5 Hz. These two modes illustrate a

characteristic of aliased frozen flow versus true frozen flow. In true frozen flow, the

temporal frequency relationship ft = fxvx + fyvy means that as the spatial frequency

increases perpendicular to the velocity vector, the magnitude of the ft does as well. For

aliases, as the spatial frequency of the controllable mode increases perpendicular to

the velocity vector, the magnitude of ft decreases. In this case, from mode k = 4, l = 7

to mode k = 2, l = 6, the true layer frequency increases in magnitude from −3.8 to

−4.8 Hz, but the aliased layer frequency decreases in magnitude from 13.5 to 12.8 Hz.

This is clearly seen in the top left panel of Fig. 2. Here the identified peaks which have

been classified as aliases of this layer are shown. Note how the magnitude increases

towards the origin, whereas the true layer frequencies on the left decrease towards

the origin.

In the bottom panel the aliases are returned to the parent spatial frequencies outside

the controllable range. Here we can see that aliases from spatial frequencies along

the k and l axes are preferentially observed, just as would be predicted based on

the response of the Shack-Hartmann WFS (see, for example, Fig. 2 of Jolissaint et

al [23].)

The fact that we can easily identify peaks caused by aliasing means that if we can

incorporate them into the state space model and produce a Kalman filter that ignores

them, we have a way to reduce the aliasing error in the case of frozen flow without

the use of the spatial filter. We discuss the state space model and resulting predictive
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filter next, and then address the issue of actually finding these peaks and knowing

that they are from aliasing.

4.B. Original state space model

In PFC, we consider each complex-valued Fourier mode of the phase aberration inde-

pendently. As discussed above, under frozen flow atmospheric turbulence, each layer

produces a specific temporal frequency in a Fourier mode. This is modeled by an

AR(1) process.

a[t] = αa[t − 1] + w[t]. (33)

The complex number α has magnitude just less than one. The phase of α sets how

much the Fourier mode advances in a single time step of length T seconds. This is

simply 2πT times the dot product of the velocity vector of the layer with the frequency

vector of that Fourier mode: −2πT (kvx + lvy)/(Nd).

We assume that the atmosphere is composed of a static layer where α is a real

number just less than one, and Na layers of frozen flow. The state variables for these

layer components are given by

a[t] = (a0[t], a1[t], · · · , aNa [t]) (34)

and the auto-regression parameters are stored in the matrix

Aα = Diag(α0, α1, · · · , αNa). (35)
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The power levels of the driving noises are given by the covariance matrix

Pw = Diag(σ2
a0

, σ2
a1

, · · · , σ2
aNa

). (36)

The reduced state which has only the atmospheric layers and the phase φ at the

previous time step is:

xc[t] = (a[t], φ[t − 1])T . (37)

The common-path portion of the state transition matrix is

Ac =

⎛
⎜⎜⎜⎜⎝

Aα 0

1T 0

⎞
⎟⎟⎟⎟⎠

, (38)

where the row vector 1T causes the phase aberration φ[t] to be the sum of all of the

layer terms. The driving noises are incorporated with

Bc =

⎛
⎜⎜⎜⎜⎝

I

0T

⎞
⎟⎟⎟⎟⎠

. (39)

The measurement vector is

Cc = (0T , 1), (40)

where the Cc has Na +2 elements, all of which are zero except for the last one, which

picks off the phase φ[t − 1] as the measurement. As for tilt, we assume the total

system delay is one time step, making D = (−1) and u[t] = (d[t− 1]), where d[t− 1]

is the DM command applied during the WFS measurement. This model is complete

for executing predictive control in the case where the WFS is spatially filtered.
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4.C. State space model with aliases

The aliases, since they are due to frozen flow, follow the same complex-valued AR(1)

model as the layer components. Just as with the true phase, the aliases are measured

after a delay, so we use the variable ρ[t] to represent the sum of the aliased phase.

Given that Nb aliases are identified, we assemble their the state vector

n[t] = (b1[t], · · · , bNb
[t], ρ[t − 1]). (41)

The auto-regression parameters are stored in the matrix

Aβ = Diag(β1, · · · , βNb
), (42)

The non-common-path portion of the state transition matrix is

An =

⎛
⎜⎜⎜⎜⎝

Aβ 0

1T 0

⎞
⎟⎟⎟⎟⎠

. (43)

The driving noises are incorporated with

Bn =

⎛
⎜⎜⎜⎜⎝

I

0T

⎞
⎟⎟⎟⎟⎠

. (44)

The power levels of the driving noises are given by the covariance matrix

Pr = Diag(σ2
b1

, · · · , σ2
bNb

). (45)

The WFS measurement just picks off ρ[t − 1] from the state with Cn = (0T , 1).
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4.D. Determination of control

Now that we have the full model, we need to generate the controller. First we examine

the controller in matrix form. Since only the specific entries of the state space model

matrices are different, but not the structure, we use the exact same equations as for

the tilt controller Sec. 3.B.

The only significant difference is that the variable that we are correcting is not a

direct signal (e.g. tilt) but a single Fourier coefficient of the wavefront. This coefficient

is obtained in closed loop during the reconstruction process, and the controller is

applied inside the Fourier domain. Since we have an N × N grid, we have N2/2

complex-valued Fourier modes to control independently.

So for each Fourier modal coefficient, we begin with our last state estimate x̂[t −

1|t − 1]. We use the new measurement y[t] to calculate the new state estimate x̂[t|t].

Then we estimate φ̂[t + 1|t] using Eq. 23. This produces for this Fourier mode the

desired phase signal to be compensated. These estimates for all Fourier mode are

arranged properly in an N × N signal and the inverse DFT is calculated to obtain

the spatial phase. This signal is then used, with an appropriate fitting algorithm (e.g.

influence-function precompensation and voltage-phase conversion [24]) to determine

control voltages for the deformable mirror.

Though we could implement the controller with a series of sparse matrix multi-

plications for each mode, we can analytically determine a more concise form which
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provides both computational savings and insight into the structure of the filter. Our

control law uses the measurement y[t] to determine phase we want to compensate with

the mirror φ̂[t + 1|t]. As such, we can write a transfer function for that controller.

Note that an AO system typically uses an integral controller C(z) = g/(1−0.99z−1).

As we have detailed this kind of derivation before in previous work [2,9], we here will

omit the details and simply present the filter results.

First we review the form of the original PFC controller. For a given Fourier mode,

the control law is

C(z) =

(
Na∑
k=0

Kkαk

1 − αkz−1

)(
1 + z−1D1

)−1
, (46)

where the constants are

Kk = Q−1pNa+1,k, (47)

D1 = Q−1
Na∑
k=0

pNa+1,k, (48)

and

Q = pNa+1 + σ2
v . (49)

The p’s are specific entries in Ps, which are solved for numerically. For proper im-

plementation, it is important to note that the pk,l’s are indexed beginning at 0, not

1.

The original PFC filter has an elegant, easy to understand structure. First, the

measured residual y[t] is sent in parallel to integrators for each layer. (This is the

summation term in the first set of parentheses in equation 46.) These layer integrators
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predict using αk and weight based on SNR using Kk. The summed result of the layer

integrators is then sent through a high-pass lead filter which ensures stability. (This

is the term in the second set of parentheses in equation 46.)

The new predictive controller for the anti-alias PFC filter is

C(z) =

(
Na∑
k=0

Kkαk

1 − αkz−1

)⎛
⎝1 + z−1D1 + z−1

Nb∑
k=1

Ck

1 − βkz−1

⎞
⎠

−1

, (50)

where the constants are

Kk = Q−1(pNa+1,k + pNa+Nb+2,k), (51)

D1 = Q−1
Na∑
k=0

(pNa+1,k + pNa+Nb+2,k), (52)

Ck = Q−1(p∗Na+1+k,Na+1 + pNa+Nb+2,Na+1+k), (53)

and

Q = pNa+Nb+2 + σ2
v . (54)

The new filter has very similar structure to the original PFC filter. The parallel layer

integrator structure remains exactly the same. The exact values of the Kk’s are now

different as the error covariances involving the aliases are incorporated. (Compare

47 to 51.) The high-pass lead filter still preserves the same structure involving D1,

though with a slightly different value. (Again, compare 48 to 52.) Now the second

filter stage incorporates alias removal. This is done through the summation term,

which is a set of layer integrators for the aliases. Note here that since the integrated
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residual has already been predicted, no extra prediction with βk is necessary in the

numerator, as it is with αk in the first layer integrators.

This second bank of layer integrators tracks the aliases and subtracts them off from

the DM command for that Fourier mode. This filter structure is illustrated in Fig. 4.

The region with a grey background is the new alias removal portion of the filter.

4.E. Stability and relationship to LQG

Because the anti-alias PFC state space model has the exact same form as the tilt

controller, we apply the same analysis as in Section 3.C.

Again, our choice of control signal is the solution to the LQG problem, where we

here minimize the variance of the residual error φ[t] − d[t] for each Fourier mode.

Again, the stability check on the matrix Ã − B̃G̃ is passed as long as our model A

is stable. Because A is lower triangular, it suffices to ensure that the magnitudes of

all of the α’s and β’s are less than one. As before, Ã− L̃C̃ has the same eigenvalues

as A(I − KsC), where the Kalman gains are solved for with Eq.21 and Eq.22.

4.F. Implementation issues

The significant challenge to implementing this anti-alias PFC filter is classification of

the layer peaks in the temporal power spectra. In our original proposal [2] each Fourier

mode is dealt with separately. Since the WFS is assumed to have a spatial filter, all

peaks found are assumed to be from layers or from other sources (such as vibration)

that we want to correct. Each Fourier mode has its own predictive controller generated
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via the ARE solve independently.

If there is no spatial filter in use, some of those peaks will be caused by aliasing.

The problem is, if we consider each mode independently, how can we tell (as in Fig. 3)

that for mode k = 2, l = 6 the peak at ft = −4.8 Hz is from a real layer of frozen

flow, but the peak at 12.8 Hz is from an alias? The only way we can determine if

12.8 Hz is an alias is to know the velocity vector of the layer. The only way to know

the velocity vector of a layer is to examine all the Fourier modes and see if the peaks

found are consistent with a single (or multiple) layers.

In our recent observation study of atmospheric characteristics [20], we implemented

just such an algorithm. We did this to prove that the peaks that we found in the

temporal PSDs of Fourier modes were actually caused by frozen flow. This algorithm

is a straight-forward, brute-force method which calculates the likelihood of a layer for

a range of velocity vectors. For a given velocity vector [vx, vy], the layer frequency ft

is calculated for each Fourier mode. The fraction of Fourier modes that found a peak

close to (usually within 2 Hz) the desired ft is the likelihood of a layer of that specific

velocity actually existing. A reasonable range of velocities (e.g. from -30 m/s to 30

m/s for both vx and vy is searched and the significant local maxima of the likelihood

function (if any) are selected as true layers.

Once this analysis has been done, we have a list of layers that we will correct.

Given the velocity vectors of these layers, it is easy to calculate the possible temporal

frequencies of strongest aliases for a constrained range of nk and nl and see if any
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peaks were found in the temporal PSDs.

A second implementation issue is deciding which layers and aliases to correct, and

whether or not to correct them in all modes, as opposed to only the modes in which

they are identified. As mentioned above, in our experimental data example the layer

was identified with 90% likelihood. This means that 90% of the modes that could

see that layer actually had a clear peak in the temporal PSD. 60% of those modes

also had a clear alias peak that was identified. The question then becomes, should

we construct a model across all modes for the layer velocity and power, and generate

estimated state space model parameters, or should we remain fully data-based and use

only the peaks and power levels found in each mode? The first method would allow

more uniform correction, and provide robustness against missed detections. It would

also, however, require extra computational cost and introduce an unknown amount

of model-data mismatch.

A third issue is what to do about aliases from the static layer. Since there is no

temporal variation, we cannot separate out the aliased component of the static layer

from the controllable component. Aliased from a static error could be calibrated out by

measurement (e.g. phase diversity using science images) and appropriate modification

of reference centroids.

Finally, we discuss the relationship of our proposed anti-alias filter with the ap-

proach of Petit et al [25]. In that LQG approach, specific uncontrollable modes (that

have high spatial frequencies above Nyquist) are used in the estimation given a cer-
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tain statistical prior. Once these modes are estimated, they are excluded from the

control. This allows the excess power at specific controllable frequencies near Nyquist

(which already violates the Kolmogorov prior) to be instead estimated as being from

an alias.

In contrast, we estimate any aliased component using the frozen flow assumption,

not the Kolmogorov spatial power spectrum. To see the difference, consider a pure

Fourier mode of phase aberration sensed by the WFS at spatial frequency k, l. If

it is a true phase measurement (not an alias) its spatial frequency in the pupil is

fx = k/(Nd) and fy = l/(Nd). However, in the absence other information, we have

no way to tell if this measurement is truly that of a controllable phase, or if it is

from an alias (and then which alias). By using a spatial prior, an LQG controller

could estimate which portion of the signal is controllable and which is not. In our

method, we use the temporal behavior of that Fourier mode to disentangle true phase

from alias. First we analyze the temporal PSD and identify any peaks which are due

to frozen flow. With knowledge of the true layers, we can then classify those peaks

as coming from controllable phase and specific aliases. We then directly control the

desired portion, and notch out the aliases. We are not distributing the signal amongst

controllable and uncontrollable modes statistically, but instead directly separating out

the components based on their temporal variations.

Due to the complexities of implementation described above, we leave to further

work the computationally efficient implementation of the above algorithm and the
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determination in simulation of the performance improvement possible with the new

alias-suppressing PFC filter.

5. Conclusions

We have demonstrated how to use a Kalman filtering state space model with colored

noise to model AO closed-loop control with temporally non-white noise. Then we

modeled and developed filters for two different cases. For the case of tip-tilt control,

we modeled non-common path vibrations and demonstrated through simulation of

the anticipated GPI tip-tilt environment that improved modeling of atmospheric +

windshake errors, common path vibration and non-common path vibration leads to

significantly improved correction. Performance is model dependent, but these mod-

eling advances provide us security that once GPI is installed and the actual tip-tilt

environment is known, a controller which meets requirements will be implementable.

In the case of frozen flow atmospheric turbulence, we expanded our existing Pre-

dictive Fourier Control model to account for aliasing in the WFS. We provided an

example of experimental data from Altair where the aliases are clearly identifiable in

closed-loop telemetry. We presented the control law which predicts the atmosphere

and provides rejection of aliasing. This new filter has the same structure as the orig-

inal PFC filter, but with the added step of predicting aliases and removing them

from the DM commands. A detailed performance study through simulation was left

to future work.
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List of Figure Captions

Fig. 1 Error [left] and noise [right] transfer functions for the GPI tilt simulation.

Use of a higher-order model for amtospheric tilt plus common-path vibrations re-

sults in an error transfer function with better low-frequency rejection and notches for

the vibrations, as compared to an optimized-gain integrator. Additionally modeling

non-common path vibration produces a noise transfer function that notches out spu-

rious signals. (Shallow secondary notches are a result of the common-path vibration

prediction.)

Fig. 2 Maps of found peaks and aliases, Altair Apr 4, 2008 data set. Each square

panel is a fx, fy mapping of the spatial frequencies, with dashed lines as the axes.

The color of each point is the temporal frequency of a peak found in that Fourier

mode’s temporal PSD. In “True layer peaks” each peak corresponds to a layer, which

is identified with 90% likelihood. In “Aliased layer peaks” each identified peak matches

with an alias of that layer. This shows the controllable spatial frequencies that are

aliased into. Note the opposite pattern of temporal frequency increase from the true

layer peaks. At bottom in “Peaks repositioned”, the aliases are returned to their

parent high spatial frequencies, forming a layer map over a larger spatial frequency

range. The solid square box outlines the controllable spatial frequencies of the AO

system.

Fig. 3 Temporal power spectrum of Fourier mode 2, 6 from a 1-minute long Altair AO
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closed-loop run in Apr 4, 2008. The single layer of wind identified for this observation

causes the strong peak at −4.8 Hz. The secondary peak at 12.8 Hz is caused by an

alias from Fourier mode k = 2, l = −10. Nearby mode 4, 7 has similar behavior and

is also shown.

Fig. 4 Block diagram of anti-alias predictive controller for a single Fourier mode. First

the layers are predicted in parallel with layer integrators. The result is summed and

sent through a second filter. This filter predicts the aliases and subtracts them off

to produce the DM command. The area shaded in grey is the new portion due to

incorporation of alias removal. The regular PFC filter has the exact same structure

as the white region.
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List of Table Captions

Table 1. RMS error terms from tilt control simulation.

Table 2. Aliases from Altair data
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Table 1. Tilt error (mas RMS), 32 trials, for GPI tilt simulation with different

controllers. The Kalman filter uses the second-order ATM+windshake model.

Signal Input Optimized Gain Kalman, no NCP Kalman, NCP

ATM+wind 72.3 0.88 0.022 0.024

CP vibration 4.7 5.1 0.24 0.24

NCP vibration 1.6 1.1 3.0 0.15

WFS noise 2.0 1.0 2.5 2.5

Total residual - 5.4 3.9 2.5
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Table 2. Information on aliased components which might appear for control-

lable mode k = 2, l = 6 in Altair data.

Alias offset Aliased mode (k2
a + l2a)

1/2 Aliased ft (Hz).

nk = 1, nl = 0 ka = 18, kl = 6 19.0 10.2

nk = −1, nl = 0 ka = −14, kl = 6 15.2 -19.6

nk = 0, nl = 1 ka = 2, kl = 22 22.1 22.1

nk = 0, nl = −1 ka = 2, kl = −10 10.2 12.8
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