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A minimum set of equations based on the Peeling-Ballooning (P-B) mode with non-ideal physics
effects (diamagnetic drift, ExB drift, resistivity, and anomalous electron viscosity) is found to sim-
ulate pedestal collapse when using the new BOUT++ simulation code, developed in part from the
original fluid edge code BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B
modes trigger magnetic reconnection, which may be related to the partial collapse of the pedestal
found in the simulations. With addition of a model of the anomalous electron viscosity under the
assumption that the anomalous kinematic electron viscosity is comparable to the anomalous elec-
tron thermal diffusivity, it is found from simulations using a realistic high Lundquist number that
the pedestal collapse is limited to the edge region and the ELM size is about 5-10% of the pedestal
stored energy. This is consistent with many observations of large ELMs.

PACS numbers: 52.55.Fa, 52.25.Fi, 52.35.Ra, 52.65.Tt, 52.65.Kj

The problem of fast reconnection in high-Lundquist
number plasmas has attracted a great deal of attention,
in large part due to its relevance to impulsive phenom-
ena such as magnetospheric substorms, solar and stel-
lar flares, sawtooth crashes and edge localized modes
(ELMs) in tokamaks. Here we report fast-reconnection
simulation studies in ELMs in high-confinement mode
(H-mode) tokamak discharges [1]. The H-mode pedestal,
the region of strongly reduced turbulence and transport
just inside the limiting flux surface, is very important for
the fusion performance of ITER. The ELMs, however,
are quasi-periodic relaxations of the pedestal, resulting
in a series of hot plasma eruptions that could potentially
damage the ITER divertor plates and first walls.

Through the development of the theory of peeling-
ballooning (P-B) modes and their numerical implemen-
tation in codes such as ELITE [2,3], a robust prediction
of edge MHD stability limits is available for existing and
future tokamaks. It has been found that large ELMs are
triggered and pedestal height is constrained by ideal P-
B stability. P-B modes are ideal MHD modes which are
driven by a combination of sharp pressure gradients (bal-
looning) and bootstrap current in the pedestal. Onset of
each ELM (type-I) was consistently found to correlate
with crossing of the ideal P-B stability boundary [4], i.e.,
P-B theory successfully describes the trigger of the ELM.
However the nonlinear dynamics, and in particular the
physics of the ELM energy loss and pedestal dynamics
after the onset of each ELM (type-I) remain uncertain.

Nonlinear ELM simulations become computationally
difficult for high Lundquist number due to the fine reso-
lution needed to resolve the narrow current sheet and/or
narrowing fingers as a result of explosive ideal MHD
instabilities predicted from nonlinear ballooning theory
[5,6], leading to collapse of the simulation time-step at
the early non-linear stage of P-B mode development[6].

A common practice is to use an enhanced resistivity
and/or ion viscosity to achieve nonlinear ELM simula-
tions, which leads to significantly different linear growth
rates and instability thresholds. Furthermore, in non-
linear resistive MHD simulations, the pedestal pressure
collapses deep into the plasma core, which yields much
larger Elm sizes than observed.

In the present Letter, we describe three-fields nonlinear
simulations of plasma edge pedestal collapse in the toka-
mak configuration. The simulations are carried out in the
BOUT++ two-fluid framework [7], which allows studies
of nonlinear dynamics of ELMs including extensions be-
yond MHD physics. Based on the P-B model with non-
ideal physics effects (diamagnetic drift, ExB drift, resis-
tivity, and anomalous electron viscosity), a minimum set
of nonlinear equations for perturbations of the magnetic
flux A‖, electric potential φ, and pressure P can be ex-
tracted from a complete set of BOUT two-fluids equa-
tions [8] with an additional effect of hyper-resistivity [9].
This can be written as
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though hyper-resistivity ηH , also known as electron vis-
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cosity, is generally negligibly small in collisional plasmas,
it can be significant in a collisionless plasma. In this
model the frozen-in flux constraint of ideal MHD theory
is broken by either resistivity or hyper-resistivity.
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FIG. 1: (Color online) Toroidal mode spectrum of the first
equilibrium as calculated by BOUT++ for following cases:
ideal MHD (black dotted line), ideal MHD with ExB and
diamagnetic drift (yellow square), S = 105 and SH = ∞ (pink
inverted triangle), S = 108 and αH = 10−4 (red open circle),
S = 108 and αH = 10−5 (blue right triangle), S = 108 and
αH = 10−6 (green triangle). The growth rates are normalized
to the Alfvén frequency ωA.

To study the physics of nonlinear P-B mode dynamics,
we choose circular cross-section toroidal equilibria with
an aspect ratio of 2.9 generated by the TOQ equilibrium
code. Two model equilibria will be simulated for H-mode
plasmas with steep pressure and current gradients at the
edge [10]. The first equilibrium is far from the marginal
P-B instability threshold with a pedestal toroidal pres-
sure βt0 = 1.941×10−2 and a normalized pedestal width
Lped/a = 0.0486. The second equilibrium is near the
marginal P-B instability threshold with βt0 = 1.45×10−2

and Lped/a = 0.0518. Parameters that are held fixed be-
tween the two include a minor radius a = 1.2m, major
radius R0 = 3.4m, toroidal field on axis B0 = 2T , an
edge qa ≃3, the pedestal pressure 2/3 of the axis pres-
sure, and a pedestal half width 7% of the poloidal flux.
In this study, the resistivity η, hyper-resistivity ηH and
edge density n0 = 1×1019m−3 are treated as constants in
space-time across simulation domain. In the present sim-
plified model, both equilibrium flow and turbulent zonal
flow have been set to be zero: V0 = VE0 + V∇Pi

= 0
and 〈δv〉ζ = 〈vE〉ζ + 〈v∇Pi

〉ζ = 0. Therefore, the equi-
librium electric field is Er0 = (1/n0Zie)∇rPi0 with ion
pressure Pi0 = P0/2, and the perturbed electric field is
〈Er〉ζ = (1/n0Zie)∇r〈Pi〉ζ . The zonal magnetic field is
also set to be zero as it is negligibly small compared to
the equilibrium magnetic field B0.

The equations (1)-(3) are solved using a field-aligned
(flux) coordinate system (x,y,z) with shifted radial
derivatives [7]. Differencing methods used are 4th-
order central differencing and 3rd-order WENO advec-

tion scheme. The resulting difference equations are
solved with a fully implicit Newton-Krylov solver: Sun-
dials CVODE package. Radial boundary conditions used
are: ̟ = 0,∇2

⊥A‖ = 0, ∂P/∂ψ = 0, and ∂φ/∂ψ = 0

on inner radial boundary; ̟ = 0,∇2

⊥A‖ = 0, P = 0,
and φ = 0 on outer radial boundary. The domain is
periodic in y (with a twist-shift condition) and periodic
in z (toroidal angle). For efficiency, when performing
nonlinear simulations, only 1/5th of the torus is sim-
ulated. The number of grid cells in each coordinate
are nψ = 512, nθ = 64, nζ = 32 for linear runs and
nζ = 64, 128, 256 for nonlinear runs.

A series of BOUT++ simulations is conducted to in-
vestigate the scaling characteristics of the P-B mode as
a function of two dimensionless quantities S and SH .
One is a S-scan for a fixed SH = 1012, while the other
is a SH -scan for a fixed S = 107 or S = 108. Here
the Lundquist number S = µ0R0vA/η is the dimension-
less ratio of an Alfvén wave crossing timescale to a re-
sistive diffusion timescale. Here vA is the Alfvén ve-
locity. Similarly, the hyper-Lundquist number SH =
µ0R

3

0vA/ηH = S/αH is the dimensionless ratio of an
Alfvén wave crossing timescale to a hyper-resistive diffu-
sion timescale, with a dimensionless hyper-Lundquist pa-
rameter αH = ηH/R

2

0
η. For a collisional electron viscos-

ity, αH ≃ µe/R
2

0
νei. Assuming that the anomalous kine-

matic electron viscosity µe is comparable to the anoma-
lous electron thermal diffusivity χe, for edge plasma pa-
rameters µe ≃ χe ≃ 1m2/s and electron-ion collision
frequency νei ≃ 105/s, we can estimate the amplitude of
the hyper-Lundquist parameter to be αH ≃ 10−4−10−6.

Linear simulations of P-B mode evolution find good
agreement in growth rate and mode structure with
ELITE calculations [2,7]. Fig. 1 shows the growth rate
vs toroidal mode number n of the first equilibrium as cal-
culated by BOUT++ for various cases. The growth rate
for ideal MHD P-B mode is plotted as black dotted line.
The influence of the E×B drift, diamagnetic drift, resis-
tivity, and anomalous electron viscosity on P-B modes is
also shown. We find that (1) the diamagnetic drift and
ExB drift stabilize the P-B mode (yellow square in Fig. 1)
in a manner consistent with theoretical expectations; (2)
resistivity destabilizes the P-B mode, leading to resis-
tive P-B mode, (pink inverted triangle for S = 105 and
SH = ∞); (3) anomalous electron viscosity destabilizes
the P-B mode [11], leading to a viscous P-B mode; for a
fixed S = 108, red open circle for αH = 10−4, blue right
triangle for αH = 10−5, green triangle for αH = 10−6.
For all runs of the viscous P-B mode except as otherwise
noted, SH = 1012 . For a fixed S = 108, as αH reduces
from 10−4 to 10−6, both resistive and viscous effects dis-
appear. BOUT++ reduced-MHD modeling of Eqs. (1-3)
captures the marginal stability value n > 3.

Nonlinear simulations of P-B modes at the early non-
linear stage of development reveal that the current sheet
narrows with increasing Lundquist numbers. For typical
edge parameters, the Lundquist number is around S ≃
108 − 1010, the growth rate of the P-B mode is around
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FIG. 2: Radial pressure profiles at several different Lunquist
numbers S and time slices (t=0, 74, 160τA) for the first equi-
librium: The black dotted line for t=0; blue dashed group
lines for S = 105 at t=74τA and 160τA; red solid group lines
for S ≥ 107 at t=74τA; yellow dotted-dashed group lines for
S ≥ 107 at t=160τA. The vertical line indicates the position
of peak pressure gradient. Here SH = 1012.

γPB ≃ 0.1ωA, and the width of the resistive current sheet
∆J ≃ R

√

ωA/γPB/S is around 10-100 microns, which is
on the order of a characteristic scale of electron Larmor
radius ρe. In the absence of the hyper-resistivity, the
simulation time-step collapses as the radial scale-length
of the current sheet approaches to the radial grid spacing
∆x for typical resistive MHD simulations ∆x ≫ ∆J ≃
ρe . With the hyper-resistivity, the width of the hyper-
resistive current sheet is ∆H ≃ R(ωA/γPB/SH)1/4. The
origin of the hyper-resistivity is thought to be small scale
electron turbulence in the H-mode pedestal [12]. For the
rest of the letter, SH = 1012; hence ∆H(≃ 1.78mm)>
∆x(≃ 1.1mm) ≫ ∆J with ∆H/∆J > 17.8.

The radial pressure profiles at the outer mid-plane at
several different time slices and different Lundquist num-
bers are shown in Figure 2. It is clearly shown that the
pedestal pressure collapses deeply inside the core plasma
at low Lundquist number (S = 105). It is also shown
that for high Lundquist number there are two distinct
processes in the evolution of pressure profiles: a fast col-
lapse greatly flattening the pressure profile near the peak
pressure gradient on the order of tens of Alfvén times af-
ter the onset of nonlinear P-B mode, t = 74τA, and a
subsequent slow buildup of pressure gradient. We can
characterize the fast collapse as a magnetic reconnec-
tion (triggered by P-B modes) → an island formation
→ bursting process, and a slow buildup as a turbulence
transport process. The radial-poloidal pressure profiles
clearly show the characteristics of the ballooning mode.

Defining an ELM size as ∆ELM = ∆WPED/WPED =

〈
∫ Rout

Rin

∮

dRdθ (P0 − 〈P 〉ζ)〉t/
∫Rout

Rin

∮

dRdθP0, the ratio

of the ELM energy loss (∆WPED) to the pedestal stored
energy Wped (Wped = 3/2PpedVplasma), the ELM size can
be calculated from each nonlinear simulation. Here P is
the pedestal pressure and the symbol 〈〉t means the av-
erage over time (∼ 50 − 100τA) and symbol 〈〉ζ means
the average over bi-normal periodic coordinate. The

TABLE I: Elm sizes vs Lundquist number S with SH = 1012.

S 104 105 107 108 109 1010

Case 1 47.18% 28.68% 5.04% 4.67% 4.47% 6.07%
Case 1a 50.96% 35.24% 10.67% 10.02% 10.08% 10.20%
Case 2 45.10% 36.66% 0.22% 0.24%
Case 2a 49.31% 51.56% 1.47% 1.42%

lower integral limit is the pedestal inner radial bound-
ary Rin, while the upper limit is the radial position of
the peak pressure gradient Rout. Alternatively, the ELM
size ∆a

ELM can be calculated by radially integrating the
pressure profile at the outer mid-plane as done in exper-
iments, which are denoted by case 1a and 2a in Table I
and II for equilibrium 1 and 2. The ELM size scaling
vs. Lundquist number S is given in the Table I. For bet-
ter convergence a small parallel diffusion term is added
to Eq. (2) in case 2 and in case 1 for S = 1010. The
large resistivity (S ∝ η−1) yields a large ELM size for
both equilibria, which is contradictory to experimental
observations in many devices that the relative ELM size
scales inversely with pedestal collisionality [13]. However
with a fixed hyper-resistivity SH = 1012, when S > 107,
which is relevant to today’s modestly sized tokamaks and
ITER, the ELM size is insensitive to the resistivity. The
ELM size for the second equilibrium is much smaller than
that for the first as expected.

The ELM size scaling vs. dimensionless hyper-
Lundquist parameter αH is given in the Table II. The
ELM size is proportional to the hyper-resistivity. If we
assume that the hyper-resistivity scales inversely with
pedestal collisionality (ηH ∝ ν−νei , ν > 0), then the ELM
size scales inversely with pedestal collisionality, which is
consistent with experiments in the high Lundquist num-
ber regime. In this regard, the hyper-resistivity induced
either by dissipative driftwave/electron-temperature-
gradient driven modes or electron transport in the pres-
ence of stochastic magnetic field in the collisional regime
[14] could possibly yield a consistent collisionality.

TABLE II: Elm sizes vs hyper-Lundquist number SH

αH (SH = S/αH) 10−4 6 × 10−5 10−5 5 × 10−6

Case 1 S = 107 11.59% 8.45% 5.1%

Case 1a S = 107 21.68% 17.97% 10.7%
Case 2 S = 108 5.94% 0.22% 0.14%
Case 2a S = 108 11% 1.47% 1.5%

From Fig. 2 and Table I and II it is reasonable to con-
clude that the ELM size is determined by the fast col-
lapse due to the magnetic reconnection. Indeed, field line
tracing indicates the creation of magnetic islands and
stochastic magnetic field during the collapse, as shown
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FIG. 3: (a) radial distance x vs safety factor q, dashed lines
show rational surfaces q=m/n with n=15; (b) line trace for
S = 108 and SH = 10−4 during pedestal pressure crash in
field-aligned coordinate (x,y,z); (c) a zoom-in view of small
region x=[-0.41,-0.35] in (b) to show the island formation.

in Fig. 3. The size of the fast collapse is proportional
to the size of the primary magnetic island at the outer
mid-plane near the location of peak pressure gradient.
A magnetic island with half-width ∆is is defined by
∆2

is = 4LsA‖/B0 with Ls = qR/s. The estimated island
width ∆is ≃ 6.6 cm at the time of the maximum fast
pressure collapse is much wider than the separation dis-
tance of the mode rational surfaces ∆q = (dr/dq)/n with
mode number n=15: ∆is ≫ ∆q in the pedestal region;
island overlap and magnetic braiding occur, leading to a
catastrophic increase of transport, as shown in Fig. 3(b).
Further into the core plasma region where perturbed A‖

is small, almost good flux surfaces (horizontal curves)
and islands can be clearly seen in Fig. 3(c), a zoom-in
view of the line trace between x=-0.35 and -0.41. While
for low S cases, magnetic fluxes are broken everywhere
due to large A‖ resulting from large magnetic diffusion.

Figure 4 shows the time history of the root-mean-
squared A‖rms over the bi-normal coordinate at the outer
mid-plane and at the position of peak pressure gradients
for both equilibrium 1 and 2. The perturbation grows
exponentially from its very small initial value with only
one toroidal mode n = 15. It is clearly shown that the
linear growth rate for the first equilibrium is higher than
that of the second equilibrium as expected from linear
theory and the initial nonlinear saturation amplitude for
the first equilibrium is about four times higher than that
of second. For the first equilibirum, the time history of
A‖rms at the outer mid-plane shows the collapse after the
onset of nonlinear saturation at a late time t = 105τA,
while the pressure profile collapses at t = 74τA. The mag-
netic fluctuations suddenly start to grow at the onset of
the pressure crash. This observation indicates that large
ELMs are essentially nonlinear and catastrophic events
but evolve from the growth of linear instabilities. The
stochastic region is significantly shrunk by the time at
t = 165τA after the ELM event.

In conclusion, the ELM dynamical evolution leads to
magnetic reconnection. We find that the magnetic field
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FIG. 4: Time history of the root mean squared A‖ at the outer
mid-plane and peak pressure gradients for both equilibrium 1
and 2, where S = 108, αH = 10−4 for the first equilibrium,
and αH = 10−5 for the second. Pedestal pressure profile
collapses at tp1 = 74τA for the first equilibrium and at tp2 =
171τA for the second.

lines must be reconnected before the pedestal pressure
profile collapses. With the addition of a model of the
anomalous electron viscosity under the assumption that
the anomalous kinematic electron viscosity is comparable
to the anomalous electron thermal diffusivity to prevent
the current sheet from collapsing to the resistive scale-
length, it is found from nonlinear simulations that the P-
B modes trigger magnetic reconnection. This is believed
to drive the partial collapse of the pedestal pressure. For
a realistic high Lundquist number, the pedestal collapses
are limited to the edge region and the ELM size is about
5-10% of the pedestal stored energy, which is consistent
with experimental observations in many devices.
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