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Preface

When one looks at a book with “statistical computing” in the title, the expectation is most
likely for a treatment of the topic that has close ties to numerical analysis. There are many
texts written from this perspective that provide valuable resources for those who are actively
involved in the solution of computing problems that arise in statistics. The presentation in
the present text represents a departure from this classical emphasis in that it concentrates
on the writing of code rather than the development and study of numerical algorithms, per
se. The goal is to provide a treatment of statistical computing that lays a foundation for
original code development in a research environment.

The advancement of statistical methodology is now inextricably linked to the use of com-
puters. New methodological ideas must be translated into usable code and then numerically
evaluated relative to competing procedures. As a result, many statisticians expend signif-
icant amounts of their creative energy while sitting in front of a computer monitor. The
end products from the vast majority of their efforts are unlikely to be reflected in changes
to core aspects of numerical methods or computer hardware. Nonetheless, they are modern
statisticians that are (often very) involved in computing. This book is written with that
particular audience in mind.

What does a modern statistician need to know about computing? Our belief is that they
need to understand at least the basic principles of algorithmic thinking. The translation of
a mathematical problem into its computational analog (or analogs) is a skill that must be
learned, like any other, by actively solving relevant problems. It is also important to have
some comprehension of how computers work in order to avoid or even recognize the more
common pitfalls that arise from, e.g., finite precision arithmetic.

Perhaps the most fundamental skill is one that provides a means to communicate with
a computer—usually through a computer language. However, many statistical computing
texts focus on general developments that are not language specific. It is our belief that
there is much to be learned from translating, e.g., pseudo-code into something that actually
carries out computations and generates output. The downside of taking this path is that
specific language choices must be made thereby running the risk of not meeting the needs
of every reader. Our specific choices of C++ and R have been made with an eye toward
minimizing this risk.

The R language is, arguably, the de facto standard for statistical research purposes. There
are now many books that detail its use (along with that of add-on packages) for the solution
of data analysis problems. In a broader sense, R is a very powerful functional language that
merely happens to have built-in (and add-on) tools that perform some of the standard (and
not so standard) statistical calculations with data. We take this latter viewpoint here and
focus primarily on describing the use of the functional and object-oriented nature of the R
language.

We feel that a good working knowledge of R is a must for any statistician whose job
description involves methodological development. We also firmly believe that R is not (and
was never meant to be) suited for the solution of all computing problems that arise in the
practice of statistics. Our own experience has shown that having familiarity with another
compiled (rather than interpreted like R) language is an essential ingredient for computer
based problem solving. Our choice for this “second language” is C++. There are various
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reasons for this that include its object-oriented structure that has some similarity with
features that are present in R. It is also easy to use C++ code in R through the creation
of shared libraries. Thus, the use of C++ does not preclude the use of R and conversely.
Indeed, we view the relationship between our use of C++ and R as symbiotic rather than
competitive. For example, the two languages provide environments that differ sufficiently
to where simultaneous (either totally or in part) creation of code in both languages can
be invaluable for the detection of coding/logical/mathematical errors and we routinely use
them in this manner. But, more importantly, both languages offer unique features that,
when used in tandem, can take code development beyond what can be obtained from either
language alone.

After a brief discussion of object-oriented programming concepts in Chapter 1, the book
proceeds in the following manner. Chapter 2 discusses floating-point representation of num-
bers and the consequences of round-off error while beginning the introduction to C++.
The Chapter 2 treatment is expanded in Chapter 3 with a sketchy, but sufficient for our
purposes, development of the C++ language. A somewhat detailed discussion of random
number generation is provided in Chapter 4. Then, Chapters 5 and 6 deal with program-
ming in R. The Chapter 5 material is directed toward writing new functions that rely on
existing classes and methods. Chapter 6 then explores the R class structure and the idea of
generic functions.

Chapter 7 represents a change point in the emphasis of the text relative to Chapters
1–6. The focus shifts from learning languages to code development for the solution of spe-
cific mathematical problems. For this reason, code listings become more complex and some
programs are not shown explicitly. This is partially for space considerations. But, the pre-
sumption at this point is that the reader has emerged from the R/C++ “boot-camp” of
Chapters 3, 5 and 6 with the ability to write their own code to fill in any gaps that are
left in the text. Indeed, many of the missing functions and programs are posed as exercises
at the end of each chapter. There are also two appendices that give complete listings of
the matrix, vector and random number generation classes that occupy important roles in
Chapters 7–8.

Statistics is about the manipulation of data. Thus, it is somewhat surprising that the
concept of abstract data structures (ADTs) has not received more interest in the statistics
community. As data becomes more and more complex, we believe it will become increasingly
important for statisticians to have a working knowledge of this area. Chapter 9 gives a broad
overview of ADTs with applications in both C++ and R. Then, Chapter 10 follows up with
a treatment of ADT implementations that are available in C++ through the language’s
container classes.

Parallel computing is no longer a concept accessible by the elite few. Our desktop machines
are perfectly capable of carrying out computations in parallel and, by doing so, speeding up
the computations by a factor that can be as large as the number of processors. Moreover, the
application programming interfaces (APIs) that provide the key to creating parallel code are
relatively easy to learn and use. Chapter 11 gives an introduction to parallel computing that
includes the OpenMP and MPI APIs for shared and distributed memory systems. Parallel
computing in R is also covered through consideration of the Rmpi and multicore packages.

The subject matter in this book has been taught at two levels: first year, first semester
statistics graduate students (at Texas A&M) and third (or higher) year statistics Ph.D.
students (at ASU). The present treatment is most suited and aimed toward students with the
latter skill set. As a result, there is the presumption of a pre-existing working knowledge of
both R and Unix shell programming. Appendices are provided to aid in filling any knowledge
gaps the reader might have in these two areas.
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The serial and OpenMP programs in the book were tested on both Linux and Mac OS X
operating systems. The MPI code was tested on the ASU Saguaro cluster. No attempt has
been made to test our programs in a Windows environment.

A rough timetable for teaching the topics in the book over a fifteen week semester might
allocate one week to each of Chapters 2, 4, 9 and 10, two weeks to Chapters 3, 7, 8 and
11 and three weeks to Chapters 5–6. The material in Chapter 11 could be augmented by
access to and use of local high performance computing resources. The class that has been
taught at ASU ended with students learning how to run code on the Saguaro cluster at the
Fulton High Performance Computing Center. The ASU teaching environment has always
been a Linux computer lab wherein both students and instructor wrote and ran programs
during the course of each lecture.

Many of the programs presented in the book can be downloaded from https://math.
asu.edu/~eubank/CandR. While we have paid some attention to writing efficient code, the
resulting programs are (very) unlikely to provide optimal performance in any sense. Our
goal is the illustration of concepts and the most direct (even brute force) formulations that
follow this mandate are what we have used. We encourage readers to rework our programs
to obtain alternative approaches that improve on our attempts.

Every chapter, except the first, includes a number of exercises. Their level of difficulty
ranges from elementary to challenging. In this latter instance we have developed prototype
solutions. But, complicated problems allow for different solution options and we would hope
that student solutions would be both varied and novel in many of these instance.

This book has gradually evolved over a period of about 10 years. There are many people
that have contributed significantly to its progress and final form. From Texas A&M, the
fingerprints of James Hardin, Joe Newton and Shane Reese (now at BYU) can be found
at each turn of the page. Phil Smith at Texas Tech University and Andrew Karl, Steven
Spiriti, Dan Stanzione and Guoyi Zhang at ASU have aided immeasurably in helping us
to learn some of the ins and outs of parallel computing and random number generation.
Of course, none of this would have been possible without Henrik Schmiediche (at A&M)
and Renate Mittleman and Vishnu Chintamaneni (at ASU) that helped us with all our
hardware and software issues over the years. We gratefully acknowledge the input from a
diligent reviewer that caught so many errors and inconsistencies while pointing out new (at
least to us) ideas to consider and implement. A special word of thanks is also due to NSF
who provided the funding for the Council on Statistics server that has played a pivotal role
in both the development and teaching of the material in the text.

Last, but nonetheless first, is recognition of our spouses Lisa and Goran that have provided
both technical and emotional support throughout the writing process. More than that of
any others, their friendship and understanding has made it possible to undertake and finish
this project.

RANDALL L. EUBANK

ANA MARIA KUPRESANIN
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Chapter 1

Introduction

It is not uncommon to find that a book on computational statistics will be absent of an
explicit definition of what comprises its subject matter area. This may be due, in part, to
the amorphous nature of the field that stems from its broad scope. Here we will venture to
give a definition of the topic that will at least be applicable to the subsequent pages of this
text. Specifically,

Definition 1.1. Computational statistics is the development and application of computa-
tional methods for problems in statistics.

A somewhat more refined notion of computational statistics might view it as the trans-
lation of intractable, as well as tractable in many cases, mathematical problems that arise
from the statistics genre into a form where they are amenable to (mostly approximate)
solution using computers. This translation generally takes the form of an algorithm that
represents a step-by-step description of the calculations that must be undertaken to pro-
vide the desired solution. But, there is more than just algorithmic development involved
in computational statistics in that “exact” solutions cannot be expected from computer
calculations. This is by design in many instances where the intent is actually to compute
an approximation to an “exact” solution that agrees with the target value only to within
some specified tolerance. There is also the issue of round-off error that arises from the fact
that irrational numbers cannot be stored in their entirety in the finite amount of memory
available in a computer. The fact that approximations are employed means that some type
of error analysis is needed and, as a result, this is an aspect of numerical analysis as well as
computational statistics.

To carry out scientific computing one needs to be “conversant” in an effective program-
ming language. For statistics, a popular language is provided by R. This furnishes an open
source computing environment that has strong ties to the S language developed at Bell Labs.
A commercial implementation of S is available under the name of S-Plus. R is not to be
confused with computer packages that provide computational tools for calculating various
statistical quantities of interest for specific data sets. Certainly R is capable of working in
that capacity. However, R is a powerful language in its own right that is ideal for addressing
many computational statistics problems in the sense of our definition.

R is very good at what it has been designed to do. But, not every statistical computing
problem is amenable to solution using R and even some that can be solved with R are more
efficiently handled using another approach. There are many compiled languages that can
be used as a supplement to R and conversely. Standard choices include C, C++, Fortran
and Java. Much of the R language relies on underlying C code and, not surprisingly, it is
relatively straightforward to import C programs into R. The same is true for C++ and this
latter option has the additional feature of, like R itself, having an object-oriented structure.
As a result, it seems natural to use R and C++ individually or in tandem as languages to
provide the computer interface component for computational statistics. That is the path
that will be pursued here.

1



2 INTRODUCTION

1.1 Programming paradigms

The purpose of a computer language is to provide an avenue of “communication” between a
(typically human) user and a computer. There are many ways such avenues can be created
and each language will differ in terms of the specific way it performs this task. Rather
than focus on implementational details, the differences and similarities between computer
languages can be more readily appreciated by taking the broader view of this section that
examines languages in the context of their relation to common programming paradigms.

Computer programming languages are sometimes characterized as being imperative or
declarative. The distinction is based on whether the program specifies a sequence of state-
ments to be executed or a sequence of definitions and requirements without directly spec-
ifying how to achieve them. Imperative languages are usually also procedural, allowing one
to build procedures as blocks of executable statements that can be executed repeatedly by
calls from various points within a program. Examples of procedural languages are C, C++,
Java, Algol, COBOL and Fortran.

Historically, computer programming began with the use of machine code that commu-
nicated instructions to the computer in its native binary language. This was followed by
assembly language that paired specific binary instructions with shortcut symbols that were
then translated to machine code through an assembler. Procedural languages provided the
next big advance by allowing code to be developed using standard words, phrases and math-
ematical expressions that are related to a desired action by the processor. Languages of this
nature (notably Fortran) used compilers to translate commands into binary sequences that
could be understood by the computer.

Procedural programming decomposes a problem into component parts that can be solved
using one or more subprograms, usually called functions or subroutines, that act on variables
that are defined in the program. Generally a subroutine has arguments but no return value.
Functions, on the other hand, typically take arguments and return information after they
have completed their task. In C/C++ the void return type allows functions to bypass the
return step which enables them to also serve in a subroutine capacity.

Procedural programming is algorithmic by nature with each subprogram or procedure in a
set of code often corresponding to a single step in a global algorithm that has been designed
to solve the problem at hand. This approach lends itself to code reuse in that subroutines
and functions can be employed again when similar subproblems arise. A disadvantage is
that, unless safeguards are put in place, data can move freely across subprograms in a
manner that allows for possibly inappropriate access or use.

Declarative languages are sometimes further divided into functional and goal-oriented.
Generally, in functional languages one expresses the computation as the evaluation of a
function. This evaluation, of course, may be divided into smaller pieces, each again involv-
ing the evaluation of a single function. Common Lisp, Mathematica and R are functional
languages. In a goal-oriented language, the programmer specifies definitions and rules and
lets the system find a “solution” satisfying the definitions by using a built-in general search
loop. An example of a goal-oriented language is Prolog.

A different categorization may be based on the basis of how a programming language
deals with data. In this context a frequently used paradigm is object-oriented programming.
Many modern programming languages are object-oriented, regardless of whether they are
otherwise procedural or functional. For example, both C++ and Java are object-oriented,
procedural languages while Common LISP and R are functional languages that also have
extensive object-oriented features.

The basic notion underlying the object-oriented approach is that both data and the
methods that manipulate it are packaged into a single object. This creates a programming
philosophy wherein objects, rather than procedures, are the fundamental building blocks
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that work individually or in combination to carry out a specific task. These objects are
designed by first creating an abstract conceptualization of some aspect of a problem and
then formalizing the notion in a computer code construct called a class. An instance of a
class that is created inside a program is called an object. It encapsulates its own internal
data and the methods/functions/subroutines that are appropriate for use with the data it
contains. This “encapsulation” feature has the benefit of providing a mechanism for data
protection. The object-oriented framework is also amenable to code design and reuse in that
the creation of objects tends to enforce subtask modularity.

As one might expect, problem decomposition in functional programming involves the
creation of a set of functions that work in tandem to find a solution. Under strict adherence
to the functional programming philosophy, functions can only take inputs and produce
outputs; they are not allowed to make changes in the data provided to the program. Instead,
each function operates on its input with its output then providing the source of input for
another function or functions along the solution path. By disallowing changes in input data
functional programming represents a kind of counterpoint to the object-oriented approach
where the creation and alteration of objects is the focus of a program.

1.2 Object-oriented programming

This section gives a high-level introduction to the object-oriented programming (OOP)
concept. These ideas recur in later chapters and it will be helpful to have a common technical
dialect with which to discuss them.

The focus of OOP is creation of classes. A class provides an abstract description of a
concept through specification of its attributes and its behavior. For scientific computing
the “concept” in question will usually represent a mathematical operation such as solving
a system of equations, generating a random number or finding the minimum of a given
function. In this respect a class should be designed with a single meta-task in mind. For
example, a class for numerical linear algebra should probably not contain methods for
checking that an integer is a prime number. The construction of focused classes has the
benefit of simplifying code development as well as enhancing the opportunities for code
reuse.

The attributes of a class are its data components or members and its member functions
or methods. Data members often belong to primitive data types in the sense of being integer,
floating-point or other types of variables that are inherent to the programming language.
However, they can be more abstract in the sense of deriving from other user-created data
types or classes. As noted in the previous section, an instance of a class for which data
members have been given specific values is called an object.

The behavior of a class object depends on the class methods that determine the type of
actions the object can perform as well as the ways the object can be altered. In combination
the data and function members provide answers to the essential design questions
• What are objects of the class supposed to do?
• What data or information will an object require to carry out its task?

The members of a class can be provided with different levels of protection. Specifically,
class members can be classified as private, public or protected. The private designation has
the consequence that such members and methods can be used only within the class itself.
Members and methods that are public are open to use outside the class by other functions
and objects. Protected class member and methods are only available to derived class objects
that inherit from the class in a sense to be described shortly.

The OOP approach provides us with various types of polymorphism. The word “poly-
morphism” means that a single thing can take different forms. In the context of OOP this
translates to functions and classes that adapt or behave in different ways depending on the
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data types furnished as function arguments or during object construction. In C++ poly-
morphism is obtained through 1) function overloading, 2) template classes and functions
and 3) virtual functions.

Function overloading happens when there are multiple functions with the same name that
take different argument types. In C++ we can use this facility to create methods for matrix
multiplication, scalar multiplication of a matrix, matrix-vector multiplication, etc., that are
all invoked by the * operator normally used for scalar multiplication.

The word “template” suggests a formatted structure that has been created for repeated
use in recurring, similar applications. For example, a template form for a job application
letter would likely contain preset information about an applicant’s qualifications, contact
addresses, etc., that would be pertinent for all its possible recipients. Other information such
as the salutation and address of the recipients would be left blank so the document could
be adapted to specific cases. Class and function templates in object-oriented programming
behave analogously to the letter template idea. The role of “blank spaces” is played by
parameters that specify data types. For example, using this approach an input/output
operation can be tailored to work differently and appropriately for the input/output of
integers, floating-point values, characters or strings of characters. In this sense a template
provides a family of classes or functions whose elements are indexed by the possible values
for their parameters.

Inheritance is a feature of object-oriented languages that allows new classes to be con-
structed from existing or base classes. The new or derived classes inherit the public members
and methods of the base class and can modify them if necessary to produce a polymorphic
behavior. For example, a banded matrix is a matrix whose special structure can be exploited
to realize savings in terms of both storage and speed of various matrix operations includ-
ing inversion. Thus, we might envision a general matrix class from which a banded matrix
class is derived. While some of the methods from the base matrix class may work well with
banded matrices, methods such as matrix-vector multiplication should be specialized to al-
low for proper use of the band limited structure. The approach is to again create another
version of the * operator, except that in this instance the solution lies in making * a virtual
method; this allows * to coexist as a method in both the base and derived class but behave
differently depending on whether a full or banded matrix object uses the operator. Note
that this is not the same as function overloading where the function’s arguments determine
its behavior.

At this point a few (possibly) new words have been learned and some (hopefully) descrip-
tive, albeit somewhat vague, explanations have been provided of what these words might
mean. The material in succeeding chapters is aimed at providing some depth to the general
OOP concept as it has been described here. However, the focal theme of this text is scientific
computing which carries the consequence that a thorough treatment of OOP is beyond its
scope. A comprehensive development of OOP can be found in, e.g., Booch, et al. (2007).

1.3 What lies ahead

The next chapter begins with a discussion of how computers represent numbers. The fact
that computers have only finite amounts of memory poses problems for dealing with irra-
tional numbers. Exact storage would require infinitely many memory locations which makes
it is necessary to compromise and settle for an approximate representation. This leads to the
discussion of round-off error and other consequences of working with floating-point arith-
metic. Some treatment of this topic is almost obligatory in a book on numerical methods.
This is more likely due to the importance of the subject than maintenance of a convention.

A bad bit of advice on round-off error is “use double precision and don’t worry about it”.
The bad part of this recommendation is not the use of “double precision”, which is certainly
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Figure 1.1 Time series data

a good practice in most settings. Instead the problem is in believing that increasing the
precision solves all numerical problems and allows one to take a cavalier view of the whole
round-off issue.

The data in Figure 1.1 represents values of a computer system performance variable that
were taken at one-second intervals for a total of 810 seconds. The data will be analyzed
using an autoregressive model of order 2; that is, the observed responses x1, . . . , x810 will
be treated as realizations from

Xt = β0 + β1Xt−1 + β2Xt−2 + et, t = 3, . . . , 810,

with the et being uncorrelated random errors with zero means and common variance. The
goal then is to obtain estimators of β0, β1 and β2. One approach to estimation is through a
conditional least squares criterion where we minimize

810∑
t=3

(xt − b0 − b1xt−1 − b2xt−2)2 (1.1)

as a function of b0, b1, b2 conditional on the first two observations that are used to initialize
the recursion (e.g., Shumway and Stoffer 2010).

One can obtain the minimizers of (1.1) directly. However, if observations are arriving
in real time it may be of interest to compute the estimators at each time point and then
update them when a new observation arrives. The first step in this updating algorithm is to
compute coefficient estimators corresponding to a fit of the fifth response based on the first
four observations. This leads us to consideration of the normal equations XTXb = XTx for
b = (b0, b1, b2)T , x = (x3, x4, x5)T and X given explicitly by
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> X
[,1] [,2] [,3]

[1,] 1 28232697 28285807
[2,] 1 28209724 28232697
[3,] 1 28248568 28209724

Now, this X matrix is nonsingular and the coefficients can be determined directly using its
inverse. But, the computational scheme evolves through updating (XTX)−1 which requires
it to be computed at this initial phase of the algorithm. An attempt to invert XTX in R
produces the response

> solve(t(X)%*%X)
Error in solve.default(t(X) %*% X) :

system is computationally singular:
reciprocal condition number = 1.33467e-22

But, X is nonsingular which means that the same is true for XTX. The problem is one of
numerical singularity as indicated by the R error message. This can be viewed as meaning
that in terms of the precision that the machine can maintain for the size of numbers involved
in the computation, the matrix in question cannot be distinguished from one that is singular.
Another interpretation is that the numbers in the calculations have exceeded the ability of
the computer to represent them in any meaningful sense.

The cause of the problem is actually quite easy to diagnose. It stems from the disparity
between the size of values in the first unit column of X and those in the two columns that
contain the responses. As we will see in Chapter 2, manipulation, particularly addition,
of numbers of very different magnitudes causes problems for computer arithmetic. The
solution is to take a standard piece of advice from courses on linear regression: standardize
variables by, e.g., subtracting their means and dividing by their standard deviations. Once
this transformation is performed the computations involving the data in Figure 1.1 proceed
without difficulty. Although the solution is not novel, this example does illustrate that a
little knowledge of a computer’s limitations can remove the mystery from computational
outcomes that might otherwise seem puzzling.

Chapter 2 is also where some of the elementary aspects of C++ will be introduced.
A detailed exploration of the language then begins in Chapter 3 with discussions of the
C/C++ function concept and of execution control using conditional if/else blocks and
for/while loops. With this as background, the next step is into the OOP aspects of the
language that allow for creation of new data types with classes and their object instances.
We also introduce the C++ approach to generic programming using template classes and
functions.

One of the powerful aspects of C++ is the ability it provides for dynamic memory al-
location. This allows one to delay specification of the size of objects, such as arrays, until
run-time. In particular, this makes it possible for the memory needs of a program to be de-
termined by input. Dynamic memory management is accomplished through a special type
of variable called a pointer whose value is a location in the computer’s physical memory.
The use of pointers to create array structures is a key to effective use of C/C++ in scientific
computing. Accordingly, we spend some time in Chapter 3 on developing this idea and then
illustrate its utility via the construction of C++ classes that can represent matrices and
vectors.

Although statistics is a mathematical science, it has a commonality with the lab sciences
as well. In this respect the computer represents the statistician’s lab and she/he uses it, just
like a lab scientist, to experiment with new ideas related to statistical methodology. These
experiments are usually of the Monte Carlo variety that rely on artificial data to assess
the performance of new (and old) procedures. This makes random number generation an
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obvious candidate for Chapter 4 that marks the beginning of our topical treatment of
statistical computing. The basic issue is how to produce a random sample from a uniform
distribution on the interval [0, 1]. This particular problem is examined in some detail before
moving on to generation of random numbers for general distribution types.

Chapters 5–6 are devoted to the use of R. Some of the elementary aspects of R are
presented in Appendix B. Chapter 5 starts from this foundation and then focuses on writing
new functions to carry out tasks in the R environment. R and C++ are quite compatible in
the sense that it is possible to use C++ functions in R and conversely. This means that the
two languages can be used in tandem, rather than exclusively, to solve statistical computing
problems. Chapter 5 contains a discussion of how one can tap into this powerful interface
with shared C++ libraries that can be loaded into R.

R possesses a class structure that has certain similarities to the one available in C++.
On the other hand, the functional nature of R creates a number of important differences.
Basically, C++ and R classes are similar in terms of how they deal with data members.
The difference is that classes in R have no member functions. Instead, generic functions are
created where the class of an argument determines a function’s behavior. The result is that
the effective use of the OOP features of R requires developments that go beyond and in
different directions than those that were presented in Chapter 3 for C++. These new ideas
are explored in Chapter 6 where the techniques for creating new classes and new generic
functions (and their associated method functions) in the R language are demonstrated.

Numerical linear algebra is a dominant area of scientific computing. While many problems
are inherently linear, even nonlinear problems are often linearized with the consequence
that linear equations, eigenvalue problems, etc., arise in a myriad of contexts. In statistics,
linear equations are frequently encountered that arise from fitting linear models and, more
generally, linear least-squares problems. Eigenvalues and singular values play a crucial role
in multivariate analysis, for example.

Chapter 7 treats some of the topics from numerical linear algebra that have particular
relevance for statistical computing. The Cholesky decomposition features prominently in
this development as a useful tool for solving both full and band-limited linear systems.
Banded matrices and the Cholesky method also provide our first foray into the use of the
C++ inheritance mechanism. Chapter 7 represents a departure from its predecessors in that
C++ and R are used in concert with ideas being presented in both languages.

Statisticians often encounter numerical optimization methods through nonlinear least-
squares problems. Numerical optimization is also the key to practical implementation of
the uniquely statistical maximum likelihood methodology. Chapter 8 introduces the stan-
dard golden section and Newton optimization algorithms from numerical analysis. Random
number generation also comes into play through stochastic search algorithms that provide
an effective tool for avoiding issues with functions possessing multiple extrema.

Chapter 9 is dedicated to a high-level introduction to theoretical aspects of data storage.
The treatment is in terms of abstract data structures that provide models for standard
storage paradigms that are encountered in practice.

Perhaps the most familiar data structure is an array of numbers. An abstract view of
this concept leads to the idea of a dynamic array that can hold user-defined (abstract) data
types and expand or contract its size to accommodate different storage needs. Of course,
arrays are not suited for every storage problem and there are many other options that will
be more efficient for access and manipulation of data in some instances. Examples of such
structures include the binary search trees, hash tables, lists and queues that are defined
and illustrated in Chapter 9. This is also where we introduce an abstraction of the pointer
concept called an iterator that plays an important role in Chapter 10.

Chapter 10 is the practical companion of Chapter 9. Here the focus is on the container
classes and algorithms that reside in the C++ Standard Template Library. Specific applica-



8 INTRODUCTION

tions for this set of tools include the creation of flexible code for data import, methodology
for analyzing streaming data and efficient techniques for implementation of discrete event
simulations.

Parallel processing has often been viewed as an esoteric side of computing. However,
now that multiple-core processors are the industry standard, the operating systems of desk-
top machines and laptops are all actively engaged in parallel processing. The problem for
the typical code developer lies in obtaining access to the multithreading capabilities of the
machines at their disposal. This resource becomes available through an application program-
ming interface or API that contains a set of commands (usually referred to as bindings) that
link a language such as C++ with a code library that manages communication to and be-
tween individual processors. OpenMP is a simple yet sophisticated API for shared memory
settings that is amenable to use even in a desktop environment. The industry standard for
parallel programming in distributed memory environments is the Message Passing Interface
or MPI. The OpenMP and MPI interfaces are not competitive in that they are designed
to solve very different communication problems. For MPI the task is sending messages be-
tween processors that occupy different physical locations where they do not have access to
a common block of memory. In contrast, with OpenMP processors communicate directly
through memory that they share; part of the function of the API in this instance is to
control memory usage in a way that will prevent data corruption.

Chapter 11 provides an introduction to parallel programming in OpenMP and MPI. The
essential bindings that are needed for writing programs that use both APIs are presented
and their use is illustrated in the examples and exercises for the chapter. There are several
approaches that now exist for parallel computing with R. Two of these are considered: the
Rmpi package that provides an interface to MPI and the multicore package that furnishes
a means to effectively use R in shared memory settings.

Simulation studies are one obvious statistical application for parallel processing. In many
ways they are an ideal application in that a large Monte Carlo experiment can be portioned
out to different processors that conduct their individual simulations without the need for
inter-processor communication. Near optimal speedups are possible in such instances that
make it feasible to perform experiments with both scope and replication levels that could
not be contemplated with serial code. Of course, this all rests on the ability to obtain high
quality, independent random number streams for the different processors. It turns out this
is not so easy to accomplish using standard serial generators and steps must be taken to
guard against inter-processor stream dependence. This can be easily accomplished in C++
with the RngStreams package and we conclude the text by illustrating how this can be used
in OpenMP, MPI and R.



Chapter 2

Computer representation of numbers

2.1 Introduction

Before delving into code development, we first need to think about the basic ingredient
that lies at the core of all scientific computations: numbers. Computer languages generally
provide specific ways of representing fundamental or primitive data types that correspond
to numbers in some direct manner. For C++ these primitive data types include

• boolean (or bool) for variables that take on the two values true and false or, equiva-
lently, the values 1 (= true) and 0 (= false),

• integer, which translates into specific types such as short, unsigned short, int, long
int and unsigned long int that provide different amounts of storage for integer values,

• character, indicated by the modifier char in source code, that is used for variables that
have character values such as “A” and

• floating point which encompasses basically all non-integer numbers with the three storage
types float, double and long double.

Ultimately, all computer operations, no matter how sophisticated, reduce to working
with representations of numbers that must be stored appropriately for use by a computer’s
central processing units or CPUs. This process is accomplished through the manipulation
of transistors (in CPUs and random access memory or RAM) that have two possible states:
off and on or, equivalently, 0 (= off) and 1 (= on). By combining transistors it becomes
possible to create a dyadic representation for a number that allows it to be stored and
used in arithmetic operations. Of course, the number of transistors is finite which affects
both how and how much information can actually be stored. To manage overall memory
(i.e., storage) levels effectively it is necessary to restrict the amount of memory that can be
allocated to different kinds of numbers with the consequence that there are limits on how
big or small a number can be and still be stored in some meaningful fashion. To appreciate
the implications of this we first need to think a bit about computer arithmetic.

In the familiar decimal (or base 10) system, numerical values are represented in units or
powers of 10. For simplicity, let us work with only nonnegative integers for the moment.
Then, the basis representation theorem from number theory (e.g., Andrews 1971) has the
consequence that any such integer, k, can be written as

k =
m∑
j=0

aj(10)j (2.1)

for some unique (if we require am 6= 0) integer m and some unique set of integer coefficients
{a0, . . ., am}. As an example,

193 = 1 ∗ (10)2 + 9 ∗ (10)1 + 3 ∗ (10)0

with * indicating multiplication. So, in this case m = 2, a0 = 3, a1 = 9 and a2 = 1. Note that
for the coefficients in (2.1) to be unique their range must be restricted to, e.g., {0, . . . , 9}.

9
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Since transistors have only two states it is not surprising that the base of choice for
computer arithmetic is binary or base 2. The base 2 version of (2.1) is the binary expansion

k =
m∑
j=0

bj(2)j (2.2)

with m a nonnegative integer for which bm 6= 0. The bj ’s are coefficients that can take on
only the values 0 or 1. Returning to our example, it can be seen that

193 = 1 ∗ (2)7 + 1 ∗ (2)6 + 1 ∗ (2)0.

This corresponds to (2.2) with m = 7, b7 = b6 = b0 = 1 and b5 = · · · = b1 = 0.
The fact that the coefficients of a number in binary form are all zeros and ones means that

it can be represented as a sequence of zeros and ones with the zeros and ones corresponding
to the bj in (2.2) and their location in the sequence indicating the associated power of two
for the coefficient. The slots that hold the coefficients in a sequence are called bits with a
sequence of eight bits being termed a byte. For the number 193 this translates into a tabular
representation such as

power of two 27 26 25 24 23 22 21 20

coefficient 1 1 0 0 0 0 0 1

That is, in binary 193 can be represented exactly in one byte as the value 11000001.
The connection between machine memory and binary arithmetic becomes complete once

bits and bytes are identified with individual transistors and blocks of eight transistors. To
represent a number in memory its binary representation is physically created by allocating
it a block of memory (e.g., a group of contiguous transistors), identifying the individual
transistors in the block with a power of 2 from its binary representation and then turning
on those transistors that correspond to powers of 2 that have unit coefficients. To belabor
the point a bit, a block of eight transistors would be needed to hold the integer 193; the
first, seventh and eighth transistor in the block would be turned on and the other five would
be turned off. Note that it will take all eight bits/transistors to store 193 and any fewer
would not be capable of doing the job.

Just as 193 cannot be stored in anything less than eight bits there is a limit to the size of
numbers that can be stored in any finite number of bits. For example, the largest number
that can be stored in one byte is

7∑
j=0

(2)j = 27
7∑
j=0

2−j = 27 1− (1/2)8

1− (1/2)
= 28 − 1 = 255. (2.3)

More generally, the largest number that can be stored in m bits is 2m − 1 (Exercise 2.1).

2.2 Storage in C++

Let us now consider how the ideas about number representation from the previous section
are implemented in C++. While investigating this issue we will also introduce some of the
language features that will allow us to begin to write, compile and execute C++ programs.

The amount of storage that is allocated to different data types can be determined using
the sizeof operator that C++ inherits from C. Listing 2.1 below demonstrates the use of
this operator to determine information about storage space, in bytes, that is provided for
some of the primitive data types discussed in the previous section.
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Listing 2.1 storageSize.cpp
//storageSize.cpp
#include <iostream >

using namespace std;

int main()
{

cout << "The storage allocated for a char is " << sizeof(char)
<< " bytes" << endl;

cout << "The storage allocated for an unsigned short integer is "
<< sizeof(unsigned short int) << " bytes" << endl;

cout << "The storage allocated for an integer is " << sizeof(int)
<< " bytes" << endl;

cout << "The storage allocated for a long integer is "
<< sizeof(long int) << " bytes" << endl;

cout << "The storage allocated for an unsigned long integer is "
<< sizeof(unsigned long int) << " bytes" << endl;

cout << "The storage allocated for a float is " << sizeof(float)
<< " bytes" << endl;

cout << "The storage allocated for a double is " << sizeof(double)
<< " bytes" << endl;

cout << "The storage allocated for a long double is "
<< sizeof(long double) << " bytes" << endl;

return 0;
}

Now this is a very simple program. But, it illustrates some of the basic syntax that will be
seen again and again. At the outset there is a comment statement (signified by //) that gives
us the name of the program file, a practice we will adhere to throughout the book. The use
of two double forward slashes causes the compiler to ignore the succeeding text on a line.
Had we wanted a comment that ran more than one line this could have been accomplished
using either // at the start of each line or by bracketing the comment encompassing possibly
multiple lines by /* and */.

The comment in Listing 2.1 is followed by the statement #include <iostream> which
is a directive to the preprocessor to include information about the input/output classes in
the C++ Standard Library. The actual code for the library has already been compiled and
will automatically be linked with our program during the compilation process. There are
many other tools available from this library beyond just those for input and output. They
can be accessed similarly using include directives and the specific files that are included are
called header files. Such files will be discussed in more detail in the next chapter. But, as one
possible example, the use of #include <cmath> provides access to many of the standard
mathematical functions such as the logarithm, trigonometric functions, etc.

The next statement in the code, using namespace std;, ensures that there will be no
ambiguity in referring to functions and classes that have any of the specific names that have
been given to those provided in the C++ Standard Library. Specifically, Listing 2.1 uses a
cout object and the output manipulator endl that are declared in the iostream header file.
The names of these operators are made globally available with the using namespace std;
statement. Omission of this line from our code would have caused the compiler to generate
an error message such as

storageSize.cpp: In function ‘int main()’:

storageSize.cpp :6: error: ‘cout ’ was not declared in this scope

storageSize.cpp :7: error: ‘endl ’ was not declared in this scope

Basically, a namespace is a collection of definitions of variables, functions and other key
components associated with a library or program that have been gathered together for
various possible reasons. Among other things namespaces provide a mechanism for reusing
desirable names for functions and classes that may have already been employed in some
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other context. It is possible to bypass the using directive via use of the scope resolution
operator :: as discussed in Section 3.8. For now we will travel the simpler path of stating
up front that all references are to the Standard Library.

We now come to the start of the program signaled by the appearance of the word main.
Every C++ program must have one and only one main function. It serves the purpose of
directing the flow of activity within a program. While there may be many functions and
objects whose actions are intricately interlaced throughout a program, whatever takes place
must have been initiated by directions from main. The body of main (as well as that of any
other function) is enclosed by the matching curly braces { and }.

In terms of content, main in Listing 2.1 is just a collection of explanatory text to be
printed with values that are returned by the sizeof operator. An application of sizeof to
a particular data type (supplied as its argument) returns the number of bytes that are used
for its storage.

The symbols << and >> are the output and input insertion operators that work with the
standard output and input stream objects cin and cout, respectively, that relay information
to and from (typically) a shell. The insertion operators provide the facility to chain together
input/output operations. The output manipulator endl that appears at the end of each
output line produces a carriage return (or starts a new line) and flushes (or cleans out)
the output buffer. You will see the effect of all this when we look at some output from the
program. Note that each full line of code in main is ended with a semicolon.

The final line of the program is return 0;. In general the return statement has the
effect that one might expect; it returns control to a calling function. In the case of how
it is used here in main, it transfers control back to the operating system. An exit integer
with a value of 0 is returned upon completion of the program. The fact that 0 is viewed as
an integer is a consequence of the int designation that immediately precedes main. This is
true more generally in that a function must return a value of the same type that appears
in its definition with the exception of main functions and functions with return type void.
The return statement could actually have been omitted from Listing 2.1 without causing
compilation errors. The void return type will be discussed shortly.

The “storage size” source code was saved as storageSize.cpp. The cpp file extension is one
of the permissible options for the GNU C++ compiler that is available in Unix environments.
The others are .cc, .cxx and .C. To run the program, we first compile it using

$ g++ -Wall storageSize.cpp -o storageSize

The compilation command begins with g++ that invokes the GNU compiler. This has
the effect of transforming the input file storageSize.cpp into machine language. In doing
this, there were two compiler options that were employed: -Wall turns on all of the most
commonly used compiler warnings while -o allows us to specify the name of the executable,
as storageSize in this instance. Without the -o option the executable would be named a.out
by default; the a.out name is an abbreviation of “assembler output”.

To load and run the compiled program the name of the executable (i.e., storageSize) is
entered on the command line prefaced by the ./ modifier that informs the shell where to
look for the executable. In this particular instance, the result is

$ ./storageSize

The storage allocated for a char is 1 bytes

The storage allocated for an unsigned short integer is 2 bytes

The storage allocated for an integer is 4 bytes

The storage allocated for a long integer is 8 bytes

The storage allocated for an unsigned long integer is 8 bytes

The storage allocated for a float is 4 bytes

The storage allocated for a double is 8 bytes

The storage allocated for a long double is 16 bytes



INTEGERS 13

The results obtained from the storageSize program will be machine-dependent. For the C++
implementation on the computer that was used to produce this output, a small integer with
no attached sign as represented in unsigned short will be stored in two bytes or 16 bits of
memory. Both the long int and unsigned long int storage types provide eight bytes of
storage while the values for an int variable can take up no more than four bytes of memory.

One of the reasons for machine dependence is the flexibility that was written into the
C++ Standard. Only minimum and maximum values are specified there for the different
data types. For example, in the case of integers the requirement is that long int need only
provide as much storage as int. The values that we just saw certainly satisfy this guideline
since long int provides twice the storage capacity of int.

The float and double types are the irrational number analog of the int and long int
storage types for integers. Another phrase that is used for float is single precision and
double is short for double precision. This terminology becomes meaningful from the output
of the storageSize program; a double is allocated 64 bits of memory or twice that which
is allowed for a float. A long double is then stored in 128 bits of memory or twice that
provided for a double.

2.3 Integers

Computer arithmetic is basically conducted with integers and floating-point values that are
used to approximate the values of non-integers. Although floating-point storage has a more
complex structure, it is not entirely dissimilar from what is employed for integers. In the
end every number must be translated into a sequence of bits and the devil is in the details
of how this is done. Integers are a good place to begin to think about such concepts and,
accordingly, that is where this section begins.

To explore the way integers are stored in some specific cases of interest it will be helpful
to have a program that returns the binary representation of a number. To accomplish this
let us first deal with the unsigned short int or simply unsigned short data type. As
the name suggests, these are small nonnegative integers. As seen in the previous section,
they occupy 2 bytes of storage with values ranging from 0 to 216 − 1 = 65535. This makes
them ideal for our current purpose where we want to extract the binary representation of
numbers in a simple setting. A program that accomplishes this is provided by Listing 2.2.

Listing 2.2 binaryRep.cpp

//binaryRep.cpp

#include <iostream >

using namespace std;

void printBinary(unsigned short val);

int main (){

unsigned short inVal;

cout << "Enter a number between 0 and 65535: ";

cin >> inVal;

cout << "Your number in binary is ";

printBinary(inVal );

cout << endl;

return 0;

}

void printBinary(unsigned short val){
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for(int i = 15; i >= 0; i--)

if(val & (1 << i))

cout << "1";

else

cout << "0";

}

Listing 2.2 employs some elementary bit-wise operations in a function called printBinary
to pick off the internal binary representation of an integer. The first thing we see in the
listing is a prototype or declaration of the basic form for printBinary that appears prior
to the function main. The return type of the function (i.e., the keyword that immediately
precedes the function’s name) is designated as void which means it does not return a value
to the calling program. In C/C++ it is necessary to tell the compiler about the essential
details (e.g., return type and type for the arguments) in a function before it can be used.
Because printBinary is to be used in the function main, we need to either define it prior to
main or furnish a prototype or sketch of the function prior to calling it in main. The second
option was chosen here. But, the program would have compiled and produced the same
results if the entire definition of printBinary was moved from the bottom of the listing
and placed before main.

The first line in main concerns the variable inVal that will hold the integer whose binary
representation will be determined. The line consists of a type declaration which states that
inVal is of storage type unsigned short. In C++ every variable’s type must be explicitly
stated when it is introduced into the program. Failure to do so will produce a compilation
error. Indeed, omission of the unsigned short inVal; line from our program would have
generated a message such as

binaryRep.cpp: In function i n t main() :

binaryRep.cpp :10: error: ‘inVal ’ was not declared in this scope

from the compiler.
The main function in Listing 2.2 also illustrates the use of cout’s input partner cin to

read a value for inVal from the shell command line. The printBinary function is then
applied to inVal with the results being written to the shell before the program terminates.

We now arrive at the actual definition of the printBinary function. It takes as input an
unsigned short integer that is two bytes in size. Such numbers can be viewed as having
16 possible slots corresponding to 20 all the way to 215. The program then steps through
each of these slots using a for loop that begins with a look at slot 16 (i.e., the 215 slot) and
works backward to the first (or 20) slot.

The C++ version of a do or for loop consists of specifying three quantities. First, a
starting value is given for the index variable whose value governs the iteration. In this
case the index variable is i whose type is first designated as int before setting it to 15.
Then, there is logical condition (i.e., i >= 0) that terminates the loop when it evaluates to
false. Finally, direction is provided on how the loop should move through the values of the
index variable. This is accomplished here with the i-- syntax which says that i should be
decremented by one at each step through the loop. Section 3.4 provides more details on the
use of loops in C++.

The printBinary function picks off the binary representation of the unsigned int vari-
able supplied for its argument by first shifting the integer 1 (= 20) over i = 15 slots using
the 1 << 15 operation. We have already seen the symbol << used in a very different context
in conjunction with cout. The question this raises is how one operator can be used for
two completely different purposes. The answer is that this is an example of polymorphism
accomplished via a feature called operator overloading that will be developed in more detail
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in the next chapter. By using this facility it becomes possible to have operators that adjust
automatically to the situation where they are applied.

Basically, the operation for i = 15 at the beginning of the for loop in Listing 2.2 multi-
plies 1 (or 0000000000000001) by 215 to obtain 1000000000000000. The if statement then
relies on a conditional comparison of val to 1000000000000000 using the bit-wise AND
operator &. Here & takes the binary representation of two numbers as input and returns a
binary representation that has ones in all the places where both numbers have ones and zeros
elsewhere. So, in terms of the way we have set this up, the argument in the if statement
(i.e., val & (1 << 15)) will evaluate to zero (or false in terms of how it is viewed by the
if conditional) unless val has a 215 term in its binary representation. In the latter case
val & (1 << 15) evaluates as true causing a 1 to be written to the shell with a 0 being
written otherwise. This same process proceeds across descending powers of 2 as a result of
the decrement operator i-- that reduces the value of i by one after the comparison in the
if statement is executed.

After compilation using

$ g++ -Wall binaryRep.cpp -o binaryRep

the program will produce results like

$ ./binaryRep

Enter a number between 0 and 65535: 2

Your number in binary is 0000000000000010

$ ./binaryRep

Enter a number between 0 and 65535: 65535

Your number in binary is 1111111111111111

The output suggests that the code is working as expected.
Up to this point, only nonnegative integers have been considered. To distinguish between

negative and positive integers, one must retain information about the sign. For example,
we could just let the last bit correspond to the sign. This is called the signed magnitude
approach. To illustrate the idea, suppose for simplicity we are working with a one byte or
eight-bit integer. Then, for example, the binary representation for 12 will be 00001100 and
−12 would be represented by 10001100. By reserving the last bit for the sign we have left
ourselves with only 7 “working” bits. Accordingly, the numbers that can be represented fall
between −(27 − 1) = −127 and 27 − 1 = 127.

Another way to store signed integers is the two’s complement rule. Here the left-most bit
is allowed to represent −2m−1 in an m bit storage allocation. For the case of m = 8 in our
example, the last bit corresponds to −27 = −128. One can work backward from this to get
other negative integers by allowing the other seven (more generally, m− 1) bits to provide
coefficients for positive powers of two as before. So, with a slight abuse of notation, we can
write

−12 = −128 + 64 + 32 + 16 + 4 = 11110100.

The two’s complement approach with m = 8 allows us to represent all the negative
integers between −128 and −1(= −128 + (27 − 1)) and, hence, the integers that can be
represented are now all those in the range −128 to 127. That is, one additional integer has
been gained over the signed magnitude method. This result extends directly to the general
case of m bits with the consequence that under the two’s complement approach it is possible
to represent all integers between

m times︷ ︸︸ ︷
100 · · · 0 = −2m−1 (2.4)
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and
m times︷ ︸︸ ︷

0111 · · · 1 = 2m−1 − 1. (2.5)

To adapt Listing 2.2 to handle signed integers it is only necessary to drop the unsigned
designation from inVal and val in Listing 2.2. The allowable input values for a two’s com-
plement storage scheme will be 215 = −32768 to 215 − 1 = 32767. Using the corresponding
modified version of Listing 2.2, the output below allows us to deduce that the computer
on which this code was compiled and executed uses the two’s complement rule to represent
int variables.

$ ./binaryRep

Enter a number between -32768 and 32767: -32768

Your number in binary is 1000000000000000

$ ./binaryRep

Enter a number between -32768 and 32767: 32767

Your number in binary is 0111111111111111

2.4 Floating-point representation

Storage types with fixed positional representations work fine for integers. This basic idea
could even be used, at least in principle, to represent rational numbers or fractions as they
can be expressed as k/m with k and m both integers. However, the utility of the fixed
point framework ends here and leaves unresolved the problem of storing and working with
irrational numbers, which comprise the bulk of the real number system.

At this point it must be realized that a general real number cannot be stored in its entirety
and, as a result, in most cases the stored value will represent only an approximation to the
truth. Errors are created in computer arithmetic with real numbers due to both the rounding
of the numbers for storage as well as further manipulations. These issues will be discussed
in the next section. For the present it suffices to recognize that there is a limit to the
precision that can be achieved from any computer representation that might be employed
for irrational numbers. We will express the precision by the number of significant digits of
agreement between the true value of a number and its floating-point representation. A good
storage system is one that attempts to minimize losses in precision subject to the constraints
that have been imposed on the allowed amount of storage.

Roughly speaking, significant digits are obtained by removing leading and trailing zeros
from a number as would take place for conversion to scientific notation, for example. This is,
in fact, an apt analogy for the developments in this and the next section. To effectively store
irrational numbers on a computer the decimal point must be allowed to float. By this we
mean that the decimal is always placed after the number’s first significant digit. To recover
the actual value of the number this decimal relocation is accompanied by multiplication by
the base (e.g., 2 or 10) raised to an appropriate power. The result is an adaptive repre-
sentation for numbers that allows for considerable storage flexibility relative to the integer
case.

To be somewhat more specific, let us return to the base 10 scenario where the floating
decimal concept is already familiar in the form of scientific E-notation. For example, under
this format the values 21.237 and .021237 would be written as 2.1237E+1 and 2.1237E−2.
The use of “E” in this context stands for the exponent of 10 and all that is really being
stated is that 21.237 = 2.1237 × 101 and .021237 = 2.1237 × 10−2. This idea works quite
generally in that m+ 1 significant figures can be retained for a real number x by writing it
as

x
.= ±a0.a1a2 · · · am10p, (2.6)
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where .= indicates approximate equality, a0, . . ., am are all integers between 0 and 9 with
a0 6= 0 and p is a signed integer.

The idea behind (2.6) is that any real number can be written as

x = ±
∞∑
j=0

aj10p−j (2.7)

and (2.6) comes from retaining only m+ 1 terms in the series (2.7). Since we only want to
include significant digits in the approximation to x, cases where a0 = 0 can be excluded.
Thus, subject to a rounding rule that determines am (e.g., augment am by one if am+1 ≥ 5),
the approximation (2.6) is uniquely determined. In the case of 21.237, m = 4 and p = 1
while m = 4 and p = −2 for .021237.

There is nothing special about base 10 and the analog of (2.6) for base 2 looks like

x
.= ±b0.b1b2 · · · bm2p (2.8)

with b0, . . ., bm all having values of either 0 or 1 and p, again, being a signed integer. As was
the case for (2.6), (2.8) derives from writing

x = ±
∞∑
j=0

bj2p−j

and then keeping the leading m+ 1 terms from the series. It is only necessary to deal with
cases where b0 = 1 which means that a binary representation can always be written in the
form

x
.= ±1.b1b2 · · · bm2p. (2.9)

This has the practical consequence that the value of b0 need not actually be stored. Num-
bers represented as in (2.9) are said to have been normalized. The remaining part of the
approximation .b1b2 · · · bm is called the mantissa or significand.

Let us now see how an expression such as (2.9) might be translated into a specific storage
scheme. We will begin with a simple, nonrealistic, illustration and then describe what can
be expected on a typical machine.

Suppose now that a number x is to be stored in a floating-point representation that is
allocated one byte of storage. There are essentially four things that must be accounted for:
the sign of the number, the value of the exponent for 2 in (2.9) as well as its sign and,
finally, the values for b1, . . . , bm. To account for the sign for x, take the left-most bit to be
a sign bit with value 0 for a positive number and 1 for a negative value. The next three
bits can then be used to hold a two’s complement representation of the exponent (that can
range from −4 to 3). This leaves four bits (i.e., m = 4) to hold the significand. To apply
this idea to, e.g., the number −12.5, first observe that

12.5 = 23 + 22 + 2−1

= 1.1001× 23.

Hence, −12.5 would be represented as

1︸︷︷︸
for the −

011︸︷︷︸
for 3

1001︸︷︷︸
for the significand

The leading 1 in the significand has been dropped because it is assumed a priori to be 1,
and the remaining part, 1001, that is stored represents coefficients for 2−1, 2−2, 2−3 and
2−4, respectively.

Now consider adding .25 to −12.5. We can represent .25 (exactly) in our storage plan
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with

.25 = 2−2

= 1.0000× 2−2.

But, to add it to −12.5 a common denominator is needed which, in this case, entails viewing
.25 as

.25 = .00001× 23.

However, in this form it cannot be stored exactly in four bits and instead must be rounded
to a significand of .0000 if we chop off the last digit or to .0001 if we round up. As a result,
addition returns the sum of−12.5 and .25 as −12.5 under truncation and −12 if the answer is
rounded up. This is an illustration of the types of problems that can occur when performing
basic arithmetic operations using numbers that have very different magnitudes. In fact, in
this case the addition of a number a to −12.5 leaves it unchanged for any |a| ≤ 2−3.

Finally, let us see what happens when we try to store 1/5 using our simple system.
This fraction cannot be stored exactly and, instead, the best that can be obtained is an
approximate representation based on the fact that

1
5

.= 2−3 + 2−4 + 2−7 + 2−8

= .19921875.

The sign bit for .19921875 will have value 0 and the two’s complement representation for
its exponent for 2 (namely, −3) is 101. The significand cannot be stored in its entirety and
rounding is required to make it fit into four bits of memory. The value is rounded up to
1010 and that is what is retained. The final result is that 1/5 receives the floating-point
representation

0︸︷︷︸
for the -

1001︸︷︷︸
for the exponent

1010︸︷︷︸
for the significand

i.e., we approximate 1/5 by 2−3 + 2−4 + 2−6 = .203125.
There is a slight problem with our simple storage scheme. Since the lead bit of the

significand was not stored the natural way to represent 0 has been lost. To account for this
0 can simply be represented by some value such as 01000000 which would have the effect
of eliminating 2−4 as a possible value.

In the real world storage for floating-point numbers can be expected to abide by the
IEEE 754 standard discussed, for example, in Stevenson (1981) and Goldberg (1991). In
the case of, e.g., float types the 754 standard specifies four bytes of storage. The first of
the 32 available bits is a sign bit with the next eight bits being allocated for storage of the
exponent. The significand is then stored in the remaining 23 bits.

In contrast to the way the exponent was handled in our simple storage scheme, the 754
standard employs a biased exponent. With eight bits there are only 256 possible integers
(e.g., 0 to 255 or −128 to 127) that can be stored whether they are signed or unsigned.
Biasing then works with the unsigned integers 0 to 255 that can be stored in eight bits and
transforms or biases the values by subtracting off 127 to produce exponents (in base 2) that
range from −127(= 0− 127) to 128 = (255− 127).

To illustrate the IEEE storage scheme, consider the number −193.625 as a four byte
float. Now, note that

193.625 = 1 ∗ (2)7 + 1 ∗ (2)6 + 1 ∗ (2)0 + 1 ∗ (2)−1 + 1 ∗ (2)−3

which means that the value in binary is

11000001.101 = 1.1000001101 ∗ 27.
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The first bit in the floating-point representation for −193.625 will be 1 to indicate that the
value is negative. The next eight bits represent the exponent: i.e., 7. Instead of 7, the biasing
approach leads to storage of

134 = 7 + 127
= 27 + 22 + 21

which is the binary sequence 10000110. The final result is the normalized representation

1︸︷︷︸
for the −

10000110︸ ︷︷ ︸
for p

10000011010000000000000︸ ︷︷ ︸
for the significand

As was true for our simple storage scheme, normalization entails the loss of the natural
choice for 0. The problem is resolved by defining 0 as 2−127: i.e., 0 is

0︸︷︷︸
sign

00000000︸ ︷︷ ︸
exponent

00000000000000000000000︸ ︷︷ ︸
significand

which translates to 2−127 after biasing of the exponent.
Unlike the integer case, extracting the binary representation of a floating-point number

is a little tricky. This is due to the fact that the bit-wise operators used in the integer case
cannot be used directly with floating-point numbers. A standard recommendation for an
end run around this difficulty looks something like the code in the listing below.

#include <iostream >

using namespace std;

void printbinary(char val){

for(int i = 7; i >= 0; i--)

if(val & (1 << i))

cout << "1";

else

cout << "0";

}

int main (){

float f;

cout << "enter a number: ";

cin >> f;

char* pf = reinterpret_cast <char*>(&f);

cout << "your number in binary is ";

for(int i = sizeof(float) - 1; i >= 0; i--) printbinary(pf[i]);

cout << endl;

return 0;

}

This program illustrates two important aspects of C/C++ that will become essential for
later chapters: namely, pointers and addresses. These quantities will be discussed in some
detail in the next chapter. For now let us merely mention their general purpose and how
they are used in this particular program.

The syntax char* pf in the program says that pf is a pointer to char. This means it
is a variable whose value is the address in memory that is occupied by a char variable.
The address that has been assigned to pf is essentially that of the floating-point variable f
which is obtained through the syntax &f. The problem is that &f is the address of a float
while pf is expecting to receive the address of a char for its value. To make the transition
from a float to a char address, a cast is used. In general, casting is the process of changing
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a variable from one data type into another in terms of how it is viewed by the compiler.
C++ performs implicit casting in standard cases such as transforming an integer into a
floating-point value and similar types of conversions. More generally, an explicit cast of a
variable x to a new data type newType is accomplished with syntax of the form

newType y = (newType)x;

provided the conversion is possible. For example, the ensuing code segment has the effect
of creating a variable of type double from one of type int.

int x = 1;

double y = (double)x;

Our particular problem goes beyond the capability of a simple explicit cast such as this.
We need to transform the memory address of a float into one that is treated as holding
a char. For this purpose it is necessary to use the reinterpret cast<char*> operator.
This basically tells the compiler to forget the original type of data that was stored at &f
and allow this location in memory to be viewed as memory for variables of type char. Our
storageSize program revealed that variables of type char are allocated 1 byte of memory.
Thus, after the cast the memory located at &f will be viewed by pf as representing the
starting point for sizeof(float) (or, 4 in this instance) one-byte blocks of memory. The
resulting pattern of on/off positions for the sequence of transistors found at these locations
can be interpreted in a variety of ways. The goal is to figure out which bits are set to 1 and
which are set to 0. This can be done by applying our bit-wise shift operator, that works
equally well with char variables, on each one-byte block of memory. The new main function
also illustrates the dereferencing of the pf pointer when the argument pf[i] is passed to the
printBinary function. This is a vector-type indexing property of pointers wherein syntax
such as pf[i] gives access to the contents of the ith block of memory rather than the value
of the pointer itself.

An example of output from the floating-point representation program is

Enter a number: -193.625

Your number in binary is 11000011010000011010000000000000

The binary representation agrees with what was done before which implies that the IEEE
standard for float is being employed on the machine that ran the program.

To conclude this section let us briefly discuss the mechanics of addition/subtraction and
multiplication of floating-point numbers. First consider the multiplication of x1 times x2

with
xi = 1.bi1 · · · bim2pi (2.10)

for i = 1, 2. To compute the product x1x2 exactly there are 2 steps: namely, 1) add the two
exponents and 2) multiply the two significands 1.b11 · · · b1m and 1.b21 · · · b2m. This latter
step results in a 2m + 2 binary decimal number of the form 1.c1 · · · c2m+1. The answer is
then

x1x2 = 1.c1 · · · c2m+12p1+p2 .

Of course, if only m decimal bits are available for storage, this answer must be rounded and
even the evaluation of the coefficient cm+1 that would be needed to accomplish the rounding
can be seen as problematic. The use of extended precision for doing the computation prior
to rounding is one way to solve this problem. But, other approaches are used in practice as
indicated in the next section.

Now consider adding x1 and x2 in (2.10). This process is more involved as a result of the
common denominator that must be used to carry out the addition process as was illustrated
with the addition of .25 to −12.5 under our eight-bit floating-point scheme. Assume that



ERRORS 21

p1 > p2 and then shift x2 to have the form

x2 = 0.0 · · · 01b21 · · · b2m2p1 (2.11)

with p1 − p2 − 1 bits being 0 counting from the first bit on the right side of the decimal.
The sum or difference can now be computed through binary addition or subtraction of the
original x1 and shifted x2 significands with the result being rounded to have m bits to the
right of the decimal. There are practical considerations that arise here in terms of how to
store the shifted version of x2 and problems arise if only m decimal bits are used to store
the shifted value. Guard bits (e.g., Kaneko and Liu 1991) can be used to deal with such
issues.

2.5 Errors

As seen in the last section, most numbers cannot be represented exactly in floating-point
format. In this section we will explore the consequences of this for the precision of compu-
tations that are carried out on computers in binary arithmetic.

First let us address the losses that can arise from conversion of a number to its floating-
point representation. It is possible to place bounds on the amount of error that can be
incurred. The bounds are, of course, dependent on the type of “rounding” that is employed.
The simplest approach is truncation or chopping.

Sign plays no role in this development. So, suppose that x is a positive real number that
can be written as

x =
∞∑
j=0

bj2p−j

with b0 = 1. Then, chopping replaces x by the approximation

x̃ = 2p +
m∑
j=1

bj2p−j

for some integer m. The error that is incurred by this approach is

x− x̃ =
∞∑

j=m+1

bj2p−j

≤ 2p
∞∑

j=m+1

2−j

= 2p2−(m+1)
∞∑
j=0

2−j

= 2p−m.

Instead of chopping an alternative approximation x̃ can be produced by rounding to the
value that is closest to x in the sense of minimizing |x− x̃|. This cuts the bound in half to
2p−(m+1) as we now demonstrate.

First observe that the round-to-closest value choice for x̃ is obtained by increasing bm by
one if bm+1 = 1 and using the chopped approximation otherwise. Consequently,

x̃ = 2p

 m∑
j=0

bj2−j + b̃m+12−(m+1)


with b̃m+1 being either 2 or 0 depending on whether or not bm+1 is 1 or 0, respectively.
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Thus, when bm+1 = 1 the error is

|x− x̃| = 2p

∣∣∣∣∣∣2−(m+1) −
∞∑

j=m+2

bj2−j

∣∣∣∣∣∣ ≤ 2p−(m+1).

On the other hand, if bm+1 = 0, x−x̃ ≤ 2p−(m+1) from our analysis of rounding by chopping.
To translate the previous bounds to relative absolute error, observe that, since |x| ≥ 2p,

|x− x̃|
|x|

≤ 2−(m+1) (2.12)

for round-to-closest value and
|x− x̃|
|x|

≤ 2−m

for chopping. These values are sometimes referred to as the machine epsilon. An application
of (2.12) to the IEEE floating-point format gives error bounds on the order of 2−24 .=
.6(10−7) for single precision and 2−53 .= 10−16 for double precision arithmetic (Exercise
2.8).

Define the relative error from floating-point approximation to be

E =
x̃− x
x

(2.13)

with x̃ the approximation to x obtained from either one of the rounding schemes. The
relative error satisfies

x̃ = x+ x̃− x

= x

(
1 +

x̃− x
x

)
= x(1 + E) (2.14)

which gives it a simple interpretation in terms of the way it measures the disparity between
x and x̃. The value of |E| pertains only to the significand and in that respect gives the
number of significant digits of accuracy for the approximation. From (2.12), |E| ≤ 2−(m+1)

under rounding to the nearest value and |E| ≤ 2−m in the case of chopping.
As an example, let us revisit the approximation for 1/5 that was obtained using the simple

eight-bit floating-point scheme of the previous section. In that case we had initially replaced
1/5 by .19921875 where

.19921875 = 1.10011× 2−3.

This led to the representation of 1/5 as 01011010. The first sign bit is set to 0 and the
two’s complement representation of −3 (i.e., 101) occupies the next three bits. The final
four bits, 1010, are used to approximate 10011. Chopping would replace this by 1001 while
round-to-nearest value is what gave us 1010. The result is that chopping approximates .2
by .1953125 with an error of .0046875 (< .0078125 = 2−7) while rounding to the nearest
value approximates .2 by .203125 with an absolute error of .0031025 (< .00390625 = 2−8).
The relative absolute error is .003125/.2 = .015625 (< .03125 = 2−5) for rounding to the
nearest value and .0046875/.2 = .0234375 (< .0625 = 2−4) for chopping.

We now wish to consider how the effect of rounding will propagate when performing the
basic arithmetic operations of multiplication, division, addition and subtraction. Processors
(at least those that comply with IEEE standards) use algorithms that perform arithmetic
operations in ways that produce exactly rounded answers in a sense that will now be de-
scribed. Details concerning these types of algorithms can be found in Koren (2002) and Lu
(2004).

Let ˜ denote the result of floating-point approximation so that, for example, x̃ is the
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floating-point approximation to a number x. Similarly, +̃, −̃, ×̃ and /̃ will be used to denote
the floating-point implementation of the arithmetic operators +,−,× and /, respectively.
Then, if x̃ and ỹ are floating-point representations of x and y, the operators +̃, −̃, ×̃ and /̃
produce exactly rounded results if

x̃+̃ỹ = ˜̃x+ ỹ

x̃−̃ỹ = ˜̃x− ỹ
x̃×̃ỹ = ˜̃x× ỹ
x̃/̃ỹ = ˜̃x/ỹ.

In words these relations mean that the operations on x̃ and ỹ produce the same answer
as if the nonfloating-point operators +,−,×, / had been applied to the number x̃ and ỹ
and the outcome was then rounded to obtain the final m-digit binary representation. If the
operations are now assumed to produce exact rounding to the nearest value this leads to
relations such as

x̃+̃ỹ = (x̃+ỹ)(1 + E) (2.15)

and
x̃×̃ỹ = (x̃× ỹ)(1 + E) (2.16)

for a generic relative error E satisfying |E| ≤ 2−(m+1).
Let us use (2.16) to bound the error incurred in computing the product Pn =

∏n
i=1 xi of

real numbers x1, . . . , xn. In this regard, there are two quantities to consider: the product
P̃n =

∏n
i=1 x̃i of floating-point approximations to the xi and the approximation to P̃n (and

Pn) provided by P̂n = x̃1×̃ · · · ×̃x̃n. An expression that relates P̂n to P̃n can be obtained
from the recursion that begins with P̂1 = x̃1 and has the general step

P̂j = x̃j×̃P̂j−1

for j = 2, . . . , n. From (2.16) one may conclude that

P̂n = P̃n

n∏
j=2

(1 + Ei)

for |Ei| ≤ 2−(m+1), i = 2, . . . , n. By now writing
n∏
j=2

(1 + Ei) = 1 + E

bounding the relative error |P̂n − P̃n|/|P̃n| becomes tantamount to placing a bound on |E|.
Following Sterbenz (1974, Section 3.5) we have

−1 +
(

1− 2−(m+1)
)n−1

≤ E ≤ −1 +
(

1 + 2−(m+1)
)n−1

with

−1 +
(

1− 2−(m+1)
)n−1

=
n−1∑
j=1

(
n− 1
j

)
(−2)−j(m+1)

≥ −
n−1∑
j=1

(
n− 1
j

)
2−j(m+1)

= −
{
−1 +

(
1 + 2−(m+1)

)n−1
}
.
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Thus,

|E| ≤ −1 +
(

1 + 2−(m+1)
)n−1

= −1 +
n−1∑
j=0

(
n− 1
j

)
2−j(m+1)

≤ −1 +
∞∑
j=0

(n2−(m+1))j

j!

= −1 + exp{n2−(m+1)}.

So, if n is small compared to 2m+1, the relative error in approximating P̃n by P̂n will be
similarly small and on the order of n2−(m+1).

A similar analysis can be applied using (2.14) to see that

P̃n = Pn(1 + Ē)

with |Ẽ| ≤ −1 + exp{n2−(m+1)}. Putting both approximations together produces

P̂n = Pn(1 + Ē + E + ĒE)

giving a relative absolute error bound on the order of −1+exp{n2−(m+1)} for approximation
of Pn. To the first order this bound would behave like n2−(m+1). Taking n = 2k suggests a
loss of one (binary) decimal of accuracy for about every two multiplications in a worst-case
scenario.

The errors incurred from floating-point division can be bounded similarly to the case
of multiplication (Exercise 2.5). However, the same is not true for floating-point addition
and subtraction. In fact, as noted by Wilkinson (1963, page 17), it is not possible to ob-
tain a bound for the relative errors associated with such calculations as the floating-point
sum/difference can be zero when the true sum is not.

An indication of how problems can arise from subtraction is provided by taking x and
y to be floating-point numbers with m digit significands having x = 1.0 · · · 02p and y =
b0.b1 · · · bm2p−1 with b0 = · · · = bm = 1. In this instance the difference between x and y
is 2p−(m+1). This difference is approximated by 2p−m for chopping and 0 under rounding
to the closest value. The absolute relative error for approximating x − y is one in either
case because (2p−(m+1) − 2p−m)/2p−(m+1) = 1 and (0 − 2p−(m+1))/2p−(m+1) = −1. This
implies that the absolute error in subtracting x from y using floating-point calculations can
be as large in magnitude as the target quantity x − y. Put another way, there may be no
digits of accuracy in the output unless steps are taken to provide additional accuracy in the
calculation.

Suppose that the floating-point addition operator produces exactly rounded results and
again let x̃1, . . . , x̃n be floating-point approximations of numbers x1, . . . , xn. To compute an
approximation S̃n to Sn =

∑n
j=1 x̃j use the recursion that starts with S̃1 = x̃1 and has the

general step

S̃j = x̃j+̃S̃j−1

for j = 2, . . . , n. At the jth step of the recursion

S̃j = (x̃j + S̃j−1) (1 + Ej)
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with |Ej | ≤ 2−(m+1) under rounding to the closest value. This leads to

S̃n = x̃n(1 + En) + S̃n−1(1 + En)
= x̃n(1 + En) + x̃n−1(1 + En−1)(1 + En) + S̃n−2(1 + En−1)(1 + En)

=
n∑
j=1

x̃j(1 + Ēj),

where Ēn = En,

1 + Ēj =
n∏
k=j

(1 + Ek)

for j = 2, . . . , n−1 and Ē1 := Ē2. (The notation := that appears here and elsewhere through-
out the text indicates that the expression on the right hand of := replaces or overwrites the
one on the left.) Hence, Sn − S̃n =

∑n
j=1 x̃jĒj and, as before

|Ēj | ≤ −1 + exp{(n− j)2−(m+1)}.

But, unlike multiplication, the values of the x̃j are inextricably linked into the relative
approximation errors with the consequence that the bound depends on the order of sum-
mation. This suggests that larger errors will accumulate as multiples of the earlier terms
that are entered into the summation. From this perspective the best strategy would seem
to require that addition should proceed with values being summed in inverse order of their
magnitude to minimize the effect of size disparities on the summation process.

To see an example of the effect of order on addition, consider summing the series 1/j2

from j = 1 to n for some integer n. The code below represents an attempt to carry out this
calculation numerically.

Listing 2.3 series.cpp

//series.cpp

#include <cstdlib >

#include <iostream >

#include <iomanip >

using namespace std;

int main(int argc , char* argv []){

float sumL = 0., sumU = 0.;

int n = atoi(argv [1]);

for(int j = 1; j <= n; j++){

sumL = sumL + 1/(float)(j*j);

sumU = sumU + 1/(float)((n + 1 - j)*(n + 1 - j));

}

cout << setprecision (8) << "Direct and reverse sums are "

<< sumL << " and " << sumU << endl;

return 0;

}

The first new thing we see in this listing is the inclusion of the header files cstdlib and
iomanip that, respectively, allow us to access some useful functions from C and output
manipulators for formatting the printed output. In this instance iomanip furnishes the
setprecision function that is used with argument 8 to have eight-decimal numbers written
to standard output. This code also contains the first appearance of argc (for argument
count) and argv (for argument vector) in the arguments to the main function. These are
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quantities that correspond to command line input. In particular, one can think of char*
argv[] as being an array of character strings (actually, a pointer to memory that holds
arrays of char variables) with each string being a non-white space component of the white-
space delimited text that was entered on the shell command line. The first array element
argv[0] contains the (./ prefaced) name of the executable while argc is the number of
strings held in argv. Another new twist is the use of the function atoi that is made available
with the cstdlib header. This function is used to transform a string of character values into
an integer variable. The argument to atoi in this case is assumed to represent a sequence of
digits that may be preceded by a sign. If the string cannot be interpreted as a number, atoi
returns 0. This is a method of dealing with the fact that command line input necessarily
comes in as character strings but will often be used to represent numeric (in this case
integer) values. The function atof performs the same type of operation except that the
transformation is to a floating-point representation.

To compute the sums in Listing 2.3 we need to calculate reciprocals of the expression j*j
for a variable j of type int with * indicating multiplication. Unless precautions are taken to
the contrary, such ratios will be evaluated using integer arithmetic with the consequence that
a value of 0 will be returned for 1/(j*j) for every j that exceeds 1. The way to circumvent
this behavior is through the use of another cast. Here this takes the form (float)(j*j)
which computes the integer product and converts the outcome to type float.

Our program sums the series in direct and reverse order to produce the two sums: sumL
and sumU. The two values will necessarily agree if they can be evaluated without error. This
is not the case for finite precision arithmetic as indicated by the results from running the
program (compiled with the name series).

$ ./series 5000

Direct and reverse sums are 1.6447253 and 1.644734

As noted above, for type float the best one might expect for accuracy is seven decimal
digits. But, the two ways of computing the sum have differences that appear in the fifth
decimal place when there are n = 5000 terms in the sum. To determine which answer is
closer to the actual sum, the computations can be redone in double precision: i.e., every
float designation in series.cpp is replaced with double. This altered set of code (compiled
as dseries) produced the result

$ ./dseries 5000

Direct and reverse sums are 1.6447341 and 1.6447341

As expected, computing the sum in reverse order where smaller values are added in first
provides the most accuracy. The approximate sums can be compared to

∑∞
j=1 j

−2 = π2/6 .=
1.644934.

2.6 Computing a sample variance

One of the earliest calculations carried out in an elementary statistics methods course is
computing a sample mean and standard deviation from a set of data values x1, . . . , xn. The
sample standard deviation is defined to be

S =
√

RSS/(n− 1),

where RSS is the residual sum-of-squares

RSS =
n∑
j=1

(xj − x̄)2

with x̄ = n−1
∑n
j=1 xj the sample mean.
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A direct application of the definitional formula would suggest a two-pass algorithm where
x̄ is obtained first and then used to calculate the RSS. A pseudo-code description of the
recursive process is given below.

Algorithm 2.1 Two-pass algorithm for the standard deviation
x̄ = 0
for j = 1 to n do
x̄ := x̄+ xj

end for
x̄ := x̄/n
RSS = 0
for j = 1 to n do

RSS := RSS + (xj − x̄)2

end for
return

√
RSS
n−1 , x̄

As an alternative to the two-pass formula, it is standard pedagogical practice to describe
the use of a “computational” formula for RSS that stems from the identity

RSS =
n∑
j=1

x2
j − n−1

 n∑
j=1

xj

2

.

The resulting computations then proceed along the lines of our next algorithm.

Algorithm 2.2 “Computational” algorithm for the standard deviation
T = RSS = 0
for j = 1 to n do
T := T + xj
RSS := RSS + x2

j

end for
RSS := RSS− T 2/n

return
√

RSS
n−1 , T/n

This latter approach has the advantage of requiring only one pass through the data. The
disadvantage is that

∑n
i=1 x

2
i and (

∑n
i=1 xi)

2/n can agree across a number of significant
digits. This produces inaccuracies when carrying out the subtraction at the end of the for
loop for reasons that were discussed in the previous section.

Chan and Lewis (1979) define the condition number associated with S to be

κ =
√

1 + nx̄2/RSS.

If S is small relative to |x̄|, κ is approximately x̄/S. This latter quantity is recognized
as the inverse of the sample coefficient of variation that provides a scale-free measure of
data variation. In this setting small values for the coefficient of variation can be seen as
indicative of instances where the “computational formula” may be problematic. In such
cases the data will consist of values that are all (relatively) close to their mean value with

the consequence that
∑n
j=1 x

2
j and n−1

(∑n
j=1 xj

)2

may be sufficiently similar to create
cancellation problems.

Suppose now that the original data x1, . . . , xn are replaced by x1(1+E1), . . . , xn(1+En) as
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might occur on a computer through the use of floating-point approximations. Then, Chan
and Lewis (1979) establish that the standard deviation S̃ computed (without round-off
error) from the altered data will satisfy S̃ = S(1 + δ) with

|δ| ≤ κγ +O
(
n (κγ)2

)
(2.17)

for
γ = max

1≤j≤n
|Ej |.

For small γ the lead term in the bound on |δ| is linear in κ which indicates that an increase
in the round-off error in the data will be met by a proportional increase in the (bound for
the) relative absolute error for computing S with the condition number representing the
proportionality factor. We can then view κ as a measure of the inherent sensitivity of S for
a particular data set to the effect of floating-point approximation error.

The analysis that led to (2.17) was in the ideal setting where the computation of S̃
can be carried out without error. Of course, the ideal case does not hold in practice and
additional errors will be introduced through whatever algorithm is used to compute an
approximation to S̃. To measure this let S̃c be the approximation to S that is obtained
by applying a computational algorithm to x1(1 + E1), . . . , xn(1 + En). We then define the
relative absolute error to be

RAE = |S̃c − S|/S. (2.18)
This quantity will be used to compare the accuracy of the two-pass and “computational”
algorithms for computing a sample standard deviation that were discussed above. The con-
dition number κ will play a central role in these comparisons.

Chan and Lewis (1979) give an approximate (ignoring higher-order terms) upper bound
of the form

RAE ≤ 2κγ +
(n

2
+ 1
)
γ

for the two-pass algorithm. A similar bound for the “computational formula” is

RAE ≤ γ +
(

3
2
n+ 1

)
κ2γ.

Figures 2.1–2.2 give plots of the (base 10 logarithm of the) bounds for the two-pass and
“computational” formula, respectively. In doing this we took n = 100, γ = 2−24 (as would
be expected for single precision round-off errors), chose the true mean for the data to be
one and then let the true standard deviation range from 10−5 to 1. For simplicity κ is
approximated here by σ−1 and the horizontal axis is in terms of − log10 σ in the figures.

The suggestion from Figures 2.1–2.2 is that the “computational formula” will be less
accurate for data sets with small coefficients of variation or large values of κ. This is a
consequence of the fact that the “computational” formula’s bound involves κ2. In fact, the
difference between the bounds for the “computational” and two-pass algorithms is

1
2
nγ[κ2 − 1] + κγ[(n+ 1)κ− 2].

This is always nonnegative because κ ≥ 1. Of course, the fact that only upper bounds are
involved means that comparisons of this nature are not conclusive.

A small empirical study was conducted to further investigate the relevance of the upper
bound comparisons for use of the two computing algorithms. Data were generated from
normal distributions with means of one and standard deviations σ for which log10(σ) =
(j− 10)/2, j = 0, . . . , 10. To accomplish this the Wichmann-Hill algorithm from Section 4.5
was used to generate uniform random deviates that were then transformed to normality
using the Box-Muller transformation treated in Section 4.7. For each value of κ = 1/σ,
100 replicate samples of size n = 100 were generated and their standard deviations were
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computed via the two-pass and “computational” algorithms. The calculations were carried
out in single precision and then compared to a “true” value that was computed in double
precision using the two-pass approach. This gives 100 values for RAE for each of the two
methods for computing S which were then averaged to produce the results depicted in
the plots. From this we can see that the bounds are quite conservative but are accurate
in predicting the general form of the relationships between RAE and κ. In the case of the
“computational” algorithm, only those RAEs for values of κ between 1 and 103 are reported;
negative values for RSS began to arise for cases with κ > 103. The basic conclusions derived
from the upper bounds and empirical work therefore seems to coincide with our original
intuition in suggesting that the two-pass algorithm is more accurate and should be preferred
for computations.

There are also updating algorithms that can be used to compute RSS. For example, an
algorithm developed by West (1979) and others (see, e.g., the discussion in Chan, et al.
1983) takes the form

Algorithm 2.3 West algorithm for the standard deviation
x̄ = x1

RSS = 0
for j = 2 to n do

RSS := RSS + j−1
j (xj − x̄)2

x̄ := x̄+ (xj − x̄)/j
end for
return

√
RSS
n−1 , x̄

The Chan/Lewis upper bound for this method is

RAE ≤
(n

2
+ 2
)
γ +

(√
2

3
n+ 7

√
n+ 1

)
κγ.

Like the two-pass method, the error bound for West’s algorithm involves only κ rather than
κ2. The analog of Figures 2.1–2.2 that applies to the West algorithm is shown in Figure 2.3.
The empirical results shown in the figure were obtained using the same simulation methods
that were employed to produce Figures 2.1–2.2. The two-pass method is clearly less sensitive
to growth in κ although both it and the West algorithm appear to behave similarly when κ
becomes large.

2.7 Storage in R

To conclude this chapter let us mention a few things about the data types and precision of
computations in R. First, the “primitive” data types in R include character, double, integer
and logical. The double and integer types are analogs of the types with the same names in
C++ while logical corresponds to the C++ bool data type. The character designation in
R indicates a variable that holds character strings rather than just a single character as in
C++. The double type in R also goes by the equivalent, and more frequently used, name of
numeric. The most basic data structure in R is an array comprised of one of the primitive
data types that is referred to as an atomic vector.

To access the storage mode of a given object, one uses either the mode or storage.mode
functions. In terms of storage of numeric, non-integer values, R purports no single precision
data type and all real numbers are stored in a double precision (eight-byte) format. Ma-
chine specific details concerning storage, etc., are held in the R list variable .Machine. For
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example, for the machine that was used to create portions of the material in this chapter
the .Machine information appears as

> noquote((format(.Machine)))

double.eps double.neg.eps double.xmin

2.220446e-16 1.110223e-16 2.225074e-308

double.xmax double.base double.digits

1.797693e+308 2 53

double.rounding double.guard double.ulp.digits

5 0 -52

double.neg.ulp.digits double.exponent double.min.exp

-53 11 -1022

double.max.exp integer.max sizeof.long

1024 2147483647 4

sizeof.longlong sizeof.longdouble sizeof.pointer

8 16 4

Some of the names for the list components are familiar from our discussions in Section 2.2
while the meanings of others can be deciphered by looking at the R help page for .Machine.
In particular, the value of 53 for the double.digits variable indicates that the significand
for a double is composed of 53 bits (i.e., 52 bits plus an implied unit bit for a normalized
significand) which corresponds to the IEEE floating-point standard.

There were a couple of useful features of the R language that were used to produce the
printed representation of the information in .Machine. First, the format function arranges
its input for “pretty printing”. The noquote function then suppresses the use of quotes in
the printed output.

2.8 Exercises

2.1. Show that the largest integer that can be stored in m bits is 2m − 1.
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2.2. Write, compile and run C++ code that will write "Hello World!" to the shell. Then,
alter your program to where it will greet the world using your first name. To accomplish
this use argv as in Listing 2.3. If you enter your first name on the command line, it will
be available in argv[1] so that you can string "Hello World from" and argv[1] together
using the output insertion operator <<. How would you modify this to use your whole name
in the greeting?
2.3. Let x be a number in [0, 1) and let byc denote the greatest integer less than or equal
to the real number y.

a) Show that the following algorithm will return the first m terms b1, . . . , bm in the binary
representation for x. (Conte and de Boor 1972)

Algorithm 2.4 Binary representation algorithm
c = x
for j = 2 to m do
bj = b2cc
c := 2c− bj

end for

b) The C++ function for bc is floor. Use this to create a program that will take the value
of a float variable x with a value in [0, 1) as input and return the first five coefficients in
its binary expansion (2.2). Note, to use floor you will need to include the math library
with the statement #include <cmath>.

2.4. Another bit-wise operator is the exclusive OR or XOR operator ^. If k1 and k2 are
two integers, the bits for k1^k2 are 1 whenever one or the other of the corresponding bits
in k1 or k2 is 1 and are 0 otherwise.

a) Develop a binary addition algorithm based on XOR. [Hint: Incorporate a carry bit into
the addition of two bits.]

b) Implement your algorithm from part a) in C++. Assume that you are dealing with
numbers that are one byte in length and carry out your calculations using unsigned
short integers.

2.5. Consider the division of two sets of floating-point numbers x̃1, . . . , x̃n and ỹ1, . . . , ỹk
with m-bit significands.

a) Assuming exact rounding, show that

(x̃1 · · · x̃n)/̃(ỹ1 · · · ỹk) = [(x̃1 · · · x̃n)/(ỹ1 · · · ỹk)] (1 + E)

with (
1− 2−(m+1)

)(k+n−1)

≤ 1 + E ≤
(

1 + 2−(m+1)
)(k+n−1)

.

b) Use the bound for 1 +E obtained in part a) to show that the relative error from division
should behave like a constant multiple of (n+k)2−(m+1) if n+k is small relative to 2m+1.

2.6. Let˜denote the result of floating-point conversion. Prove or disprove that (x̃+̃ỹ)+̃z̃ =
x̃+̃(ỹ+̃z̃).
2.7. Let y = 1 + x for a positive number x. If y is stored as the float value ỹ according to
the IEEE standard, under what conditions will ỹ = 1?
2.8. Under the IEEE standard the significand for a double is allocated 52 bits of storage.

a) Give bounds for the corresponding relative error associated with rounding to the nearest
value and chopping for doubles.
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b) How many decimal places of accuracy can be expected for a double under this storage
scheme?

c) Can you conclude from this storage specification (why or why not) that summing the
series 1/j2 in reverse order as in Section 2.5 except with double precision is accurate to
seven decimals?

2.9. Show that upon completion Algorithm 2.3 will return the sample residual sum-of-
squares.
2.10. Show that the algorithm below, due to Youngs and Cramer (1971), computes the
sample residual sum-of-squares.

Algorithm 2.5 Youngs and Cramer algorithm
T = x1

RSS = 0
for j = 2 to n do
T := T + xj

RSS := RSS + (jxj−T )2

j(j−1)

end for
return

√
RSS
n−1 ,

T
n

2.11. Consider the quadratic polynomial q(x) = x2 − 111.11x+ 1.2121.

a) Find the roots of q using the quadratic formula but using only five decimal digits with
chopping in all your calculations (addition, multiplication, square root, etc.).

b) For a quadratic polynomial ax2+bx+c show that the roots x1 and x2 satisfy x1x2 = c/|a|.
Use this latter relationship to evaluate the root having smaller absolute value for q under
the same conditions for digit retention and rounding and compare the result with your
previous answer.

(Conte and de Boor 1972)





Chapter 3

A sketch of C++

3.1 Introduction

This chapter presents some of the essential ingredients that will be needed for code devel-
opment in C++. We will begin with a few basics that will allow us to get started writing
programs and then progress fairly quickly to incorporate tools that will allow for more ef-
fective access to the power of the language. The treatment is uneven at best. More detailed
and exhaustive coverage can be obtained from Stroustrup (1997), Eckel (2000) and Prata
(2005) as well as many other excellent language references that are available in print and
on-line.

As seen in the previous chapter, schematically a C++ program will look like

include statements

declarations and definitions

int main(int argc , char* argv []){

body of program

}

Each include statement must be preceded by a # and the body of main has to be enclosed
by curly braces. Every completed statement in the body of the program must end with a
; and the same is true for declarations and some definitions that describe variables and
functions as will be explained in more detail shortly. The argv and argc arguments to main
are optional but useful for specification of additional parameters from the command line as
seen in Listing 2.3 of Section 2.5.

The body of the program will consist of variable definitions, arithmetic expressions, loops,
conditional execution statements, etc. These will be discussed in the forthcoming sections.
Perhaps the first thing to note is the fact that was mentioned in Section 2.3: every variable’s
type must be declared explicitly when it is introduced into the code. As an example, the
code snippet

int x;

x = 0;

begins with a declaration that informs the compiler that a variable x will be used that is
of type int. The next line of code is an assignment statement where x is given the value 0.
This could all have been accomplished in one step using

int x = 0;

where the type of x is declared in the same statement where it is assigned a value. Both
of these ways of introducing x into a program are syntactically correct. But, an attempt to
compile

//typeError.cpp

int main (){

x = 3;

return 0;

}

35
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will cause the compiler to lodge a complaint of the form

typeError.cpp: In function i n t main() :

typeError.cpp:4: error: ‘x’ was not declared in this scope

Note that this is the typical form of an error message returned by the Gnu C++ compiler.
It tells us the name of the file where the error was found (i.e., typeError.cpp), the name of
the function in the file which contains the error (i.e., main) and gives the line number in
the program (specifically, line 4 in the file typeError.cpp) where the error was detected.

In C there is a distinction between a declaration and a statement with the former having
the purpose of informing the compiler of storage requirements while the latter executes an
action (or actions) on a variable (or variables), performs writing operations, etc. Under the
older C standards, declarations and statements cannot be mixed. There is more flexibility
in C++ in that declarations are also viewed as statements which allows them to be mixed
with executable statements. For example, the code snippet

int main (){

int x, y;

x = 0; y = 0;

int z = x + y;

return 0;

}

is legal in C++. However, the fourth line of code int z = x + y; is illegal in some versions
of C.∗ The ability to mix declarations and code will feature prominently in C++ for loops
as will be seen in Section 3.4.

As another example of some C++ code, the listing below is the obligatory “Hello World!”
program that writes a greeting to standard output (typically the shell).

//hello.cpp

#include <iostream >

#include <string >

using namespace std;

int main (){

string s;

s = "Hi ya’ll!";

cout << s << endl;

return 0;

}

The optional arguments (argv and argc) to main, that were not needed in this instance,
have been omitted. Then, a variable (actually, more precisely, a data object in this case)
of type string is used to hold the output phrase before it is directed to the shell by the
output stream object cin introduced in Section 2.2. The string class will be discussed in
more detail in Section 3.8.5. For now we merely note that an include statement has been
used to make the class available and that the double quotes are needed to define a string
object.

As in Chapter 2, to run the program from a Unix environment the Gnu C++ compiler
is invoked from the shell command line with

$ g++ -Wall hello.cpp -o hello

∗ Actually this code will compile without error using, e.g., the Gnu C compiler gcc. Using gcc with the
-pedantic option will produce the warning that the ISO (International Organization for Standardization)
C90 standard “forbids mixed declarations and code”.
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An explanation of the compiler options that were used here was given in Section 2.2. In
particular, the -o option that precedes hello in this case assigns the name hello to the
executable version of hello.cpp that is created by the compiler. To execute the program
from the current directory enter ./hello on the command line to obtain

$ ./hello

Hi ya’ll!

3.2 Variables and scope

An example of a function was given in Listing 2.2. The body of this, as well as that of
any other C++ function (such as main), must be contained inside curly braces. The use of
braces extends more generally to the encapsulation of blocks of code that are nested inside
functions. In this as well as other contexts they serve the purpose of defining the life and
influence of variables inside a program.

In most cases the scope of a variable is the block of code encompassed by the innermost
pair of curly braces that contain the variable’s declaration. A variable exists only within its
particular scope and ceases to exist (i.e., is no longer accessible to the rest of the program)
when it goes out of scope. The listing below illustrates this point.

Listing 3.1 scope.cpp

//scope.cpp

#include <iostream >

using namespace std;

int main (){

int x = 3;

cout << "x = " << x << endl;

{

int x = 4;

int y = 7;

cout << "x = " << x << " y = " << y << endl;

}

cout << "x = " << x << " y = " << y << endl;

return 0;

}

An attempt to compile Listing 3.1 produces the error message

scope.cpp: In function ‘int main()’:

scope.cpp :14: error: ‘y’ was not declared in this scope

which indicates the presence of an error on line 14

cout << "x = " << x << " y = " << y << endl;

The problem is that y lives inside the second interior set of braces in the program main
and goes out of scope once we pass back into the exterior set of braces and try to output
its value. Thus, it no longer exists and, in fact, from the perspective of what takes place
outside of the interior braces, the y variable never existed at all.

To fix Listing 3.1 replace the offending line of code with, e.g.,

cout << "x = " << x << endl;

With this alteration the output from the program is
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x = 3

x = 4 y = 7

x = 3

This reveals that a local version of x has been defined inside the interior braces that masks
the variable of the same name that was defined in the outside code block. The interior x
exists independently of the exterior one in that it can take on different values and the values
it assumes have no effect on its exterior namesake.

An exceptional case occurs when a variable is defined outside of any curly braces thereby
giving it global or program-wise scope. In that case it is available to all subsequent parts
of the program and only goes out of scope when the program ends. Such global definitions
can be useful for defining constants that can be shared by several different functions. This
feature is used, for example, in Section 4.6 to provide a global definition of π.

3.3 Arithmetic and logical operators

Much of the code we will write for the body of main (and, more generally, for the bodies of
functions or methods) will involve the use of simple arithmetic expressions being applied to
primitive variable types such as those that were discussed in Chapter 2. Some of the tools
for constructing such expressions are

+ addition

- subtraction

* multiplication

/ division

% integer modulus (remainder after integer division)

and

= assignment (e.g., x = y)

+= addition assignment (x += y means x = x + y)

-= subtraction assignment (x -= y means x = x - y)

*= multiplication assignment (x *= y means x = x*y)

/= division assignment (x /= y means x = x/y)

The assignment shortcuts +=, -=, *= and /= prove useful for streamlining source code.
Similar to the assignment shortcuts, simplified syntax for incrementing or decrementing

the value of a variable (e.g., i in this case) by one have been provided in the form of

++i increment i and then use it

--i decrement i and then use it

i++ use i and then increment it

i-- use i and then decrement it

These will be used repeatedly in the creation of for loops as in Listing 2.3.
There are also the basic comparison operators that play a prominent role in carrying out

conditional execution. In this regard, C++ includes

== logical equal

!= logical not equal

>, <, >= and <= for, respectively, logical greater than, less than, greater than or equal
and less than or equal
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These operators appear in expressions that return values false (or 0) or true (or 1). An
expression such as (x >= 3) evaluates as either true or false according to whether or not
the variable x is greater than or equal to 3 (Exercise 3.1).

Finally, there are the logical operators that correspond to intersection, union and negation:
namely,

&& logical AND

|| logical OR

! logical NOT
The expression A && B evaluates to true if both A and B are true while A || B evaluates
to true if either A or B are true. The ! operator negates the argument to its right: for
example, !(x ≥ 3) evaluates as true if x is less than 3.

3.4 Control structures

The power of computing comes from the ability to adaptively carry out relatively simple
tasks a large number of times. The adaptive feature is provided by conditional if-then-else
structures and the repetition is achieved using loops. The structure of the simplest block of
code containing a C++ conditional is

if(testExpression ){

statements and expressions

}

Here testExpression may be any syntactically valid expression. C++ will cast the result
to bool and return either a false or a true. When testExpression in the argument to if
evaluates to true, the first line or block (i.e., a collection of statements contained in curly
braces) of code after if is evaluated. Otherwise the control passes to the next line of code
after this block.

Somewhat more involved constructs allow for branching as in

if(testExpression ){

statements and expressions

}

else{

statements and expressions

}

where the else block is executed when testExpression evaluates to false. Still more
generally, multiple branches of the form

if(testExpression1 ){

statements and expressions

}

elseif(testExpression2 ){

statements and expressions

}

.

.

.

else{

statements and expressions

}

can be utilized.
Looping ability in C++ is provided by for and while loops. The former looks like
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for(initializingExpression; testExpression; increment ){

statements and expressions

}

The loop begins with the initializing statement initializingExpression that will gener-
ally give the starting value for an index variable. After the first ; a condition represented
by testExpression is evaluated as either true or false. Execution of the related block
of code (i.e., the statements between the two curly braces) or body of the loop continues
until testExpression evaluates to false. Each time the body of the loop is executed, a
control expression (usually the value of an index variable) is updated or incremented and
testExpression is evaluated again.

A while loop appears like

while(testExpression ){

statements and expressions

}

Unlike the for loop, the while loop will continue to force execution of its associated block
of code as long as testExpression evaluates to true. Thus, the code

while(1){

cout << "I’m in a loop!" << endl;

}

will print “I’m in a loop!” to standard output indefinitely until execution is forcefully ter-
minated (see Section 4 of Appendix A).

Actually, the for and while loops are equivalent in the sense that

for(; testExpression ;){

statements and expressions

}

will emulate a while loop. Similarly,

initializingExpression;

while(testExpression ){

statements and expressions

increment;

}

emulates a for loop using a while construct. The version of a for loop used here illustrates
that the arguments for a for loop are optional although the semicolons are mandatory. In
particular,

for(;;)

cout << "I’m in a loop!" << endl;

will produce the same effect as the previous while loop that printed the “I’m in a loop!”
message and must also be manually terminated by the user.

The program listed below adds integers from a given starting point until the sum passes
a specified bound. The summation is accomplished using both for and while loops.

Listing 3.2 forWhileEx.cpp

//forWhileEx.cpp

#include <iostream >

#include <cstdlib >

using namespace std;
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int main(int argc , char* argv []){

int start = atoi(argv [1]);

int bound = atoi(argv [2]);

//compute the sum with a for loop

int sum = 0;

for(int i = start; sum <= bound; i++)

sum += i;

cout << "The sum from the for loop is " << sum << endl;

//compute the sum with a while loop

sum = 0;

int i = start;

while(sum <= bound){

sum += i;

i++;

}

cout << "The sum from the while loop is " << sum << endl;

return 0;

}

Values for the bound and the starting point for the summation are passed into the program
as the second and third character strings that are entered on the command line after the
./ prefaced name of the executable. They are converted from character to integer values
using the atoi function that was used previously in Listing 2.3. The sum is then initialized
to 0 and incremented iteratively in each of the two loop structures. Results from using the
program might appear something like

$ g++ -Wall forWhileEx.cpp -o forWhileEx

$ ./forWhileEx 10 100

The sum from the for loop is 108

The sum from the while loop is 108

There are two other conditional statements in C++ that can provide alternatives to if/else
blocks: switch and the conditional operator ?:. The switch statement allows selection
among different sections of a set of code depending on the value of an integral expression.
As such, it can provide a convenient alternative to if/else blocks when dealing with logical
conditions that produce multiple branches. The syntax for the conditional operator is

testExpression ? expression1 : expression2

Here testExpression is a logical construct. When it evaluates to true, expression1 is
executed and expression2 is enacted otherwise. Detailed treatments of switch and the
conditional operator can be found, for example, in Chapter 6 of Prata (2005).

It is sometimes useful to terminate a loop when some unusual condition arises. A break
statement will terminates the execution of the most interior enclosing loop or conditional
statement in which it appears. For example,

//breakEx.cpp

#include <iostream >

using namespace std;

int main (){

for(int i = 0; i < 3; i++)

for(int j= 0; j < 10; j++){

if(j == 2) break;

cout << j << " ";

}
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cout << endl;

return 0;

}

produces the output

$ g++ -Wall breakEx.cpp -o breakEx

$ ./breakEx

0 1 0 1 0 1

3.5 Using arrays and pointers

To this point we have primarily dealt with primitive data types. These are the building
blocks for compound data types that include arrays and classes. Arrays will be treated in
this section while classes are the topic of Section 3.7.

An important part of most programming languages is the use of arrays for data storage
and manipulation. A one-dimensional array is a vector that, in C++, may contain objects
of any one data type, either primitive or user defined.

Arrays are declared in C++ code by using square brackets []. There is nothing special
about the one-dimensional case. The declaration

int x[nRows][ nCols];

will reserve the memory space for a two-dimensional integer array or matrix with nRows rows
and nCols columns. The (i, j)th array entry is accessed using x[i][j]. Note that arrays
in C/C++ use 0-offset indexing, which means that the first element of a one-dimensional
array x is x[0] rather than x[1]. Similarly, the first component of a two-dimensional array
x is x[0][0].

The ensuing lines of code illustrate various ways to initialize and assign values to elements
of an array.

double a1[3] = {1, 2, 3};

int a2[7] = {1, 2};

float a3 [2][3] = {{1, 3, 5}, {2, 4, 6}};

The first statement initializes a three-element array a1 of doubles with a1[0] = 1, a1[1]
= 2 and a1[2] = 3. The second statement initializes only two of the seven elements in
the integer array a2. The noninitialized entries are set to 0 by default; i.e., a2[2] = · · ·
= a2[6] = 0. Finally, a3 is a 2 × 3 array with first row a3[0][0] = 1, a3[0][1] = 3,
a3[0][2] = 5 and second row a3[1][0] = 2, a3[1][1] = 4, a3[1][2] = 6.

Another way to work with arrays is through the use of pointers. The value of an object of
type pointer is a memory location. Pointers have a myriad of applications beyond just their
connection to arrays that make them an essential ingredient of any C++ programmer’s
repertoire.

Whenever we execute a program it is loaded into the computer’s memory. One may think
of this memory as being sequentially arranged, one-byte blocks that are numbered starting
from zero and going up to an integer that represents the total amount of available memory,
although this description may not be strictly true in reality. Now, each part of the program
occupies one or more of these memory blocks. The address of a program component can
be accessed in C/C++ using the address operator &. An illustration of this is the following
simple program.
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//addresses.cpp

#include <iostream >

using namespace std;

int main (){

double v[4] = {1., 2., 3., 4.};

cout << "Address of v[0] = " << &v[0] << endl;

cout << "Address of v[3] = " << &v[3] << endl;

return 0;

}

which produces the (machine-dependent) output

$ g++ -Wall addresses.cpp -o addresses

$ ./addresses

Address of v[0] = 0xbffff9d0

Address of v[3] = 0xbffff9e8

The addresses returned from the program are in hexadecimal format with the letters a, b, c,
d, e and f corresponding to the numbers 10–15, respectively. The output shows that, as will
always be true for arrays in C++, the storage for v has been allocated in contiguous blocks
of eight bytes of memory. To see this, first recall that a double is allocated eight bytes of
storage. Then, note that the memory allocated to the first component of v at 0xbffff9d0 is 24
(i.e., 3× 8) bytes (counting in hexadecimal) from where the memory for its last component
begins at 0xbffff9e8.

Pointers are variables that allow us to work with addresses. A pointer takes a memory
location address as its value and provides the facility to access (i.e., read from and write
to) that location. A pointer p to an object of type dataType is declared via the syntax

dataType* p;

So, for example,

int* p;

declares a pointer p that can be used to hold the address of a variable of type int. To carry
this a bit further, if we write

int* p;

int i = 1;

p = &i;

the result is that p “points” to the address of i in memory. To access the number that is
stored in this location, the pointer is dereferenced using the syntax *p. This is illustrated
by the code example below.

//simplePointer.cpp

#include <iostream >

using namespace std;

int main (){

int* p = 0;

int i = 1;

p = &i;

cout << "Address of i = " << &i << endl;

cout << "Address of p = " << &p << endl;
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cout << "Value of p = " << p << endl;

cout << "Value stored in p = " << *p << endl;

cout << "Value stored in p = " << p[0] << endl;

return 0;

}

Apart from the specific addresses returned as output, the results from the compilation and
execution of this program will look like

$ g++ -Wall simplePointer.cpp -o simplePointer

$ ./simplePointer

Address of i = 0x7fff5fbff74c

Address of p = 0x7fff5fbff740

Value of p = 0x7fff5fbff74c

Value stored in p = 1

Value stored in p = 1

The last line of output from the program was produced using an alternative way to derefer-
ence the pointer p: namely, p[0] rather than *p. This syntax is indicative of the connection
between pointers and arrays that will be discussed shortly.

Note that the pointer p in simplePointer.cpp was initialized with 0 which has the effect
of producing a so called null pointer: i.e., a pointer that points to no location in memory
and, as a result, cannot be dereferenced. An alternative, equivalent, approach is to initialize
the pointer with the “value” NULL that in C++ is an alias for 0. We will use the 0 option
throughout this text and view explicit initialization of pointers with 0 as a good program-
ming practice. It makes it clear to ourselves and others that the pointer does not point to
a valid memory location and cannot be dereferenced until that has been changed.

Null pointers are actually quite useful. Although they cannot be dereferenced, they can
be compared using == and != to other pointers. No other valid pointer (i.e., one that points
to a valid location in memory) will compare as equal to the null pointer and this can be
used in conditional statements to determine if a memory allocation problem has occurred,
if a function has executed successfully, etc. Null pointers play an essential role in many of
the basic operations that are performed with the abstract data structures of Chapter 9.

Pointers are the key to dynamic memory allocation for vectors and arrays and for passing
variables to functions in a manner that will allow their values to be altered. To address the
first point note that in C++ there are three memory storage types: automatic storage (or
“the stack”), static storage and the free-store or the heap. The free-store is a large block of
memory used for allocation of memory at run-time. It is what should be used if there is any
uncertainty about precisely how much memory will be needed when you run your program.
This, of course, is a common occurrence in many statistical applications where code should
be able to adapt to data sets of general sizes that may not be determined until run time.
Even in the context of our random number generation programs in the next chapter, the
size of the vector of random numbers they produce needs to be determined at run-time and
could be arbitrarily large depending on the needs of the user.

The operator new is used to allocate memory on the free-store. The syntax looks like

dataType* p = new dataType[size];

In this instance the operator new returns a pointer to dataType whose value is the beginning
location of size contiguous blocks of memory with each block being large enough to hold
a dataType object. The code

double* p = 0;

p = new double[10];

will give a value for the pointer p that points to the first of 10 blocks of eight byte segments of
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memory. To write to or read the values in each block of memory the pointer is dereferenced
using the operator []; i.e., values stored in our 10 blocks of memory are accessed by p[0],. . .,
p[9]. This form of dereferencing looks essentially the same as what was done above for a
one-dimensional array and, for all practical purposes, it is. Given the very close relationship
between pointers and arrays, it is not surprising that the subscripting conventions in C++
generalize to the pointer context.

Free-store memory should be released whenever it is no longer needed. This is accom-
plished with the delete operator. For instance, if a pointer p is obtained from

int* p = new int;

this memory would be released by simply using

delete p;

If a block of memory has been allocated for an array as in the previous example, using

p = new double[10];

this memory can be released with

delete[] p;

Failure to release memory used by an object that was created using the new operator can
lead to “memory leaks” that can potentially exhaust all the available free-store memory.

In terms of how they are used in standard arithmetic (and even in their behavior when
passed to functions) there is little difference between pointers and arrays. However, the two
types are not the same and the reason this is true can be appreciated by understanding the
C++ const designation.

The use of a const modifier to preface the type of a variable has the effect that its value
cannot be altered. For example, by using the inverse cosine function, acos, available through
the cmath header, we can define

const double pi = 2*acos (0.);

This gives us a symbolic equivalent (namely pi) for the (floating-point approximation of
the) value of π that can now be conveniently used anywhere in the code block that contains
the statement. Prefacing double with const guarantees that pi will hold the same value
whenever it is used. Symbolic constants that are defined in preprocessor directives are a
standard feature from C. The const designation serves a similar purpose but with more
functionality in the sense that the result acts just like a variable; it can be passed as the
argument to a function and will cease to exist when it goes out of scope. Moreover, any
data type can be made const. When doing so, a value must be assigned in the declaration
of the variable.

In the case of pointers there are two ways const can be used. A pointer to a const
variable means that the value of the variable cannot be changed. On the other hand, the
pointer itself may be declared const and this will imply that the memory location used in
its initialization cannot be changed. The syntax for creating a pointer to a const variable
(i.e., one whose value cannot be changed) is

const dataType* p;

The way to read this is that the data type is const dataType with the effect that * creates
a pointer to a variable of type dataType whose value cannot be changed as a result of the
const designation. In contrast, a const pointer to a variable of type dataType is created
with

dataType* const p;
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which says that p is a const pointer to dataType; that is, the value of the pointer itself
cannot be changed. The idea is illustrated in the elementary program that appears below.

Listing 3.3 constPointer.cpp

1//constPointer.cpp

2
3int main (){

4int x = 1, y = 1;

5const int* p1 = &x;

6int* const p2 = &x;

7p1 = &y;

8p2 = &y;//error

9p1[0] += 1;//error!

10p2[0] += 1;

11return 0;

12}

The attempt to make the const pointer p2 point to the address of y in line 8 of the listing
produces a compile time error because once p2 has been initialized it cannot be reassigned
to point to another memory location. Similarly, the value stored in the memory location
that is pointed to by p1 has been declared as that of a const integer variable, and therefore
the attempt to change that value in memory on line 9 leads to a compilation error. But, it is
perfectly legal to have p1 point to a new address or change the value in memory accessible
through p2 as can be seen by commenting out lines 8 and 9.

An array is effectively just a const pointer. That is, once an array is dimensioned in a
program it cannot be redimensioned nor can the memory it occupies be utilized for any
other purpose until it goes out of scope. With this in mind we can think of a statement that
dimensions an n-element array like

double z1[n];

as being similar to

double* z2 = new double[n];

in that both require allocation of the memory that is necessary to store n doubles. However,
in the first case the memory for z1 is allocated automatically on the stack and released
automatically whenever z1 goes out of scope. Because we have no control over this memory,
z1 cannot be redimensioned. In the second case the memory for z2 is obtained dynamically
on the free-store. It must then be freed explicitly via

delete[] z2;

But, once the memory is freed, a new block of memory, possibly of different size (although
still for doubles), can be pointed to by the z2 pointer.

So far we have only dealt with how to represent vectors (one-dimensional arrays) using
pointers. This is not sufficient and it is also necessary to have an analogous way of working
with two-dimensional arrays or matrices. This can be accomplished through the use of a
vector or one-dimensional array of pointers. The memory for the rows of the matrix is then
allocated to each of the pointers in the array. Of course, the way to get a vector of pointers
is to use a pointer as well. That is, to create an array with nRows rows and nCols columns,
we first create a pointer that points to a block of memory containing nRows pointers, one
corresponding to each row of the array. Then, each of these memory locations contains the
address of the block of memory that is allocated to the corresponding row of the matrix.
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This pointer-to-pointer storage scheme is illustrated in the diagram below.

p // &p[0] p[0] // &p[0][0]

p[1] // &p[1][0]

...
...

p[nRows− 1] // &p[nRows− 1][0]

The diagram shows a pointer p that stores the address of the first of nRows contiguous
memory locations that will each hold a pointer to the data type that will be stored in their
respective rows. The value written to each of the row pointers is the address of the first of
the nCols blocks of memory allocated to hold the actual data values that will be placed in
the corresponding row of the array. It should be noted that the memory required to hold an
address will depend on the computer’s architecture with four and eight bytes being typical
values. The important point is that, whatever the size, it will be independent of the size of
the block of memory to which it points.

There are two steps that are needed to obtain a pointer-to-pointer memory allocation to
hold an nRows × nCols “matrix” of components of type dataType. First, obtain the memory
needed to store an array of pointers to dataType. The elements of this array are therefore
of type dataType* so that the necessary memory may be requested from the free-store with
something like

dataType** p = new dataType*[nRows]

The outside * in the dataType declaration indicates that p is a pointer while the inside *
is really part of the data type name of dataType*.

At this point memory has been allocated only for the pointers that will hold the locations
of the memory that will be allocated for the rows of our array. The second step is to obtain
the memory for the rows via a loop such as

for(int i = 0; i < nRows; i++)

p[i] = new dataType[nCols ];

Since p[i] is a pointer to dataType this works perfectly well and values can now be assigned
to the memory locations through dereferencing. Specifically, the syntax p[i][j] implicitly
carries out two steps. First p[i] dereferences p to obtain the pointer to the ith row of the
“matrix”. Then, p[i][j] dereferences the pointer p[i] to obtain access to the memory for
the (i, j)th array element.

A specific example that uses the pointer-to-pointer approach to store a matrix is provided
in the next listing.

Listing 3.4 matrixPointer.cpp

//matrixPointer.cpp

#include <iostream >

using namespace std;

int main (){
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int nRows = 2, nCols = 3;

double** pM = 0;

pM = new double*[nRows];

for(int i = 0; i < nRows; i++)

pM[i] = new double[nCols];

cout << "The value of pM is " << pM << endl;

for(int i = 0; i < nRows; i++)

cout << "The address for pM[" << i << "] is "<<

&pM[i] << endl;

for(int i = 0; i < nRows; i++){

cout << "The value of pM[" << i << "] is " << pM[i] << endl;

for(int j = 0; j < nCols; j++){

cout << " The address of pM[" << i << "]["

<< j << "] is "<< &pM[i][j] << endl;

}

cout << endl;

}

for(int i = 0; i < nRows; i++){

for(int j = 0; j < nCols; j++){

pM[i][j] = i*j;

cout << "pM[" << i << "][" << j << "]=" << pM[i][j] << " ";

}

cout << endl;

}

//memory clean up

for(int i = 0; i < nRows; i++)

delete[] pM[i];

delete[] pM;

return 0;

}

This code will produce output that resembles

The value of pM is 0x100150

The address for pM[0] is 0x100150

The address for pM[1] is 0x100154

The value of pM[0] is 0x100160

The address of pM [0][0] is 0x100160

The address of pM [0][1] is 0x100168

The address of pM [0][2] is 0x100170

The value of pM[1] is 0x100180

The address of pM [1][0] is 0x100180

The address of pM [1][1] is 0x100188

The address of pM [1][2] is 0x100190

pM [0][0]=0 pM [0][1]=0 pM [0][2]=0

pM [1][0]=0 pM [1][1]=1 pM [1][2]=2

Listing 3.4 creates a 2 × 3 matrix of double precision variables. It does this by first
obtaining a pointer that can hold (i.e., take on the value of) the memory location of a
pointer to double. The first for loop carries out the allocation of memory to each of the
two rows of the matrix. The resulting output from our program then confirms what was
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indicated in the diagram above; that is, pM points to (i.e., holds the address of) the pointer
pM[0] which, in turn, points to pM[0][0], etc. Specifically, the second for loop in Listing
3.4 demonstrates that memory is laid out in contiguous blocks of four bytes to hold the
values of pM[0] and pM[1] (because 0x100150 and 0x100154 are four bytes apart). The
third, nested for loop reveals that the values of pM[0] and pM[1] are the same as the
addresses of pM[0][0] and pM[1][0] and that contiguous blocks of 8 bytes of memory have
been allocated to hold pM[0][0], pM[0][1], pM[0][2] and pM[1][0], pM[1][1], pM[1][2]
(since, e.g., 0x100160 and 0x100168 are eight bytes apart).

In general, there is no reason (or guarantee) that memory locations will be contiguous
from row to row. In fact, there appears to be a gap between the memory blocks for the first
and second row in our array due to the presence of eight bytes of memory between the end
of the block for pM[0][2] and the one that begins at pM[1][0]. Actually, this is a feature
of C/C++ where an additional “one-past-the-end” block of memory is always provided for
a pointer. This additional block of memory can be pointed to but cannot be dereferenced.

Listing 3.4 demonstrates that data stored in the pointer-to-pointer format can be manip-
ulated in essentially the same manner as for an ordinary array. To assign values to or print
the value in the (i, j)th memory location for the pointer pM we use the pM[i][j] syntax.

The final for loop in the listing demonstrates how to release the memory for pointer-to-
pointer array storage. In the present case this is technically unnecessary as all the memory
will be released automatically when the program terminates. But, in general, pointers may
exist inside of other functions called from main as discussed in the next section.

The correct route to releasing memory from a pointer-to-pointer storage format proceeds
along the lines of the one used in Listing 3.4. The memory for each row must be released
before that of the pointer to the row pointers. A look at the example should be enough
to see that this is the only route that will really work. Releasing the memory for pM first
will only free up two storage locations (i.e., the ones allocated to pM) and would produce a
memory leak where we would no longer have access to the six storage locations allocated to
the rows of the array; that particular memory would remain allocated and unusable until
the program terminated.

3.6 Functions

The C/C+ language would be very restrictive if it only allowed for source code that could
be put in the body of main. However, we already know from Chapter 2 that this is not
the case and it is possible to include other functions in our programs. To accomplish this
a prototype and/or definition of the function must be provided prior to the code for main.
This can be accomplished by placing the prototype in the same file as main or through the
use of an #include directive. We will restrict attention to the first option for the moment.

The general structure of a function definition has the form

returnType functionName(arguments ){

body of function

return statement

}

Here the returnType can be any of the primitive data types, a pointer, etc. The quantity
returned in the return statement must be of the same type as returnType.

The code listing below is for a simple program that calls a function square in the body
of main to square the value of some number that is provided as input through the shell
interface using the input stream object cin introduced in Section 2.3.
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Listing 3.5 square.cpp

//square.cpp

#include <iostream >

using namespace std;

double square(double x);

int main (){

double x;

cout << "Enter a number ";

cin >> x;

cout << square(x) << endl;

return 0;

}

double square(double x){

return x*x;

}

Notice the prototype that was provided for square prior to its use in main. If this had not
been done and the definition of square was also not given prior to main a compiler error
would have been generated that looked something like

square.cpp: In function i n t main() :

square.cpp :10: error: ‘square ’ was not declared in this scope

Compilation and execution of square.cpp produces, e.g.,

$ g++ -Wall square.cpp -o square

$ ./square

Enter a number 4

16

$ ./square

Enter a number 1.278

1.63328

In C/C++ arguments to functions are passed by value. This means that a copy of each
argument is created for use in the function. The function then works with the copies with
the consequence that the actual values of the arguments cannot be altered. The copying
process incurs both a memory and time overhead that should be managed carefully.

Among other things, the pass-by-value paradigm restricts what functions can accomplish
as they can usually only return one object. An end run around this restriction can be
obtained by using pointers or references. If a pointer is passed by value to a function the
value of the pointer itself cannot be changed: i.e., the function cannot change the address the
pointer points to in memory. But, it does have access to the memory location pointed to by
the pointer. In particular, it can change the values that are stored in the memory locations
associated with a pointer. In addition, passing a memory address means that creating the
copy needed for use in the function will incur very little memory or time overhead. Pointers
are generally stored in four or eight bytes of memory regardless of what type of variable
they point to. In contrast, passing composite data types such as the class objects discussed
in Section 3.6 can be unnecessarily wasteful of memory and time resources.

The listings below and their corresponding output illustrate the implications of the pre-
vious discussion. First, the code
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//passByVal.cpp

#include <iostream >

using namespace std;

void f(int i){

i += 1;

}

int main(int argc , char* argv []){

int i = 0;

f(i);

cout << "The value of i is " << i <<endl;

return 0;

}

leads to

$ g++ -Wall passByVal.cpp -o passByVal

$ ./passByVal

The value of i is 0

The result demonstrates that the value of the variable i is not changed by passing it to the
function f. In contrast, the program

//passByPoint.cpp

#include <iostream >

using namespace std;

void f(int* pi){

pi[0] += 1;

}

int main(int argc , char* argv []){

int i = 0;

int* pi = &i;

f(pi);

cout << "The value of i is " << i <<endl;

return 0;

}

gives us

$ g++ -Wall passByPoint.cpp -o passByPoint

$ ./passByPoint

The value of i is 1

thereby showing that the value of i has been successfully altered.
The same effect that was realized by passing a pointer to a function can be obtained

by passing an object by reference. A reference variable corresponding to a variable of type
dataType is obtained using the syntax dataType&; for example,

int i = 0;

int& j = i;

produces a reference to int variable j that refers to the same location in memory as the
one occupied by i.

References provide objects that behave in most ways as if they were just alternative names
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or aliases for the objects they reference. A reference also has the property of a pointer in
that if an object is passed under its reference “name” to a function the function can actually
alter the object being referenced. A reference can be viewed as being similar to a pointer
that can only point to one location in memory: the one that is used when it was initialized.
Then, dereferencing is accomplished by simply using the name of the referenced variable.

The code below illustrates some of the features of references.

//refEx.cpp

#include <iostream >

using namespace std;

void f(int& j){

j++;

cout << &j << endl;

}

int main (){

int i = 2;

cout << &i << endl;

f(i);

cout << i << endl;

int& j = i;

int k = j;

cout << i << " " << j << " " << k << endl;

cout << &i << " " << &j << " " << &k << endl;

k++;

j = k;

cout << i << " " << j << " " << k << endl;

cout << &i << " " << &j << " " << &k << endl;

return 0;

}

The output from execution of this program might look something like

0x7fff5fbffa1c

0x7fff5fbffa1c

3

3 3 3

0x7fff5fbffa1c 0x7fff5fbffa1c 0x7fff5fbffa18

4 4 4

0x7fff5fbffa1c 0x7fff5fbffa1c 0x7fff5fbffa18

The two addresses and the lone integer 3 that appear in the first three lines of the output
demonstrate that both the variable i from main and the reference to i provided by j in
the function f share the same address in memory and that altering j in f will also alter
i. We next create a variable j in main that is a reference to int and initialize it to i. A
new integer variable k is then assigned the value of j. But, k is seen to be located in a
different memory location. This is a consequence of how the assignment operator = behaves
when used with primitive data types: i.e., a new memory location is created for the variable
on the left-hand side of = and the value of the right-hand side variable is written into this
location. Thus, the effect of assigning the reference variable j to k is the same as would
be obtained if a pointer pi was created that pointed to i (because j is a reference to i)
and then the assignment k = *pi was executed. So, in that sense j is like a pointer where
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simply using its name carries out dereferencing. The final two lines of output result from
switching k and j to be on the right-hand and left-hand sides of = with the result that now
the value of i is changed but memory locations are not altered.

Another useful property of C++ is that it allows for function overloading. That is, it
allows for two or more functions to have the same name provided only that their argument
types differ. The code below illustrates this with a modification of the square program.

//squareOverload.cpp

#include <iostream >

using namespace std;

double square(double x);

int square(int x);

int main (){

double x;

cout << "Enter a number ";

cin >> x;

cout << square(x) << endl;

int y;

cout << "Enter an integer ";

cin >> y;

cout << square(y) << endl;

return 0;

}

double square(double x){

cout << "From double version" << endl;

return x*x;

}

int square(int x){

cout << "From int version" << endl;

return x*x;

}

The output from this program below verifies that the appropriate version of square is being
called to deal with the cases of double and int argument types.

$ g++ -Wall squareOverloaded.cpp -o squareOverloaded

$ ./squareOverloaded

Enter a number 12.9

From double version

166.41

Enter an integer 12

From int version

144

Note that, when overloading a function, it is only differences in the argument types that
matter. A difference in the return type alone will be reported as a compile-time error. In
particular, the use of a function such as

int square(double x){

return (int)(x*x);

}

in our square program, although perhaps reasonable conceptually, would produce an error



54 A SKETCH OF C++

with the compiler telling us that this new function “ambiguates” the first square function
that had a double argument and return type.

3.7 Classes, objects and methods

The real power of C++ relative to C stems from its flexibility in defining new, user-created,
data types. To a certain extent this facility existed in C through the ability to create a data
structure or struct. Basically, a struct was an aggregate of various data types that could
include a mix of arrays, character strings, integers, other structs, etc. The components of a
struct were called members

C++ generalizes the struct concept by allowing data structures to include functions or
methods as they are usually termed in this context. This generalization is called a class and,
as noted in Chapter 1, specific instances of a class are referred to as objects.

To define a class in C++ we use a syntactic framework of the general form

class className{

private:

declarations of members , method prototypes/definitions

public:

declarations of members , method prototypes/definitions

};

Note that a }; must appear at the end of a class definition. The keywords public and
private are designations that determine how other classes and functions may access class
members. Basically, private members and methods are for internal use inside the class
and cannot (apart from some special exceptions) be accessed or used by other classes or
functions. In particular, a class method can access and change the private members of
its own class but not those of another class. Methods and class members are taken to be
private unless specifically designated otherwise by placing them after the public: line of
the class declaration. As a result, explicit use of the private: statement is not necessary.

The easiest way to clarify and solidify the class concept is through an example. The code
listing below extends our square.cpp program to compute general integer powers of a given
double precision number. In contrast to what we did before, the implementation now uses
an OOP approach through the creation of the class Power.

Listing 3.6 power.cpp

1//power.cpp

2#include <iostream >

3
4using namespace std;

5
6class Power{

7int K;//integer power

8
9public:

10Power(int k);

11double xToTheK(double x);

12};

13
14Power:: Power(int k){

15if(k >= 1)

16K = k;

17else

18cout << "The power must be an integer >= 1!" << endl;
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19}

20
21double Power:: xToTheK(double x){

22double y = 1.;

23for(int i = 1; i <= K; i++)

24y = x*y;

25return y;

26}

27
28int main (){

29int k;

30double x;

31cout << "Enter an integer power ";

32cin >> k;

33Power* pPow = new Power(k);

34cout << "Enter a number to raise to this power ";

35cin >> x;

36cout << pPow ->xToTheK(x) << endl;

37cout << "Enter another number to raise to this power ";

38cin >> x;

39cout << pPow ->xToTheK(x) << endl;

40delete pPow;

41return 0;

42}

Listing 3.6 begins with a prototype description of the class similar in nature to what we
did for the function square in Listing 3.5. This is also sometimes called the class interface as
it provides sufficient information for a programmer to use the class and its methods without
having to see the actual details of the class implementation. Detailed definitions of the
member functions are then provided outside of this prototype by using the class name along
with the scope resolution operator ::. Thus, for example, line 21 of the listing states that
xToTheK is a function or method that belongs to class Power and returns a double precision
value while taking a double precision argument. In this simple setting, the definitions of
member functions for the class could have actually been included in the class declaration
or prototype. But, in general the present approach leads more directly towards readable
object-oriented code.

The class Power has only one data member: the integer K that represents the power we
want to use for computations. This value is determined explicitly through the function
Power. A function whose name is the same as the name of the class is called a constructor.
Because C++ allows for function name overloading, there can be more than one constructor
provided that their arguments differ. The purpose of a constructor is to produce a class
object: i.e., a specific instance of the class. As seen from line 33 of Listing 3.6, the constructor
can be called using the new operator to produce a pointer to an object of the class.

If no constructor is included in a class the compiler will automatically supply one; this
default constructor is a function with an empty body and no arguments. For our Power class
it would have the (implicit) form

Power (){};

that would return an “empty” Power object. This behavior would not be satisfactory or
useful in the applications we have in mind for this class. By supplying our own (explicit)
constructor, we ensure that the C++ default constructor will not be implicitly added to
the class. That is, given the explicit constructor, a declaration for a class object without a
constructor argument will result in a compile-time error. In particular, statements such as



56 A SKETCH OF C++

Power Pow;

or

Power pPow [5];

will produce such errors due to the absence of any mechanism for creating Power class
objects without a specified value for the integer power K. If a default constructor is required
when an explicit constructor has been provided, it must also be defined explicitly. For our
Power class, a reasonable default constructor might look like

Power (){K = 1;}

With this added to class Power, a statement such as Power Pow; will produce a Power
object whose K member is set equal to 1.

The value of a double raised to the power K is computed iteratively using the member
function xToTheK. In general, to use a class method function methodName with a pointer
pointerName to an object of a class, we employ the syntax pointerName->methodName. This
is illustrated on lines 36 and 39 of Listing 3.6 for the xtoTheK method. Line 39 demonstrates
that the Power object can be used for any given choice of K as many times as one desires
without having to respecify that particular power. At the end of the listing we go through
the formality of explicitly releasing the memory that was allocated to the pointer even
though it would have been automatically released when pPow went out of scope after the }
was encountered on the last line of the program. An example of output from the program
is shown below.

$ g++ -Wall power.cpp -o power

$ ./power

Enter an integer power 3

Enter a number to raise to this power 1.6

4.096

Enter another number to raise to this power 2.7

19.683

There is an alternative to using the new operator for obtaining a member of a class.
Specifically, one can invoke the class constructor directly by writing the object’s name
succeeded by a specification of appropriate values for the arguments in the constructor. The
resulting object will be allocated memory on the main stack instead of the free-store. For
the Power class this can be accomplished by replacing lines 33–40 of the Listing 3.6 with

Power powObj(k);

cout << "Enter a number to raise to this power ";

cin >> x;

cout << powObj.xToTheK(x) << endl;

cout << "Enter another number to raise to this power ";

cin >> x;

cout << powObj.xToTheK(x) << endl;

Here a Power class object powObj (rather than a pointer to a class object) calls xToTheK
using the member access operator represented by a dot or period. In general an object
objectName invokes a method methodName (or member called memberName) via the syntax
objectName.methodName (or objectName.memberName).

The development so far has been successful in creating and using a class. However, the
combination of class prototypes, method definitions and main all in the same file is need-
lessly cluttered, unwieldy and discourages code reuse. It is generally better to separate the
collection of code that declares and defines a class from other code that actually uses an
object from the class. This can be readily accomplished through the use of header files and
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include directives. Header files were discussed in Chapter 2 as a means of making available
various aspects of the C++ standard library. We will expand on that idea in the sense of
creating our own header files to facilitate access by other programs to code that we have
created for various specific purposes.

Basically, a header file for a class should consist of the class prototype or declaration. So,
for the Power class, the header file would be constructed using essentially lines 6–12 of the
listing for power.cpp. There is a slight caveat here concerning include guards and we need
to deal with this first before giving the exact listing for the header.

Header files provide the connective medium between classes and other programs that use
them. For this reason, they must be included in any program that intends to use a member
of a class. As a result, when multiple programs are being combined it is possible that a
particular header file could be included more than once into the final compilation process.
This would be viewed by the compiler as constituting a redefinition of the class and tagged
as an error. Include guards provide a way to avoid this type of problem. The procedure is
to use preprocessor directives to conditionally define a variable the first time the header is
encountered. Once the variable is defined, it is then used to force the preprocessor to ignore
the header file if it is encountered through an include directive from any other program.

A listing of the header file for class Power complete with an include guard is given below.
The first time the header is encountered by the preprocessor, the variable POWER H is defined
and the code in the file is processed. Any other requests to include the header will have
#ifndef POWER H evaluate to false and the remainder of the file will be ignored.

//powerClass.h

#ifndef POWER_H

#define POWER_H

class Power{

int K;//integer power

public:

Power (){K = 1;}//default constructor

Power(int k);

double xToTheK(double x);

};

#endif

In addition to the include guard, a default constructor has been placed inline by giving its
definition (rather than just declaration) in the header file. Any function defined within a
class declaration is automatically inline with the effect that it will be expanded in place by
the compiler (i.e., the body of the function will be used directly) in lieu of a function call.
For small functions this can improve the speed of a program.

The definitions for the member functions for class Power are now placed in a separate file
called powerClass.cpp which looks like

//powerClass.cpp

#include <iostream >

#include "powerClass.h"

using namespace std;

Power:: Power(int k){

if(k >= 1)

K = k;

else

cout << "The power must be an integer >= 1!" << endl;
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}

double Power:: xToTheK(double x){

double y = 1.;

for(int i = 1; i <= K; i++)

y = x*y;

return y;

}

Note that an include directive has been used to bring in the Power class prototype contained
in powerClass.h. The use of quotation marks instead of < > tells the preprocessor to begin
looking for the header file in the current directory.

Finally, a program that actually uses class Power is

//powerClassDriver.cpp

#include <iostream >

#include "powerClass.h"

using namespace std;

int main (){

int k;

double x;

cout << "Enter an integer power ";

cin >> k;

Power powObj(k);

cout << "Enter a number to raise to this power ";

cin >> x;

cout << powObj.xToTheK(x) << endl;

return 0;

}

Observe that the header file for class Power has been included in this driver program and
that a Power class object is now being used to call the xToTheK method.

In looking back at the header file and associated cpp file for class Power, one will see that
the namespace directive was employed only in the cpp file. This was done on purpose and it
is, in general, not advisable to place namespace directives in header files. The reason for this
is that the preprocessor essentially inserts the content of a header file into any source code
file (which could even be another header file) that imports it using an #include statement.
This means that a namespace designation in a header file can propagate unintentionally
if the header file is being used several times in a multiple source code file project. The
result can be name clashes that are hard to diagnose. Therefore, it is best to use explicit
namespace qualifications via the scope resolution operator in header files and restrict the
use of namespace directives to the cpp files for a class. We will demonstrate this approach
in the next section.

The only thing that remains is dealing with how to create an executable program using
our three separate files for the code. This can be accomplished directly via

$ g++ -Wall powerClass.cpp powerClassDriver.cpp -o powerClass

$ ./powerClass

Enter an integer power 3

Enter a number to raise to this power 1.2

1.728

which is a direct extension to multiple source files of our previous approach to compilation.
Alternatively, one can use the -c option of the GNU compiler to create intermediate object
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files from the two cpp files. These files have a .o extension and can be linked to produce an
executable. For our specific example this takes the form

$ g++ -c -Wall powerClass.cpp

$ g++ -c -Wall powerClassDriver.cpp

$ g++ -Wall powerClass.o powerClassDriver.o -o powerClass

$ ./powerClass

Enter an integer power 3

Enter a number to raise to this power 1.2

1.728

The first two invocations of g++ with the -c option produce the object files powerClass.o
and powerClassDriver.o. These are then linked by the final call to g++ that produces the
executable named powerClass. Further discussion of the use and options for g++ can be
found in Gough (2005).

Linking object files to compile multiple source files can become rather tiresome if there
are many source files and/or the process has to be repeated frequently. A program that
allows us to efficiently automate the compilation of each set of code in a project is the
make utility. Among other features, this program checks to see if any files in the project
have changed since the last compilation and then recompiles only the ones that have been
altered. To use make it is necessary to have a makefile in the directory that contains the
code to be compiled. An illustration of such a file, named powerClass.mk in this case, that
was written to compile our Power class example is shown below.

Listing 3.7 powerClass.mk

1powerClass : powerClassDriver.o powerClass.o

2g++ -Wall powerClassDriver.o powerClass.o -o powerClass

3
4powerClass.o : powerClass.cpp powerClass.h

5g++ -c -Wall powerClass.cpp

6
7powerClassDriver.o : powerClassDriver.cpp powerClass.h

8g++ -c -Wall powerClassDriver.cpp

This is a very simple makefile. But, it illustrates the basic idea. The first item on line 1 of the
makefile is the name for a target. After the colon, the required dependencies are listed and
then the second line gives the gcc command line that should be used. The ensuing blocks
of the makefile recursively describe how to produce each of the dependencies. Thus, lines
4–5 of Listing 3.7 give instructions for generating the object file powerClass.o, etc. The new
feature is that there is now additional information provided about the dependence of each
of our cpp files on other files which is what make uses to determine whether recompilation
is necessary. An important requisite for a makefile is that the lines of code after each set
of dependencies must be preceded by a tab and not just white space. To be specific, in our
example every line of code that contains g++ starts with a tab.

To actually use our makefile apply the make utility via

$ make -f powerClass.mk

g++ -c -Wall powerClassDriver.cpp

g++ -c -Wall powerClass.cpp

g++ -Wall powerClassDriver.o powerClass.o -o powerClass

By default, make looks in the current directory for a file with the specific name makefile.
The -f option that was employed here is a way to specify the file you want make to access.
If we repeat the make command we receive the message
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$ make -f powerClass.mk

make: ‘powerClass ’ is up to date.

The updating feature is realized by, e.g., making a change to powerClassDriver.cpp. This
will produce

$ make -f powerClass.mk

g++ -c -Wall powerClassDriver.cpp

g++ -Wall powerClassDriver.o powerClass.o -o powerClass

Make only recompiles the one object file that needed to be changed as the result of the
editing. One may check that if, instead, powerClass.h had been changed, then all the object
files would have been recreated because both powerClassDriver.cpp and powerClass.cpp
have been designated as depending on powerClass.h in powerClass.mk. More detail on the
make utility can be obtained from Stallman, et al. (2004).

3.8 Miscellaneous topics

In this section a few somewhat unrelated concepts will be examined that will arise in
subsequent developments. Let us begin with the discussion of a slightly simplified version
of the class construct that derives from the C++ implementation of the C struct data type.

3.8.1 Structs

As mentioned at the beginning of Section 3.7, in C it is possible to construct data types
called structs that are similar to classes in the sense that they have data members. Unlike
classes the C version of a struct has no associated methods (or member functions) and the
data members are public. For compatibility reasons, in C++ a struct is simply a class where
all data members and methods are public (rather than private) by default.

The code below illustrates the construction and use of a struct.

//structEx.cpp

#include <iostream >

using namespace std;

struct X{

int K;

};

int main (){

X x;

x.K = 1;

cout << x.K << endl;

return 0;

}

If we run this code, it simply writes the integer 1 to the shell. What this demonstrates is
that the member K of the X object x can be accessed directly from a calling program (or
main in this case). One should check that this will no longer be the case if struct X is
replaced by class X in this listing.

3.8.2 The this pointer

Every class contains a “hidden” or implicit member in the form of a pointer named this.
When an object of a class is created the value of this is the address of that object in
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memory. The object is therefore “aware” of its own memory location and when necessary
or useful it can directly access that information. This turns out to be particularly useful
in the context of creating assignment type operators (e.g., =, +=, etc.) that work correctly
when objects are using dynamically allocated memory. We will explore this particular issue
in the next section. For now let us concentrate on understanding the properties of the this
pointer in a simple setting.

Listing 3.8 carries out some experiments with the this pointer.

Listing 3.8 thisEx.cpp

//thisEx.cpp

#include <iostream >

using namespace std;

class X{

public:

int K;

X(){};

X(int k){K = k;}

X* getThis (){return this;}

X& getThisRef (){return *this;}

};

int main (){

X w(1);

cout << "w address = " << &w << endl;

cout << "w value = " << w.K << endl;

X* x = w.getThis ();

cout << "x value = " << x << endl;

x->K += 1;

cout << "w.K = " << w.K << endl;

X& y = w.getThisRef ();

cout << "y address = " << &y << endl;

y.K += 1;

cout << "w.K = " << w.K << endl;

X z = *w.getThis ();

cout << "z address = " << &z << endl;

z.K =+ 1;

cout << "w.K = " << w.K << endl;

return 0;

}

A simple class X with one public member K and two methods is created. One class method
(getThis) returns the value of the this pointer while the other (getThisRef) returns a
reference to an object constructed from class X. The way references are returned makes the
syntax for the latter method a bit subtle. The fact that this is a pointer to the object’s
address means that the dereferenced pointer (as in Section 3.5) *this is the object itself.
So, to return a reference to the object, we dereference this by returning *this and the
function return type (i.e., X&) dictates that the address of the reference is that of *this:
namely, the value of this.

The main function in Listing 3.8 instantiates an X object named w and then creates several
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other X objects using w. The first object x is a pointer to data type X which we create using
the this pointer for w. The second object y is a reference variable for X objects that is
initialized with a reference to *this or, equivalently, a reference to w. The final object z is
of type X but is created by dereferencing the this pointer for w. The addresses are printed
out for all four objects and x, y and z are each used to change the value of their K data
member. After each change the value of K for w is reported. Upon execution this program
produces the output

w address = 0xbffffa24

w.K = 1

x value = 0xbffffa24

w.K = 2

y address = 0xbffffa24

w.K = 3

z address = 0xbffffa20

w.K = 3

As expected, x and y serve as aliases for w. This is not true for z which lies in a different
memory location and exists independently of w. Thus, augmenting its value for K does not
affect the value of w.K. What has happened in the creation of z is that the use of the =
operator has caused the creation of a new X object. This new object is obtained under the
default behavior of element-by-element copying. Specifically, a new memory location is set
aside for z and then the value of the K member for the X object *w.getThis() is copied
into this location.

Note that this is a const pointer in the sense of Section 3.5 as illustrated in Listing 3.3.
It cannot be reassigned to point to another object.

3.8.3 const correctness

We briefly discussed the C++ keyword const in Section 3.5. The use of this modifier
imposes an additional level of type checking that furnishes compile-time protection against
inadvertent changes being made to objects in one’s code. The phrase const correctness means
that const has been used anyplace where it is appropriate. It is a practice that has value
not only in terms of error protection but also by the way it forces a programmer to examine
code to determine when the use of const is indicated. In general, using const appropriately
incurs no loss in functionality while providing safeguards and code clarity. Our discussion of
the const keyword in this section will focus on four cases where it will arise in later sections
and chapters: const pointers, const references, const class members and const member
functions.

Due to the efficiency of passing pointers or addresses over (copies of) objects, the use
of addresses or pointers for function arguments is quite common and preferable in many
situations. However, the use of addresses and pointers as function arguments carries with
it the danger that the function may alter the object being pointed to in cases when this
is not desirable. To avoid such events, a const designation can be applied for a pointer or
reference. Syntax of the form

const dataType* p = &x;

creates a pointer p to a variable x where the value of x cannot be changed. Similarly,

const dataType& y = x;

accomplishes the same thing with a reference; that is, y is just an alias for x except that
the value that y refers to in memory cannot be changed and, hence, y cannot be used to
change the value of x.
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As noted in Section 3.6, references can be used in program statements in exactly the same
way as if they had been variable names. This can result in inadvertent errors. A useful “rule”
that avoids such issues and makes code easier to read is to pass objects by const reference
as the default method of relaying arguments to functions and use pointers as arguments for
cases where the object being passed will be altered by the function.

The nonoperative code below illustrates the fact that using the const modifier does, in
fact, prevent us from writing on a location in memory that is passed by const reference.

//constRef.cpp

#include <iostream >;

using namespace std;

struct X{

int K;

void printK (){

cout << K << endl;

}

};

void g(const X& x){

x.K = 1;

}

int main (){

X x;

g(x);

x.printK ();

return 0;

}

If one attempts to compile this code the result will be an error message such as
constRef.cpp: In function ‘void g(const X&)’:
constRef.cpp :14: error:assignment of data -member ‘X::K’ in read -only structure

Removing the const modifier in the argument for the function g will solve the “problem”.
The next section begins the development of a class Matrix that uses the pointer-to-pointer

storage format discussed in Section 3.5. A class constructor will take a pointer to double*
as input and it is imperative that the constructor not be allowed to alter the data that
would generally be accessible through such a pointer. The way to accomplish this is with
syntax of the form

const dataType* const* p

This expression is read using two basic rules: namely,
• const applies to whatever is on its immediate left or,
• if there is nothing to the left, const applies to whatever is on its immediate right.
Thus, the syntax says that p is a pointer to a const pointer to a const dataType object. It
has the desired effect of ensuring that neither the values of the p[i][j] nor the addresses
pointed to by the p[i] can be altered. The subsequent listing demonstrates our point.

//constPToP.cpp

#include <iostream >

using namespace std;
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void f(const int* const* y){

int* z = new int[1];

*z = 2;

//*y = z;

cout << **y << endl;

//**y += 1;

}

int main (){

int k = 0;

int* x = &k;

int** y = &x;

f(y);

return 0;

}

The first commented line in constPToP.cpp attempts to change the memory location being
pointed to by the pointer-to-pointer variable y from the address of x defined in main to a
location created with new inside f. The second commented statement tries to change the
value of k defined in main that is being pointed to by x and therefore available as the value of
the dereferenced pointer *y (i.e., as **y) in the function f. Uncommenting either statement
will produce error messages stating that a value cannot be assigned to a read-only location.
These errors are resolved if the argument for f is changed to type int**.

The const modifier arises in classes in three forms: const class members, static const
class members and const member functions. The use of const for a class member means
that once a class object has been created, the value of that member cannot be changed.
Initialization of const members requires a special type of syntax involving a constructor
initializer list.

An initializer list is a comma separated list of argument and value pairs that occurs after
the constructor’s argument list and a colon but before the opening curly brace that prefaces
the constructor’s body. For a constructor for a class className with two arguments that
provide values for the member variables memberName1 and memberName2 the syntax might
look something like

className(argument1 , argument2) : memberName1(argument1),

memberName2(argument2 ){

body of method

}

In general the values for only a subset (including none) of the member variables can be
set using an initializer list. On the other hand, the values for all member variables can be
initialized in this manner in which event the body of the constructor may be empty. Even
if that is the case, the curly braces must still be present.

The value of any const member variable must be set in an initializer list as in the example
below

//constEx1.cpp

#include <iostream >

using namespace std;

struct X{

const int I;

int J;

X(int i, int j) : I(i) {
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J = j;

}

int getI (){return I;}

int getJ (){return J;}

//void setI(int i){I = i;}

};

int main (){

X x(1, 2);

cout << x.getI() << " " << x.getJ() << endl;

x.J = 3;

//x.I = 4;

return 0;

}

The program will print the integers 1 and 2 to standard output. Note that removal of the
comments from before the setI function in the X struct definition will produce a compile
time error. The value of a const member variable can be set only once within a constructor
initializer list. Because we are working with a struct, member variables are public by default
and their values can be changed. Thus, it is legal to change the value of the J variable from
inside main. The same is not true for I and removing the comment from the next to last
line in main will also produce a compilation error,

An equally serviceable constructor for the X class is

X(int i, int j) : I(i), J(j) {}

that sets the values of both member variables in the initializer list. But, an attempt to use

X(int i, int j){

I = i;

J = j;

}

will produce a compiler error message stating that the I class member is “read only”.
Once its value has been set, a const member variable cannot be changed; but, it can

vary from object to object depending on the value that is furnished in an initializer list.
To produce a constant that is the same for every class member, static needs to be placed
in front of the const keyword. The static keyword in this case means that there is only
one instance of the variable that will have the same value for every object created from the
class. The idea is illustrated in the next listing.

//constEx2.cpp

#include <iostream >

using namespace std;

class X{

const int I;

static const int J = 2;

public:

X(int i) : I(i) {}

int getI (){return I;}

int getJ (){return J;}

};
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int main (){

X x1(1);

cout << x1.getI() << " " << x1.getJ() << endl;

X x2(2);

cout << x2.getI() << " " << x2.getJ() << endl;

return 0;

}

Here the X class has both static const and const class members. In main instances of
the class are created for different values of the const data members and then the values of
both variables are written to standard output producing

1 2

2 2

This demonstrates that the value of the static const class member is the same across
instances of the class.

We discussed const pointers and references earlier in this section. In general, any object
can be declared as const with the meaning that none of its data members can be modified.
To ensure this is the case, ordinary member functions are forbidden from working with const
objects. This leads to a member function dichotomy wherein there are ordinary member
functions as well as others that are guaranteed not to modify an object’s data members.
The latter functions are given a special const designation that takes the form

returnType functionName(arguments) const {}

The const keyword is actually a part of the function’s signature. Consequently, it must
appear in both the prototype and definition for the function and one can have overloaded
functions with the same name and arguments that differ only in terms of the const modifier.
Both the compiler and linker will make sure that only const member functions are called
by const objects.

The listing below illustrates the difference between const and non-const member func-
tions.

//constEx3.cpp

#include <iostream >

using namespace std;

struct X{

int I;

X(int i) : I(i) {}

int getI (){return I;}

int getIConst () const {return I;}

};

int main (){

X x1(1);

const X x2(2);

cout << x1.getI() << endl;

cout << x1.getIConst () << endl;

cout << x2.getIConst () << endl;

//cout << x2.getI() << endl;

return 0;

}



MISCELLANEOUS TOPICS 67

The X struct has two different accessor functions for its I member variables: a version
with the const designation (i.e., getIConst) and one without (getI). This program will
compile and run in its current form thereby illustrating that a const member function can
be called by either const or non-const objects. However, if the next to the last line in main
is uncommented, the compiler will respond with the admonishment
passing const X as this argument of int X::getI() discards qualifiers

This refers to the fact that the x2 object is const with the consequence that its this pointer
becomes a const pointer to a const object. In particular, this entails that it cannot be used
with a non-const member function.

A somewhat more meaningful example that has implications for developments in Section
3.9 is provided by the next listing.

Listing 3.9 constEx4.cpp

//constEx4.cpp

#include <iostream >

using namespace std;

struct X{

int I, J;

public:

X(int i, int j) : I(i), J(j) {}

X operator*(int a);

X operator*(int a) const;

};

X X::operator*(int a){

X x(a*I, a*J);

return x;

}

X X::operator*(int a) const {

X x(a*I, a*J);

cout << "const version of *" << endl;

return x;

}

X operator*(int a, const X& x){

return x*a;

}

int main (){

X x(1, 2);

cout << (x*2).I << " " << (x*2).J << endl;

cout << (2*x).I << " " << (2*x).J << endl;

return 0;

}

In this case, the same basic struct as in the previous examples is being used that has two int
data members I and J. The difference is that a form of multiplication has been defined for
the struct’s objects through a process called operator overloading that will now be described.
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We have already seen that C++ allows function overloading. The same is true for the
basic arithmetic operators such as +, -, /, *, the shortcut operators +=, -+, /=, *=
and many others. To create an overloaded operator use the syntax

returnType operator operatorName(arguments)

As a case in point, two overloaded versions of the multiplication operator have been defined
for the X struct in Listing 3.9: one that is designated as const and one that is not. Both
operators perform a type of scalar multiplication wherein their int argument a multiplies
an X object’s two int data members.

Both of the multiplication operators in the X struct work for expressions of the form x*a
with x an X object and a an integer. It is expressions like a*x that are problematic; this
would only make sense if integers were themselves a class with an overloaded multiplication
operator for dealing with X objects. Such is not the case and, as a result, it is necessary to
instead define * directly as a binary function with int and X object arguments. Once inside
the function, the order of the int and X objects can be reversed and the multiplication
methods from the X class can be used. However, the two-argument version of * is not an
X class method and, as a result, its X argument should be passed in as a const reference
to make certain that it cannot be modified by the multiplication operation. This means
that only the const version of the * operator in the X class can be used to carry out the
computation.

The code in Listing 3.9 was compiled and executed to produce

2 4

const version of *

const version of *

2 4

The output shows that, as expected, the non-const version of * was used for right-hand
multiplication of the X object while the const version was used to carry out left multipli-
cation. Actually, the presence of two multiplication operators is redundant here in that the
const version can be used exclusively without loss of functionality for the class.

3.8.4 Forward references

As programs grow, more complex relationships can develop between different classes. It is
commonly the case that objects of one class will produce and operate on objects of another.
A simple example of this is provided by the next listing.

Listing 3.10 circular.cpp

//circular.cpp

struct Y;//forward declaration

struct X{

Y* A;

X(){}

X(Y* a){A = a;}

Y& funcX(Y& y){return y;}

};

struct Y{

X B;

Y(){}

Y(X b){B = b;}

X funcY(X x){return x;}

};
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int main (){

X x; Y y;

return 0;

}

The initial line of code, struct Y;, that appears in Listing 3.10 would seem to be of
questionable value and not particularly informative. This type of statement is known as
a forward declaration and actually serves an important purpose. It tells the compiler that
a struct named Y exists that will be defined at a later point. In its present form this listing
compiles and executes without a problem. Commenting out the forward declaration will
produce a compile time error that contains a statement such as

circular.cpp :5: error: ISO C++ forbids declaration of ‘Y’ with no type

In order for the X struct to use Y objects the compiler simply must know that the Y struct
exists and the forward reference solves this problem. Of course, one solution might be to just
define the Y struct first, rather than simply declaring it. But, the Y struct in this case uses
X objects. So, this merely moves us around the “circle” and a forward declaration of the X
struct would now be required before this alternative arrangement could be made operable.

There is more going on in Listing 3.10 than just the use of a forward reference. Notice
that Y objects arise in the X struct in the form of pointers or references. If this is changed
the compiler will issue messages stating that the Y struct is “incomplete”. This is certainly
the case seeing that no details of Y have been supplied when the compiler encounters the
definition of the X struct. If an actual Y object is to be a member of the X struct or a method
argument or return type, the compiler needs to determine how much memory to allocate
for the object. The reason that pointers and references work is that the amount of memory
they require is known a priori: namely, the four or eight bytes that is needed to hold an
address. For similar reasons, if the Y struct definition were moved ahead of that for the X
struct the resulting code would fail to compile even with the inclusion of a forward reference
to the X struct. This happens because Y objects require X objects by value.

While the positioning of the X and Y structs is somewhat inconsequential here, the prob-
lems that arise in a more general context can be realized through restructuring the Listing
3.10 code into separate files with separate headers. For the X struct we use

//x.h

#ifndef X_H

#define X_H

struct Y;//forward declaration

struct X{

Y* A;

X(){}

X(Y* a){A = a;}

Y& funcX(Y& y){return y;};

};

#endif

while the Y struct has header file

//y.h

#ifndef Y_H

#define Y_H

#include "x.h"

struct Y{
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X B;

Y(){}

Y(X b){B = b;}

X funcY(X x){return x;};

};

#endif

Both of these headers are then used by

//xy.cpp

#include "y.h"

#include "x.h"

int main (){

X x; Y y;

return 0;

}

Since the X struct uses only pointers and addresses to Y objects, it suffices to use a forward
reference for the Y struct in its header file. But, the Y struct needs X objects by value making
it necessary to include the header file x.h in the header file for the Y struct. One may check
that this code compiles without difficulty and, more to the point, the arrangement of the
include directives in the xy.cpp file has no effect on this. However, if the include directive is
removed from y.h or even replaced with a forward reference to the X struct, the success of
compilation for xy.cpp will, in fact, depend on the order of inclusion of the X and Y header
files (Exercise 3.17).

The previous example leads to an important conclusion: if class Y uses objects of class
X by value, the Y class header must have an include directive to bring in the header file
from the X class. Otherwise, if the Y class involves only references or pointers to X objects,
a forward reference will do the job.

3.8.5 Strings

Scientific computing generally involves numerical variables. Nonetheless, there are instances
where statistical data contains text. Even with strictly numerical data, input and other
processing may require manipulation of character representations of numbers; this was seen,
for example, in our use of atoi (e.g., Listing 3.2) to translate command line input into
numerical values and we will deal with similar problems in Chapter 10. Thus, it is worthwhile
to have at our disposal some of the (many) C++ tools that are available for dealing with
character strings.

A string is an ordered collection of character variables that occupy a contiguous region
of memory; that is, a string is basically an array whose elements are all character variables.
There are essentially three ways to deal with a string in C++: directly as an array of
characters, as a C-style string and using the C++ string class. The array and C-style
string approaches are essentially the same except that C-style strings have a null character
\0 as their last element. The C++ string class provides a simpler way of dealing with
strings than the array perspective and, accordingly, we will progress along that route.

The string class contains methods that are useful for string input and manipulation of
string objects. It is accessed by inclusion of the string header file. Listing 3.11 contains
several examples of the string class features.
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Listing 3.11 stringEx1.cpp

1//stringEx1.cpp

2#include <iostream >

3#include <string >

4

5using namespace std;

6

7int main (){

8string s1;

9s1 = "Hi ";

10string s2("y’all");

11s1 += s2;

12cout << s1 + "!" << endl;

13

14cin >> s1;

15//cin.get ();

16

17getline(cin , s2);

18cout << s1 + " " + s2 + "!" << endl;

19return 0;

20}

Lines 8 and 10 of Listing 3.11 use two different string class constructors to create string
objects; the first object s1 is created using the default string class constructor while the
second object s2 is initialized using the string literal "y’all": i.e., words surrounded by
quotation marks. The “empty” string object s1 is “filled” using an overloaded version of the
= operator on line 9. On line 11 of the listing the two string objects are concatenated via an
overloaded +=. Another string is then appended to s1 (using an overloaded + operator) with
the result being written to standard output via an overloaded version of the output insertion
operator. The exclamation point that is appended at output is enclosed in quotation marks.
This raises the question of how to create a string object that contains a quotation mark.
The answer is to use \". For example, string s = "\""; produces a string object with a
quotation mark as its “value”. To obtain a string object that contains \ you must use \\.

Things become more interesting on line 14 of Listing 3.11. Here the intent is to first read
the value of the string s1 in from standard input and then read a string of input (e.g.,
several words) using the getline function that becomes available through inclusion of the
iostream header. The result from our first attempt at this is

$ g++ -Wall stringEx1.cpp -o stringEx1

$ ./stringEx1

Hi y’all!

Hi

Hi !

The first message was expected. But, upon entering “Hi” and a carriage return from the
keyboard, the program simply prints out Hi ! and seemingly terminates without executing
the last group of commands. What has happened here is that >> reads until it reaches a
space, newline or tab and stops while leaving the character (i.e., space, newline or tab) in
the input stream. This space, newline or tab will then be read by the next input operation.
That is what has transpired in this case; getline reads the newline “character” that was
left by cin, discards it and returns s2 as a blank string. There are several ways to fix this.
One is to use the get method associated with the istream object cin. As used here in the
commented statement on line 15 of the listing, get will simply extract and discard the next
character in the input stream. When the comments are removed the output becomes
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$ ./stringEx1

Hi y’all!

Hi

there ya ’ll

Hi there ya’ll!

The use of getline for reading file input is further examined in Exercise 3.38.
The string class has a multitude of methods that can be used for comparing strings,

swapping strings, replacing elements of strings, etc. Detailed descriptions of these functions
can be found in, e.g., Prata (2005, Appendix F) and Stroustrup (1997, Chapter 20). The
ensuing code highlighting a few of the methods will suffice for our purposes.

Listing 3.12 stringEx2.cpp

//stringEx2.cpp

#include <iostream >

#include <string >

using namespace std;

int main (){

string s;

getline(cin , s);

cout << "The length of s is " << s.size() << endl;

cout << "The fifth element of s is " << s[4] << endl;

cout << "The letter a first occurs at " << s.find("a") << endl;

cout << "The last a occurs at " << s.find_last_of("a") << endl;

cout << "The letter z first occurs at " << s.find("z") << endl;

const char* str;

str = s.c_str();

for(int i = 0; i < s.size (); i++)

cout << str[i];

cout << endl;

if(str[s.size ()] == ’\0’)

cout << "str is a C-style string" << endl;

return 0;

}

Output from this program looks like

$ g++ -Wall stringEx2.cpp -o stringEx2

$ ./stringEx2

Hi there all ya’ll!

The length of s is 19

The fifth element of s is h

The letter a first occurs at 9

The last a occurs at 14

The letter z first occurs at 18446744073709551615

Hi there all ya’ll!

str is a C-style string

As the program begins to execute we enter the string Hi there all y’all! on the com-
mand line and this is read into the string variable s. The length of s is assessed by the
string class member function size. This value is written out followed by the fifth compo-
nent of s and the locations of the first and last occurrence of the letter “a” in the string. The
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fifth entry for s is accessed with the syntax s[4] to illustrate that string variables possess
an array structure. The first and last occurrences of a were located using the string class
member functions find and find last of. There are several relatives of these two func-
tions that include find first of, find first not of and find last not of that perform
similar functions as indicated by their names. The find function was also used to attempt
to locate the letter z in the input string. As z was not in this particular string, the value
that was returned was the constant string::npos which corresponds to the maximum pos-
sible number of characters in a string. For the computer that ran this program this value is
264 − 1 = 18446744073709551615.

The last section of Listing 3.12 deals with translating a string object into a C-style
string. This is useful, for example, when dealing with file input or output where the file
names that are employed to open input/output connections must be in the C-style string
format. The string class method c str converts a string object to a C-style string. It
returns a const pointer to char that points to the new memory for data type char that
is sufficient to hold the contents of the calling string object plus the \0 character. This
transformation is illustrated using the string s which shows that the result is a C-style
string by first printing out all but the last member of the character array corresponding to
the char pointer and then checking that the last stored value is the termination character
\0.

3.8.6 Namespaces

Let us briefly return to the consideration of namespaces. Although the using namespace
std; directive is a convenient way to obtain access to all the names in the C++ standard
library, it is generally a tremendous overkill in that only a few (sometimes only one as in
cin) names from the library will be used in a program. In such instances it is best to access
the requisite names with the scope resolution operator. For example,

std::cout << x << std::endl;

will do the job for printing out the value of a variable x without requiring the entire standard
namespace. An alternative approach can be obtained through a specific using directive as
illustrated in the next listing.

//namespaceEx.cpp

#include <iostream >;

using std::cout; using std::endl;

int main (){

cout << "You don’t need the entire standard namespace to use cout "

<< "or end a line." << endl;

return 0;

}

The program’s claim is verified when it is compiled and executed.

3.8.7 Handling errors

The C++ language provides the facility for managing run-time errors through a sophis-
ticated process called exception handling. The exit function and assert macro that are
available through inclusion of the cstdlib and cassert header files provide useful, albeit less
refined, tools that can also be used to deal with run-time errors. We will discuss both
approaches briefly in this section.
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The code below uses exit to terminate the program whenever the user inputs an integer
of 5 or larger.

//exitEx.cpp

#include <iostream >

#include <cstdlib >

using std::cout; using std::endl; using std::cin;

int main (){

int n;

cout << "Enter an integer < 5" << endl;

cin >> n;

if(n >= 5){

cout << "Please follow instruction! " << endl;

exit (1);

}

cout << "n is " << n << endl;

return 0;

}

The value of the argument that is supplied to exit is returned to the shell. A zero return
value for a program indicates successful execution while other values (such as 1) signify an
error condition.

An example of output from the program is

$ g++ -Wall exitEx.cpp -o exitEx

$ ./exitEx

Enter an integer < 5

3

n is 3

$ ./exitEx

Enter an integer < 5

7

Please follow instruction!

Notice that exit is called and the input integer value is not printed when the user supplies
invalid input.

The C macro assert can be used in a similar manner as exit. The argument for assert
is an expression to be “tested”. If the expression is true program execution is allowed to
continue. If it is false, assert writes the name and line number of the file where the error
occurred, the function that contained the error and the expression that failed the “test”
to standard output before calling abort to terminate the program. The abort and exit
functions both provide ways to exit a program that is executing. The difference is that
exit performs cleanup operations that include closing streams and temporary files, calling
destructors, etc., before termination while abort does not.

The listing below uses assert rather than exit to enforce rule compliance on integer
selection.

//assertEx.cpp

#include <iostream >

#include <cassert >

using std::cout; using std::endl; using std::cin;

int main (){

int n;
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cout << "Enter an integer < 5" << endl;

cin >> n;

assert(n <= 5);

cout << "n is " << n << endl;

return 0;

}

Some output from the program is

$ g++ -Wall assertEx.cpp -o assertEx

$ ./assertEx

Enter an integer < 5

3

n is 3

$ ./assertEx

Enter an integer < 5

7

Assertion failed: (n <= 5), function main , file assertEx.cpp , line 11.

Abort trap

In contrast to our use of exit, information is given here on the location of the error in our
code.

It is possible to obtain the same information provided by assert and still use exit. This
can be accomplished with the predefined macros FILE , FUNCTION and LINE that
become strings during processing containing the current file and function names and an
integer that gives the current line number. Note, all three macro names involve prepended
and appended double underscores. Using this approach the main function for our example
program that used exit becomes

int main (){

int n;

cout << "Enter an integer < 5" << endl;

cin >> n;

if(n >= 5){

cout << "Please follow instruction! " << endl;

cout << "The error occurred on line " << (__LINE__ - 2)

<< " of file " << __FILE__ << " in function "

<< __FUNCTION__ << endl;

exit (1);

}

cout << "n is " << n << endl;

return 0;

}

As LINE is an integer, we can subtract two to move the output value back to the line
where the error will actually occur. An example of output from the program is

Enter an integer < 5

7

Please follow instruction!

The error occurred on line 11 of file exitEx.cpp in function main

In C++ the phase exception is used to describe an unexpected or exceptional event that
occurs in a program at run-time. The C++ exception mechanism provides a means to deal
with such events when they occur. The basic components of this system are try and catch
blocks. These are segments of code that are contained within curly braces. The try block
encapsulates the program segment where the error may occur. If an error is detected, the
try block throws an exception that is caught by a catch block whose corresponding code is
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then executed. A reformulation of the program we used to illustrate the exit and assert
functions demonstrates the basic idea.

//tryCatchEx1.cpp

#include <iostream >

#include <string >

using std::cout; using std::endl; using std::cin;

void intCheck(const int i){

if(i >= 5)

throw std:: string("bad intCheck () integer >= 5 is not allowed");

cout << "Your integer is " << i << endl;

cout << "Enter a new integer < 5 (q to quit)" << endl;

}

int main (){

int n;

cout << "Enter an integer < 5 (q to quit)" << endl;

while(cin >> n){

try{

intCheck(n);

}

catch(std:: string s){

cout << s << endl;

cout << "Enter a new integer < 5 (q to quit)" << endl;

continue;

}

}

cout << "All done" << endl;

return 0;

}

The first step is to read in what is presumably an integer. If, for example, a character is
provided, cin will register an error that will force cin >> n to evaluate as false in the
while loop. Thus, entering, e.g., q, will either bypass or terminate the while loop. As long
as integers are entered on the command line, the while loop will continue to execute and
the function intCheck is in charge of printing out the value of the input integer. Since the
call to intCheck is placed inside a try block, an input integer value of 5 or more will cause
the function to throw an exception; in this case the exception is a variable of type string
containing the relevant error message that is preceded by the throw key word. The value of
this string variable is caught by the catch block that, as required, has been placed after the
try block. When an exception is caught, the action of catch is to print the error message
and query for input of another integer value. The continue statement causes the program
to end that segment of the while loop and evaluate its defining conditional expression again;
i.e., it will execute cin >> n again in an attempt to acquire input from the shell. Output
from running the program is shown below.

$ g++ -Wall tryCatchEx1.cpp -o tryCatchEx1

$ ./tryCatchEx1

Enter an integer < 5 (q to quit)

3

Your integer is 3

Enter a new integer < 5 (q to quit)

7

bad intCheck () integer >= 5 is not allowed
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Enter a new integer < 5 (q to quit)

2

Your integer is 2

Enter a new integer < 5 (q to quit)

q

All done

The try/catch mechanism as seen in the previous example certainly takes error handling
to a higher technical level. But, from a practical perspective there is little that distinguishes
our tryCatchEx1 program from what was accomplished previously with exit or assert.
This is mostly a function of the simplicity of the example and, perhaps, makes the point
that when simple errors are expected a simple error handling method will suffice. In more
complicated situations, the try/catch approach has many features that may make it worth
considering. For example, a function can throw objects as exception. This provides a con-
venient way to package diagnostic information that can be processed later in the catch
block. In this latter respect, there are many built-in exception classes that are used by
C++ functions and these can also be adapted to deal with some of the standard errors that
are produced by user-defined functions. In general, an exception class can be expected to
have a member function what that reports the form of the error. When creating new objects
from one of these classes, the argument supplied to the class constructor will determine the
output from what.

As a case in point, consider the out of range exception class that is made available
by including the stdexcept header file. Objects of this type are thrown by some member
functions of the string class and the vector and deque container classes of Chapter 10
when an attempt is made to access elements whose indices are not valid. The program below
illustrates this with the string class insert method while providing yet another spin on
using our intCheck function.

//tryCatchEx2.cpp

#include <iostream >

#include <string >

#include <stdexcept >

using std::cout; using std::endl; using std:: string;

void intCheck(const int i) throw(std::out_of_range){

if(i >= 5)

throw std::out_of_range("intCheck");

cout << "Your integer is " << i << endl;

}

int main (){

string s;

s = "Hi ya’ll!";

int n;

std::cin >> n;

try{

cout << s.insert(n, "there ") << endl;

intCheck(n);

}

catch(std::out_of_range e){

cout << "Out of range " << e.what() << endl;

}

cout << "All done" << endl;
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return 0;

}

The insert method will insert the string object supplied as its second argument into the
calling string object at the position specified by its first integer argument provided the
position is valid. Otherwise, it throws an exception object from the out of range class.
The intCheck function has also been reworked to throw an out of range exception. As
a slight variation we have indicated this through an exception specification that uses the
throw keyword in the function’s definition to notify both the compiler and user of the type
of exception that it can produce. If the user supplied integer is 5 or more, intCheck throws
an out of range object that is created using the class constructor with the function’s name
as its argument. Finally, the catch block retrieves any out of range exception that may
have been thrown and prints the information from its what method to standard output.

Some experimentation with the tryCatchEx2 program produced the output

$ g++ -Wall tryCatchEx2.cpp -o tryCatchEx2

$ ./tryCatchEx2

3

Hi there ya’ll!

Your integer is 3

All done

$ ./tryCatchEx2

6

Hi ya’there ll!

Out of range intCheck

All done

$ ./tryCatchEx2

11

Out of range basic_string :: insert

All done

Our first attempt to use the tryCatchEx2 program with the integer 3 produces the desired
(at least by us) results. Choosing the integer as 6 generates a jumbled greeting with insert;
but, in spite of this grammatical faux pas, the method has worked correctly. Instead, an
exception has been thrown by intCheck because 6 exceeds 5 as indicated by the output
from the catch block. Our last attempt with the integer 11 as input produces an exception
from insert since the string “Hi ya’ll!” has only nine “characters” including the space. Of
course, 11 will also generate an exception if it is used in intCheck. The output indicates
this has not occurred. Instead, only the first function to throw an exception is evaluated
and, after the exception is caught, only the code in the catch block is executed.

In Section 3.5 we requested memory on the free-store using the new operator. In general,
there is no guarantee that it will be possible to fill a memory request and a program will
typically crash if the memory is not available. In days gone by, the behavior of new was to
return a null pointer which could easily be checked to see if an error had occurred. This
is no longer true and, instead, when memory allocation problems are encountered the new
function throws an exception of type bad alloc. Problems of this nature can therefore be
managed adaptively with try/catch blocks. In the absence of other alternatives, the usual
response to a memory allocation failure would likely be to simply stop execution with an
error message for debugging purposes. In such instances there is a simpler option that uses
an overloaded version of new available through the new header file that takes an additional
argument nothrow. The code snippet below illustrates how the nothrow version of new can
be used to deal with a memory allocation failure.
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p = new(nothrow) double[n];

if(!p){

cout << "allocation failure" << endl;

exit (1);

}

The new operator is used to acquire the memory to store n doubles. If the memory is not
available, the nothrow version of new returns a null pointer that will evaluate as false
when used in a conditional statement. So, if p is null, the effect of the if block will be to
invoke exit to terminate the program.

3.8.8 Timing a program

To conclude this section we will touch on a topic that often arises when evaluating numerical
methods: computation time. The idea is that one has written a program and wants to
determine how long it takes to execute. The tools for accomplishing this are accessed through
inclusion of the ctime header file. This makes available the function clock that returns
an object of type clock t whose values represent elapsed processor time relative to some
arbitrary starting point that excludes any time spent waiting for input, output or other
processes that may be running. The constant CLOCKS PER SEC tells us the number of clock
ticks that occur per second and can be used to translate an interval of clock time into
seconds. To avoid truncation from integer arithmetic the values of clock t types should be
cast to double (see Section 2.4) when using them to evaluate run-time for a program.

The listing below uses the clock function to calculate the time required to carry out
computations in a while loop.

//clockEx.cpp

#include <iostream >

#include <ctime >

using std::cout; using std::endl;

int main (){

double x, sec;

clock_t b = clock ();

while(x < 1000)

x += .00001;

sec = (double)( clock () - b)/(double)CLOCKS_PER_SEC;

cout << "The while loop took " << sec << " seconds to compute x = "

<< x << endl;

return 0;

}

Upon execution the output this code produced for the particular machine where it was
employed was

The while loop took 0.346182 seconds to compute x = 1000

Thus, about a third of a second was needed to compute a sum of 1000 when it is accumulated
in increments of size 10−5.

3.9 Matrix and vector classes

In this section the discussion of classes will be expanded through the creation of a class
framework for conducting matrix operations. In many respects the idea is to create some-
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thing similar to the C++ string class from the previous section that added functionality
to character arrays. Here the base storage scheme is the pointer-to-pointer construct of Sec-
tion 3.4 and the aim is to create a corresponding class structure that has the properties of
a matrix such as (accessible) row and column dimensions while incorporating methods for
matrix addition, subtraction, etc.

At the outset let us first consider how a matrix might be created. There are numerous
types of matrices that can be expected to arise in practice such as diagonal matrices with
specified constants on the diagonal (which allows for creation of an identity matrix) or full
matrices created from data stored in a pointer-to-pointer memory allocation. The matrix
elements could then be composed of integers, floating-point numbers, etc. For simplicity,
the current focus will be directed toward only a couple of possible scenarios with the un-
derstanding that other options can be handled in a similar manner.

First, the obvious choices for members of a class Matrix are the row and column size of the
matrix and the pointer-to-pointer variable that is needed for dynamic memory allocation to
store the elements of a two-dimensional array. With this as a starting point, two (overloaded)
constructors will be provided: a constructor for a diagonal matrix and a constructor for
data stored in the pointer-to-pointer format. A simple class that implements these ideas is
described by the header file below.

Listing 3.13 simpleMatrix.h

//simpleMatrix.h

#ifndef SIMPLEMATRIX_H

#define SIMPLEMATRIX_H

class Matrix{

//class members

int nRows , nCols;

double** pA;

void pointerCheck () const;

void pointerCheck(int i) const;

public:

//constructors and destructor

Matrix(int nrows = 0, int ncols = 0, double a = 0);

Matrix(int nrows , int ncols , const double* const* pa);

~Matrix ();

void printMatrix () const;

int getnRows () const {return nRows;}

int getnCols () const {return nCols;}

};

#endif

Listing 3.13 describes a class with three data members: the number of rows for the matrix
nRows, the number of columns for the matrix nCols and a double precision pointer-to-
pointer for the memory locations that will hold the matrix entries. The class comes with
two constructors: a constructor for a diagonal matrix and a constructor for data that is
stored in a pointer-to-pointer scheme. Note that the const double* const* syntax from
Section 3.8.3 was used in the pointer-to-pointer constructor to guard against the possibility
of modifying the input data.

In general, default arguments can be supplied for any member (or other) function with the
caveat that once a default argument is given all the subsequent arguments must be given
default values as well. The default values should be specified in the method declaration
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in the header file and not in the method definition. We have done this for the diagonal
matrix constructor in class Matrix with all three arguments being given default values of
0. This has the consequence that the diagonal matrix constructor will serve as the default
constructor because it can respond to a nonspecific request for a Matrix object such as

Matrix A;

As will be seen below, in this case the action of the constructor will be to simply return a
Matrix object A with A.nRows = A.nCols = 0 and A.pA the null pointer.

The first new feature in the Matrix class header is the specification of two private, over-
loaded functions named pointerCheck. These are simple utility functions that will check
that the memory allocations for the class element pA and its associated matrix row point-
ers are successful. They are intended for internal use within the class and would be of no
direct interest for users. It therefore seems most fitting to designate them as private. They
will (and should) not modify class data members and, accordingly, have been designated as
const member functions.

The next new function is the destructor ~Matrix() and we need to discuss this concept a
bit before proceeding further. All classes have destructors that are called every time a class
object goes out of scope. Thus, for example, our Power class had a default destructor implic-
itly supplied by the compiler even though one was never explicitly defined. The compiler’s
destructor simply releases the memory for each of the class members (i.e., for the integer
power K in the Power class) whenever a Power object goes out of scope. While this works
fine for Power objects, for objects from classes with dynamically allocated memory acquired
with the new operator this behavior is problematic. As a case in point, for an object of class
Matrix a compiler supplied destructor would release the memory that has been allocated to
the pointer pA. At the instance when this happens pA points to memory locations that hold
the values of pointers which, in turn, hold the addresses for blocks of memory that have been
allocated to hold the row elements of a two-dimensional array. Deleting pA releases none
of this latter memory and has the side effect of making it impossible to access any of the
memory that was previously accessible by dereferencing pA. To avoid this type of memory
leak it is necessary to provide an explicit destructor for the Matrix class that releases mem-
ory correctly as described in Section 3.5. This will be done in Listing 3.14 that provides the
method definitions for the Matrix class. The general rule concerning destructors is that an
explicit destructor should be supplied for any class that uses dynamic memory allocation.

The remainder of the Matrix header file gives the accessor functions getnRows, getnCols
and the prototype for a print utility method printMatrix. The purpose of accessor functions
is to provide noninvasive access to private members. The definitions for getnRows and
getnCols have been given inside the header file which, as noted in Section 3.7, has the
effect of making them inline functions. Functions of this nature tend to be only a line or
two of code which makes them suitable for inline treatment and we will generally use this
option for the accessor functions that are encountered throughout the text. The accessors
and the print utility should not alter a Matrix object and have accordingly been designated
as const member functions.

The next step is to create the definitions for the functions that are not defined in the
header. These are given in Listing 3.14 below.

Listing 3.14 simpleMatrix.cpp

//simpleMatrix.cpp

#include <iostream >

#include <cstdlib >

#include <new>

#include "simpleMatrix.h"
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using std::cout; using std::endl;

Matrix :: Matrix(int nrows , int ncols , double a){

nRows = nrows;

nCols = ncols;

//set pA to null pointer in default case

if(nRows == 0 || nCols == 0){

pA = 0;

return;

}

pA = new(std:: nothrow) double*[nRows];

pointerCheck ();

for(int i = 0; i < nRows; i++){

pA[i] = new(std:: nothrow) double[nCols];

pointerCheck(i);

for(int j = 0; j < nCols; j++){

if(i == j)

pA[i][j] = a;

else

pA[i][j] = 0.;

}

}

}

Matrix :: Matrix(int nrows , int ncols , const double* const* pa){

nRows = nrows;

nCols = ncols;

pA = new(std:: nothrow) double*[nRows];

pointerCheck ();

for(int i = 0; i < nRows; i++){

pA[i] = new(std:: nothrow) double[nCols];

pointerCheck(i);

}

for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)

pA[i][j] = pa[i][j];

}

Matrix ::~Matrix (){

if(pA != 0){

for(int i = 0; i < nRows; i++)

delete[] pA[i];

delete[] pA;

}

}

void Matrix :: printMatrix () const {

for(int i = 0; i < nRows; i++){

for(int j = 0; j < nCols; j++)

cout << " " << pA[i][j] << " ";

cout << endl;

}

}
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void Matrix :: pointerCheck () const {

if(pA == 0){

cout << "Memory allocation for pA failed" << endl;

exit (1);

}

}

void Matrix :: pointerCheck(int i) const {

if(pA[i] == 0){

cout << "Memory allocation for pA[" << i << "] failed" << endl;

exit (1);

}

}

The listing begins with the definitions for the two constructors. The first one creates a
diagonal matrix corresponding to a specified number of rows and columns and a specified
constant to go on the diagonal. Since this serves as the default constructor, a check is made
to see if the default values are in effect: i.e., if nRows and nCols are zero. In that case there
is nothing else to do. So, pA is assigned the null pointer and control is passed back to the
calling function via a return statement. The second constructor takes a pre-existing two-
dimensional array stored in the pointer-to-pointer layout and transfers its content into a
Matrix class object. The next method is the destructor that begins the destruction process
with a check to see if memory has been allocated by determining whether or not pA is the
null pointer; one of the two constructors must be called when creating a matrix object and
the only way memory will not be allocated is if the default constructor is used giving pA =
0. In that event there is no memory to release and the destructor’s job is finished. On the
other hand, if memory has been allocated it is released correctly in the manner that was
discussed in Section 3.4.

A utility function printMatrix has been included to output the data corresponding to
the pA pointer for a Matrix object. Note that const appears in the definition as well as in
the class header. Had this not been true the compiler would have reported an error as the
version of printMatrix in the header file that used const would be viewed as a different
function than the one for which the definition is given.

The final two functions in Listing 3.14 stem from discussions in Section 3.8.7 concerning
the nothrow version of the new operator. They provide checks for memory allocation failures
and will terminate the program with a message indicating the source of the difficulty should
problems arise. As both functions perform the same basic purpose it is natural to use
function overloading to allow them to share the same name.

A simple driver program that uses the matrix class is

//simpleMatDriver.cpp

#include "simpleMatrix.h"

#include <iostream >

using std::cout; using std::endl;

int main (){

Matrix m1(2, 2, 1);

cout << "Here is an identity matrix " << endl;

m1.printMatrix ();

double** p = new double*[3];

for(int i = 0; i < 3; i++){

p[i] = new double[2];

for(int j = 0; j < 2; j++)

p[i][j] = (double)(i + 1)*(j + 1);
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}

Matrix* m2 = new Matrix(3, 2, p);

cout << "Here is a matrix initialized by a pointer -to-pointer"

<< endl;

m2 ->printMatrix ();

return 0;

}

This program creates an identity matrix and another matrix with nonzero off-diagonal
elements using the pointer-to-pointer storage format. Both a Matrix object and a pointer
to a Matrix object are used to represent the matrices thereby illustrating the syntax that
is used in the two cases.

An associated makefile for our Matrix class code might look like

simpleMat : simpleMatDriver.o simpleMatrix.o

g++ -Wall simpleMatDriver.o simpleMatrix.o -o simpleMat

simpleMatrix.o : simpleMatrix.cpp simpleMatrix.h

g++ -c -Wall simpleMatrix.cpp

simpleMatDriver.o : simpleMatDriver.cpp simpleMatrix.h

g++ -c -Wall simpleMatDriver.cpp

The output obtained from execution of our code is then seen to be

Here is an identity matrix

1 0

0 1

Here is a matrix initialized by a pointer -to-pointer

1 2

2 4

3 6

Our Matrix class has limited utility in that it basically can only be used to print out
an object from the class. The next step is to expand on this skeleton structure to create
more functionality including the provision of methods for matrix addition, multiplication,
etc. It is possible to accomplish this through operator overloading as will eventually be
demonstrated. But, it is first necessary to deal with the concept of a copy constructor for
our class.

We will eventually want to use matrix objects as arguments to functions or in assignments
(via =) after carrying out some type of numeric calculation. In particular, this means that
there will be occasions where a copy of a matrix object is created. This is accomplished
using the default copy constructor that is implicitly provided by C++ for every class unless
an explicit copy constructor is defined. The implicit copy constructor makes an element-by-
element copy of the members of the class and this is not always desirable.

An illustration of how the default copy constructor will behave for our class Matrix can
be obtained by attempting to run

//copyEx.cpp

#include "simpleMatrix.h"

#include <iostream >

using std::cout; using std::endl;

void g(Matrix A){};

int main (){

Matrix m(2, 2, 1.);



MATRIX AND VECTOR CLASSES 85

g(m);

cout << "The destructor will now be called." << endl;

return 0;

}

A similar outcome will be obtained from naive use of the assignment or = operator in

//equalEx.cpp

#include "simpleMatrix.h"

#include <iostream >

using std::cout; using std::endl;

int main (){

Matrix m1(1., 2, 2);

Matrix m2;

m2 = m1;

cout << "The destructor will now be called." << endl;

return 0;

}

Specifically, either of these two programs produces run-time errors that return output in-
cluding a statement such as
The destructor will now be called
equalEx (4147) malloc: *** error for object 0x100100090:

pointer being freed was not allocated
*** set a breakpoint in malloc_error_break to debug
Abort trap

This error message is about a memory problem related to the C function malloc for dynamic
memory allocation that lies under the hood of the C++ new operator. It suggests the
problem may arise from an attempt to delete the memory for a pointer (using the C function
free that is called by delete) that has not actually been allocated memory on the free-store.
That is precisely what has occurred.

To understand what has transpired we need to think about when a destructor for a class
is called. This occurs when an object for that class goes out of scope: i.e., when the end
of a block of code that contains the object is reached. For the first nonoperative driver
program copyEx.cpp a copy of the Matrix object m is created to pass by value to the
function g. This copy then goes out of scope when control passes back to main and the
copy is destroyed by the destructor function ~Matrix that deletes the memory allocated
to the pointers associated with the pA member for the copy. But, since the copy was made
element-for-element, this means that the memory pointed to by m.pA (i.e., the pA pointer
associated with the Matrix object m in main) is what is actually deleted. So, at this point
no memory is allocated to m.pA. When m goes out of scope at the end of main the class
destructor is called again and attempts to deleted the memory for the pointer m.pA that no
longer points to the allocated memory.

A similar problem arises for the second nonoperative driver program equalEx.cpp. In this
latter instance the default behavior of = is to make an element-by-element copy m2 of the
Matrix object m1 when m2 is equated to m1. At the end of main the destructor for m2 is
called thereby also deleting the memory allocated to m1.pA. When an attempt is made to
delete this memory again, this time for the object m1, an error occurs.

The above discussion makes it clear that when dynamic memory allocation is involved
two things must be defined explicitly: namely, a copy constructor and an overloaded version
of the assignment operator. Let us first deal with the issue of creating a copy constructor.

Copy constructors are a special type of constructor that have a const reference to a class
object as their argument. Specifically, they employ the syntax
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className(const className& objectName)

In particular, for class Matrix a copy constructor can be implemented using

Matrix :: Matrix(const Matrix& A){

nRows = A.nRows;

nCols = A.nCols;

pA = new(std:: nothrow) double*[nRows];

pointerCheck ();

for(int i = 0; i < nRows; i++){

pA[i] = new(std:: nothrow) double[nCols];

pointerCheck(i);

}

for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)

pA[i][j] = A.pA[i][j];

}

If this is included in the definitions for the Matrix class methods along with insertion of

Matrix(const Matrix& A);

in the associated header file, the output produced by copyEx.cpp is just

The destructor will now be called.

Apparently, the copying problem has been resolved.
To handle the problem with using assignment in class Matrix the solution is to define an

overloaded version of the = operator along the lines of developments in Section 3.8.3. An
overloaded = operator for our matrix class would have the form

Matrix& operator=(const Matrix& A);

Here, and more generally, assignment operators need to return a reference to allow for
composite expressions that use assignment in other function calls.

The definition for the assignment operator might look something like

Matrix& Matrix ::operator=(const Matrix& A){

if(this == &A) //avoid self assignment

return *this;

//if dimensions match we can just overwrite; otherwise ....

if(nRows != A.nRows ||nCols != A.nCols){

if(pA != 0)//check first before releasing memory

this ->~Matrix ();

//define/redefine object ’s members

nRows = A.nRows;

nCols = A.nCols;

pA = new(std:: nothrow) double*[nRows ];

pointerCheck ();

for(int i = 0; i < nRows; i++){

pA[i] = new(std:: nothrow) double[nCols ];

pointerCheck(i);

}

}
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for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)

pA[i][j] = A.pA[i][j];

return *this;

}

This code is similar to what was used for our copy constructor. The main difference is that
it now allows for the possibility that we are working with an existing object. In that case =
must be taken to mean that the Matrix object on the left-hand side of = is to be overwritten
with the contents of the Matrix object A in the operator’s argument that corresponds to
the quantity on the right-hand side of the = operator. If memory has already been allocated
for that object’s pA member there are two possibilities: either the dimensions of the two
matrices are the same or they are not. If they are the same, we can simply overwrite the
existing memory. If the dimensions differ, the existing memory must be released with the
destructor and then reallocated so that the contents of A can be stored. A final possibility
that can arise in this instance is that the left-hand side object was created with the default
constructor in which case there is no memory to release. This condition is checked first
before proceeding with memory release operations. One may check that inclusion of our
overloaded = operator in the code for the Matrix class resolves our prior difficulties and
assignment will no longer produce a run-time error.

The definition of the overloaded = operator also represents our first real use of the hidden
pointer this that was discussed in Section 3.8.2. The = operator has return-type Matrix&
which means it must return the address of a matrix object: namely, the address of the calling
matrix object that resides on the left-hand side of the = operator. This latter object needs
to actually “know” its own address for us to be able to return the reference and it keeps
that information in the value of this.

Operators overloading can be used to produce operators for all the standard matrix
operations for members of class Matrix. With that in mind, a somewhat more complete
development of a class Matrix that incorporates addition, multiplication and other new
features has the header file in Listing 3.15.

Listing 3.15 simpleMatrix.h (expanded version)

//simpleMatrix.h

#ifndef SIMPLEMATRIX_H

#define SIMPLEMATRIX_H

class Matrix{

//class members

int nRows , nCols;

double** pA;

void pointerCheck () const;

void pointerCheck(int i) const;

public:

//constructors and destructor

Matrix(int nrows = 0, int ncols = 0, double a = 0.);

Matrix(int nrows , int ncols , const double* const* pa);

Matrix(const Matrix& A);

~Matrix ();

Matrix& operator=(const Matrix& B);
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Matrix operator+(const Matrix& B) const;

Matrix& operator+=(const Matrix& B);

Matrix operator*(const Matrix& B) const;

Matrix operator*(double b) const;

const double* operator[](int i) const {return pA[i];}

Matrix trans () const;

void printMatrix () const;

int getnRows () const {return nRows;}

int getnCols () const {return nCols;}

};

Matrix operator*(double , const Matrix& A);

#endif

The class now contains a method trans for computing the transpose of a matrix as well
as overloaded operators for addition, multiplication and element access. In particular, the
subscripting operator [] is defined inline. Although it may not be entirely obvious, this gives
access to the matrix elements. To see this, suppose that A is a Matrix object. Then, from
the operator’s definition, A[i] = pA[i] for a given index i. But, that means that A[i][j]
= pA[i][j] which verifies our claim. The const modifier before the double* return type
in Listing 3.15 is to ensure that the elements of the matrix cannot be modified; that is, with
const double* as the return type a statement such as A[i][j] = b for indices i and j
and some constant b will produce an error message.

Implementations of the two methods for matrix addition whose prototypes appear in the
class Matrix header are provided in the listing below.

Matrix Matrix ::operator+(const Matrix& B) const {

if(nRows != B.nRows || nCols != B.nCols ){

cout << "Bad row and/or column dimensions in +!" << endl;

exit (1);

}

Matrix temp(nRows , nCols );

for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)

temp.pA[i][j] = this ->pA[i][j] + B.pA[i][j];

return temp;

}

Matrix& Matrix ::operator+=(const Matrix& B){

if(nRows != B.nRows || nCols != B.nCols ){

cout << "Bad row and/or column dimensions in +=!" << endl;

exit (1);

}

for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)

pA[i][j] += B.pA[i][j];

return *this;

}

Both addition methods first check that the row and column dimensions of the two matrices
agree so that addition is possible. The + operator uses the diagonal Matrix constructor to
create a matrix temp of all zeros that is of the right size to hold the matrix sum. Note that
only the row and column dimensions are specified in the constructor call. The reason this
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works is that when the compiler evaluates the expression Matrix temp(nRows, nCols) it
looks for any constructor that is completely determined through specification of its first
two integer arguments. The diagonal Matrix constructor has a default value for its third
argument so that specification of the number of rows and columns is enough to provide an
argument match with the diagonal constructor for the class. The goal of + is to create a
new matrix object that is the sum of its B argument and the calling Matrix object: i.e., A
+ B translates to A.operator+(B). We do not want B to be altered by this operation which
is why it is passed in as a const reference. The same protection is needed for the calling
Matrix object and this is provided by making + a const method. Similar considerations
apply for * and the tran method.

To understand the return types for the overloaded addition operators one must consider
how these functions are to work in practice. With + the goal is to create a brand new Matrix
object (hence, the Matrix return type) that is the sum of the matrix (corresponding to the
hidden pointer this) that will appear on the left-hand side of the + sign and the Matrix
object B that appears as the argument to the function. In contrast to + the += operator
must overwrite the contents of the matrix on the left-hand side of += with the sum of the
calling object and the object B that is listed as the argument of the function. Accordingly,
no new memory needs to be allocated and the contents of the Matrix object (corresponding
to the pointer this) is overwritten using the scalar version of += on an element-by-element
basis. In that the Matrix being overwritten (i.e., the one on the left-hand side of +=) is
presumed to already exist, a reference is returned to its location in memory rather than a
new Matrix object. The explicit use of this->pA[i][j] in the + operator accumulation
loop is unnecessary and just pA[i][j] would have worked equally well. This particular
choice of syntax merely helps to distinguish between the three pointers that are active in
the loop.

There are three overloaded versions of the * operator that have been specified for mul-
tiplication: one for ordinary matrix multiplication and then two for scalar multiplication.
The following code gives the definitions for these operators.

Matrix Matrix ::operator*(const Matrix& B) const {

if(nCols != B.nRows ){

cout << "Bad row and column dimensions in *!" << endl;

exit (1);

}

Matrix C(nRows , B.nCols );//matrix of all zeros

for(int i = 0; i < nRows; i++)

for(int j = 0; j < B.nCols; j++)

for(int k = 0; k < B.nRows; k++)

C.pA[i][j] += pA[i][k]*B.pA[k][j];

return C;

}

Matrix Matrix ::operator*(double b) const {

Matrix C(nRows , nCols );//matrix of all 0s

for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)

C.pA[i][j] = b*pA[i][j];

return C;

}

Matrix operator*(double b, const Matrix& A){

return A*b;

}



90 A SKETCH OF C++

The matrix multiplication version of * is just the two-loop accumulation process that would
be expected here. The presence of two methods for scalar multiplication is for the same
reason as in Listing 3.9 in Section 3.8.3. The first scalar multiplication method corresponds
to multiplication of a Matrix object A on the right by a scalar b. In this case A*b translates
to A.operator*(b); that is, the method operator* belongs to the Matrix class and the
Matrix object A is using this method with argument b. This works as expected. Problems
arise when an attempt is made to use syntax such as b*A. If scalars had a class structure this
would look like b.operator*(A) and the operator could be defined as an overloaded version
of multiplication for that class. But, there is no scalar class and even if there were one it
would not make sense for something so fundamental to the Matrix class to be specified in
isolation from the other Matrix methods. As in Listing 3.9, a work around is obtained by
defining a binary overloaded * operator that is not a class method. Once inside the function
the outcome can simply be defined as A*b. Since scalar multiplication should not alter the
original matrix, the Matrix argument is passed to * as a const reference. Consequently, the
right-hand version of * needs to be a const member function to allow it to work with the
one for multiplication on the left.

Finally, the definition of the trans method is

Matrix Matrix ::trans () const {

Matrix B(nCols , nRows , 0.);

for(int i = 0; i < nCols; i++)

for(int j = 0; j < nRows; j++)

B.pA[i][j] = pA[j][i];

return B;

}

A new Matrix of all zero elements is created first using the diagonal matrix constructor.
Then, the contents of the calling object are transferred to the new one while reversing the
roles of rows and columns.

A program that uses some of the new features of the Matrix class is given below.

//matDriver.cpp

#include "simpleMatrix.h"

#include <iostream >

using std::cout; using std::endl;

void g(const Matrix& A){

cout << "The function g was called" << endl;

};

int main (){

double** pMat = new double*[2];

for(int i = 0; i < 2; i++){

pMat[i] = new double[2];

for(int j = 0; j < 2; j++)

pMat[i][j] = (double)((i + 1)*(j + 1) + j);

}

Matrix m1(2, 2, pMat);

cout << "A matrix initialized from a pointer -to-pointer" << endl;

m1.printMatrix ();

for(int i = 0; i < 2; i++)

delete[] pMat[i];

delete[] pMat;
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g(m1);

Matrix m2;

m2 = m1;

cout << "A copy of the matrix obtained with =" << endl;

m2.printMatrix ();

cout << "The sum of the last 2 matrices is" << endl;

(m1 + m2). printMatrix ();

cout << "The product of the first matrix and its transpose is"

<< endl;

(m1*m1.trans ()). printMatrix ();

cout << "The first matrix left multiplied by 2 is" << endl;

(2*m1). printMatrix ();

cout << "The (1, 1) element of the first matrix is " <<

m1 [1][1] << endl;

return 0;

}

The output produced by this program is

A matrix initialized from a pointer -to -pointer

1 3

2 5

The function g was called

A copy of the matrix obtained with =

1 3

2 5

The sum of the last 2 matrices is

2 6

4 10

The product of the first matrix and its transpose is

10 17

17 29

The first matrix left multiplied by 2 is

2 6

4 10

The (1, 1) element of the first matrix is 5

Class Matrix represents our first attempt at creating a framework for manipulating two-
dimensional arrays. The developments in this section are just the beginning and this topic
will arise again in Chapter 7. Our final version of the class is summarized in Appendix D.

A two-dimensional array with one column is a vector which means that the Matrix class
also encompasses the vector case in a certain sense. The code that evolves from this approach
(e.g., the use of A[i][0] for working with a two-dimensional representation of a vector A)
can be cumbersome. There are also certain entities like the scalar inner product of two
vectors that are vector-specific and do not translate particularly well to a two-dimensional
environment. Such obstacles can be overcome by creating methods that are specialized to
the case of nCols being 1. The fact that such specialization is needed suggests that vector
objects should have their own identity rather than be encapsulated in the Matrix class.
Accordingly, in the remainder of this section we will provide a sketch of how a class Vector
can be developed. The task of providing the class with more functionality is the subject of
Exercise 3.22.

Listing 3.16 represents the header file for our first attempt at creating a class Vector.



92 A SKETCH OF C++

Listing 3.16 simpleVector.h

//simpleVector.h

#ifndef VECTOR_H

#define VECTOR_H

class Vector{

double* pA;

int nRows;

void pointerCheck () const;

public:

Vector(int nrows = 0, double b = 0.);

Vector(int nrows , const double* pa);

Vector(const Vector& v);

~Vector ();

Vector& operator=(const Vector& v);

double operator[](int i) const {return pA[i];}

void printVec () const;

int getnRows () const {return nRows;}

//friends

friend class Matrix;

};

#endif

Many of the prototypes in Listing 3.16 are familiar from our previous experience with class
Matrix. The class has two elements: a pointer to double, pA, that will hold the location
of the memory that contains the values of the vector’s elements and an integer variable
nRows that will contain the number of rows in the stored vector. A private utility function
pointerCheck performs the same task as in the Matrix class in checking for memory allo-
cation problems. Both default and pointer initialization type constructors are provided as
well as a copy constructor, a destructor and an overloaded = operator. The last line of code
represents another useful feature of C++: namely, the ability to give other classes friend
status that allows them access to private class members and functions. This concept and
its motivation will be examined in more detail subsequently.

Listing 3.17 gives an illustration of definitions that could be used for the member functions
in the Vector class.

Listing 3.17 simpleVector.cpp

//simpleVector.cpp

#include <iostream >

#include <cstdlib >

#include <new>

#include "simpleVector.h"

using std::cout; using std::endl;

Vector :: Vector(int nrows , double b){

nRows = nrows;

if(nRows == 0){

pA = 0;

return;
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}

pA = new(std:: nothrow) double[nRows];

pointerCheck ();

for(int i = 0; i < nRows; i++)

pA[i] = b;

}

Vector :: Vector(int nrows , const double* pa){

nRows = nrows;

pA = new(std:: nothrow) double[nRows];

pointerCheck ();

for(int i = 0; i < nRows; i++)

pA[i] = pa[i];

}

Vector :: Vector(const Vector& v){

nRows = v.nRows;

pA = new(std:: nothrow) double[nRows];

pointerCheck ();

for(int i = 0; i < nRows; i++)

pA[i] = v.pA[i];

}

Vector ::~Vector (){

if(pA != 0)

delete[] pA;

}

Vector& Vector ::operator=(const Vector& v){

if(this == &v)//avoid self assignment

return *this;

//define/redefine object ’s members

if(nRows != v.nRows ){

if(pA != 0)

delete [] pA;

nRows = v.nRows;

pA = new(std:: nothrow) double[nRows ];

pointerCheck ();

}

for(int i = 0; i < nRows; i++)

pA[i] = v.pA[i];

return *this;

}

void Vector :: pointerCheck () const {

if(pA == 0){

cout << "Memory allocation for pA failed" << endl;
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exit (1);

}

}

void Vector :: printVec () const {

for(int i = 0; i < nRows; i++)

cout << " " << pA[i] << " " << endl;

}

There is nothing conceptually new in Listing 3.17 beyond what was used in class Matrix.
The principal difference is the simplifications that are realized through reduction of the array
dimension from two to one. For example, the destructor now requires a single statement,
rather than a loop, to release the dynamic memory allocated for a Vector object.

Let us now discuss the C++ friend relationship that can be created between two classes. To
motivate the idea consider the method below that carries out matrix-vector multiplication.

Vector Matrix ::operator*(const Vector& v) const {
double temp;
Vector c(nRows);//vector of all 0s
for(int i = 0; i < nRows; i++){

temp = 0;
for(int j = 0; j < nCols; j++)

temp += pA[i][j]*v[j];

c.pA[i]=temp;
}

return c;
}

Without the friend designation for class Matrix in Listing 3.16, insertion of this function
in class Matrix will result in a compilation error. The problem occurs in accumulating the
sums for the elements of the product in the Vector object c. As pA is a private member of
the Vector class, the compiler forbids access to c.pA by objects from another class. The
friend designation has the effect of allowing Matrix objects to have access to the private
members (and member functions should such exist) of Vector objects which is what is
needed to make the matrix-vector multiplication code operable.

The overloaded * operator for matrix-vector multiplication in class Matrix returns a
Vector object by value. Thus, as discussed in Section 3.8, the compiler needs to know
specifics about the Vector class that require placing an include statement in the Matrix
class header to bring in the header file simpleVector.h. The statement

Vector operator*(const Vector& v) const;

must also be added to the Matrix class declaration.
The driver program below gives a test for our new overloaded * operator.

///matVecDriver.cpp

#include <iostream >

#include "simpleVector.h"

#include "simpleMatrix.h"

using std::cout; using std::endl;

int main (){
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double** pMat = new double*[2];

double* pVec = new double[3];

for(int i = 0; i < 2; i++){

pMat[i] = new double[3];

for(int j = 0; j < 3; j++){

pMat[i][j] = (double)((i + 1)*(j + 1) + j);

pVec[j] = (double)(j + 1);

}

}

Matrix m(2, 3, pMat);

cout << "The matrix m" << endl;

m.printMatrix ();

Vector v(3, pVec);

cout << "The vector v" << endl;

v.printVec ();

cout << "The product of m and v is" << endl;

(m*v). printVec ();

return 0;

}

The output from the program is

The matrix m

1 3 5

2 5 8

The vector v

1

2

3

The product of m and v is

22

36

3.10 Input, output and templates

Up to now all the input and output to our programs has been directed through the shell
interface. This is unlikely to be sufficient in any general sense and certainly not for the
purposes of statistical analysis where input and output to files is essential. Thus, in this
section we will address the issue of reading from and writing to files. The solutions that we
obtain will be satisfactory for many applications but are nonetheless constrained to handling
file structures that have very specific formats. A more flexible treatment is postponed until
Chapter 10.

The problems that will be considered are the input and output of arrays of data that
contain values of one of the C/C++ primitive data types. Of the two, the output problem
is usually the more straightforward in that one can expect to have created the array to
be written to a file during the course of computation and therefore have knowledge of its
structure.

The C++ input and output functionality involves stream classes that are abstractions of
input and output devices. We have used the iostream class to send and receive information
from the shell. Including the iostream header file in our programs automatically provided
access to the two stream objects cout and cin that were used for this purpose. File input
and output works similarly. The header file fstream gives the declaration of the ifstream
class for file input and the ofstream class for output. Objects from these two classes then
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perform the functions for files that were carried out by cin and cout for standard input
and output.

To create an ofstream object with name outFile corresponding to an existing file whose
name is stored in the C-style string variable fileName, use either

std:: ofstream outFile;

outFile.open(fileName );

or

std:: ofstream outFile(fileName );

Note that the “name” of the file must include a path specification if it is not in the same
directory as the program. The scope resolution operator has also been used to specify that
ofstream refers to the definition in the std namespace.

To actually write to the file the output insertion operator << is used in much the same
manner as for writing to standard output. The only syntactic difference is that cout must
be replaced with the name of the ofstream object or outFile in this particular case. Upon
conclusion of writing to a file it may be closed, thereby freeing it for other uses (e.g., reading
or appending), with

outFile.close ();

The basic ideas behind C++ file output are illustrated in the following program.

Listing 3.18 simpleOut.cpp

//simpleOut.cpp

#include <cstdlib >

#include <fstream >

int main(int argc , char** argv){

std:: ofstream outFile;

outFile.open(argv [1]);

for(int i = 0; i < atoi(argv [2]); i++){

for(int j = 0; j < atoi(argv [3]); j++)

outFile << (i + 1)*(j + 1) << " ";

outFile << std::endl;

}

outFile.close ();

outFile.open(argv[1], std::ios_base::app);

outFile << "End of file" << std::endl;

outFile.close ();

return 0;

}

Listing 3.18 opens an output file stream to a file name that is input from the command line
in argv[1]. If a file with the argv[1] name does not exist it will be created and if it does
exist its contents will be overwritten. An array is written to argv[1] with row and column
dimensions determined by the command line arguments argv[2] and argv[3], respectively.
The connection is closed after which a second connection is made to argv[1] using outFile.
In doing this a second argument std::ios base::app has been passed to the open method
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that will result in output being appended (in lieu of overwriting) if a file already exists.†

The simpleOut program produces results such as

$ g++ -Wall simpleOut.cpp -o simpleOut

$ ./simpleOut out.txt 3 4

$ cat out.txt

1 2 3 4

2 4 6 8

3 6 9 12

End of file

To effectively handle output problems of practical interest an output class should be
constructed. An object from the class could then be used to write an array to a specified
file. The resulting methods that might be created for writing or object construction would
depend on the data type for the array. This would require writing different methods to handle
integer and floating-point data, for example. Thus, it would be convenient if we could instead
create a class that uses a generic data type that would allow arrays constructed from, e.g.,
any of the primitive data types to be written to files with only a single method. This can
be accomplished using a class template and that is the solution that will be developed here.

The syntax for creating a template class looks like

template <class T> class className{

member declarations and method prototypes

};

Here T represents a “wild card” of sorts that must be explicitly specified by the calling
program. In the general context of template classes T could be any data type including one
that was user created. For statistical purposes T will most often be one of the primitive data
types such as char, int, float, double, etc., and there is no harm in viewing it from that
perspective throughout this section.

The declarations for members and methods as well as specification of public and private
access for template classes are exactly the same as for the non-template case. To specify
method definitions outside the class declaration use

template <class T> returnType className <T>:: methodName(arguments ){

body of method

}

There is a caveat here; the method definitions must reside in the same file as the class
declaration.

Previously class declarations have been physically separated from the method definitions
in header and cpp files. The cpp files were then compiled into object files that were linked
at the end to produce an executable. The problem with this approach for templates is the
generic T that is used as a place holder for the actual data type that will be substituted
for T to produce a specific object. The compiler has no way to allocate storage for T when
an object file is created without an actual data type being specified. This can be done only
when a specific choice is made for T at which point the compiler essentially goes through
both the source (i.e., cpp file) code and declarations for the class (that reside in the header)
and substitutes in the “value” for T. However, if the cpp file was compiled separately the
compiler does not have access to the source code and, instead, it assumes that definitions for
all the methods with the necessary “values” for T will exist elsewhere as in other precompiled
object files. The task of putting the code together then falls to the linker which looks through
the object files to find method definitions using the specified value (or values) of T with no

† The value of this second argument std::ios base::app is a static const member of the C++ ios base
class that provides constants and functions used by all the other stream classes.
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success and states that there are “unresolved references”. There is a keyword export that
can be used to resolve this difficulty on compilers that support its use. Since g++ does not
support export we will not discuss it here. Details on its use are given, for example, in
Prata (2005).

Listing 3.19 below provides a simple example that illustrates some of the basic ideas
behind construction of a template class.

Listing 3.19 simpleTemp.cpp

//simpleTemp.cpp

#include <iostream >

using std::cout; using std::endl; using std::cin;

template <class T> class simpleTemp{

T x;

public:

simpleTemp (){

cout << "Enter a value for x " << endl;

cin >> x;

}

T getX ();

};

template <class T> T simpleTemp <T>:: getX()

{

return x;

}

int main (){

simpleTemp <int> y;

cout << sizeof(y.getX ()) << " " << y.getX() << endl;

simpleTemp <double > z;

cout << sizeof(z.getX ()) << " " << z.getX() << endl;

return 0;

}

The template class simpleTemp in Listing 3.19 contains one member x of the generic class
T whose value is read in from the command line. The main program then creates two
simpleTemp objects, y and z, with T chosen to be int and double, respectively, and prints
out the values of their x members along with the number of bytes of storage that was
allocated to them by the compiler. An example of the use of simpleTemp is

$ g++ -Wall simpleTemp.cpp -o simpleTemp

$ ./simpleTemp

Enter a value for x

11

4 11

Enter a value for x

11.2

8 11.2

Seeing that an int is allocated four bytes of memory and a double has eight, the output
demonstrates that the class has successfully adapted to the two different data types that
were used in creation of the objects y and z.

The basic ideas behind the simpleTemp class are readily generalized to construction of
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something useful. In particular, a template class that can be used for file output is provided
by Listing 3.20.

Listing 3.20 fileOut.h

//fileOut.cpp

#include <iostream >

#include <fstream >

#include <cstdlib >

template <class T = double > class fileOut{

char* fName;

bool App;

public:

fileOut(char* fileName , bool app = 0);

~fileOut (){};

void write(int nrows , int ncols , const T* const* pData) const;

};

//method definitions

template <class T> fileOut <T>:: fileOut(char* fileName , bool app){

fName = fileName;

App = app;

}

template <class T> void fileOut <T>:: write(int nrows ,

int ncols , const T* const* pData) const {

if(App == 0){

std:: ofstream outFile;

outFile.exceptions(std:: ofstream :: failbit |

std:: ofstream :: badbit );

try{

outFile.open(fName);

}

catch(std:: ofstream :: failure e){

std::cout << "Error opening output file: " << e.what()

<< std::endl;

}

for(int i = 0; i < nrows; i++){

for(int j = 0; j < ncols; j++)

outFile << " " << pData[i][j] << " ";

outFile << std::endl;

}

outFile.close ();

}

else{

std:: ofstream outFile(fName , std::ios::app);

if(!outFile.is_open ()){

std::cout << "Error opening output file!" << std::endl;

exit (1);

}
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for(int i = 0; i < nrows; i++){

for(int j = 0; j < ncols; j++)

outFile << " " << pData[i][j] << " ";

outFile << std::endl;

}

outFile.close ();

}

}

The class has two members: the output file name fileName and a Boolean variable App
that indicates whether or not the output is to be appended to fileName. A default value of
false is used for App in the class constructor. The operative class method is write which
takes the row and column dimensions of a pointer held array as well as the array pointer
as arguments. Notice the use of the syntax const T* const* from Section 3.8.3 that will
ensure that the method does not modify the data corresponding to the pData pointer. The
write method opens an output file in either create/overwrite or append mode depending
on the value of App. In either case an explicit check is made to make sure that the target file
is open. For the first case with App = 0, the check is made using the try/catch mechanism
from Section 3.8.7. The instance of App = 1 is handled with the ofstream member function
is open. This function returns the value of a Boolean variable that evaluates as false if
problems are encountered in making a connection to the specified output file. The use of
two different ways to check for file access error is for illustration purposes. In general, only
one of the two methods would likely be used.

It is possible to give default values to template parameters. We have used this option
in Listing 3.20 and made double the default data type. This has the consequence that a
specific value for the template parameter need not be specified when instantiating a fileOut
object.

Now let us explore some of the details behind the use of exceptions in Listing 3.20. There
are flags corresponding to input and output stream objects that provide information about
the stream’s state. These are one-bit variables with the names eofbit, failbit and badbit.
The value of eofbit is set to 1 if the end of a file is reached and is 0 otherwise. Unit values
for failbit indicate problems when reading or writing operations encounter an unexpected
value while badbit is set to 1 in the case of corruption of an input or output stream. It
might be hoped that an exception would be thrown if any of the three bits evaluates to
1. This is not true by default; but, it can be made so by using the exceptions ofstream
class method with one or more of the bits as arguments. The bits are combined using the
bit-wise OR operator | that evaluates to 1 if any of the bits are 1. The first write operation
in Listing 3.20 illustrates the idea. An ofstream object is created that is then used to
set up the conditions for throwing an exception. The argument std::ofstream::failbit
| std::ofstream::badbit that is given to the exceptions method will evaluate to 1 if
either failbit or badbit is 1. In that case, an object of the exception class failure that
corresponds to stream objects will be thrown. The actual call to the open method is made
inside a try block. If a failure exception is thrown, it is retrieved by the catch block and
the information from its what method is output.

The next listing uses the template output class to write both integers and doubles to
specified files.

//outDriver.cpp

#include "fileOut.h"

int main(int argc , char** argv){

int** pI = new int*[2];
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double** pD = new double*[2];

for(int i = 0; i < 2; i++){

pI[i] = new int[3];

pD[i] = new double[3];

for(int j = 0; j < 3; j++){

pI[i][j] = (i + 1)*(j + 1);

pD[i][j] = (double)(i + 1)/(double)(j + 1);

}

}

fileOut <int> outInt(argv[1], 0);

outInt.write(2, 3, pI);

//Now append to argv [2]

fileOut <> outDouble(argv[2], 1);

outDouble.write(2, 3, pD);

return 0;

}

To use a fileOut object with integer data, the template parameter must be given explicitly
as int. However, the second write operation uses data of type double in which case the
default parameter value will suffice. The angle brackets <> are still required in this instance;
but, an explicit value for T is unnecessary. Output from this program looks like
$ g++ -Wall outDriver.cpp -o outDriver
$ ./outDriver out.txt out.txt
$ cat out.txt
1 2 3
2 4 6
1 0.5 0.333333
2 1 0.666667

$ chmod u-w out.txt
$ ./outDriver out.txt out.txt
Error opening output file: basic_ios::clear
terminate called after throwing an instance of ’std::ios_base::failure ’

what (): basic_ios::clear
Abort trap
$ ./outDriver out1.txt out.txt
Error opening output file!
$ cat out1.txt
1 2 3
2 4 6

Note that only the outDriver.cpp file was compiled here because fileOut.h contains the en-
tire set of source code for the class rather than just declarations/prototypes. In essence, the
compiler works with one large file that begins with the class declaration and the method
definitions before concluding with the main function. The first use of the outDriver exe-
cutable produces the expected results. Once the file write permission is changed for out.txt,
both write and append operations to that file produce error messages.

To conclude this section, let us briefly discuss creating a file input parallel of our fileOut
class. In many ways the same concepts apply in that we want to create a template class to
allow for general forms of input data. In fact, if the dimensions of the input array can be
presumed to be known, then an input class can be obtained through a simple modification
of the fileOut formulation. Specifically, one need only replace ofstream with ifstream to
obtain

ifstream inFile;

inFile.open(fileName );

or
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ifstream inFile(fileName );

and then use the input (rather than output) insertion operator >> with inFile analogously
to the use of the istream object cin. The details are left as an exercise (Exercise 3.33).

3.11 Function templates

Class templates provide a way of producing generic functions in the sense that class methods
can be made applicable to any data type (either primitive or user defined) that is used in
the creation of the class object. However, once a template class object has been created
with a specific data type, its methods become data type specific. For example, objects from
the fileOut class will all have an associated method write. But, a fileOut object created
for working with data type int will balk if an attempt is made to use it to write out data
of type double.

Function templates are a way to obtain more flexibility than what is available from class
template methods. They are standalone functions that are not tied to class objects and
can be applied to different data types within the same program. The syntax for creating a
function template looks like

template <class T>

returnType functionName(T t, additional arguments)

{

body of function

}

Here both the function’s return type returnType as well as the additional arguments can
be any data type as well as an object of the generic class T. Unlike template classes, default
values cannot currently be given for the template parameters in a template function.

The succeeding program performs the same basic operations as the write method for our
fileOut template class in the previous section using a template function.

//funTemp.cpp

#include <iostream >

#include <fstream >

template <class T>

void write(const T* pT, int nrows , int ncols , char* fName , bool app){

if(app){

std:: ofstream fileOut(fName , std::ios::app);

for(int i = 0; i < nrows; i++){

for(int j = 0; j < ncols; j++)

fileOut << pT[i][j] << " ";

fileOut << std::endl;

}

fileOut.close ();

}

else{

std:: ofstream fileOut(fName);

for(int i = 0; i < nrows; i++){

for(int j = 0 ; j < ncols; j++)

fileOut << pT[i][j] << " ";

fileOut << std::endl;

}

fileOut.close ();

}

}
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int main(int argc , char** argv){

int** pI = new int*[2];

for(int i = 0; i < 2; i++){

pI[i] = new int[2];

for(int j = 0; j < 2; j++)

pI[i][j] = (i + 1)*(j + 1);

}

write(pI , 2, 2, argv[1], 0);

double** pD = new double*[2];

for(int i = 0; i < 2; i++){

pD[i] = new double[3];

for(int j = 0; j < 3; j++)

pD[i][j] = (double)((i + 1)*(j + 1))/6.;

}

write(pD , 2, 2, argv[1], 1);

for(int i = 0; i < 2; i++){

delete[] pI[i]; delete[] pD[i];

}

delete[] pI; delete[] pD;

return 0;

}

The syntax in write is a bit subtle. The function is implicitly working on two-dimensional
arrays. The first argument is of type T* which suggests only a one-dimensional array is being
passed into the function. The trick is that T is itself a pointer to some other generic class T0

which gives us a pointer to a pointer to T0 objects; abusing notation a bit, the relation can
be expressed as T* = T0**. The template function write contains additional arguments
that specify the number of rows (i.e., nrows) and columns (i.e., ncols) of the array, the
name for the file that is to be used for writing and a logical variable that determines whether
or not to append the output to an existing file. The main function in the listing takes an
output file name from a command line argument and then writes a two-dimensional array
of integers to the file using write specialized to data of type int. The output file is then
reopened in append mode and write is used to output data of type double. Some results
obtained by using the program are

$ g++ -Wall funTemp.cpp -o funTemp

$ ./funTemp outFile.txt

$ cat outFile.txt

1 2

2 4

0.166667 0.333333

0.333333 0.666667

3.12 Exercises

3.1. Evaluate and print the values of the logical expressions (x < 1), (x > 1), (x >=
1), (x <= 1), (x == 1), (x != 1) when x is an integer variable with value 1. Display
the output as zeros and ones as well as in true/false format using the boolalpha format
flag; for example

cout << boolalpha << (x == 1) << endl;

will print out true if x has the value 1.
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3.2. Use a for loop to produce the same results as those obtained from

while(1){

cout << "I’m in a loop!" << endl;

}

Warning: You should probably read Section 4 of Appendix A before attempting to run your
program.
3.3. Explain the output from the forWhileEx.cpp program. Specifically, as the bound for
the sum was 100, why was the final value of 108 produced for the sum in Section 3.4? How
should the program be altered to make certain that the sum will never exceed the bound?
3.4. Write a program that takes in values of doubles from keyboard input. It should allow
for termination of input at any point after which it reports the average of the input data
and the largest in magnitude residual about the mean: i.e., the largest absolute difference
between an input value and the mean of the data.
3.5. A prime number is one that can only be divided (without remainder) by 1 and itself.
Write a program that takes as input the number of prime numbers to be calculated and
then computes and displays the values for the primes. In doing this it is useful to note that
a) 1 is not a prime,
b) 2 is the only even prime and
c) the C++ modulus function % returns the remainder from integer division. If i and j are

two integers, i%j == 0 if and only if i == k*j for some integer k.
3.6. Print out the integers between 1 and a user-supplied upper bound in argv[1] in incre-
ments of size step with the value of step being obtained through a request for command
line input from your program.
3.7. In C++ it is possible for a function to call itself. The act of doing so is called recursion.
Code of this nature might look something like

returnType functionName(arguments1 ){

statements

if(booleanExpression)

functionName(arguments2)

statements

}

Use this approach to provide an alternative version of the xToTheK method in the Power
class of Section 3.7.
3.8. Use the same approach as that of Exercise 3.7 to create a function that computes
n! = n(n − 1)! for any integer n ≥ 1 with 0! := 1. Would your factorial function work
effectively for computing the binomial coefficient directly from its definition(

n

k

)
=

n!
k!(n− k)!

?

Why or why not? If not, then how should a binomial coefficient be computed?
3.9. Define the Fibonacci numbers F0 = F1 = 1 and

Fj = Fj−1 + Fj−2, j = 2, . . . .

a) Create a C++ function that uses recursion (in the sense of Exercise 3.7) to evaluate a
portion of the Fibonacci sequence with the number of terms to use in the evaluation
being determined from user input.

b) Create an analog of your function from part a) that computes Fibonacci numbers directly
via a for loop.
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c) Which of the functions from parts a) and b) is faster? Use the C++ clock function from
Section 3.8.8 to carry out the comparison.

d) Explain the results from part c). What does this tell you about recursion?

e) Rewrite the recursive Fibonacci function so that whenever it evaluates Fi for some i it
stores its value in an array that persists between calls to the function. Make sure that on
each call the function firsts checks if the relevant value has already been evaluated and,
if so, returns it without any additional work. How does the efficiency compare to naive
recursion? To the iterative version? (This technique is called memoization.)

3.10. Consider a game where there are three white balls and one red ball in an urn. Balls are
drawn at random from the urn without replacement. If at any point the red ball is drawn,
all the balls are replaced in the urn and the drawings continue. Let X be the number of
times a red ball is drawn over the course of n draws.
a) Write a C++ program that uses recursion (in the sense of Exercise 3.7) to evaluate the

probability distribution of X.

b) How is the speed of computation affected by n? [Hint: Experiment with small values of
n.]

c) From your answer to part b) can you project how long it would take to evaluate the
probability distribution for n = 100? n = 1000? n = 10000?

d) How does this problem differ from computation of the Fibonacci numbers in Exercise
3.9? Do you expect recursion to be computationally efficient in this setting? Why or why
not?

3.11. Assume that x ≥ 1 and let byc denote the greatest integer less than or equal to the
real number y.
a) Develop an algorithm that employs while loops to compute the binary expansion (2.2)

of bxc.
b) The C++ function for bc is floor. Use this to create a program that will take the value

of a float variable x with value of one or larger as input and return the coefficients in
the binary expansion of floor(x).

c) Combine the results of part b) of this problem with those from Exercise 2.3 to create
code that will compute the binary representation for a floating-point number.

3.12. Consider the code segment

int* p;

*p = 1;

Write a program that attempts to execute these two lines of code and explain the problem
you encounter. Then, rework your program to make it functional.
3.13. Write code that will dynamically allocate and delete memory to hold a three-dimensional
array that stores the values of the probability density

f(x, y, z) ∝
{
z(x− y)2 x, y = 1, . . . , 10, z = 1, . . . ,max(x, y),

0, otherwise.

a) Compute the proportionality constant that makes f a density.

b) Compute the covariances between all three pairs of variables.

c) Compute the marginal densities for each of the three variables.

d) Compute the conditional density of (x, y) when z = 3 and find the corresponding (condi-
tional) covariance of the x and y variables. How does this result compare to the uncon-
ditional case?
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3.14. Create a function that can be used to switch the values of three double precision input
variables x, y and z in a circular fashion: i.e., x → y, y → z and z → x.
3.15. Construct a function that takes a pointer for a one-dimensional array as its argument
and reverses the order of the array’s elements in place.
3.16. Syntax of the form

returnType functionName(dataType a[], arguments)

can be used to pass an array a to a function. Write a function that passes an array of type
double to a function that computes the average of the array’s elements. Can the function
change the elements of the array? If so, how can you ensure that this will not happen?
3.17. Remove the include directive from the y.h header file in Section 3.8.4. Then, verify
that the order of the include directives in the xy.cpp file will determine whether or not the
program will compile.
3.18. Write a program that will test the nothrow version of new from Section 3.8.7.
3.19. A very useful operator for overloading is the output insertion operator. A prototype
for << is

ostream& operator <<(ostream& out , const dataType& object)

The first argument is a reference to an ostream object and the second is a reference to the
object for output.

The simple program below illustrates how the output insertion operator can be overloaded
to provide a print utility for a class.

#include <iostream >

using std:: ostream; using std::cout; using std::endl;

class X{

int I;

public:

X(int i) : I(i) {}

friend ostream& operator <<(ostream& out , const X& x);

};

ostream& operator <<(ostream& out , const X& x) {

out << x.I;

return out;

}

int main (){

X x(7);

cout << x << endl;

return 0;

}

First, << is made a friend function of the X class. This serves the same purpose as making
a class a friend: namely, it allows the function to have access to the private members of
the class. Our definition for << produces a binary operator that is not owned by (i.e., not
a member of) either the X or ostream class. Thus, in particular, it will be defined outside
the X class. By giving it friend status we have made it possible to access the I member of
the X class for printing purposes.

Replace the printMatrix utility in class Matrix with an overloaded output insertion
operator.
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3.20. Create methods for class Matrix that provide analogs of the R cbind and rbind
functions discussed in Appendix B.
3.21. Create functions for class Matrix that will

a) insert a specified Vector object into a specified column of a Matrix object and

b) extract a specified column from a Matrix object and return it as an object of class
Vector.

3.22. Expand the class Vector from Section 3.9 to include

a) an overloaded + operator for vector addition,

b) an overloaded += operator for vector addition,

c) an overloaded * operator that computes a dot (or inner) product,

d) overloaded * operators that compute the left- and right-hand products of a vector and a
scalar,

e) overloaded *= operators that compute the left- and right-hand products of a vector and
a scalar,

f) an overloaded ^ operator that raises every component of a vector to a specified integer
power,

g) an overloaded << operator that provides a print utility function for the class. [Hint: See
Exercise 3.19.]

Demonstrate through an example that all the operators/methods you have created for the
class work as expected.
3.23. Develop a complex number class that has overloaded operators for addition, sub-
traction, multiplication, division and conjugation (using ~) as well as methods that return
the real and complex parts of a complex number and compute its modulus. [Note: A file
complex.h is likely to already exist. So, it is safest to avoid this name.]
3.24. Create a class with three overloaded methods for computing the sum of a one-
dimensional array of numbers stored in a pointer format. The three methods should compute
sums for pointers to int, float and double.
3.25. Repeat Exercise 3.24 except use a single sum method in a template class.
3.26. Repeat Exercise 3.25 except use a template function.
3.27. Write code for a struct X that has two integer member elements a and b. One method
for the struct should have the prototype

bool compare(const& X)

The compare method should compare two X objects and return the object that has a smaller
value for the a member. How could you accomplish the same goal using operator overloading?
3.28. What happens if you remove the & from the statement that defines y in Listing 3.8?
Explain why this occurs.
3.29. Construct a program that will take two integers as input (in arbitrary order) and sum
all the integers (inclusive) between the two. The program should terminate if it requires
more than .01 second to compute the sum.
3.30. Create a template class version of class Matrix that can, for example, deal with
matrices composed of integer, float or double precision elements. Note that the template
parameter must also be used when the return type is a Matrix object or a reference or pointer
to a Matrix object. Thus, for example, the return type for the overloaded = operator will
be Matrix<T>&.
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3.31. Similar to Exercise 3.30, create a template class version of your class Vector from
Exercise 3.22. As in Exercise 3.30, the template parameter must be used when the return
type is a Vector object or a reference or pointer to a Vector object. For example, the return
type for the overloaded + operator is Vector<T>.
3.32. Lists provide useful constructs for holding and managing data. As a minimal level of
functionality a list should
a) hold objects of a particular type and expand or contract as objects are inserted or re-

moved,
b) maintain a count of the number of objects in the list and
c) allow for access to any element in the list.
Create a list class that can hold objects of a common (but arbitrary) type with the maximum
size of the list being set in the class constructor. List elements are identified by the value of
a string variable that holds their names. Overload [] to provide access to the list elements
by their names.
3.33. Create a file input class fileIn that can read in an array whose elements are of any of
the primitive data types and the dimension of the array is either read in from the command
line or provided in the first line of the input file. Demonstrate via an example that your
class performs as expected.
3.34. Create a data summary class that will produce summary statistics for an nRows ×
nCols array of doubles that are stored in the form of a pointer to double* with variables
as columns. In particular, provide a class method that uses the West algorithm from Section
2.6 to compute both the means and standard deviations for the variables.
3.35. Create a template function that will read and write arrays of arbitrary specified sizes
consisting of any of the primitive data types from and to specified files.
3.36. Create a template function add that performs addition for objects of any class that
supports the + operator. Demonstrate that it works with objects of type Matrix as well as
those from your class Vector developed in Exercise 3.22.
3.37. Create a template function that will swap two objects of a given class (i.e., the objects’
member elements are switched from one to the other) on the basis of the relational operators
< and ==. Apply your function to a struct X with two int data members a and b where
ordering is in terms of only the a member.
3.38. In Section 3.8 getline was used with standard input cin to read lines of input from
the shell. This function also works with ifstream objects. For example, if fileIn is an
ifstream object and s is a string, getline(fileIn, s) will read a line of input from the
file connected to fileIn until it reaches either i) the end-of-file or ii) the newline character.
In the latter instance, the newline character is discarded effectively moving the next read
operation to the next line of the file. Write a program that will read in a file containing
23 numbers: four on the first five rows of the file and three on the last row. Return the
results to the shell in a manner that will produce output consisting of three rows with eight
numbers on the first row, 11 on the second and four on the third.
3.39. Create a class that has methods for computing the standard statistical tests associated
with location parameters such as
a) the one-sample t-statistic,
b) the Wilcoxon signed-rank statistic,
c) the paired t-statistic,
d) the two-sample t-statistic with a pooled variance estimator and
e) the two-sample Mann-Whitney U statistic.
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3.40. A simple pairwise swapping algorithm for sorting a one-dimensional array is provided
by bubblesort. The primary for loop for this algorithm is given in Algorithm 3.1.

Algorithm 3.1 Bubblesort algorithm: Sort the array a = (a1, . . . , an)
for i = 1 to n− 1 do

for j = 1 to n− i do
if aj > aj+1 then
temp = aj+1

aj+1 = aj
aj = temp

end if
end for

end for

a) Implement the bubblesort algorithm in C++.
b) Create a sort class that contains a method to sort (in-place) the rows of an nRows ×

nCols array corresponding to a user-selected column: i.e., rows of the array are to be
swapped in a way that the values for the chosen column will be in ascending order. The
array can be assumed to contain all doubles that are stored in the form of a pointer to
double*.

3.41. Suppose that values x1, . . ., xn have been realized from a random variable X. Esti-
mators of the percentiles for X can be obtained from the order statistics: i.e., the data
arranged in numerically ascending order. If x(1) ≤ · · · ≤ x(n) denote the order statistics, the
uth quantile (or 100uth percentile) is defined to be

Q̃(u) =
{

x(nu), if nu is an integer,
x(bnuc+1), otherwise.

Of particular importance are the quartiles and median that are used to produce three-
number summaries that arise in a variety of exploratory data analysis applications. The
median is just Q̃(.5) while the quartiles are Q̃(.25) and Q̃(.75).

Assume that data values are contained in an nRows × nCols array of doubles that are
stored in the form of a pointer to double*. Use your work from Exercise 3.40 to create a
method for your summary class in Exercise 3.34 that will return a 3 × nCols array pointer
that provides access to the three-number summary values for the nCols variables in the
data.





Chapter 4

Generation of pseudo-random numbers

4.1 Introduction

The random sample concept represents a cornerstone in the theory and application of statis-
tics. The usual definition for this term would be
Definition 4.1. A collection of random variables X1, . . . , Xn is a random sample if they
are all independent and have the same probability distribution.

The idea seems simple enough. But, the physical creation of collections of numbers that
behave like realized values from random samples turns out to be a problem that is anything
but simple. The solution that will be studied in this chapter is the pseudo-random number
generator (PRNG). This approach has a long history with overviews provided, for example,
in Devroye (1986), L’Ecuyer (1990), Monahan (2001, Chapter 11) and Gentle (2003). The
artificial data sets obtained from PRNGs have a myriad of uses that span the scientific
disciplines. In particular, they represent the primary tool that statisticians use for testing
new methodology. Thus, it is important to have some understanding of i) how PRNGs work,
ii) the properties a “good” PRNG should possess, iii) the types of PRNGs that exist and iv)
where high-quality PRNG implementations can be found for use in practice. These topics
are among those that will be addressed in the present chapter.

At the outset, we should explain the reason for the “pseudo” part of the PRNG ter-
minology. PRNGs typically rely on starting values or seeds to initialize the recursion that
produces the desired random sample. If the seeds are produced by some random process,∗

then the numbers produced by the generator will also be random. But, given any specific
values for the seeds, the outcomes produced by a generator are deterministic or exactly
reproducible; that is, each time the random number generator is started using the same
seeds, exactly the same sequence of values will be returned. This is a good property in the
sense that it allows the user to repeat portions of experiments that may have been lost
due to disk errors, accidentally erased, invalidated by coding errors, etc. It also allows the
results of an entire experiment to be reproduced to obtain alternate or enhanced output and
summary statistics. On the other hand, deterministic sequences of numbers can hardly be
considered “random”. For this reason, the modifying phrase “pseudo” is usually prepended
to “random” when discussing algorithmic methods for generating random numbers. While
this tells us what a PRNG is not, it leaves the meaning of the PRNG terminology in a state
of limbo. To be precise we will therefore use the definition for a PRNG employed, e.g., by
Robert and Casella (2004).
Definition 4.2. A PRNG is an algorithm that, starting from an initial seed (or seeds),
produces a sequence of numbers that behaves as if it were a random sample from a particular
probability distribution when analyzed using statistical goodness-of-fit tests.

Although there are a variety of probability distributions that are of practical interest to
statisticians, the problem of generating random numbers from a distribution can always be
reduced to the canonical problem of simulating from a uniform distribution over the interval

∗ Creative solutions include the use of “machine noise” (i.e., electronic or thermal noise that is produced by
electron movement in some electrical conductor) to produce seeds and human intervention (e.g., typing
a character from the keyboard or moving the mouse to initiate the selection process for a generator that
has already been started with nonrandom seeds).

111
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[0, 1]. To see why this is so, suppose that a random variable X has cumulative distribution
function (cdf) F defined by

F (x) = Prob(X ≤ x).

The quantile function for the distribution is then defined as

F−1(u) = inf{x : F (x) ≥ u}. (4.1)

The function F−1 is well defined due to the fact that F is nondecreasing and right-
continuous. The utility of the quantile function for simulation purposes is a consequence of
Theorem 4.1.

Theorem 4.1. If U is a random variable that has a uniform distribution over the interval
[0, 1], F−1(U) is a random variable with cdf F .

Theorem 4.1 has the consequence that a random sample from a random variable X with
cdf F can be obtained through Algorithm 4.1.

Algorithm 4.1 Inversion method
Generate a random sample Ui, i = 1, . . . , n, from a uniform distribution on [0, 1]
return Xi = F−1(Ui), i = 1, . . . , n

The validity of Theorem 4.1 stems from the fact (Exercise 4.1) that for any u ∈ (0, 1) and
any x for which F (x) > 0

F−1(u) ≤ x if and only if u ≤ F (x). (4.2)

Thus,

Prob(F−1(U) ≤ x) = Prob(U ≤ F (x))
= F (x)

because the distribution function for a uniform random variable is the identity function.
The transformation of a uniform random variable U to F−1(U) in Theorem 4.1 is known

as the probability integral transform. The way it has been employed here to obtain a random
sample from a random variable with cdf F is referred to as the inversion method. We will
return to this approach later in the chapter. But, it is worth mentioning now that this is
not always the best path to producing a pseudo-random from a computational perspective.
In general there will be no closed form for F−1 and a somewhat more subtle approach such
as the accept-reject method discussed in Section 4.6 can lead to more easily implemented
generation methods.

Perhaps the most important message to be gleaned from Theorem 4.1 and its accom-
panying discussion is the paramount importance of producing high quality pseudo-random
numbers from a uniform distribution. As a result, a large part of this chapter will be spent
on that specific problem.

4.2 Congruential methods

The random numbers that were used in early computers came from random number tables
that had been stored in memory. To streamline the generation process John von Neumann
proposed a middle-square method whereby numbers could be produced directly by the com-
puter. To generate d-digit integers via a middle-square recursion one begins with a d-digit
integer seed or starting value. The seed is squared and the middle d digits of the square are
retained. The process is repeated until the desired number of “random” numbers has been
obtained.
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As an example, suppose that d = 4 and the initial 4-digit seed is x0 = 1234. Then,
x2

0 = 1522756 = 01522756 giving x1 = 5227 as the next integer in the sequence. This leads
to x2

1 = 27321529 that produces x2 = 3215, etc.
The middle-square algorithm does not generate numbers that are “random” in any sense.

But, it does produce numbers with enough of the characteristics of random numbers to have
made it useful for von Neumann’s particular application.

Streams of numbers created with the middle-square technique would not meet today’s
standards for random number generation. It was the idea of using a deterministic algorithm
to produce numbers that possess many of the qualities of random numbers that was the
breakthrough that set the course for modern generation methods. The next step down
this path was made by Lehmer (1949, 1954) who pioneered the development of the linear
congruential random number generators that represent the topic of this section.

A linear congruential generator requires a single integer starting seed that will be denoted
by x0. A sequence of pseudo-random integers is then generated via the recursion

xi = (axi−1 + c) mod m, i = 1, . . . , (4.3)

where a, c and m are all integers. The integer m is called the modulus of the generator while
a and c are referred to as the multiplier and increment, respectively.

For two integers a and b the expression a mod b refers to the integer remainder after
integer division of a by b. For example,

• 5 mod 2 = 1; i.e., 5 = 2×2 + 1

• 6 mod 3 = 0

• 5 mod 6 = 5

In general, (rm+ k) mod m = k for r an integer and k = 0, 1, . . .,m− 1. So, for any integer
r, r mod m ≤ m− 1.

Generators with c 6= 0 are sometimes called mixed-congruential generators while those
with c = 0 are referred to as multiplicative-congruential generators. To produce pseudo-
random uniform [0, 1] numbers (also referred to as random deviates) from generators of
either variety, we simply make a transformation such as ui = xi/m that produces values in
the unit interval.

Construction of a linear congruential generator seems relatively straightforward in that
only the values for a, c and m need to be chosen. Unfortunately, not every choice will
produce sequences of numbers that are satisfactory. An example of what can happen by
making a poor choice for a, c and m is given in Gentle (2003). He considers a multiplicative
congruential generator with m = 31, a = 3, c = 0 and uses x0 = 9 for the starting value.
This produces the sequence

27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1, 3, 9

at which point the series repeats. The first observation is that there are not many unique
numbers that can be produced by the generator. Second, a plot of consecutive pairs of
these integers as shown in Figure 4.1 reveals a strong pattern that is not obvious from an
examination of just the integers alone.

Actually, the pattern in Figure 4.1 stems from a characteristic that is shared by all
congruential generators: successive k-tuples of values produced by such generators possess
a lattice structure. Specifically, Marsaglia (1968) showed that all such k-tuples will fall on
at most (k!m)1/k hyperplanes in Rk. For our example with k = 2 and m = 31, the bound
is
√

62 which rounds down to 7. It takes only three hyperplanes (or lines, in this case) to
capture all the points in Figure 4.1 and that is part of the problem with the generator.
Another generator that required more than three lines would likely produce pairs that were
less dependent and appeared more random than those in Figure 4.1. For example, using a
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Figure 4.1 Pairs of “random” digits

multiplier a = 12 gives successive pairs of values that fall on six lines and thereby provides
some improvement over a = 3 (Exercise 4.4).

Guidelines for making “good” choices for the parameters of linear congruential generators
are given in Chapter 3 of Knuth (1998a). The first consideration should probably be the
choice of the modulus as that provides an upper bound for the number of unique values
that can be produced by a generator. Thus, m should be large with m = 2p and p =
31, 32, 63, 64 being obvious choices for 32 and 64 bit architectures. It turns out that better
results are obtained by using 231 − 1 and 263 − 1 (Exercise 4.7). Even if m is large, there
is no assurance that the period of a generator, or the length of the pseudo-random number
sequences it produces before they repeat, will also be large. Conditions under which the
maximum possible period can be attained stem from results in number theory concerning
prime and relatively prime numbers.

A prime number is a positive integer or natural number for which there are only two
natural number divisors that produce another natural number as the quotient: i.e., for
which the division has zero remainder. If there are only two divisors, then these numbers
must be 1 and the number itself. Examples of prime numbers are 2, 3, 5 and 7. The integer
1 is not considered to be a prime.

Two natural numbers are relatively prime if they have only 1 as a common divisor. For
example, 7 and 9 are relatively prime with only 7 being a prime. The numbers 9 and 10
are relatively prime and neither of these is a prime which demonstrates that primality and
relatively primality are distinct concepts.
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A result from Knuth (1998a) summarizes what can be expected for a mixed-congruential
generator.

Theorem 4.2. If c 6= 0, the period of the generator (4.3) is equal to m if and only if

a) c is relatively prime to m,

b) a− 1 is a multiple of every prime number that divides m and

c) a− 1 is a multiple of 4 if m is a multiple of 4.

As an example, take m = 2p, c = 3 and a = 5 (Exercise 4.8).
Results for multiplicative generators where c = 0 are somewhat more involved. A detailed

presentation of this case is provided in Section 3.2.1.2 of Knuth (1998a). When m = 2p for
some p ≥ 4, it turns out that the maximum possible period for the generator is 2p−2 and
this period will be attained when a mod 8 = 3 or 5 and the starting value x0 is odd. The
so-called SUPER-DUPER generator of Marsaglia (1972) that has p = 32, a = 69069 and
x0 odd falls into this category since 69069 mod 8 = 5.

A popular choice in practice has been m = 2p − 1. An application of Theorems B and
C of Knuth (1998a, page 20) will often suffice to deal with this and other similar cases. In
combination these two results produce

Theorem 4.3. If c = 0 and m > 2 is a prime number in (4.3),

a) the maximum possible period is m− 1 and

b) the maximum period is achieved if a mod m 6= 0 and a(m−1)/q mod m 6= 1 for every
prime divisor q of m− 1.

Consequently, generators with maximum period can be constructed for the case ofm = 2p−1
if m is a prime and a is chosen appropriately. The key consideration is primality of m which
turns out to be equivalent to asking whether m is a Mersenne prime (e.g., Andrews 1971).
At the time of this writing there were only 44 known Mersenne prime numbers that include
m = 231 − 1 and m = 261 − 1 which are of particular interest in the context of congruential
generators.

Of course, even if a generator can achieve a long period, this is no assurance that the
resulting numbers will be satisfactory from a statistical perspective. For example, taking
a = c = 1 in (4.3) gives a generator that attains the maximum period m (Exercises 4.6).
Yet, the resulting numbers cycle sequentially through the integers between 0 and m − 1.
Thus, although long periods are desirable, they are not sufficient to guarantee that high
quality pseudo-random number streams will be forthcoming from the generator. This begs
the question of how one can evaluate the quality of a PRNG. As suggested by Definition
4.2, the answer is through statistical tests of goodness-of-fit and independence. For example,
standard goodness-of-fit tests should be applied to the output of a generator that has been
transformed to the interval [0, 1]. These include the Kolmogorov-Smirnov, Cramér-von
Mises and (binned) chi-square tests to assess if the marginal distribution of the generated
numbers departs from uniformity. Beyond just uniformity of the marginals, an appearance of
independence is necessary and tests, e.g., for serial correlation should be employed, as well.
Fishman and Moore (1982, 1986) and Knuth (1998a) provide detailed overviews of different
statistical tests that are commonly used for evaluation of random number generators.

Packages that are available for testing PRNGs include the Diehard collection of tests that
was developed by George Marsaglia circa 1995. Discussions of some of the tests that are used
in the Diehard package and their extensions are provided in Marsaglia and Zaman (1993)
and Marsaglia and Tsang (2002). Another group of tests developed at the National Institute
of Standards and Technology are described in Rukhin (2001). L’Ecuyer and Simard (2007)
provide a suite of tests in their TestU01 package.
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4.3 Lehmer type generators in C++

There are many linear congruential random number generators that have been studied in
great detail in the literature. In this section our attention will be focused on a particular
variety of multiplicative generator deriving from a proposal in Lehmer (1949) that was later
implemented in Payne, et al. (1969). The idea behind such generators is to choose m as
a large Mersenne prime and then take a to satisfy the conditions of Theorem 4.3 and so
ensure that the maximum period is attained.

Let us now focus on the particular case of m = 231 − 1. One finds that

m− 1 = 231 − 2 = 2× 32 × 7× 11× 31× 151× 331.

All the numbers in this product are prime numbers and the fundamental theorem of arith-
metic (cf. Andrews 1971) entails that this factorization is unique: i.e., there are no other
prime numbers that divide m. The second condition of Theorem 4.3 can now be checked to
see if any particular a is a multiplier that will produce a full period. This approach allows
us to verify that the generator specified by

xi = 630360016xi−1 mod (231 − 1) (4.4)

will have the full 231 − 2 period. The choice of a = 630360016 was suggested by Payne, et
al. (1969). It appears as generator II in the Fishman and Moore (1982) comparison study
and, for that reason, will hereafter be referred to as FM2.

An implementation of the FM2 generator is provided in the code listing below.

Listing 4.1 basicFM2.cpp

//basicFM2.cpp

#include <iostream >

using std::cout; using std::endl;

unsigned long power(int i, int k){

unsigned long iout = (unsigned long)i;

if(k > 1)

iout = iout*power(iout , k - 1);

return iout;

}

int main(int argc , char* argv []){

unsigned long a = 630360016;//multiplier

unsigned long seed = 123;//seed

unsigned long m = power(2, 31) - 1;//modulus

cout << "Your random number is ";

seed = (a*seed)%m;

double u = ((double)seed)/((double)m);

cout << u << endl;

return 0;

}

This code can be compiled and executed using

$ g++ -Wall basicFM2.cpp -o basicFM2

$ ./basicFM2

Your random number is 0.104714

$ ./basicFM2

Your random number is 0.104714
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Listing 4.1 contains a simple utility function that computes the value of an integer raised
to a specified integer power. This function gives an illustration of using the C++ recursion
capability that allows a function to call itself (Exercises 3.7–3.10). Notice that the function
power has return type unsigned long and, accordingly, must return an unsigned long
integer via a return statement at (or before) the end of the function’s scope: i.e., it must
return a value somewhere in the range of statements that appear between the two curly
braces containing the body of the function. The unsigned long int data type will give us
eight bytes of storage which is what is needed to retain (exactly) all the integer values that
are used in the generator. One may check that the four bytes available with the int type is
not enough and the resulting code would produce unusable output.

As far as PRNG implementations go, this one leaves a lot to be desired. First, it only
returns one number and, second, as seen from the results of running the program, it gives
us the same “random” number every time. These two shortcomings are easily fixed by
allowing for user input. This can be done either by using command line arguments that will
be collected in argv and/or by cin from the iostream library. A possible implementation
that allows for user input of both the seed and a value for a sample size might appear as
in Listing 4.1 with the alternative main program section given below.

int main(int argc , char* argv []){

unsigned long a = 630360016;

unsigned long seed = 0;

int n = 0;

cout << "Choose a value for the sample size:" << endl;

std::cin >> n;

cout << "Choose a value for the seed:" << endl;

std::cin >> seed;

unsigned long m = power(2, 31) - 1;

cout << "Your random numbers are " << endl;

for(int i = 0; i < n; i++){

seed = (a*seed)%m;

double u = ((double)seed)/((double)m);

std::cout << " " << u;

}

cout << endl;

return 0;

}

Some results produced with this modified program are

Choose a value for the sample size:

5

Choose a value for the seed:

123

Your random numbers are

0.104714 0.723072 0.156521 0.32855 0.635906

Our modification of Listing 4.1 certainly represents an improvement over what the pro-
gram could do before. But, it still falls short of what might be needed from something whose
purpose is to generate a collection of random numbers. First, although the actual numbers
can be accessed or saved by redirecting the program’s output to a file rather than the shell,
the numbers are not retained in the program and, as a result, cannot be used in further
calculations. In the grand scheme of things, a program like this would typically be used as
a utility to generate random uniform deviates for use in other settings. So, it really needs
to be of a reusable nature that allows it to be easily called up whenever it is needed.
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The issue of data retention can be fixed fairly easily using either arrays or pointers and
both of these options will be discussed below. The OOP features of the C++ language are
used in the next section as the means for achieving a simple form of code reuse.

To allow for the storage of a vector of n random numbers, the loop of Listing 4.1 can be
replaced by

double u[n];

std::cout << "Your random numbers are" << std::endl;

for(int i = 0; i < n; i++){

seed = (a*seed)%m;

u[i] = ((double)seed)/((double)m);

std::cout << "u[" << i <<"]= " << u[i] << " ";

}

An equivalent implementation with pointers would be to instead use

double* pU = new double[n];

std::cout << "Your random numbers are:" << std::endl;

for(int i = 0; i < n; i++){

seed = (a*seed)%m;

pU[i] = ((double)seed)/((double)m);

std::cout << "u[" << i <<"]= " << pU[i] << " ";

}

In this case an additional line of code

delete[] pU;

could also be included for memory clean-up purposes. The output from the pointer variant
of the FM2 generator code looks like
Choose a value for the sample size:
5
Choose a value for the seed:
123
Your random numbers are:
u[0]= 0.104714 u[1]= 0.723072 u[2]= 0.156521 u[3]= 0.32855 u[4]= 0.635906

To get some idea of what our PRNG is doing, 500 pseudo-random uniform values were
generated using the array formulation of our program without the text in the output and
with the seed 123. The output was redirected to a file that was then imported into R using
the scan function as described in Section 5.2. A histogram of the data that was created
with the R function hist (e.g., Appendix B) is shown in Figure 4.2. By using the freq =
FALSE option the result is a probability histogram in the sense that the height of each bar
in the histogram is chosen so that the area of the bar is equal to the relative frequency of
the number of values that fall in its bin.

One possible assessment of whether this data derives from a uniform distribution can be
based on the Kolmogorov-Smirnov statistic (e.g., Conover 1998). The R function ks.test
computes and returns the value of this statistic. An application of this function produces

> ks.test(uDat , punif)

One -sample Kolmogorov -Smirnov test

data: uDat

D = 0.0404 , p-value = 0.3884

alternative hypothesis: two -sided

The first argument uDat that is supplied to the ks.test function in this instance is the
array of uniform random deviates that was imported into R. The second argument is the
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Figure 4.2 Histogram for simulated data

uniform distribution function punif that is to be used for the null model. More generally,
one can use the cdf pnorm, etc., to obtain goodness-of-fit statistics for other distributions
that are available in R. The value of the Kolmogorov-Smirnov statistic is returned as D in
the output. As expected, the reported p-value does not suggest a statistically significant
departure from uniformity.

4.4 An FM2 class

Let us conclude our discussion of the FM2 random number generator by implementing it in
the class structure of a true C++ program. The code below accomplishes this and we will
spend the rest of this section working our way through the details of this listing.

Listing 4.2 FM2Class.cpp

1//FM2Class.cpp

2#include <iostream >

3#include <cstdlib >

4#include <new>

5

6using std::cout; using std::cin; using std::endl;

7

8class FM2{

9unsigned long a;//multiplier

10int expFor2;//exponent for 2 in modulus



120 GENERATION OF PSEUDO-RANDOM NUMBERS

11unsigned long power(int i, int k) const;

12

13public:

14

15FM2();//default constructor

16~FM2 (){};//destructor

17void rangen(unsigned long seed , int n, double* pu) const;

18};

19

20unsigned long FM2:: power(int i, int k) const {

21unsigned long iout = (unsigned long)i;

22if(k > 1)

23iout = iout*power(iout , k - 1);

24return iout;

25}

26

27FM2::FM2 (){

28a = 630360016;

29expFor2 = 31;

30}

31

32void FM2:: rangen(unsigned long seed , int n, double* pU) const {

33unsigned long m = power(2, expFor2) - 1;

34for(int i = 0; i < n; i++){

35seed = (a*seed)%m;

36pU[i] = ((double)seed)/((double)m);

37}

38}

39

40int main(int argc , char* argv []){

41int n = 0;

42unsigned long seed = 0;

43cout << "Choose a value for the sample size:" << endl;

44cin >> n;

45cout << "Choose a value for the seed:" << endl;

46cin >> seed;

47FM2* pFM2 = new(std:: nothrow) FM2();

48if(pFM2 == 0){

49cout << "Memory allocation for pFM2 failed"<<endl;

50exit (1);

51}

52double* pU = new(std:: nothrow) double[n];

53if(pU == 0){

54cout << "Memory allocation for pu failed"<<endl;

55exit (1);

56}

57pFM2 ->rangen(seed , n, pU);

58cout << "Your random numbers are" << endl;

59for(int i = 0; i < n; i++)

60cout << "u[" << i << "]= "<< pU[i] << " ";

61cout << endl;

62delete pFM2;

63delete[] pU;

64return 0;

65}
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Recall from Chapter 3 that the C/C++ compiler requires us to provide a sketch or prototype
information about functions or classes before they can be used. Accordingly, statements 8–9
of Listing 4.2 tell the compiler that our class FM2 has two private data members: namely,
a and the exponent for two that is to be used in the modulus named expFor2. The two
members are declared to have types unsigned long and int, respectively. Statement 10
then gives the prototype for the now familiar recursive power function. This function is only
used internally in the method rangen for the class and is therefore designated as private.

The next group of statements (i.e., 13–14) give two special public functions: namely the
class constructor FM2 and the class destructor ~FM2 that are used to create and destroy
objects from the class. Finally, a prototype is provided for the actual random number
generation function that has been called rangen. The arguments for this function will be
the seed, the sample size n and a pointer to an “array” of n double precision storage
locations. The class prototype ends with the delimiter };

The functions or methods that appear in the class (with the exception of the class de-
structor) are defined in detail next. The compiler is informed that these functions belong
to the class FM2 through use of the scope resolution operator ::. The (default) class con-
structor (i.e., the function FM2) sets the value for the constant a and the exponent for two
in the modulus in a way that produces the FM2 generator as defined in (4.4). The FM2 class
could, of course, be structured to provide much more freedom in the creation of a generator
by making different choices for a and expFor2. This could be incorporated into the class
by including an additional constructor that would take their values as arguments (Exercise
4.11). Of course, if the FM2 generator is all we wish to use the value of m = 231 − 1 should
be defined as a global constant to avoid having to (repeatedly) compute it.

The purpose of the class destructor is, among other things, to release any memory that
has been dynamically allocated in constructing an instance of the class or an object. There
is no such commodity that arises in this implementation which means that ~FM2() can be
just the trivial function with an empty body between the curly braces. The effect will be
that the memory will be deleted on an element-wise basis whenever an FM2 object goes out
of scope. This is actually the default behavior for the destructor that is automatically used
when none has been specified. Consequently, our explicit specification of the destructor on
line 14 of Listing 4.2 was unnecessary in this instance.

To actually use an object of type FM2 a pointer to a class FM2 object is created on line
45 of main. In this instance, the new operator calls the FM2 class constructor and through
this allocates memory that is sufficient to hold all the aspects of the resulting FM2 object.
Once this pointer is available, the rangen method can be accessed via the -> operator. On
lines 46–49 and 51–54 checks are carried out to see that the requested memory allocation
was successful. If allocation fails, the pointer returned from the nothrow version of new will
be null which evaluates to the Boolean value false. In that case, an error message will be
output and the C++ system function exit (available via the cstdlib header) from Section
3.8.7 will be used to immediately terminate the execution of the program.

One possible variation on the design of this code involves allocation of the memory that
holds the actual random numbers produced by the program. The tactic taken here has been
to allocate the memory in main thereby making the process more obvious. One could just
as easily have made the vector of random numbers a (private) member of class FM2. In
that case the destructor would actually need to perform the memory release process and it
would be necessary to add another (const) class method that would provide access to the
values of the random numbers.

While Listing 4.2 effectively illustrates the class concept, it still comes up short in terms
of our idealized “plug-in” code construct. After all, we do not want to have to copy class
prototypes, definitions of methods, etc., into every program where they might be used. The
result would be both unwieldy and redundant. Fortunately, this problem can be easily solved
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by proceeding as in Chapter 3 to break the code into subsegments that are connected to
each other as needed via include directives for header files. To accomplish this with the
FM2Class.cpp file, a header file FM2.h is first created that appears as

//FM2.h

#ifndef FM2_H

#define FM2_H

class FM2{

unsigned long a;//multiplier

int expFor2;//exponent for 2 in modulus

unsigned long power(int i, int k) const;

public:

FM2();//default constructor

~FM2 (){};//destructor

void rangen(unsigned long seed , int n, double* pu) const;

};

#endif

As was true for the power class in Chapter 3, the FM2.h file essentially consists of just the
class prototype that appeared at the beginning of FM2Class.cpp. The only real difference
is the presence of the include guard preprocessor directives discussed in Section 3.7.

The header file for a class contains all the information that is needed to employ objects of
the class. It represents a simple, public interface for the class and one does not need to know
any of the details about the class methods, etc., in order to be able to use an object of the
class. In fact, the code in the body of the method definitions can even be changed without
affecting the class interface. This is an important feature in that the effects of altering the
internal aspects of a method (in response to, e.g., new computational methodology) will
not propagate into other programs that might use the class. In addition, casual users of
a class need not and, in general, should not alter method definitions. This latter fact is
a particularly compelling reason why, in general, the actual details of the class should be
implemented in a separate source file.

As a case in point, the method definitions for the FM2 class will now be placed in a file
FM2.cpp that has the contents

//FM2.cpp

#include "FM2.h"

unsigned long FM2:: power(int i, int k) const {

unsigned long iout = (unsigned long)i;

if(k > 1)

iout = iout*power(iout , k - 1);

return iout;

}

FM2::FM2 (){a = 630360016; expFor2 = 31;}

void FM2:: rangen(unsigned long seed , int n, double* pU) const {

unsigned long m = power(2, expFor2) - 1;

for(int i = 0; i < n; i++){

seed = (a*seed)%m;

pU[i] = ((double)seed)/((double)m);

}

}
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The only “new” feature here is the #include statement that brings in the class prototype
in FM2.h. Notice that quotes appear here instead of < > thereby telling the preprocessor to
look for the header file in the current directory. Finally, the code that actually uses the FM2
class is just the main function in Listing 4.2 apart from having the initial statements

#include <iostream >

#include "FM2.h"

#include <new>

using std::cout; using std::cin; using std::endl;

that, e.g., bring in the necessary header file. The corresponding code was collected in the
file driverFM2.cpp.

At this point the original set of code in Listing 4.2 has been split into three distinct parts.
By doing this the FM2 class has been furnished with an independent identity that allows it
to be employed in other programs. All the pieces are cobbled back together in a way that
produces an executable program through the use of the makefile shown below.

driverFM2 : FM2.o driverFM2.o

g++ -Wall FM2.o driverFM2.o -o driverFM2

FM2.o : FM2.cpp FM2.h

g++ -Wall -c FM2.cpp

driverFM2.o : driverFM2.cpp FM2.h

g++ -Wall -c driverFM2.cpp

This produces the executable driverFM2 that can then be used, as before, to obtain output
from the program.

4.5 Other generation methods

The periods of linear congruential generators are too small to be effective in many modern
applications. This section describes other PRNGs with much longer periods that are better
suited for general use.

Before proceeding further it is perhaps worthwhile to clarify what is meant by the phrase
“longer period”. To put this in the proper context we can begin by thinking of linear
congruential generators. This type of generator produces a sequence of integers (that are
then transformed into values in the unit interval) such that every number in the sequence
is unique. If, for example, the modulus of a multiplicative generator is 231 − 2, having full
period means that from an initial seed the generator can march through 231 − 2 numbers
without ever repeating a previously generated value. In contrast, the generators discussed
in this section can have periods on the order of 2p where p is essentially arbitrary and, in
particular, independent of a computer’s largest storage format or word length. But, if the
maximum word length is w bits (e.g., w = 64 in a 64-bit machine) the computer can only
produce numbers that can be represented with w bits (e.g., the largest integer is 264−1 in a
64-bit storage environment). To achieve a period larger than 2w−1 it is therefore necessary
that individual integer values appear multiple times in the pseudo-random number stream.
The result will then be a sequence of integers in which the position (rather than value) of
each number relative to others in the sequence is unique until the entire sequence begins
again. The length of the sequence up until it begins to repeat is now what will be called the
period of the generator.

Tausworthe (1965) proposed a class of random number generators that are generally
referred to as linear feedback shift register generators. Although these particular generators
are not held in high regard, their extensions are widely used and provide some of what are
arguably the best generators that are currently available.
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Linear feedback shift registers work on a bit-wise level to produce numbers in binary
representation. Suppose that r-bit integers are to be generated. Then, for some integer p,
we start with a p-bit seed of binary form b1 · · · bp with the bi all being 0 or 1. Subsequent
bit values are produced via the recursion

bi = bi−p ⊕ bi−p+q (4.5)

for some integer q < p with ⊕ indicating the bit-wise exclusive OR operator XOR that returns
a 1 only if one of the bits is 1 and the other is 0.

An illustration of the use of (4.5) is provided by an example with r = 3 from Lewis and
Payne (1973). Take p = 5, q = 2 and choose the initial seed bits as b1 = b2 = b3 = b4 =
b5 = 1. This produces b6 = b1 ⊕ b3 = 1 ⊕ 1 = 0, b7 = b2 ⊕ b4 = 1 ⊕ 1 = 0, b8 = b3 ⊕ b5 =
1 ⊕ 1 = 0, b9 = b4 ⊕ b6 = 1 ⊕ 0 = 1, b10 = b5 ⊕ b7 = 1 ⊕ 0 = 1, . . .. The entire sequence is
1111100011011101010000100101100 after which the bit pattern repeats.

The bits produced from (4.5) are grouped appropriately to provide r-bit integers for some
2 ≤ r ≤ p. The multi-step approach of Tausworthe (1965) carries out the grouping using
contiguous, nonoverlapping blocks of size r. In terms of our example this produces

x1 = 111 in binary or x1 = 7, x2 = 110 in binary or x2 = 6,
x3 = 001 in binary or x3 = 1, x4 = 101 in binary or x4 = 5,
x5 = 110 in binary or x5 = 6, x6 = 101 in binary or x6 = 5,
x7 = 000 in binary or x7 = 0, x8 = 010 in binary or x8 = 2,
x9 = 010 in binary or x9 = 2, x10 = 110 in binary or x10 = 6.

At this point we are seemingly at an end even though one bit (the 31st) remains. However,
there are more numbers that can be mined from our 31 bits by combining the last bit
with two bits from the start of the bit sequence and cycling through the sequence again in
three-bit blocks. The result is

x11 = 011 in binary or x11 = 3, x12 = 111 in binary or x12 = 7,
x13 = 000 in binary or x13 = 0, x14 = 110 in binary or x14 = 6,
x15 = 111 in binary or x15 = 7, x16 = 010 in binary or x16 = 2,
x17 = 100 in binary or x17 = 4, x18 = 001 in binary or x18 = 1,
x19 = 001 in binary or x19 = 1, x20 = 011 in binary or x20 = 3.

This process can be repeated once more before the cycle starts again which produces the 31
three-bit integer sequence 7615650226370672411317433520454. These values were obtained
by allowing (4.5) to run through its entire period r = 3 times while picking off groups of 3
digits. This idea works for general p, q, r as seen in Exercise 4.12.

The maximum period for the shift register generator (4.5) is attained if the polynomial
tp + tq + 1 is a primitive polynomial modulo 2 (e.g., Niederreiter and Lidl 1986). Extensive
tables of such trinomials can be found in Zierler and Brillhart (1968, 1969) and Zierler
(1969). (Note that the values of q, or k in their notation, in Table 1 of Zierler and Brillhart
1968 that make the corresponding trinomial primitive are indicated by italics rather than by
underlines as was stated in the paper.) In the case where bits are allocated via the multi-step
approach the maximum period of the generator is (2p− 1)/gcd(r, 2p− 1) with gcd(r, 2p− 1)
the greatest common divisor of r and 2p − 1 (e.g., Niederrieter 1992). For our example the
primitive, fifth-degree polynomial t5 + t2 + 1 from Table 1 of Zierler and Brillhart (1968)
was used which gives the maximum period (25 − 1)/gcd(3, 25 − 1) = 31.

The ordinary shift register methods that have been described thus far work with an initial
set of p bits that have 2p possible values and then with additional groups of r bits that can
be arranged in 2r ways. Thus, there are 2pr possibilities for bit representations that are
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actually available and, in that sense, the feedback shift register approach does a poor job
of mining its available resources.

Suppose that we now think of an r-bit integer as being represented by a vector v of length
r having all 0 or 1 entries. Vectors of this type will be called binary vectors. The generalized
feedback shift register generator of Lewis and Payne (1973) then produces integers via the
recurrence

vi = vi−p ⊕ vi−p+q, (4.6)
where the vj are binary vectors of length r and ⊕ now denotes component-wise application
of the XOR operator. The maximum period for this type of generator is 2p − 1 and this is
attained if tp + tq + 1 is a primitive polynomial modulo 2.

To illustrate (4.6) we will again take p = 5, q = 2, r = 3 and choose

v1 =

 1
1
1

 , v2 =

 0
1
1

 , v3 =

 1
0
0

 , v4 =

 1
0
1

 , v5 =

 0
1
1

 . (4.7)

The recursion vi = vi−5 ⊕ vi−3 then produces

v6 = v1 ⊕ v3 =

 0
1
1

 , v7 = v2 ⊕ v4 =

 1
1
0

 , . . . .
The entire sequence of 25− 1 = 31 integers obtained from this particular seed of five binary
vectors is 7615663735102253271743054464120.

Listing 4.3 provides one possible implementation of the generator in (4.6).

Listing 4.3 gfsr.cpp

//gfsr.cpp

#include <iostream >

void intToBin(unsigned long val , bool* pb, int r){

for(int i = 0; i < r; i++){

if(val & (1 << i))

pb[r - i - 1] = 1;

else

pb[r - i - 1] = 0;

}

}

unsigned long power(int i, int k){

if(k == 0)

return 1;

else{

int iout = i;

if(k > 1)

iout = iout*power(iout , k - 1);

return iout;

}

}

unsigned long binToInt(bool* pb, int r){

unsigned long val = 0;

for(int i = 0; i < r; i++)

val += pb[i]*power(2, r - i - 1);
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return val;

}

void binMult(bool** pb, int p, int q, int r){

//use the extra row of pb here

for(int j = 0; j < r; j++){

pb[p][j] = pb[0][j]^pb[q][j];

}

//Update pb

for(int i = 0; i < p; i++)

for(int j = 0; j < r; j++)

pb[i][j] = pb[i + 1][j];

}

int main (){

int r;

std::cout << "Input the value for r:" << std::endl;

std::cin >> r;

int p;

std::cout << "Input the value for p:" << std::endl;

std::cin >> p;

int q;

std::cout << "Input the value for q:" << std::endl;

std::cin >> q;

unsigned long* x0 = new unsigned long[p];

std::cout << "Input a " << p << " integer seed:" << std::endl;

for(int i = 0; i < p; i++)

std::cin >> x0[i];

unsigned long modulus = power(2, p) - 1;

//matrix of Booleans to hold the bits

bool** pb = new bool*[p + 1];

//rows will hold the integer bit -wise representations

//extra row added for temporary storage

for(int i = 0; i < (p + 1); i++)

pb[i] = new bool[r];

//initialize the bit pattern using x0

for(int i = 0; i < p; i++)

intToBin(x0[i], pb[i], r);

//now generate the "data"

for(int i = 0; i < (modulus - p); i++){

binMult(pb , p, q, r);

std::cout << " " << binToInt(pb[p - 1], r) << " ";

}

std::cout << std::endl;

return 0;

}

Beginning in the main segment of Listing 4.3 the user is queried for values of the parameters
p, q and the number of bits r that are to be used in constructing the generated integers.
The p integers that will provide the seed for the generator are also required as user input. In
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particular, the choice of p = 5, q = 2, r = 3 and x0[0] = 7, x0[1] = 6, x0[2] = 1, x0[3]
= 5, x0[4] = 6 as the seed integers is equivalent to the vector seeds (4.7) and reproduces
the previous random number sequence.

The operative part of the generalized feedback shift register code works with a (p+ 1)× r
array of Boolean variables that is manipulated in the form of the pointer-to-pointer pb. The
first p rows of the array hold the binary vectors that are needed to carry out the recursion
(4.6) while the last row is used for temporary storage of the output of the recursive formula
on each step of the algorithm. The function binMult implements (4.6) using the C++ bit-
wise exclusive OR operator ^ and stores the result in the (p+ 1)st row of pb. The first row
of pb is then deleted and the remaining contents of pb are shifted back one row to prepare
for the next iteration.

Listing 4.3 also contains functions intToBin and binToInt that convert integers to binary
and back again, respectively. The intToBin function uses the bit-wise shift operator along
with the bit-wise AND operator to pick off the binary representation of the integers that
are provided for the seed in a similar fashion to what was done in Listing 2.2. The array
pb is initialized using intToBin while the binToInt function transforms the output from
the generator into integers directly from binary representations with the help of power for
computing powers of 2.

A variant of the generalized linear feedback shift register is the twisted feedback shift
register generator (e.g., Matsumoto and Kurita 1992). In this case binary vectors of length
r are produced using

vi = (Avi−p)⊕ vi−p+q (4.8)

with A an r×r matrix having all 0 and 1 entries. This approach can produce generators with
periods as long as 2pr−1 provided that tp+tq+1 is primitive modulo 2 and the characteristic
polynomial of A is irreducible. In this respect the generators realize the potential of shift
register methods. Matsumoto and Kurita (1992) suggest using

AT =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1
b1 b2 b3 · · · br


with b = (b1, . . . , br)T a vector of zeros and ones and provide specific choices for b that
produce the maximum period. The Mersenne twister developed by Matsumoto and Takuji
(1998) is a popular variation of the twisted feedback shift register generator that has period
219937 − 1. The original Mersenne twister proposal has been modified in various ways (e.g.,
Saito and Matsumoto 2006) to improve its speed and ease of initialization.

There are many other varieties of random number generators that extend congruential
methods. One natural extension is to use a recursion of the form

xi = (a1xi−1 + a2xi−2 + · · ·+ akxi−k) mod m, (4.9)

where k is some integer, a1, . . . , ak are integers between 0 and m − 1 and the recursion is
initialized with k starting values. Generators of this type are often termed multiple recursive.
When m is a prime, the maximum period length for a multiple recursive generator is mk−1
which can be attained if and only if the characteristic polynomial P (z) = zk−a1z

k−1−· · ·−ak
is primitive modulo m (see, e.g., Section 3.2.2 of Knuth 1998a).

A relatively simple way to produce “good” random number generators with longer periods
is to use linear combinations of the output from several multiple recursive generators. A
general set-up would have G such generators with the gth one producing the values

xgi = (ag1xg(i−1) + ag2xg(i−2) + · · ·+ agkxg(i−k))mod mg (4.10)
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for g = 1, . . . , G. Integer coefficients c1, . . . , cG are then chosen to produce numbers on the
interval [0, 1] via

uj =
(
c1
x1j

m1
+ c2

x2j

m2
+ · · ·+ cG

xGj
mG

)
mod 1

with x mod 1 being the fractional part of x. Under conditions detailed in L’Ecuyer and
Tezuka (1991) and L’Ecuyer (1996) the period length for the generator can be as large as
the product of the periods for the individual generators. Tables containing good parameter
choices for generators of this nature are given in L’Ecuyer (1999).

An example of a combined generator is the one proposed by Wichmann and Hill (1982)
that will be referred to as the WH generator in the sequel. The algorithm uses the linear
congruential (and, hence, multiple recursive with k = 1) generators

xi = 171xi−1mod 30269
yi = 172yi−1mod 30307
zi = 170zi−1mod 30323

with the resulting uniform random deviate being obtained from

ui =
( xi

30269
+

yi
30307

+
zi

30323

)
mod 1.

The period of this generator exceeds 2.78× 1013.
Our implementation of a C++ WH class for the WH generator has the header file

Listing 4.4 WH.h

//WH.h

#ifndef WH_H

#define WH_H

class WH{

unsigned long a1 , a2 , a3;

unsigned long m1 , m2 , m3;

public:

WH();

~WH(){};

void rangen(unsigned long seed1 , unsigned long seed2 ,

unsigned long seed3 , int n, double* pu) const;

};

#endif

with the method definitions given in

Listing 4.5 WH.cpp

// WH.cpp

#include "WH.h"

WH::WH(){

a1 = 171; m1 = 30269; a2 = 172; m2 = 30307; a3 = 170; m3 = 30323;

}

void WH:: rangen(unsigned long seed1 , unsigned long seed2 ,

unsigned long seed3 , int n, double* pu) const {

double temp = 0;
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for(int i = 0; i < n; i++){

seed1 = (a1*seed1)%m1;

seed2 = (a2*seed2)%m2;

seed3 = (a3*seed3)%m3;

temp = (((double)seed1)/((double)m1)

+ ((double)seed2)/((double)m2)

+ ((double)seed3)/((double)m3));

if(temp > 2.) temp -= 2.;

if(temp > 1.) temp -= 1.;

pu[i] = temp;

}

}

Here a1, a2, a3, m1, m2 and m3 represent the multipliers and moduli for the three generators.
Although they have been specified explicitly in the constructor definition to produce the
WH generator, other choices could be obtained as input to another constructor to provide
a more general implementation. The operative class method takes as arguments the seed,
sample size and a pointer to double. The memory locations corresponding to the pointer
are then filled with random deviates produced by the generator.

The WH generator provides an appreciable increase in period length beyond that of the
Fishman-Moore generator of Section 4.4. Even so, its period is still too short for many
applications that require very long streams such as random number generation in parallel
computing environments. One source for generators that can be used for such purposes is
the Rngstreams package of L’Ecuyer, et al. (2001, 2002). The source code for the package
in C, C++, C# and Java can be downloaded from

http://www.iro.umontreal.ca/~lecuyer/myftp/streams00

In particular, the C++ implementation of RngStreams furnishes an OOP framework where
objects are created that have an associated method RandU01 to produce uniform random
deviates.

The “backbone” generator for RngStreams is called Mrg32k3a. It is a combination of the
two multiple recursive generators that produce the states

x1,n = (1403580× x1,n−2 − 810728× x1,n−3) mod (232 − 209), (4.11)
x2,n = (527612× x2,n−1 − 1370589× x2,n−3) mod (232 − 22853) (4.12)

at the nth step of the recursion given initial seeds x̃i,0 = (xi,0, xi,−1, xi,−2)T , i = 1, 2. The
two states are combined to produce the uniform random deviate un via the rule

zn = (x1,n − x2,n) mod (232 − 209),

un =
{
zn/(232 − 208), if zn > 0,
(232 − 209)/(232 − 208), if zn = 0.

In (4.10) this corresponds to G = 2, k = 3,m1 = 232 − 209, a11 = 0, a12 = 1403580, a13 =
−810728,m2 = 232− 22853, a21 = 527612, a22 = 0 and a23 = −1370589. The period for this
generator is approximately 2191 provided that x1,0, x1,−1, x1,−2 are not all 0 and are all less
than (232 − 209) and x2,0, x2,−1, x2,−2 are all less than (232 − 22853) and not all 0.

The initial state of the RngStreams package is set using the function SetPackageSeed
that has prototype

static bool SetPackageSeed (const unsigned long seed [6])

with seed containing the six initial integer seeds for the generator that must be supplied by
the user. The static modifier has the consequence that the function can be called without
using an object from the RngStream class. The actual random uniforms are then obtained
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from the RandU01 method using an object from the RngStream class. Listing 4.6 below
illustrates the process.

Listing 4.6 rngStreamEx.cpp

//rngStreamEx.cpp

#include <iostream >

#include "RngStream.h"

using std::cout; using std::endl;

int main (){

unsigned long seed [6] = {1, 2, 3, 4, 5, 6};

RngStream :: SetPackageSeed (seed);

RngStream rngObj;

cout << "Your random number is ";

cout << rngObj.RandU01 () << endl;

return 0;

}

The key step is inclusion of the header file RngStream.h at the start of the program. The
initial generator seeds x1,−2 = 1, x1,−1 = 2, x1,0 = 3, x2,−2 = 4, x2,−1 = 5 and x2,0 = 6 are
set with the SetPackageSeed function whose static designation allows it to be used directly
without a class object. An RngStream object is instantiated and used to generate a random
number that is printed to standard output. The program is compiled and executed with

$ g++ -Wall RngStream.cpp rngStreamEx.cpp -o rngStreamEx

$ ./rngStreamEx

Your random number is 0.0010095

4.6 Nonuniform generation

As noted in the introduction, the generation of uniform random numbers is the key to
producing pseudo-random samples from nonuniform distributions. The most direct approach
is to use the probability integral transform of Theorem 4.1 as implemented in Algorithm 4.1.
A case where this can be done in closed form is the exponential distribution with probability
density function

f(x) =
{
λ exp{−λx}, x, λ > 0,

0, otherwise.
The distribution function corresponding to f is F (x) = 1 − exp{−λx} for x > 0 for which
the inverse or quantile function is F−1(u) = − ln(1 − u)/λ with u ∈ (0, 1). The driver
program below uses this function to produce a pseudo-random sample from the exponential
distribution using the WH generator as in Listings 4.4–4.5.

Listing 4.7 driverExp.cpp

//driverExp.cpp

#include <iostream >

#include <cstdlib >

#include <cmath >

#include <new>

#include "WH.h"

using std::cout; using std::cin; using std::endl;
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double Finv(double u, double lambda ){

return (-log(1 - u)/lambda );

}

int main(int argc , char* argv []){

double lambda; int n;

cout << "Input the value for lambda:" << endl;

cin >> lambda;

unsigned long seed1 , seed2 , seed3;

cout << "Choose a value for the sample size:" << endl;

cin >> n;

cout << "Choose a value for seed1:" << endl;

cin >> seed1;

cout << "Choose a value for seed2:" << endl;

cin >> seed2;

cout << "Choose a value for seed3:" << endl;

cin >> seed3;

WH* pWH = new(std:: nothrow) WH();

if(pWH == 0){

cout << "Memory allocation for WH failed" <<endl;

exit (1);

}

double* pU = new(std:: nothrow) double[n];

if(pU == 0){

cout <<"Memory allocation for double pointer failed" <<endl;

exit (1);

}

pWH ->rangen(seed1 , seed2 , seed3 , n, pU);

cout << "Your random numbers are " << endl;

for(int i = 0; i< n; i++)

cout << Finv(pU[i], lambda) << " ";

cout << endl;

delete pWH;

delete[] pU;

return 0;

}

The only new aspect in Listing 4.7 is the specification of the F−1 function at the beginning
of the program and its use in the for loop to transform the uniform random numbers
obtained from the WH object pointer pWH. It is also necessary to include the cmath header
in order to use the natural logarithm function log in our Finv function. Upon compilation
into the executable driverExp, the program produces output such as

$ ./driverExp

Input the value for lambda:

1

Choose a value for the sample size:

5

Choose a value for seed1:

123

Choose a value for seed2:

456

Choose a value for seed3:
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789

Your random numbers are

1.22472 2.50259 0.159843 1.07643 0.44995

Similar to what was done for the FM2 generator, driverExp was used with seeds 123,
456, 789 to generate a random sample of 500 values from the exponential distribution with
unit mean that was imported into R as a numeric vector object called eDat. The following
information was then obtained about the data.

> summary(eDat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.001526 0.258000 0.657300 0.980200 1.300000 8.784000

> sd(eDat)

[1] 1.066776

> IQR(eDat)

[1] 1.042139

> pnorm(sqrt(length(eDat))*(mean(eDat) - 1))

[1] 0.3286831

> ks.test(eDat , pexp)

One -sample Kolmogorov -Smirnov test

data: eDat

D = 0.0402 , p-value = 0.3954

alternative hypothesis: two -sided

The R function summary was invoked in this R session to calculate some of the basic sample
statistics for the imported data. This information is augmented with the sample standard
deviation (using the function sd) and the sample inter-quartile range (with the function
IQR). Seeing as the data was produced using an input value of 1 for λ, both the mean and
the variance of the target parent population are one while the median and inter-quartile
range are, approximately, .693 and 1.1 (Exercise 4.18). As a result, the sample statistics are
more or less in agreement with what might be expected. Although the outcome is obvious
here, a normalized (through multiplication by the square root of the sample size) difference
between the sample mean and 1 was computed that should behave approximately like a
number drawn from the standard normal distribution if the values come from an exponential
distribution with λ = 1. The p-value obtained using the R cumulative distribution function
pnorm for the standard normal distribution is not significant and the Kolmogorov-Smirnov
goodness-of-fit test also detects no significant departure from the exponential model. The
histogram of the data shown in Figure 4.3 exhibits the J-shape that would be expected from
exponentially distributed data.

If F has a simple closed form, but there is no closed form for F−1, Algorithm 4.1 can still
be used with the quantile function being evaluated by numerical methods (e.g., Exercise
8.26). When there is no closed form for F , as is true for the normal distribution, the cdf
itself can be approximated numerically using, e.g., numeric integration and the same basic
approach can be applied to the approximation. There is an alternative, less involved, strategy
that we will now describe.

As before, the problem is that of simulating values from a continuous random variable
with density f . However, now it is assumed that there is another available density g with
the property that for all real numbers x

f(x) ≤ cg(x) (4.13)

for some constant c ≥ 1. The g density is sometimes referred to as the instrumental density
with f being the target density. The basic accept-reject algorithm then takes the form
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Figure 4.3 Histogram for simulated data

Algorithm 4.2 Accept-reject algorithm
r = u = a (for some arbitrary a > 1)
while ru > 1 do

Generate y from the distribution corresponding to g
Generate u from a uniform distribution on [0, 1]
r = cg(y)/f(y)

end while
return y

The mechanics involved here are quite simple. We first generate pairs of random numbers.
Then, in each step of the while loop, a value u from a uniform distribution is paired with
a value y sampled from the distribution corresponding to the instrumental density g. The
process of generating pairs continues until a pair u, y for which u ≤ f(y)/cg(y) is found
at which point y is returned as the value that was simulated from the distribution with
density f . Assuming that y behaves as a value sampled from the density f , this approach
can potentially solve the problem of f not having a closed form cdf and/or quantile function.
Specifically, if a density g can be found that satisfies (4.13) for which the corresponding
quantile function G−1 has a closed form, it is easy to produce samples from the g distribution
and the entire process can be driven by a uniform random number generator.

The justification for the accept-reject approach is provided by Theorem 4.4.
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Theorem 4.4. Let Y have density g satisfying (4.13) and let U conditional on Y = y have
a uniform distribution on [0, cg(y)]. Then, X = Y |U < f(Y ) has density f .
Proof. Proofs of Theorem 4.4 can be found in Devroye (1986) and Robert and Casella (2004),
for example. The idea is that if A is any open interval of the real line

Prob(X ∈ A) = Prob(Y ∈ A|U ≤ f(Y ))

=

∫
A

∫ f(y)

0
1

cg(y)g(y)dudy∫∞
−∞

∫ f(y)

0
1

cg(y)g(y)dudy

=
∫
A

f(y)dy

which proves the theorem. �
Note that Theorem 4.4 says to first generate a value y from the density g and then

generate a uniform random number on [0, cg(y)]. But, to obtain a uniform random number
from [0, cg(y)] it suffices to generate from the interval [0, 1] and then multiply by cg(y) since
the quantile function for a uniform random variable on [0, b] is Q(u) = bu for u ∈ [0, 1] and
b > 0. Thus, the plan is i) generate y from a distribution with density g, ii) generate u from
a uniform distribution on [0, 1], iii) transform to cg(y)u and then iv) take y as the desired
value if cg(y)u ≤ f(y) or, equivalently, ru ≤ 1 as in our original formulation.

A measure of performance of an accept-reject algorithm is provided by the number of
rejections that are required to actually generate a random number from the target distri-
bution. Let U and Y be as in Theorem 4.4. Then, on any given trial the probability of
acceptance is

Prob (U ≤ f(Y )) =
∫ ∞
−∞

∫ f(y)

0

1
cg(y)

g(y)dudy = 1/c

and the number of trials before the first acceptance has a geometric distribution with success
probability c−1. The value of c reflects the extent to which g is able to approximate f .
Consequently, the accept-reject approach will benefit from a careful choice of g that allows
us to take c close to one.

An illustration of the accept-reject method can be obtained by using the Cauchy density
to generate standard normal random variables. The Cauchy density with scale parameter
σ > 0 has the form

g(x) =
1
σπ

1
1 + x2/σ2

, −∞ < x <∞, σ > 0, (4.14)

for which the quantile function is

G−1(u) = σ tan (π(u− .5)) .

To use g for simulating from the standard normal distribution it is necessary to find a value
c ≥ 1 for which f(y)/g(y) ≤ c with

f(x) =
1√
2π

exp{−x2/2}.

Proceeding as in Section 3.2 of Devroye (1986) we will find the c that will provide the
tightest bound. That is, c will be chosen as the smallest number so that f(x) ≤ cg(x). That
choice will be the one that, on the average, will lead to the fewest rejections and thereby to
faster sample generation.

The ratio f(x)/g(x) will achieve a maximum when (1 + x2/σ2) exp{−x2/2} does. It is
equivalent to maximize the natural logarithm of this ratio which is tantamount to finding
the solutions of 2x = (σ2 +x2)x: namely, x = 0 and x = ±

√
2− σ2. The latter two roots are

only applicable when σ ≤
√

2 in which case the maxima are at ±
√

2− σ2 corresponding to
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a maximum value of c =
√

2π exp{σ2/2− 1}/σ for f/g. For σ >
√

2 the maximum for f/g
is c = σ

√
π/2. If c is now viewed as a function of σ it is minimized at σ = 1 with minimum

value
√

2π/e .= 1.520347.
The code listing below is the header file for a WHNCauchy class that uses the accept-reject

method to generate pseudo-random standard normals using the Cauchy distribution with
the optimal bounding constant and with uniform random deviates produced by the WH
generator.

Listing 4.8 WHNCauchy.h

// WHNCauchy.h

#ifndef WHNCAUCHY_H

#define WHNCAUCHY_H

class WHNCauchy{

unsigned long a1 , a2 , a3;

unsigned long m1 , m2 , m3;

double g(double x) const;

double Ginv(double x) const;

double f(double x) const;

public:

WHNCauchy ();

~WHNCauchy (){};

void rangen(unsigned long seed1 , unsigned long seed2 ,

unsigned long seed3 , int n, double* pNorm) const;

};

#endif

The functions g and Ginv are the Cauchy density and quantile function while f is the normal
density. As there is no obvious need for access to these functions by a typical user, they
have been made private.

The method definitions for the WHNCauchy class are provided in the next listing.

Listing 4.9 WHNCauchy.cpp

//WHNCauchy.cpp

#include <cmath >

#include <iostream >

#include "WHNCauchy.h"

using std::cout; using std::endl;

double pi = 2.*acos (0.);

double sqrtwopi = sqrt (2.*pi);

double c = sqrt(2*pi/exp (1.));

WHNCauchy :: WHNCauchy (){

a1 = 171; m1 = 30269; a2 = 172; m2 = 30307; a3 = 170; m3 = 30323;

}

void WHNCauchy :: rangen(unsigned long seed1 , unsigned long seed2 ,

unsigned long seed3 , int n, double* pNorm) const {

double temp , y;

double u[2];
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int nFill = 0, iAccept , nReject = 0;

while(nFill < n){

iAccept = 0;

while(iAccept == 0){

//generate two uniforms

for(int i = 0; i < 2; i++){

seed1 = (a1*seed1)%m1; seed2 = (a2*seed2 )%m2;

seed3 = (a3*seed3)%m3;

temp = (((double)seed1)/((double)m1)

+ ((double)seed2)/((double)m2)

+ ((double)seed3)/((double)m3));

if(temp > 2.) temp -= 2.;

if(temp > 1.) temp -= 1.;

u[i] = temp;

}

y = Ginv(u[1]);

if(c*g(y)*u[0] <= f(y)){//accept the result

pNorm[nFill] = y;

nFill += 1;//augment the number of samples

iAccept = 1;//end the interior while loop

}

else nReject += 1;

}

}

cout << "The Number of rejections was " << nReject << endl;

}

double WHNCauchy ::g(double x) const {

return 1/((1 + x*x)*pi);

}

double WHNCauchy ::Ginv(double u) const {

return tan(pi*(u - .5));

}

double WHNCauchy ::f(double x) const {

return exp(-.5*x*x)/sqrtwopi;

}

There are a few features that merit discussion in this listing. First, at the beginning of
the listing three recurring constants are defined: π,

√
2π and the optimal constant for use

with the Cauchy instrumental density. This endows them with global scope as discussed in
Section 3.2. That is, by defining pi, sqrtwopi and c outside the scope of any function in the
program they become available to all functions that may need them thereby removing the
need to compute them more than once. The algorithm itself works through a while loop
that terminates when nFill, the number of samples that have been accepted, coincides
with the desired sample size. A variable that counts the number of rejected samples has
also been included to assess the efficiency of using the Cauchy distribution for generation
of samples from the normal distribution.

It turns out that most of the distributions that arise in statistics can be tied to the chi-
square and/or normal distributions. For example, a random variable from the F-distribution
can be obtained as the ratio of two independent chi-square random variables divided by their
degrees-of-freedom while a random variable from the t-distribution can be created as the
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ratio of a standard normal random variable and the square root of an independent chi-square
random variable divided by its degrees-of-freedom.

To get samples from the chi-square distribution with an integer degrees-of-freedom ν we
could use the fact that such a random variable has the same distribution as the sum of ν
squared standard normal random variables. So, one could generate independent standard
normal random variables Z1, . . . , Zν and then X =

∑ν
j=1 Z

2
j could be taken as the desired

value. This is not the most computationally efficient approach and a superior alternative
is provided by Kinderman and Monahan (1977) (see also Section 11.2C of Monahan 2001)
and Cheng and Feast (1979). The idea is a consequence of our next theorem.

Theorem 4.5. Let f be a density on the real line and suppose that the random variables
U1, U2 have a joint distribution that is uniform over

A = {(u1, u2) : 0 ≤ u1 ≤
√
f(u2/u1)}. (4.15)

Then, U2/U1 is a random variable with density f .

Proof. Let us first evaluate the area of the region A. To do so, make the change of variable
from u1 and u2 to x1 = u2/u1 and x2 = u1. The Jacobian for this transformation is x2 so
that ∫ ∞

−∞

∫ √f(x1)

0

x2dx2dx1 =
1
2

∫ ∞
−∞

f(x1)dx1 =
1
2
.

The joint density for X1 = U2/U1 and X2 = U1 is therefore

h(x1, x2) =
{

2x2, 0 ≤ x2 ≤
√
f(x1),

0, otherwise.

The marginal density for X1 is now seen to be f which establishes the theorem. �
To use Theorem 4.5 in practice we need to be able to bound the region A where U1 and

U2 reside. Then, uniforms can be simulated over the region laid out by the bounds. Now,
at worst U1 ≤ maxx

√
f(x) and, since U2 = (U2/U1)U1, it is also true that minx x

√
f(x) ≤

U2 ≤ maxx x
√
f(x). Thus, random variables Ũ1 and Ũ2 can be generated with Ũ1 and Ũ2

uniformly distributed on
[
0,maxx

√
f(x)

]
and

[
minx x

√
f(x),maxx x

√
f(x)

]
, respectively.

If Ũ2
1 ≤ f(Ũ2/Ũ1), X = Ũ2/Ũ1 is accepted as a sample from the distribution corresponding

to f and otherwise the process is repeated.
As in Cheng and Feast (1979), we will apply this idea to the case of a gamma random

variable with the density

f(x) =
{ 1

Γ(α)x
α−1 exp{−x}, 0 ≤ x,

0, otherwise.

This will allow us to simulate chi-square random variables as well because a random variable
X with a gamma distribution can be transformed to a chi-square random variable Y with
ν = 2α degrees-of-freedom by taking Y = 2X.

If α > 1, which we shall assume to be the case, xα−1 exp{−x} and xα+1 exp{−x} are
maximized at x = α − 1 and x = α + 1, respectively. Thus, in our previous formulation
maxx

√
f(x) ≤ [(α − 1)/e](α−1)/2/

√
Γ(α), minx x

√
f(x) = 0 and maxx x

√
f(x) ≤ [(α +

1)/e](α+1)/2/
√

Γ(α). Gamma random deviates can therefore be generated using Algorithm
4.3 (Exercise 4.23).
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Algorithm 4.3 Gamma generation algorithm

b1 = [(α− 1)/e](α−1)/2
, b2 = [(α+ 1)/e](α+1)/2

c = b2/{b1(α− 1)}
Generate U1, U2 from a uniform distribution on [0, 1]
while 2

α−1 ln(U1)− ln(cU2/U1) + cU2/U1 − 1 > 0 do
Generate U1, U2 from a uniform distribution on [0, 1]

end while
return (α− 1)cU2/U1

The implementation of this algorithm is the subject of Exercise 4.24.

4.7 Generating random normals

Given the importance of the normal distribution to statistics it is no surprise that a number
of methods have been developed for the generation of normal random deviates. Notable
examples include those proposed in Box and Muller (1958), Ahrens and Dieter (1973) and
Kinderman and Ramage (1976). We will focus attention here on the Box-Muller approach.

The basic result as stated in Box and Muller (1958) is that if U1 and U2 are random
variables with a uniform distribution of [0, 1] then

Z1 =
√
−2 ln(U1) cos(2πU2) (4.16)

Z2 =
√
−2 ln(U1) sin(2πU2) (4.17)

are independent standard normal random variables (Exercise 4.34). This has the implication
that pairs of random normals can be generated from pairs of random uniforms through the
simple transformations in (4.16)–(4.17). A polar coordinates perspective leads to yet another
formulation that employs the accept-reject method while avoiding the use of trigonometric
functions.

Theorem 4.6. Let (U1, U2) have a uniform distribution over the unit circle: i.e., the joint
(U1, U2) density is

f(u1, u2) =
{

1
4π , −1 ≤ u1, u2 ≤ 1, u2

1 + u2
2 ≤ 1,

0, otherwise.

Then, if R = U2
1 + U2

2 and V = U1/
√
R,

Z1 =
√
−2 ln(R)V, (4.18)

Z2 =
√
−2 ln(R)

√
1− V 2 (4.19)

are independent standard normal random variables.

Proof. The proof is relatively straightforward, but somewhat tedious. The result will be
established in two steps. First, it will be shown that if the bivariate random variable (U1, U2)
is uniformly distributed over the unit circle, R and V are independent with R having a
uniform distribution on [0, 1].

To accomplish our first objective, let r = u2
1+u2

2 and take v = u1/
√
r. This gives u1 =

√
rv

and v =
√
r(1− v2) from which the Jacobian is found to be (1−v2)−1/2/2. The joint (R, V )

density can now be written as

f(r, v) =
{

1
4π

1
1−v2 , 0 ≤ r ≤ 1,−1 ≤ v ≤ 1,
0, otherwise,

which proves that R is uniformly distributed on [0, 1] and independent of V .
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Now take z1 =
√
−2 ln(r)v and z2 =

√
−2 ln(r)

√
1− v2. The inverse of this transforma-

tion is r = exp{−(z2
1 + z2

2)/2} and v = (1 + (z1/z2)2)−1/2 which produces

2z2√
z2

1 + z2
2

exp{−(z2
1 + z2

2)/2}

as the Jacobian. Thus, the joint Z1, Z2 density is

f(z1, z2) = 1
2π exp{−(z2

1 + z2
2)/2}, −∞ < z1, z2 <∞

and the theorem is proved. �
Theorem 4.6 suggests a simple strategy for generating numbers from the normal distri-

bution. Generate two random uniforms U1 and U2 from the interval [−1, 1]. If U2
1 +U2

2 ≤ 1,
accept the pair and obtain two pseudo-random normal deviates using (4.18)–(4.19). Other-
wise, generate another pair and repeat the accept-reject evaluation. This approach discards
100

(
4
π − 1

)
= 27.32395 percent of the uniform random number pairs (Exercise 4.35).

The code listings below correspond to an implementation of the Box-Muller method that
employs the WH generator for the generation of uniform random deviates. The header file
for the resulting WHBM class is

#ifndef WHN_H

#define WHN_H

class WHBM{

unsigned long a1 , a2 , a3;

unsigned long m1 , m2 , m3;

public:

WHBM ();

~WHBM (){};

void rangen(unsigned long seed1 , unsigned long seed2 ,

unsigned long seed3 , int n, double* pu) const;

};

#endif

The values of a1, m1, a2, m2, a3, m3 are the same as those in Listing 4.9. They are
defined explicitly in the class constructor whose definition is given, along with that of the
rangen method in the listing below.

//WHBM.cpp

#include "WHBM.h"

#include <cmath >

WHBM::WHBM (){

a1 = 171; m1 = 30269; a2 = 172; m2 = 30307; a3 = 170; m3 = 30323;

}

void WHBM:: rangen(unsigned long seed1 , unsigned long seed2 ,

unsigned long seed3 , int n, double* pNorm) const {

double temp = 0, spare = 0, mult = 0, u[2] = {0, 0}, Rsqr = 0;

int nFill = 0, iAccept = 0;

while(nFill < n){

if(iAccept == 1){//if we have one left , use it now

pNorm[nFill] = spare;

iAccept = 0;//next time we need to generate another pair
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nFill += 1;

}

else{

while(iAccept == 0){

//generate two uniforms

for(int i = 0; i < 2; i++){

seed1=(a1*seed1)%m1;

seed2=(a2*seed2)%m2;

seed3=(a3*seed3)%m3;

temp = (((double)seed1)/((double)m1)

+ ((double)seed2)/((double)m2)

+ ((double)seed3)/((double)m3));

if(temp > 2.) temp -= 2.;

if(temp > 1.) temp -= 1.;

u[i] = 2*temp - 1; //translate into [-1, 1]

}

Rsqr = u[0]*u[0] + u[1]*u[1];

if(Rsqr < 1 && Rsqr != 0){//accept the result

mult = sqrt(-2.*log(Rsqr)/Rsqr);

pNorm[nFill] = u[0]*mult;

spare = u[1]*mult;//save this one for next time

nFill += 1;

iAccept = 1;//now we have one left over

} } } } }

The code in rangen is relatively straightforward apart from some bookkeeping that is needed
to deal with the production of pairs of random numbers rather than singletons. An indicator
variable or flag iAccept is set to 1 or 0 depending on whether or not there is still one of
the pair of normals available to avoid using the uniform PRNG more than necessary. The
decision variable in the loop nFill has to be augmented carefully to make certain that it
is incremented both when a new pair of numbers is generated as well as when a remaining
value from a previous pair is added to the sample.

The WHBM class was used with seeds 123, 456 and 789 to generate 500 standard normal
random deviates. These values were imported into R as a numeric vector named nDat that
was used to produce the histogram shown in Figure 4.4. The histogram exhibits some of
the bell shape that would be expected from normal data.

Kernel density estimators provide alternatives to histograms that give smooth estima-
tors of the parent density for a set of data. If x1, . . . , xn are observed sample values, such
estimators have the form

fh(x) =
1
nh

n∑
i=1

K

(
x− xi
h

)
,

where the kernel K is a density function and h > 0 is the bandwidth that controls the
amount of averaging or smoothing that is performed on the data. For kernel estimators
to perform effectively the bandwidth must be chosen with care and there are a number of
bandwidth selection methods that can be used for this purpose.

Figure 4.4 also shows a kernel density estimator that was fit to the data using the R
function density by the command
> den<-density(nDat , kernel = "gaussian")

This estimator employs a “rule-of-thumb” bandwidth nrd0 for the normal distribution dis-
cussed, for example, in Silverman (1986). There are a number of other bandwidth choices
that can be perused by examining the help file for bw.nrd.

Summary statistics were also computed for the simulated “normal” data with the follow-
ing results.
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Figure 4.4 Histogram for simulated data

> summary(nDat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.60400 -0.71500 -0.01388 -0.05790 0.63210 2.82700

> sd(nDat)

[1] 0.9918201

> IQR(nDat)

[1] 1.347105

> pnorm(sqrt(length(nDat))*mean(nDat)/sd(nDat))

[1] 0.09588755

> ks.test(nDat , pnorm)

One -sample Kolmogorov -Smirnov test

data: nDat

D = 0.0346 , p-value = 0.5865

alternative hypothesis: two -sided

> shapiro.test(nDat)

Shapiro -Wilk normality test

data: nDat

W = 0.9967 , p-value = 0.4145

Since the data is supposed to have come from a normal distribution, the Shapiro-Wilk tests
statistic was computed as well as the Kolmogorov-Smirnov statistic. On the basis of these
two measures the hypothesis of normality cannot be rejected at any reasonable significance
level.
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4.8 Generating random numbers in R

As described in Appendix B, the R language provides the facility for obtaining random
deviates from most of the standard distributions used in statistics. Random numbers for a
distribution MyDist are produced with syntax such as

rMyDist(n, ...)

with n being the desired sample size and ... indicating other arguments that might be
needed for a particular distribution of interest.

The type of random number generator that is used in the rMyDist functions can be
determined and set using the functions RNGkind. Entering RNGkind() will return two values:
the generator that is used to generate uniforms and the generator that is used to generate
random normals. The default uniform generator is the Mersenne twister. There are five
other options, including the WH generator, that are listed in the R help page for RNGkind.
The default method for generating normal random deviates is direct inversion. There are
four other options one of which is the Box-Muller method. A user-supplied method can also
be employed for generating either random uniforms or normals.

To choose one of the other options for generating uniforms or normals, simply specify a
value for one or both of the two arguments for RNGkind. These are kind and normal.kind
and determine the uniform and normal generator, respectively. The ensuing code seg-
ment illustrates querying for the current generator choices and then changing them to the
Wichmann-Hill and Box-Muller methods.

> RNGkind()

[1] "Mersenne -Twister" "Inversion"

> RNGkind(kind = "Wichmann -Hill", normal.kind = "Box -Muller")

> RNGkind()

[1] "Wichmann -Hill" "Box -Muller"

Although the Mrg32k3a generator from the RngStreams package discussed in Section 4.5
is not one of the options that can be chosen with RNGkind, it can still be accessed through
the rstream package. After loading the package with

> library("rstream")

the random number generator for the current R session can be set as Mrg32k3a via the
command

rstream.RNG(stream = new(‘‘rstream.mrg32k3a ’’, seed = SEED))

with SEED a vector of six integers. A portion of an R session that illustrates the idea is
shown below.

> library(rstream)

> rstream.RNG(new("rstream.mrg32k3a", seed = c(1, 2, 3, 4, 5, 6)))

> runif(1)

[1] 0.001009498

The seed argument was chosen to be the same as the one that was used to initialize the
Mrg32k3a generator from RngStreams in Section 4.5. The output from runif indicates that
the Mrg32k3a generator with this seed is now being used to generate uniforms in R.

In order to exactly recreate data that has been previously produced by a random number
generator we need to know the seed or seeds that were used in the generator. The function
set.seed provides a simple mechanism for ensuring this in R. The argument for set.seed
is an integer variable seed that is then used to set whatever other seeds are required for the
chosen generation method. In the example shown below seed is first set to 123. Then two
sets of five random normals are generated. The second set of five is different from the first
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as would be expected. Then seed is reset to 123 and the rnorm(5) command produces the
values that were originally obtained.

> set.seed (123)

> rnorm(5)

[1] -0.4542997 0.1593962 0.8977403 1.1607478 -0.4748856

> rnorm(5)

[1] -1.5676364 0.6444441 1.0574895 0.1692509 0.6725876

> set.seed (123)

> rnorm(5)

[1] -0.4542997 0.1593962 0.8977403 1.1607478 -0.4748856

Note that this exercise was carried out using the WH generator for the uniforms that were
required for the Box-Muller method. This generator requires three seeds. The set.seed
function uses its single argument to create the three seeds that are needed for this particular
generator and performs similar tasks for the other generator options that require multiple
and/or complicated choices for their seeds.

4.9 Using the R Standalone Math Library

The R language is largely implemented in C. One consequence of this is that it is possible
to create a code library that contains the C implementations of the standard functions that
are used in R. These include the quantile functions, densities and distribution functions for
the standard probability distributions as well as the associated random number generators.
To obtain this library the following steps are required:†

1. Download the R source code from http://cran.r-project.org and save it in a direc-
tory, e.g., Rsrc.

2. From inside Rsrc enter ./configure on the shell command line.

3. If there are no errors from the previous step, enter make on the shell command line.

4. Move to the subdirectory src/nmath/standalone and again enter the make command.

If things have gone smoothly you will now have the library libRmath.a in the standalone
directory. The corresponding header file Rmath.h is located in the subdirectory src/include
of the directory where the R source code was downloaded. The library should be placed in
the /usr/local/lib directory of the unix directory tree and the header file should be placed
in the /usr/local/include directory. Subsequent compilation commands will assume that to
be the case.

To evaluate the contents of the Rmath library one can peruse Rmath.h. The function
prototypes that are provided there generally have exactly the same arguments in the same
order as their analogs that are available from within an R session. For example, the prototype
for the normal density function in Rmath.h is

double dnorm(double , double , double , int)

which lines up directly with the R prototype

function(x, mean = 0, sd = 1, log = FALSE)

that one sees by entering dnorm at the R command prompt. So, in this case the three double
arguments for the dnorm function in the library are the evaluation point (i.e., x), the mean
and the standard deviation, in that order. By looking at the R help file for dnorm it can be
seen that the last int argument in the dnorm function corresponds to a logical variable for

† In some instances, (e.g., for Mac users) it may be necessary to first install the gfortran compiler.
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which a value of 1 will result in the natural logarithm of the density being returned rather
than the density value.

The next code listing uses the Rmath library to evaluate the distribution functions for
the standard normal distribution and a chi-square distribution with one degree-of-freedom.

Listing 4.10 RmathEx1.cpp

//RmathEx1.cpp

#define MATHLIB_STANDALONE

#include <iostream >

#include "Rmath.h"

using std::cout; using std::cin; using std::endl;

int main()

{

double x1, x2;

cout << "Enter an argument for the normal cdf:" << endl;

cin >> x1;

cout << "Enter an argument for the chi -square cdf:" << endl;

cin >> x2;

cout << "Prob(Z <= " << x1 << ") = " <<

pnorm(x1, 0, 1, 1, 0) << endl;

cout << "Prob(Chi^2 <= " << x2 << ")= " <<

pchisq(x2, 1, 1, 0) << endl;

return 0;

}

The primary ingredient in Listing 4.10 is the use of #define MATHLIB STANDALONE at the
top of the file. This needs to be placed before the #include statement for Rmath.h because
it determines how definitions will be set in the header file.

There is a question of how to determine the arguments for the pnorm and pchisq functions
for evaluating the two distribution functions. To accomplish this we look at the two function
prototypes in Rmath.h and find them to be

double pnorm(double , double , double , int, int);

and

double pchisq(double , double , int, int);

By comparing these prototypes to the descriptions on the help pages for the R functions
pnorm and pchisq, it can be discerned that

a) the double arguments for pnorm are the evaluation point, mean and standard deviation.
The two integer arguments are interpreted as logical variables. The first one is 1 or 0
depending on whether a lower or upper tail evaluation is desired and the second is 1 or 0
depending on whether or not the return value should be the natural log of the probability.

b) the double arguments for pchisq are the evaluation point and degrees-of-freedom. The
two integer arguments are, again, logical variables with a value of 1 for the first one
meaning that lower tail probabilities will be returned and a choice of 0 for the second
producing probabilities as the return values.

Compilation of RmathEx1.cpp requires linking with the library libRmath.a as well as the
C math library libm.a. This is accomplished as with
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$ g++ RmathEx1.cpp -lRmath -lm -o RmathEx1

$ ./RmathEx1

Enter a argument for the normal cdf:

1.96

Enter a argument for the chi -square cdf:

3.8416

Prob(Z <= 1.96) = 0.975002

Prob(Chi^2 <= 3.8416)= 0.950004

The -lm and -lRmath terms in the compilation command instruct the compiler to look for
the libraries libm.a and libRmath.a in the usual locations along the library search path.

As another example, let us consider use of random number generators from the R Stan-
dalone Math Library. First note that the uniform random number generator that underlies
the R math library is a multiply-with-carry method due to Marsaglia (e.g., Marsaglia 2003)
that has period in excess of 260.‡ This generator requires two seeds that are set with the
function set seed through two unsigned integer arguments that are passed by value. The
ending values for the two seeds can be retrieved by the function get seed with arguments
of type unsigned integer* that allows the function to write back into memory maintained
by the calling program.

Listing 4.11 illustrates the use of the R math library for generating normal random
deviates. Here a sample size and the two seeds are requested as input at which point the
seeds for the uniform generator are initialized with set seed. The sample is then generated
and the ending seeds are retrieved and printed to standard output. The seeds are reset to
their starting values and the process is repeated to illustrate that identical values will be
produced by the generator.

Listing 4.11 RmathEx2.cpp

//RmathEx2.cpp

#define MATHLIB_STANDALONE

#include <iostream >

#include "Rmath.h"

using std::cin; using std::cout; using std::endl;

int main()

{

unsigned int seed1 , seed2 , n, df;

cout << "Enter a value for the sample size:" << endl;

cin >> n;

cout << "Enter a value for the first seed:" << endl;

cin >> seed1;

cout << "Enter a value for the second seed:" << endl;

cin >> seed2;

cout << "Enter a value for degrees -of-freedom:" << endl;

cin >> df;

set_seed(seed1 ,seed2 );

cout << "Here is a sample of standard normals" << endl;

for(int i = 0; i < n; i++)

cout << rnorm(0, 1) << " ";

cout << endl;

cout << "Here is a sample of chi -squares with " << df

‡ A multiply-with-carry generator produces a sequence of integers via the recursion xn = (axn−k +
rn−1) mod m, for specified integers a, k and m with rn = b(axn−k + rn−1)/mc.
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<< " degrees -of-freedom" << endl;

for(int i = 0; i < n; i++)

cout << rchisq(df) << " ";

cout << endl;

unsigned int seed3 , seed4;

get_seed(&seed3 , &seed4);

cout << "The first seed is now " << seed3 << endl;

cout << "The second seed is now " << seed4 << endl;

set_seed(seed1 ,seed2 );

cout << "Here is your sample of standard normals again " << endl;

for(int i = 0; i < n; i++)

cout << rnorm(0, 1) << " ";

cout << endl;

return 0;

}

The output produced by the program is

$ g++ RmathEx2.cpp -lRmath -lm -o RmathEx2

$ ./RmathEx2

Enter a value for the sample size:

5

Enter a value for the first seed:

123

Enter a value for the second seed:

456

Enter a value for degrees -of -freedom:

5

Here is a sample of standard normals

-0.293497 -0.334377 -0.411847 -0.346151 -0.952098

Here is a sample of chi -squares with 5 degrees -of-freedom

7.28352 9.95327 2.49237 2.96577 12.4712

The first seed is now 2386089332

The second seed is now 344712168

Here is your sample of standard normals again

-0.293497 -0.334377 -0.411847 -0.346151 -0.952098

4.10 Exercises

4.1. Verify identity (4.2).
4.2. Give the form of the quantile function F−1 in (4.1) for

a) the Weibull distribution with density

f(x) =

{
α
βαx

α−1 exp
{
−
(
x
β

)α}
, x > 0, α, β > 0,

0, otherwise.

b) the Pareto distribution with density

f(x) =
{
α βα

xα+1 , x > β, α, β > 0,
0, otherwise.

4.3. Give the form of the quantile function F−1 in (4.1) for the binomial distribution with
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probability mass function

f(x) =
{ (

k
x

)
px (1− p)k−x , x = 0, 1, . . . , k, 0 < p < 1, k ≥ 1,

0, otherwise.

4.4. Consider the multiplicative congruential generator with a = 12,m = 31 and x0 = 9.
Does the resulting sequence of numbers represent an improvement over the case of a = 3?
If so, why is it better?
4.5. Rework the FM2 generator code from Section 4.3 so that it will adaptively produce
structured output for any given value of n.
4.6. Discuss the behavior of mixed congruential generators that have a = 1, a = 0 and
a = m.
4.7. Let a, c and m be parameters for a mixed congruential generator having xn = (axn−1 +
c) mod m and let d divide m (without remainder).
a) If yn−1 = xn−1 mod d show that yn = (ayn−1 + c) mod d.
b) Use the previous result to show that when m = 2p the first r bits of xn form a congruential

sequence that has period of at most 2r for r > 1 and the first bit is either constant or
strictly alternating.

c) Show that the bit pattern that holds for m = 2p does not occur if m = 2p ± 1.
d) Conclude from the last two results (why?) that m = 2p ± 1 may be preferable to using

m = 2p.
(Knuth 1998a, Section 3.2.1.1)
4.8. Verify that the choices m = 2p, c = 3 and a = 5 satisfy the conditions of Theorem 4.2.
Can you suggest a general result based on this example?
4.9. Let a, c and m be the parameters of a mixed congruential generator with xn = (axn−1+
c) mod m. Show that

xn+k = (akxn + (ak − 1)c/(a− 1)) mod m.

Conclude from this (why?) that the subsequence consisting of every kth term from {xn}
represents a linear congruential generator with multiplier ak mod m and increment (ak −
1)c/(a− 1) mod m. (Knuth 1998a, Section 3.2.1)
4.10. Create an alternative version of the FM2 class where the generated numbers are held
in a pointer to double that is a private member of the class. Provide an overloaded []
operator to give access to the random deviates.
4.11. Create an alternative version of class FM2 that allows for general specifications of m
and a with the FM2 generator from (4.4) as the default. Other possible choices for a that
might be considered when m = 231 − 1 are a = 742938285, 950706376, 1226874159 and
1343714438 (Fishman and Moore 1986). Generate data using some of these choices and
assess the goodness-of-fit of the uniform distribution using methods available in R.
4.12. Develop C++ code that implements a feedback shift generator for specified values
of p, q and r. Do not store the bit sequence obtained from (4.5). Instead, use a p-bit bool
pointer to retain the active bits that are needed for the recursion and adaptively select
contiguous, nonoverlapping blocks of r bits from this bool working array. Make sure that
your generator cycles through the bit sequence produced from (4.5) in a way that will allow
it to realize a full period.
4.13. Apply your feedback register code from Exercise 4.12 to the case where p = 9, q = 4
and r = 8. Does the resulting generator have full period?
4.14. Verify the results that were obtained for the generalized feedback shift register gen-
erator when p = 5, q = 2, r = 3 and the seed is from (4.7).
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4.15. Consider the use of Algorithm 4.4 for evaluation of a real number c raised to an integer
power p.

Algorithm 4.4 Exponentiation algorithm
a = 1, b = c
while p 6= 0 do
r = p mod 2
p = bp/2c
if r 6= 0 then
a = b ∗ a

else
b := b ∗ b

end if
end while
return a

a) Show that this algorithm returns cp. [Hint: Work with the binary representation for p.]

b) How many multiplications does this algorithm perform to compute cp? [Hint: As in part
a) work with the binary representation for p.] Compare this to the “naive” algorithm
implemented, for example, in Listing 3.6 and the recursion based method of Exercise 3.7.

c) Implement Algorithm 4.4 in C++ and compare its performance to that of the C++ code
created for Exercise 3.7.

Knuth (1998a)
4.16. Modify the RngStream.h and RngStream.cpp files to where the six seeds for the
Mrg32k3a generator are obtained by supplying a single integer seed to the FM2 generator.
4.17. Refer to Exercise 3.10. Write a C++ program that will simulate from the distribution
of the number of red balls selected in n = 100 draws and use this to approximate the
distribution of the random variable to within four digits of accuracy with 95% confidence.
4.18. Derive the median and inter-quartile range for an exponential random variable with
mean 1/λ.
4.19. Use your results from Problem 4.2 to create a C++ class that will produce pseudo-
random deviates for the Weibull and Pareto distributions.
4.20. Let X be the number of trials required to obtain a success in a series of independent
Bernoulli trials. Create a C++ function that will generate a random sample from the X
distribution.
4.21. Use your results from Exercise 4.3 to create a C++ class that will produce pseudo-
random deviates for the binomial distribution. Provide an alternate method for this class
that produces binomial random deviates using sums of Bernoulli random variables. Compare
the performance of these two approaches in terms of computation time for various choices
for the number of trials.
4.22. Let S = 1, . . . , n and consider the problem of selecting a random subset (e.g., for
control or treatment groups) from S. Develop an algorithm that will select a k-element
subset using only a single array for storage: i.e., the subset must be created in place using
the integer array that holds the contents of S. [Hint: Successively swap elements in the
original S array while appropriately rescaling the simulation subinterval as the subset is
selected.]
4.23. Verify that Algorithm 4.3 will produce random variables that fall in the region (4.15).
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4.24. Develop a C++ implementation of Algorithm 4.3 for generating gamma random de-
viates.
4.25. Let X have a gamma distribution with parameter α > 1. Develop an accept-reject
algorithm that will produce pseudo-random deviates for the X distribution using the ex-
ponential distribution for an instrumental density. What is the best choice for the mean of
the instrumental distribution from the perspective of minimizing the expected number of
iterations that is needed to produce a sample of size n?
4.26. Provide a C++ implementation of the algorithm in Exercise 4.25. How does this
approach fare from a computation time perspective to the ratio based approach in Exercise
4.24?
4.27. Algorithm 4.5 is a standard for generating random deviates from a Poisson distribution
with parameter λ.

Algorithm 4.5 Poisson random number generation
sum = 0
X = 1
while sum < 1 do

Generate Y from an exponential distribution with parameter 1/λ
sum = sum+ Y
X = X + 1

end while
return X − 1

Show that this algorithm works in the sense that the returned value of X will behave as a
pseudo-random Poisson deviate with parameter λ.
4.28. Show that the algorithm in Exercise 4.27 is equivalent to generating uniform random
deviates U1, . . . until a value of n is found where Πn

i=1Ui < e−λ.

4.29. Create a PRNG for the normal distribution using an accept-reject approach based on
the double exponential distribution that has density

f(x) = (.5/σ) exp{−|x|/σ}, −∞ < x <∞, σ > 0.

Derive an optimal choice for σ and compare this alternative to the one based on the Cauchy
density that was developed in the text. Which produces the most rejections?
Devroye (1986)
4.30. Carry out experiments like those in Section 2.5 to evaluate the sensitivity of the
Youngs/Cramer algorithm of Exercise 2.10 to round-off error. In particular create a version
of Figure 2.3 showing the empirical bounds that result from your experiment.
4.31. Show how to use random samples from gamma and normal distributions to construct
random samples from
a) a chi-square distribution with ν degrees-of-freedom,
b) a t-distribution with ν degrees-of-freedom,
c) an F-distribution with ν1 numerator degrees-of-freedom and ν2 denominator degrees-of-

freedom and
d) a beta distribution.
4.32. Create a C++ “wrapper” class that implements random number generation for stan-
dard probability distributions using the R Standalone Math Library.
4.33. Create a portmanteau random number generation class that includes methods for
generation of random deviates from all the distributions treated in this chapter.
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4.34. Show that the random variables defined in (4.16)–(4.17) are independent and have
standard normal distributions.
4.35. Show that the Box-Muller accept-reject method from Section 4.7 discards 100

(
4
π − 1

)
percent of the uniform random number pairs that it generates.
4.36. Consider the problem of computing the integral

W =
∫
B

f(u1, . . . , ud)du1 · · · dud

of a square integrable function of d variables over a subset B of the unit d-cube [0, 1]d. Let
U1, . . . , Un be a random sample of size n from the uniform distribution over [0, 1]d. Then, a
Monte Carlo estimator of W is

Ŵ = n−1
n∑
i=1

f(Ui)IB(Ui)

with IB the indicator function for the set B: i.e., IB(u) is 1 or 0 depending on whether or
not u ∈ B.

a) Show that E[Ŵ ] = W and that Var(Ŵ ) = ||f ||2B/n with

||f ||2B =
∫
B

(f(u1, . . . , ud)−W )2du1 · · · dud.

b) A stratified sampling approach to estimation of W partitions B into k contiguous,
nonoverlapping subsets B1, . . . , Bk with ∪kj=1Bj = B. Random samples Uj1, . . . , Ujnj , j =
1, . . . , k are then taken from uniform distributions over each set in the partition that pro-
duce the integral estimator

ŴS =
k∑
j=1

n−1
j

nj∑
i=1

f(Uji)IBj (Uji).

Show that E[ŴS ] = W and that Var(ŴS) ≤ Var(Ŵ ).

4.37. Theorem 4.7 is shown, e.g., in Ross (2006).

Theorem 4.7. If h(u1, . . . , un) is a monotone function of each of its arguments and U1, . . . , Un
are independent random variables that are uniformly distributed on the interval [0, 1],

Cov (h (U1, . . . , Un) , h (1− U1, . . . , 1− Un)) ≤ 0.

Now consider estimation of the integral

W =
∫ 1

0

f(u)du

for some monotone function f on [0, 1] via

Ŵ = n−1
n∑
i=1

f(Ui)

versus the antithetic variable based estimator

W̃ = n−1
n∑
i=1

f(Ui) + f(1− Ui)
2

.

Show that EŴ = EW̃ = W while Var
(
Ŵ
)
≥ Var

(
W̃
)

.



EXERCISES 151

4.38. Use the methods from Problems 4.36 and 4.37 to obtain simulation approximations
of the integral

∫ 1

0
x2dx. For the stratified sample take a uniform partition of [0, 1] into

k subintervals. Repeat this experiment many times (e.g., 1000) using various values of k
(e.g., 5, 10, 15, etc.) and keep track of the results from each of the methods to where you
can report basic summary statistics (e.g., mean, median, standard deviation, inter-quartile
range) for all three approaches at the end of your study.





Chapter 5

Programming in R

5.1 Introduction

C++ provides a powerful programming language with sufficient flexibility and built-in fea-
tures to solve essentially all statistical computing problems. Nonetheless, it is not always the
best or most convenient choice for addressing many of the computational issues that arise
in statistics. In particular, the common C++ implementations are compiler-based which
means that source code must first be parsed by a compiler into a machine interpretable
form before it can be executed.

An alternative to the compiler system is provided by an immediate interpreter which
consists of software that reads the program in the given language while parsing and then
executing it along the way. These types of interpreted implementations have been trans-
lated into interactive programming with direct execution of commands either through the
command line or by import of code from files.

R is an example of an interpreted language. The immediate response that can be realized
through the R interactive setting is particularly helpful in the context of data analysis
where exploration (both numerical and graphical) must generally be used in conjunction
with inferential tools to obtain meaningful outcomes.

R is a functional language with object-oriented features that include a class structure. It
comes equipped with native, “precompiled” classes some of which are designed for statistical
analysis of data. It is also quite simple to import C++ code into R which allows one to
realize the best from both worlds and, at the very least, does not preclude the use of one
language over another.

Although both R and C++ have class structures, there are major differences between the
OOP model of R relative to that of C++. The differences (and similarities) will be explored
in more depth in the next chapter. The goal of the present chapter is to provide some of
the essential language details and, in particular, to develop the tools that are needed for
creating new R functions. The assumption here is that the reader is familiar with R’s basic
features. Some of the elementary aspects of the R language that are employed in this text
are discussed in Appendix B. Since one of the primary uses for R is analysis of data, we
begin in the next section by discussing some of R’s input/output utilities.

5.2 File input and output

A detailed discussion of the various input/output options that are available in R is pro-
vided by the R Data Import/Export manual available from the CRAN website. This section
provides a nonexhaustive overview of some of the most commonly used input/output tools
and those that will be useful throughout the remainder of the text. More details on any of
the R functions that appear in this section or elsewhere can be found by using the help or
? commands with the function’s name as the argument.

R has analogs of the basic Unix commands for managing and exploring a system’s di-
rectory tree. These include file.create, file.remove, file.append and file.copy that,
respectively, create a new file, remove an existing file, append one file (the second function
argument) to another file (the first function argument) and create a copy of a file. These
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functions take file paths as arguments and otherwise assume that the named file or files
reside in the current working directory. In this regard, the R functions getwd and setwd
that determine and reset, respectively, the location of the current working directory are
described in Appendix B.

The operations performed by file.create, file.remove and file.copy can also be
obtained with the Unix commands cat, rm and cp discussed in Appendix A. The primary
difference is that the former functions can be called directly from inside an R session while
the latter commands require use of the system function from Appendix B to pass a command
to a shell.

Let us begin by discussing the import of data into R. For the moment, assume that
the data of interest resides in a text file fileName in the directory pathToFile and that
the information in the file is formatted as a rectangular array with columns representing
variables and the rows corresponding to the observations. Then, the simplest option is to
proceed via the command

> A <- read.table(file = "pathToFile/fileName")

This reads in fileName as a data frame and then the assignment operator <- places the
result in the data frame object A. The data is presumed to be white-space delimited. If this
is not the case, another delimiter can be specified using the sep argument for read.table.
For example,

> A <- read.table(file = "pathToFile/fileName", sep = "\t")

would produce the same outcome if fileName were tab rather than white-space delimited.
Once A has been imported into R, it may be edited in a spreadsheet-type environment via
the command edit(A).

To illustrate a few of the features of read.table consider the group1.txt file shown below.

$ cat group1.txt

25 26 30 38

25 34 29 25

31 24 28 39

27 20 25 29

31 22 28 34

35 29 20 40

This rectangular array, or portions of it, can be imported directly via read.table. To read
in the entire file we can use

> A <- read.table("group1.txt")

> A

V1 V2 V3 V4

1 25 26 30 38

2 25 34 29 25

3 31 24 28 39

4 27 20 25 29

5 31 22 28 34

6 35 29 20 40

By setting the nrows argument of read.table to 3 only the first three rows are imported
as in

> A <- read.table("group1.txt", nrows = 3)

> A

V1 V2 V3 V4

1 25 26 30 38

2 25 34 29 25

3 31 24 28 39
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Only the name of the file was supplied to read.table. This works because the target file
group1.txt is in the current, as viewed by R, working directory. If that had not been the
case, it would have been necessary to provide the path to the file.

Notice from the example that the default action is to use the letter V along with the
column numbers as names for the variables and integers for the row names. There are
various ways this behavior can be customized. For example, to assign specific names to the
rows and columns of the group1.txt data, one might use

> read.table("group1.txt",col.names = paste("Sample", 1:4,

+ sep = ""), row.names= paste("row", 1:6, sep = ""))

Sample1 Sample2 Sample3 Sample4

row1 25 26 30 38

row2 25 34 29 25

row3 31 24 28 39

row4 27 20 25 29

row5 31 22 28 34

row6 35 29 20 40

There are two aspects of this operation that merit some additional comment. First, and
foremost, this example illustrates how names can be given to the rows and columns by
supplying values for the col.names and row.names arguments for read.table. Both ar-
guments can be assigned an array of character values of the same length as the number of
columns or rows. The other interesting feature is how the specific character vectors were
constructed in this case as will now be explained.

The paste function provides a very convenient tool for creating character variables from a
mix of numeric and character values. It performs a character conversion and concatenation
operation wherein all the elements supplied as arguments are converted to character mode
and then concatenated along with white-space separation into a single character object.
Thus, for example,

> paste("Sample", 1)

[1] "Sample 1"

is a way to combine the string “Sample” and the integer 1 to create the string “Sample 1”.
The problem with this particular choice for, e.g., a column name for the group1.txt data
is the presence of an embedded white space. In R syntactically valid names can use only
letters, digits, dots or underline characters and must start with a letter or a dot that is
not followed by a digit. Names which meet this requirement in our case can be obtained by
simply avoiding blank spaces. This is readily accomplished by setting the sep argument for
paste as "". For example, we could construct

> v <- c(paste("Sample", 1, sep = ""), paste("Sample", 2, sep = ""),

+ paste("Sample", 3, sep = ""), paste("Sample", 4, sep = ""))

> v

[1] "Sample1" "Sample2" "Sample3" "Sample4"

and then supply v as the value for col.names in read.table to produce the desired results.
Our particular approach uses an additional shortcut that exploits the way paste handles
vectors; i.e., vector arguments are concatenated term-by-term to return a character vector.
Consequently,

> paste("Sample", 1:4, sep = "")

[1] "Sample1" "Sample2" "Sample3" "Sample4"

creates the desired character vector in one command by concatenating “Sample” with the
vector
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> 1:4

[1] 1 2 3 4

produced by the sequence operator : from Appendix B.
Instead of assigning names to the rows and columns of an array on input, they may be

specified in the text file that contains the data. For our running example, this might take
the form of the group2.txt file listed below.

$ cat group2.txt

"Sample1" "Sample2" "Sample3" "Sample4"

"Row1" 25 26 30 38

"Row2" 25 34 29 25

"Row3" 31 24 28 39

"Row4" 27 20 25 29

#missing data in next 2 rows

"Row5" 31 n 28 34

"Row6" NA q 20 NA

Here the variable/column names are specified in a header and each row is given its own
name in the file. If, as is the case here, the header contains one fewer entry than the first
row, read.table automatically proceeds as if the first column contains row names.

There are three other new features that appear in the group2.txt file. First, there is a
comment inserted as designated by the R comment symbol #. A blank line appears after
the comment. We will see that read.table will ignore both comments and empty lines.

Of somewhat more substance is the presence of missing values in group2.txt. Missing
data are a common occurrence that arise from errors, nonresponse, etc. A language such
as R that provides data analysis tools must have effective means of dealing with missing
observations. In this regard, many R functions have an na.action or na.rm argument that
can be used to determine how missing values will be treated.

The default string that read.table uses for missing values is NA. Other values may also
be specified through the argument na.string that can be given a vector of character values.
To read in the group2.txt file one could therefore use

> A <- read.table("group2.txt", na.string = c("n", "q", "NA"))

> A

Sample1 Sample2 Sample3 Sample4

Row1 25 26 30 38

Row2 25 34 29 25

Row3 31 24 28 39

Row4 27 20 25 29

Row5 31 NA 28 34

Row6 NA NA 20 NA

Notice that the comment and blank line were ignored and that the symbols for all missing
values were translated to the R logical constant NA. Operations can now be performed on the
A data frame as usual provided the missing values are handled appropriately. For example,
a rote application of the mean function to our imported data produces

> mean(A)

Sample1 Sample2 Sample3 Sample4

NA NA 26.66667 NA

By instead setting the na.rm argument for mean to TRUE the missing values will be omitted
from the calculations resulting in the output



FILE INPUT AND OUTPUT 157

> mean(A, na.rm = TRUE)

Sample1 Sample2 Sample3 Sample4

27.80000 26.00000 26.66667 33.00000

The workhorse function that underlies read.table is scan. This function provides great
flexibility in reading input at the expense of generally having to manually reshape the data
that it imports. One handy use of scan is for reading command line input. To accomplish
this scan is used with no arguments at which point data may be entered directly until the
process is terminated by input of a blank line. As an illustration, a segment from an R
session is shown where scan was used to place the integers from 1 to 10 in a numeric object
v.

> v <- scan()

1: 1

2: 2 3

4: 4 5 6 7

8: 8 9 10

11:

Read 10 items

> v

[1] 1 2 3 4 5 6 7 8 9 10

More generally, an abbreviated prototype for scan is

scan(file , what , n)

The file argument is the name of the file to be read with a path specification if it does not
reside in the current working directory. The n argument determines the number of values
to be read from the file; the entire file will be read when this argument is not specified. The
what argument indicates the type of data that will be read and defaults to double(0). The
seemingly innocuous syntax for this default conveys more than it may seem and provides a
key point of access to the power and flexibility of scan.

As noted in Section 2.7, the primitive data types in R include character, integer and
logical as well as numeric that is also equivalent to double. These data types are also
classes in R with constructors that are invoked through use of the class name. In particular,
we see from

> integer(2)

[1] 0 0

> logical(1)

[1] FALSE

> numeric(3)

[1] 0 0 0

> character(2)

[1] "" ""

that calling one of these constructors with an integer n as its argument will produce a
vector of length n consisting of the default values for that data type. The special cases
character(0), integer(0), logical(0) and numeric(0) (or double(0)) produce length
zero or “empty” objects of type character, integer, logical and numeric, respectively.
Thus, we can understand the specification of what = double(0) in scan as being a means
of indicating that the data to be read will be of type numeric and, similarly, that using the
other options character(0), integer(0) or logical(0) will serve the same basic purpose.
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The following illustrates how scan can be used to read the data from our group1.txt file.

> A <- scan("group1.txt", what = integer (0))
Read 24 items
> storage.mode(A)
[1] "integer"
> A
[1] 25 26 30 38 25 34 29 25 31 24 28 39 27 20 25 29 31 22 28 34 35 29 20 40

By setting what equal to integer(0) the data has been imported as type integer rather
than double. Unfortunately, the rectangular structure in the file has been lost while it was
maintained by the read.table function. The row/column form can be restored directly
using the subscripting ability of the R language: e.g., with

> A <- cbind(A[seq(1, 20, by = 4)], A[seq(2, 20, by = 4)],

+ A[seq(3, 20, by = 4)], A[seq(4, 20, by = 4)])

that also uses the seq and cbind functions discussed in Appendix B.
A more direct route to preserving the structure in an input file is available through the

what argument for scan. In general, what can be given a list of types that correspond to
the different columns in the input file. For our example, this might take the form

> A <- scan("group1.txt", what = rep(list(integer(0)) ,4))

Read 6 records

> A

[[1]]

[1] 25 25 31 27 31 35

[[2]]

[1] 26 34 24 20 22 29

[[3]]

[1] 30 29 28 25 28 20

[[4]]

[1] 38 25 39 29 34 40

In specifying the value for what we used the R replication function rep. The prototype for
this function looks like

rep(x, times)

with x an R object and times the number of times the object is to be replicated. The rep
function returns an object of the same type as its x argument containing times copies of x.
For our case, using what = rep(list(integer(0)),4) is equivalent to

> scan("group1.txt", what = list(integer(0), integer(0), integer(0),

+ integer(0)))

Also, note that the object A returned by scan in this instance is a list which entails that
its component integer vectors must be accessed using the [[]] operator. The matrix form
for the data could be recovered with, e.g.,

> A <- cbind(A[[1]] , A[[2]] , A[[3]] , A[[4]])

While scan reads one data value at a time from a file, the readLines function will read
the file in one line at a time. An application of readLines to the group1.txt file produced

> A <- readLines("group1.txt", n = 2)

> A

[1] "25 26 30 38" "25 34 29 25"
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Here the parameter n that determines the (maximum) number of lines to read has been
set to 2 so that only the first two lines are read from the file. The readLines function is
designed to read text input and, as a result, returns each line from the file as a quoted
character string. In this particular case the result is a two-element character array. There
are R functions for dealing with strings that can be used to convert the string input into
numeric values as we will now demonstrate.

We have already considered the paste function that can be used to concatenate strings
and numbers as a string. It is the opposite of this operation that is needed now; the input
has been read as a string containing integers separated by white spaces and we need to
extract the integer substrings. This can be accomplished with the strsplit function as
demonstrated by

> strsplit(A, split = " ")

[[1]]

[1] "25" "26" "30" "38"

[[2]]

[1] "25" "34" "29" "25"

The desired result has been obtained by specifying the split argument for strsplit as a
white space. The output from strsplit has been returned in a list structure. To convert
the lists of character variables to integer values requires an application of the unlist
function and coercion/casting of the result to integer type; e.g.,

> as.integer(unlist(strsplit(A[1], split = " ")))

[1] 25 26 30 38

Then,

> rbind(as.integer(unlist(strsplit(A[1], split = " "))),

+ as.integer(unlist(strsplit(A[2], split = " "))))

[,1] [,2] [,3] [,4]

[1,] 25 26 30 38

[2,] 25 34 29 25

reproduces the two rows that were read from the group1.txt file. As an aside, it is worth
mentioning that R also has functions nchar and substr that count the number of characters
(including white spaces) and remove or replace a substring in a string.

The previous example marks our first exposure to the ubiquitous (in R) as function
that performs the R analog of the C++ casting operations. The R term for this process is
coercion. In general, an application of as.dataType to an object will cause R to disregard its
current data type and instead view the object as being of data type dataType provided such
a view is possible. The as.integer function we just employed is one example that can be
used to have character strings, numeric (i.e., double precision) values, etc., viewed as being
integer values. There are many choices for dataType with as.matrix (that coerces or casts
an object into a matrix object) and as.Date (that we will use to have character strings
treated as objects from the R Date class) representing examples that will be encountered
in this chapter. An application of the function methods with argument as produces a list
of over 100 associated functions.

It is also possible to import files with more “exotic” origins into R. As explained in Ap-
pendix B there are many add-on packages that have been written for R. Among these is
the foreign package that contains functions for both reading and writing files that corre-
spond to the statistics software packages Minitab, S-Plus, SAS, SPSS, Stata and Systat. A
significant omission from this list is Excel which, although not a statistics package per se,
is nonetheless a standard for storage and manipulation of data. Direct access of Excel files



160 PROGRAMMING IN R

is apparently somewhat problematic from R. Rather than attempting to do so directly, the
advice is to instead export the data from Excel in an R readable text format. For example,
an Excel spreadsheet can be saved in a .csv (comma separated values) format and then read
in via read.table with sep = ",". A specialized version of read.table named read.csv2
is available that works specifically on .csv files.

Data that are created in R can be retained from session to session by saving and then
reloading a workspace image as described in Appendix B. The end result will still be that
the data in the workspace are loaded into memory having the consequence that special
techniques are needed for R to work with very large or massive data sets. One option is to
work directly with relational databases created by some database management system. The
R packages RMySQL, ROracle, RPostgreSQL, RSQLite, DBI and RODBC can be used for
this purpose. The filehash package discussed in Section 9.2.4.3 provides another option.

There is an output version of read.table called write.table that can be used to output
a data frame or matrix to a text file. For example,

> write.table(A, "pathToFile/fileName")

writes a data frame or matrix A to a text file fileName in the directory pathToFile complete
with row and column headings. The command

> write.table(A, "pathToFile/fileName",col.names = FALSE ,

+ row.names = FALSE)

will write A to fileName sans the R row and column designations. An excerpt from an R
session gives an illustration of both of these options.

> A <- read.table("group2.txt", na.string = c("n", "q", "NA"))

> write.table(A, "temp.txt")

> system("cat temp.txt")

"Sample1" "Sample2" "Sample3" "Sample4"

"Row1" 25 26 30 38

"Row2" 25 34 29 25

"Row3" 31 24 28 39

"Row4" 27 20 25 29

"Row5" 31 NA 28 34

"Row6" NA NA 20 NA

> write.table(A, "temp.txt", col.names = FALSE , row.names = FALSE)

> system("cat temp.txt")

25 26 30 38

25 34 29 25

31 24 28 39

27 20 25 29

31 NA 28 34

NA NA 20 NA

The output analog of scan is cat. This function outputs its arguments in a general sense
that includes writing to files. An example of this feature is provided by
> A <- read.table("group1.txt")
> cat(as.matrix(A), "\n", file = "temp.txt")
> system("cat temp.txt")
25 25 31 27 31 35 26 34 24 20 22 29 30 29 28 25 28 20 38 25 39 29 34 40

The group1.txt file has been imported as a data frame using read.table. Then, cat is
used to write it to the text file temp.txt. The fact that cat does not work with lists means
it cannot be used directly with a data frame. To account for this, the data frame object
A was converted to a matrix object using the as.matrix version of the as function. The
Unix version of cat then reveals that the R cat function has ignored the array structure
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of the data when writing it to a file. The use of the linefeed character “\n” in the R cat
function signals the end of a line so that the Unix cat will produce a carriage return when
it is applied to temp.txt.

The function write is a cat “relative” for (primarily) writing matrix objects to files while
retaining their array structure. In terms of our group1.txt example, using write produces
results such as

> A <- read.table("group1.txt")

> write(t(as.matrix(A)), file = "temp.txt", ncolumns = 4)

> system("cat temp.txt")

25 26 30 38

25 34 29 25

31 24 28 39

27 20 25 29

31 22 28 34

35 29 20 40

The fact that write is based on cat makes it necessary to transpose the matrix as.matrix(A)
(using the t function) in order to have the contents of the output file look like its R repre-
sentation. Both write.table and write have a logical append argument that defaults to
FALSE. To write to an existing file and preserve its existing contents, the append argument
can be set to TRUE.

An issue that has so far been overlooked is the precision that R provides for output of
data. The write.table function writes real numbers to the maximum possible precision.
In contrast, write uses the precision of the current R session as can be seen from

> write.table(cos(1:3) , file = "temp.txt", col.names = FALSE ,

+ row.names = FALSE)

> system("cat temp.txt")

0.54030230586814

-0.416146836547142

-0.989992496600445

> getOption("digits")

[1] 7

> write(cos(1:3) , file = "temp.txt")

> system("cat temp.txt")

0.5403023 -0.4161468 -0.9899925

> options(digits = 14)

> write(cos(1:3) , file = "temp.txt")

> system("cat temp.txt")

0.54030230586814 -0.41614683654714 -0.98999249660045

Here the values of the cosine function at 1, 2 and 3 have been written to the file temp.txt
using both write.table and write. Using write gives only seven significant digits of
accuracy. This results from the digits option for the current environment being set at 7 as
determined by the getOptions function. To alter the precision for write, one can change
the digits options for the current environment as was done here to produce 14 digits of
precision in the output. To see all the current option settings enter options().

The use of cat is not restricted to writing data to files. It provides one means of writing
output from, e.g., functions to (R) standard output as illustrated by

> cat("a", "b", 1:3, "\n")

a b 1 2 3

The linefeed character is also necessary here to produce a prompt on a new line for subse-
quent input. Note that the quotes have been dropped from the characters that appear in
the output. In contrast, the R print function could have been used to give
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> print(c("a", "b", 1:3))

[1] "a" "b" "1" "2" "3"

Quoted output is the default option in this latter instance. To suppress this behavior one
can set the quote argument to print as FALSE.

The save.image function was discussed in Appendix B as a means to save an R workspace
for later use. Actually, this is a special case of the more general R function save that writes
a representation of an R object to a file where it can later be accessed using the load
function. The following group of commands demonstrates how this works with a simple
array of integers.

> A <- 1:5

> B <- 6:10

> save(A, B, file = "AB.RData")

> rm(A, B)

> temp <- load("AB.RData")

> temp

[1] "A" "B"

> A

[1] 1 2 3 4 5

> B

[1] 6 7 8 9 10

After creating the arrays A and B, an R decipherable representation for the two vectors is
stored in the file AB.RData and the original arrays are destroyed using the remove function
rm. The information about A and B is then successfully recovered from the file using the load
function. Note that the return value from load is an array whose elements are character
strings giving the name of the objects that were loaded.

In some instances it is useful to output code or functions that have been written inside
of R, e.g., for editing. A command such as

> dump("functionName", "pathToFile/fileName")

can be used to accomplish this. (Note that the quotes around functionName are necessary
here.) This will write a text representation for the function functionName into the file
fileName that will be created (if it does not already exist) in the directory pathToFile. To
recover or read such a file the command is source. So, in this instance

> source("pathTofile/fileName")

brings the contents of fileName into the current R workspace. This feature is designed to
work with R code and the input file’s content will also be parsed to check for syntax errors.

The output from an R session or program can be collected in a text file with the sink
function. A condensed prototype for this function is

sink(file , append , split)

The file argument is the name of the file that will hold the output while append and
split are logical variables that both default to FALSE. A specification of append as TRUE
means that the output will be appended to any that already exists in the output file while
a choice of TRUE for split means that output will be sent to standard output as well as the
designated file. The use of sink is illustrated in the next example.

> sink("temp.txt")

> acos(0)

> sink()

> sink("temp.txt", append = TRUE , split = TRUE)

> cos(acos(0))
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[1] 6.123234e-17

> sink()

> system("cat temp.txt")

[1] 1.570796

[1] 6.123234e-17

Initially, the output is written only to the target file temp.txt after which the connection
to the file is closed by invoking sink with no arguments. Output is then appended to the
temp.txt file while being echoed to the command line.

It is also possible to open a connection to a file that allows for reading, writing or ap-
pending of input and output. This approach is treated in depth in Chapter 10 of Chambers
(1998) and Section 4.3 of Gentleman (2009). Using a connection is more efficient, e.g., when
data is being repeatedly read from or written to a file. The read.table and write.table
functions actually open connections to the files provided as their arguments that are closed
upon conclusion of their assigned reading or writing task. More generally, a connection can
be given, rather than a file name, for the file argument for these functions as well as for
scan and cat.

The file command opens a connection that remains open for reading, writing or both
until it is explicitly closed. In its simplest form an application of file might appear like

connectionName <- file("pathTofile/fileName", open = "r")

This would open a connection to fileName in the directory pathToFile for reading as a result
of the r specification of the open argument. To write or append to fileName, open can be
specified as w or a, respectively. A connection is closed with

close(connectionName)

where connectionName is the name that has been assigned to the connection being closed.
The file function was used along with the simple text file group1.txt to produce

> A <- read.table("group1.txt")

> write.table(A, file = "temp.txt", col.names = FALSE ,

+ row.names = FALSE)

> fIn <- file("temp.txt", open = "r")

> read.table(file = fIn , nrows = 1)

V1 V2 V3 V4

1 25 26 30 38

> scan(file = fIn , n = 3)

Read 3 items

[1] 25 34 29

> close(fIn)

> fOut <- file("temp.txt", open = "a")

> write.table(A[1,], file = fOut , col.names = FALSE ,

+ row.names = FALSE)

> write.table(A[2,], file = fOut , col.names = FALSE ,

+ row.names = FALSE)

> close(fOut)

> system("cat temp.txt")

25 26 30 38

25 34 29 25

31 24 28 39

27 20 25 29

31 22 28 34

35 29 20 40

25 26 30 38

25 34 29 25
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First the data in group1.txt is written to the file temp.txt and then a connection is opened
for reading (i.e., open = "r") from this new file. A single line is read from the file using
read.table followed by an application of scan to read three more elements. The output
from scan reveals that new read operations begin at the point in the file where the previous
read operation concluded. After closing the input connection fIn with the close function,
file is used again to open an output connection for appending (i.e., open = "a") to the
temp.txt file. The first two lines of the file are then appended to its end and the connection
is closed. The output illustrates that the append operations were successful and that, like
reading, writing operations are performed sequentially starting at the end of the most recent
insertion into a file.

5.3 Classes, methods and namespaces

R comes equipped with a large number of precompiled classes and associated methods. The
command class(objectName) can be used to determine the class of an object objectName.
To obtain a list of all classes that are available in the current R workspace use the command
getClasses().

Every R object has two attributes: namely length and mode. The meaning of the length
characteristic is self-explanatory for most classes. Values for mode indicate storage types
that include numeric, logical, function, expression and list. To determine the length
or mode of an object A use length(A) and mode(A).

As in C++, objects in R are created using R supplied constructors. The language does
have a new command with, e.g.,

> A <- new("matrix")

> A

<0 x 0 matrix >

having the effect of creating a new matrix object A of the default 0× 0 size. The use of new
will be explored in the next chapter. For now the focus will be on using the class constructors
that are already available for pre-existing classes.

The class constructors can be expected to have the same name as the class although that
is not strictly necessary. The arguments that are needed for a constructor, or any other
function, can be determined by using the args function with the name of the function of
interest as its argument: e.g.,
> args(matrix)
function (data = NA, nrow = 1, ncol = 1, byrow = FALSE , dimnames = NULL)
NULL

More generally, in most cases the entire function listing is shown if only its name is entered
on the command line. Noteworthy exceptions include arithmetic operators. The get function
can also provide useful information as in

> get("%%")

function (e1, e2) .Primitive("%%")

The output indicates that %% is a binary function (in view of the two arguments e1 and
e2). The presence of the .Primitive function indicates that %% is implemented within the
internal C code on which R is based. This and the related .Internal function will be seen
on occasion in R function listings. Both functions are the province of R developers and, as
such, fall outside the realm of this text.

The previous output from args tells us that the matrix class constructor has five ar-
guments: data, nrow, ncol, byrow and dimnames whose default values are NA, 1, 1, FALSE
and NULL. We have already discussed the NA constant. The reserved words TRUE and FALSE
are the R Boolean constants. As in C++, TRUE and FALSE have numerical values of 1 and
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0. The default choice of NULL for the dimnames argument corresponds to another reserved
word in R that represents a null object. A “value” of NULL is often used to initialize an
object that will be assigned a meaningful value elsewhere in a program.

The argument list for the matrix constructor tells us the information that can be specified
to create a nondefault matrix object. The purpose of the first three arguments is relatively
clear with data representing a collection of one or more real numbers that are to provide
the entries in the matrix, nrow being the number of rows and ncol the number of columns.
Thus,

> A <- matrix(data = 0, nrow = 3, ncol = 3)

produces a 3× 3 matrix of all zero entries. The same effect is obtained from

> A <- matrix(0, 3, 3)

which shows that explicit use of the argument names is not necessary provided they are
entered in the same order they appear in the function definition.

The byrow argument for the matrix class constructor is used to specify whether elements
of the data argument are to be used to fill in the matrix object by rows (when byrow
= TRUE) or by columns (when byrow = FALSE).∗ Finally, dimnames is an argument giving
names for the rows and columns of the matrix that will be discussed in more detail below.

As an example, the command line entry

> A <- matrix(scan("myFile"), ncol = 3, byrow = TRUE)

would read a three-column data set with an arbitrary number of rows from the file myFile
in the current directory and place it in the matrix object A. Note that the scan function
treated the data in myFile as a one-dimensional array of length 3×nrow. The array was
then reshaped via the matrix class constructor.

Some of the other standard R classes with their associated constructors are listed below.
• Class vector: vector(mode, length), with mode an R storage type such as character,
list, logical and numeric.

• Class data frame: data.frame(object). Here object must have components that are
numeric vectors, matrices, lists or other data frames.

• Class expression: expression("expression")
• Class factor: factor(x, levels)

• Class formula: formula(object). The object in this case is generally an R expression
with a call to the ~ operator that is used to separate the left- and right-hand sides in
model formulae.

• Class lm (i.e., linear models): lm(formula, data)

The constructors generally have additional arguments beyond those that have been listed
here that can be found, e.g., on the corresponding R help pages.

The list class provides another important R data structure where objects are obtained
by combining elements from various classes. A function in R is allowed to return only one
object as output.† As a result, lists turn out to be a key aspect of the language that provide
a vehicle for bundling together different objects that might be produced in an analysis into
a single object (namely, a list) that can be returned at the end of computation.

∗ The default choice of FALSE for byrows stems from the fact that matrices in R are stored in column major
order. In contrast, C/C++ uses row major order. To see the difference, let a1, a2, . . . , amn be a sequence
of numbers that comprise the elements of an m× n array. With column major order the (i, j)th element
of the matrix will be a(j−1)m+i while for row major order it will be a(i−1)n+j .
† This statement is not entirely true in that the R return function can return multiple arguments (separated

by commas) that it automatically packages in a list structure. But this practice is discouraged with a
warning message.
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The code segment below creates two lists and gives names to their elements.

> a <- list("a", "b")

> names(a) <- c("a1", "a2")

> b <- list(b1 = "c", b2 = "d", b3 = "e")

> names(b)

[1] "b1" "b2" "b3"

> class(a[1])

[1] "list"

> class(a[[1]])

[1] "character"

> class(a$a1)

[1] "character"

The names for the list objects have been assigned in two ways: using the names function
and directly in the list class constructor. As seen from this example, list elements may be
accessed via the dereferencing operator [[]] (which is always possible) or by their names
using $ if names have been assigned. Dereferencing in this manner, returns the actual object
that was stored in the list. Note that using the [] operator with a list, instead of [[]], will
return a sublist that corresponds to the specified indices. In this particular case, a[1] is a
one-element list while a[[1]] is the character object that provides the sole component of
the a[1] list.

Let us now return to the discussion of the dimnames argument for the matrix class. This
is a list that consists of two character strings giving the names for the rows and columns
of the matrix. The list can be supplied as an argument on creation of a matrix or specified
after the fact via the dimnames function. This is illustrated by the next example where a
2×3 matrix is created and dimnames are assigned using both approaches.

> dimA <- list(c("R1", "R2"), c("C1", "C2", "C3"))

> A <- matrix(1:6, 2, 3, dimnames = dimA)

> dimnames(A)

[[1]]

[1] "R1" "R2"

[[2]]

[1] "C1" "C2" "C3"

> dimnames(A) <- list(c("C1", "C2"), c("R1", "R2", "R3"))

> A <- t(A)

> A

C1 C2

R1 1 2

R2 3 4

R3 5 6

> A["R2", "C1"]

[1] 3

Notice in this example that using the dimnames function without an assignment returns the
current value of dimnames for the object supplied as its argument. The values for dimnames
are seen to appear in the display of the matrix A that was created in the example and
were used to access the elements of the matrix by supplying them as arguments to the
subscripting operator []. It is also seen that dimnames really does correspond to the names
of dimensions through the way they adjust automatically to the replacement of the matrix
A with its transpose t(A).

As will be seen in the next chapter, the class concept in R closely parallels that of C++
in terms of the way it deals with data members. The case of “member” functions is another
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matter. In a certain sense, there is no direct analog of the C++ member functions or
methods for an R class. That is, functions are not segregated as belonging to only a single
class. Instead, a function is itself an object with an independent existence that is free of such
restrictive ties. This allows for the creation of something called generic functions where the
R language interpreter determines which function is appropriate by examining the types of
the arguments in the function call. There are two systems that produce generic functions
in R: S3 and S4. Both of these will be discussed in Chapter 6.

For similar reasons to those for C++, R has a namespace system that is used by some
packages. More generally, any R package can include variables with names that can mask
those from other packages that are being used in a current R session. The way to resolve such
name clashes is with the R scope/namespace resolution operator :: that provides access to
exported variables from a package via syntax of the form

packageName ::name

with name the name for a variable or function and packageName the name of the package
where name resides. The term exported variables refers to variables/functions that a package
creator has made available for package users.

5.4 Writing R functions

We now have enough background to begin to write our own R functions. An R function
definition will have the basic form

functionName <-function(arguments ){

statements and expressions

}

A value can be explicitly returned from any point within a function (thereby terminating
computation) by using a return statement similar to what transpires in C++. Otherwise,
the return value is whatever is produced by the last line of the function definition. As an
illustration, the function below takes a matrix argument A and returns a list containing the
product of A with its transpose t(A) and the number of rows of the matrix.

myFunc <- function(A){

list(A%*%t(A),length(A[ ,1]))

}

To apply this function to a particular matrix B we would use myFunc(B).
The body of a function will generally consist of expressions using the basic R operators

and class objects in conjunction with various execution control structures created by for
and while loops and if and if/else statements. The for loop in R looks like

for(varName in sequence){

statements and expressions

}

with sequence representing a vector of values that varName can assume. In contrast, a
while loop has the form

while(testExpression ){

statements and expressions

}

with testExpression an expression that evaluates to TRUE or FALSE.
Additional control over loop iteration can be obtained by using break and next state-

ments. When break is encountered the entire loop will terminate while next moves the
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loop to the next iteration step. The repeat construct provides a simple loop structure that
involves no logical conditions. It must be terminated with a break statement.

Conditional execution statements have the usual form in R: e.g., either

if(testExpression ){

statements and expressions

}

or

if(testExpression ){

statements and expressions

} else {

statements and expressions

}

There is also an R analog of the C/C++ switch statement that was mentioned in Section
3.4. It is discussed in Section 2.6 of Venables and Ripley (2000) and the corresponding R
help page. The ifelse function in R is a vectorized relative of the C/C++ conditional
operator (cf. Section 3.4). It has the syntax

ifelse(testExpression , yes , no)

with yes and no vectors providing values that will be returned when the elements of the
vector testExpression of Boolean variables evaluate to TRUE or FALSE, respectively. The
values in yes and no will be recycled if either vector is too short.

As in C++ the curly braces in a loop or conditional expression are not needed if the
corresponding code is a single line: e.g.,

x <- 3

for(i in 1:3)

if(x < 5) x <- x + 1

will run without error. Of somewhat more importance is the syntax involving else in an
if/else block. The else term must be on the same line as the closing brace for the preceding
if phrase in an interactive session. For example, consider

> x <- 5

> if(x < 5){

+ x <- x + 3

+ } else

+ x <- sqrt(x)

> x

[1] 2.236068

that will replace the value of a variable x with the square root of x + 3 or the square root
of x depending on whether or not its value is less than 5. If we forget to place the else
term on the same line as the last curly brace the outcome is

> x <- 5

> if(x < 5){

+ x <- x + 3

+ }

> x

[1] 5

Entering a new line after the last brace produces a syntactically complete expression and the
interpreter has no way of knowing that there is more code yet to come. So, it simply executes
the expression that it has to that point and returns the command prompt indicating that
it is done.

Listing 5.1 illustrates some of the ideas that were discussed above.
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Listing 5.1 sumFunc.r

#sumFunc.r

sumFunc <- function(x){

n <- length(x)

x <- as.integer(x)

sum <- 0

for(i in 1:n){

if(!x[i]%%3)

sum <- sum + x[i]

else sum <- sum + 3*x[i]

if(sum > 300){

print(paste("Your sum of", sum, "exceeds 300"))

break

}

}

sum

}

The function in Listing 5.1 takes a vector as input and then performs some meaningless
calculations that produce a return value that has the property of, for example, being an
integer multiple of 3. The first step in the process is to determine the length of the input
vector and convert all its elements to integers. Then, the program steps through all the
elements of the transformed vector adding them to a running sum if they are 0 modulo 3
(i.e., if they are divisible by 3 without remainder) and adding in three times their value
otherwise. If the sum exceeds 300 execution is terminated via a break statement. Some
output from the sumFunc is

> sumFunc ((10 + pi):20)

[1] 270

> sumFunc ((30 + pi):50)

[1] "Your sum of 387 exceeds 300"

[1] 387

A somewhat more complicated (and meaningful) example is in Listing 5.2. This function
carries out unprotected pairwise comparisons between group means using pooled standard
deviation estimators. It takes as input a matrix (or data frame) whose columns correspond to
samples from different populations. The program then employs the R mean and var functions
discussed in Appendix B to compute the sample means and variances that correspond to
the columns of the input array. Setting the logical parameter na.rm equal to TRUE causes
the mean and var functions to ignore (or remove) missing values. The function is.na is
applied to each column of the input matrix to count the number of missing observations in
each sample. This returns vectors of Boolean variables having the same length as the input
arguments. The entries in the vectors evaluate to TRUE for every NA that is encountered and
are FALSE otherwise. The sum function treats the Boolean variables as numeric with value 0
for FALSE and 1 for TRUE with the result that summing such a vector produces the number
of TRUE values. In this particular case the number of TRUEs is the number of missing values.

Listing 5.2 meanComp.r

#meanComp.r

meanComp <- function(A){

B <- vector(length = ncol(A)*(ncol(A) - 1)/2)

count <- 1

for(i in 1:(ncol(A) - 1)){

for(j in (i + 1):ncol(A)){
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n1 <- nrow(A) - sum(is.na(A[, i]))

n2 <- nrow(A) - sum(is.na(A[, j]))

m1 <- mean(A[, i],na.rm = TRUE)

s1 <- var(A[, i],na.rm = TRUE)

m2 <- mean(A[, j], na.rm = TRUE)

s2 <- var(A[, j], na.rm = TRUE)

n <- n1 + n2 - 2

sdFactor <- sqrt(n1^{-1} + n2^{-1})

sPooled <- sqrt(((n1 - 1)*s1 + (n2 - 1)*s2)/n)

mDiff <- m1 - m2

B[count] <- mDiff/(sPooled*sdFactor)

count <- count+1

}

}

B

}

An application of meanComp to the data from the group2.txt file discussed in Section 5.2
produces output that suggests there are significant differences between the sample mean for
the fourth sample’s parent “population” and those of the other three.

> A <- as.matrix(read.table("group2.txt",

+ na.string = c("n", "q", "NA")))

> meanComp(A)

[1] 0.5982930 0.5502351 -1.7391402 -0.2231713 -1.7602455 -2.1686961

The format used in printing the output from meanComp is the default for the R installation
that was used for this example. This will suffice for our purposes here and elsewhere. More
control over formatting can be obtained with the R functions format, formatC, prettyNum
and sprintf.

The previous example could have been coded more directly using R’s apply function from
Appendix B and the next section. There are, of course, a number of pre-existing methods for
carrying out mean comparisons that are either native to R or accessible by downloading the
package multcomp. For example, the TukeyHSD function (available in the R base package
that comes with the initial R installation) performs mean comparisons using the “Honest
Significant Difference” method. It works with, e.g., an object returned from the R function
aov that carries out an analysis of variance.

The R language has an exception or condition mechanism that bears some similarity to
the C++ version discussed in Section 3.8.7. The R help page on this subject provides one
source of information while the text by Gentleman (2009) gives an accessible introduction
to the topic.

The simplest entry point to the R exception management facility is through the tryCatch
function. Exceptions/conditions in R come in the form of message, warning and error
objects. These are instances of classes that provide information about a condition that
occurred in the execution of a program. In its simplest form, the tryCatch function is
comprised of an expression to be evaluated and one or more handler functions that define the
action or actions to be taken when a particular condition occurs. If there are no conditions
generated by evaluating the expression, the results of the evaluation are returned. Otherwise,
a search is made to find a handler that matches the condition.

One place where errors might occur is on data input. These could come in the form of
errors in the data (Exercise 5.5) or perhaps an incorrect file name. For example, the excerpt
below from an R session shows the results of an unsuccessful attempt to read the group1.txt
file from Section 5.1.
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> scan("grop1.txt", quiet = TRUE)

Error in file(file , "r") : cannot open the connection

In addition: Warning message:

In file(file , "r") :

cannot open file ‘grop1.txt’: No such file or directory

Both a warning and an error object are generated by our spelling error. The tryCatch
function can be used to recover from this mistake by “catching” either of the two conditions
and instituting an appropriate fix. A function that does this is given below.

readFile <- function(fileName ){

out <- tryCatch(suppressWarnings(scan(fileName)),

error = function(e){

print(e)

print("Please enter a file name followed by a return")

newName <- scan( , what = character(0), quiet = TRUE)

readFile(newName )})

out

}

Here the use of scan is encapsulated inside tryCatch. The suppressWarnings function has
been used so that only error (and not warning) condition objects will be generated when
problems are encountered. These will be handled by a function that i) prints the error
object, ii) asks for and then uses scan to acquire a new (hopefully) valid file name and
then iii) attempts to read using the new name with a recursive call to readFile. The quiet
argument for scan is set to TRUE when reading the new file name to suppress the output
it would otherwise have produced. In the context of the group1.txt example this gives the
desired result: namely,

> A <- readFile("grop1.txt")
<simpleError in file(file , "r"): cannot open the connection >
[1] "Please enter a file name followed by a return"
1: "group1.txt"
2:
Read 24 items

Let us again consider the dimnames example of the previous section. There the dimnames
function was apparently used on a matrix A in two forms: to wit,

> dimnames(A)

and

> dimnames(A) <- list(c("C1", "C2"), c("R1", "R2", "R3"))

The first form merely returns the list object that contains the dimnames for A without
altering the matrix object. In contrast, the second actually modifies A by changing its
dimnames to the value on the right-hand side of the <- operator. This raises two questions:
how can one function perform two quite different operations and how can a function that
supposedly passes by value, as would be expected in a functional language, alter its ar-
guments. The answer is that appearances have (possibly) fooled us. First, there are two
functions at work: the dimnames function that returns the dimnames list and a replacement
function dimnames<- that assigns values to the list elements. The replacement “version” of
dimnames then reformulates its operation so that the altered matrix is the output, rather
than input, of a function call thereby preserving the functional language paradigm.

The underlying syntax for the replacement form of dimnames that we used is

> A <- "dimnames<-"(A, value = list(c("C1", "C2"),

+ c("R1", "R2", "R3")))
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That is, this is the basic R translation of the command. The quotes are necessary to keep
the R interpreter from attempting to parse the <- symbol.

The dimnames function provides a model for how to write replacement functions. The
requirements are that
a) the function name (in quotes) must end with <-,
b) the final argument of the replacement function must be named value and
c) the replacement function must return the object that it modifies.
The succeeding code uses this approach to create a function that replaces a vector by
a trimmed version where only values from a specified middle percentage of the data are
retained.

"trim<-" <- function(x, value){

x <- x[(quantile(x, value) <= x & x <= quantile(x, 1 - value ))]

x

}

The R function quantile is used to compute the 100(value) and 100(1 - value) per-
centiles from the input data vector x. Then, the subset of values that fall between these two
percentiles is extracted using the subsetting operator with a logical vector argument.

An example of using trim is given below.
> set.seed (123)
> x <- rnorm(10)
> mean(x, trim = .1)
[1] 0.03703159
> trim(x) <- .1
> x
[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 0.46091621
[7] -0.68685285 -0.44566197
> mean(x)
[1] 0.03703159

A pseudo-random sample of 10 standard normals is generated and the 10% trimmed mean is
computed using the R mean function with trim argument equal to .1. Our trim replacement
function is then used to trim off 10% of the values from each end of the data; i.e., only the
middle 80% of the data are retained. An application of the mean function now produces the
same value as for the 10% trimmed version of mean.

The R language includes a function system.time that can be employed for run-time
calculations much like the clock function in C++. One calls system.time by providing
it with the expression to be evaluated as its argument. The output is an object of class
proc time whose first three members are total user CPU time, system CPU time of the
current R process and elapsed time since the process was started. In terms of our meanComp
function from Listing 5.2 we can produce results such as

> set.seed (123)

> A <- matrix(rnorm(5*10^5), 10^5, 5)

> system.time(meanComp(A))

user system elapsed

0.132 0.018 0.150

The meanComp function was applied to five samples of 100,000 observations from a standard
normal distribution and the analysis was performed in .15 seconds.

As noted in Section 5.2, syntactically valid names in R consist of letters, digits, periods
or underline characters and must start with a letter or period that is not followed by a digit.
Apart from these conditions, any name is fair game. This allows for the possibility of using a
pre-existing name for an R constant or function. The result is that the new function’s name
will mask that of the corresponding R function. All is not lost, however, as the masking takes
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place only in the current R environment. The hidden function can still be accessed using
the scope resolution operator from the previous section with the name of the package where
the masked function resides. Suppose, for example, that a spelling challenged statistician
creates a version of R’s built-in sign function that returns the sign of its numeric argument
such as.

> sin <- function(x) ifelse(x < 0, -1, 1)

A test of the new function produces

> sin(3); sin(-3); sin(pi)

[1] 1

[1] -1

[1] 1

(Note the use of a semicolon here to place more than one expression on a command line.)
The output reveals that the function is operating “correctly” and also that we have lost the
ability to directly use R’s built-in sine function. The sine version of sin resides in the base
package for R and must now be called using the namespace resolution operator with

> base::sin(pi)

[1] 1.224647e-16

After examining a dictionary and the Introduction to R manual, our statistician might decide
to remove his/her redundant function from the workspace. This can be done by applying
rm to the name that needs to be removed: e.g.,

> rm(sin)

> sin(pi)

[1] 1.224647e-16

In some instances it is useful to suppress the printing of output. The invisible function
provides a means to create this effect. One merely applies invisible to the object or objects
that will be returned by a function; the output will then be returned but not printed. The
function below represents another attempt at recreating R’s sign function.

f <- function(x){

if(x < 0) return(-1)

if(x > 0) return(1)

0

}

Output from using this function might look like

> f(-1); f(1); f(0)

[1] -1

[1] 1

[1] 0

In contrast, a reworking of f as

f <- function(x){

if(x < 0) return(invisible(-1))

if( x > 0) return(1)

invisible(0)

}

uses invisible in strategic locations to produce

> f(-1); f(1); f(0)

[1] 1

> 2*f(-1)

[1] -2
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There are at least three ways to physically create the code for an R function. The first is
to use the command line. We have already seen that in this setting R gives a continuation
“+” prompt until you have entered a syntactically complete expression (e.g., a complete
function definition including the closing braces). The second is to use the dump and source
functions discussed in Section 5.2. The third method is to use the edit command which
connects to text editors that are available on the operating system.

The fact that R has the same basic looping and conditional statements as C++ means
that it is possible to write C++ type code in R. This is generally not the best option as
there are many built-in R functions to perform standard (and nonstandard) tasks that can
provide more compact and faster code. Somewhat more generally, developing procedural-
type code (such as from C/C++) in R runs counter to the functional nature of the language
wherein one seeks (existing, if possible) functions that can be used in composition to solve
a problem of interest. Illustrations of this will be seen in the next two sections and in the
exercises.

5.5 Avoiding loops in R

Many of the functions in R have internal workings that rely on C or Fortran code. The loops
in such lower-level languages are generally faster than explicit R loops and, consequently,
more efficient code can often be produced by replacing explicit R loops with expedient calls
of existing R functions. To do so it is necessary to know

a) the right functions to select and

b) how to apply them.

There is no easy fix for part a) in that R is a rich language that comes equipped with many
functions. There are numerous texts about R and R packages whose study can increase
one’s R function “vocabulary”. Examination of the source code for R functions can also be
a useful learning experience. There is somewhat more that can be said about part b) and
this section explores that issue through discussion of the apply family of functions and the
outer and vectorize functions.

The apply function is discussed in Section 1 of Appendix B. It applies a specified function
to the rows or columns of an array. There are also lapply and sapply functions that operate
on lists. These two functions have the same basic prototype: e.g.,

lapply(X, FUN)

with X being a list object and FUN the function that is to be applied to its components. The
difference is in the output; lapply always returns a list while sapply will return a vector
or matrix object if possible. Results from an R session illustrate this difference.

> A <- list(1:10 , 20:30)

> lapply(A, FUN = sum)

[[1]]

[1] 55

[[2]]

[1] 275

> sapply(A, FUN = sum)

[1] 55 275

The R sum function that was used here is discussed in Section 1 of Appendix B.
When the elements of a list are themselves lists, a recursive apply function rapply can

be used for which an abbreviated description is
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rapply(object , f)

The object argument is a list of lists and f is the function to be applied. The use of rapply
is demonstrated below.

> A <- list(list(1:10 , 20:30) , list(list(40:50 , 60:70) , 80:90) ,

+ 100:110)

> rapply(A, f = sum)

[1] 55 275 495 715 935 1155

Note that the action of rapply on a non-list object is just to apply f (or sum in this case)
to the object while it continues to recursively work on any list of lists it encounters inside
its object argument.

The mean comparison example of the previous section is one instance where apply and
sapply can be used to produce more efficient code than a loop implementation. With this
in mind we wrote a function to carry out pairwise mean comparisons.

Listing 5.3 meanCompVec.r

#meanCompVec.r

meanCompVec <- function(A){

indexList <- list()

#fill indexList with all the index pairs

count <- 0

for(i in 1:(ncol(A) - 1)){

for(j in (i + 1):ncol(A))

indexList [[count + j - i]] <- c(i, j)

count <- count + ncol(A) - i

}

#compute the statistics for the columns

meanVec <- apply(A, MARGIN = 2, FUN = mean , na.rm = TRUE)

varVec <- apply(A, MARGIN = 2, FUN = var, na.rm = TRUE)

nVec <- apply(A, MARGIN = 2, FUN =

function(e) length(e) - sum(is.na(e)))

#now compute the t statistics

sapply(indexList , FUN = function(e){

n1 <- nVec[e[1]]

n2 <- nVec[e[2]]

mDiff <- meanVec[e[1]] - meanVec[e[2]]

n <- n1 + n2 - 2

sdFactor <- sqrt(n1^{-1} + n2^{-1})

sPooled <- sqrt(((n1 - 1)*(varVec[e[1]]) +

(n2 - 1)*(varVec[e[2]]))/n)

mDiff/(sPooled*sdFactor)

} )

}

The first step in Listing 5.3 is to create a vector of list objects indexList that holds the
index pairs for the columns of A that will be used to carry out the comparisons. For example,
when the data matrix A has five columns the indexList array looks like

> list.tree(indexList)

indexList = list 10 (392 bytes)

. [[1]] = integer 2= 1 2

. [[2]] = integer 2= 1 3



176 PROGRAMMING IN R

. [[3]] = integer 2= 1 4

. [[4]] = integer 2= 1 5

. [[5]] = integer 2= 2 3

. [[6]] = integer 2= 2 4

. [[7]] = integer 2= 2 5

. [[8]] = integer 2= 3 4

. [[9]] = integer 2= 3 5

. [[10]] = integer 2= 4 5

The list.tree function used here performs pretty printing for lists. It is available through
the Hmisc package that, as its name suggests, contains an eclectic collection of useful func-
tions for data analysis, graphics, etc.

The next step in the meanCompVec function is to compute the means, variances and sample
sizes for the columns of the data matrix. In all three cases this is accomplished with apply.
In the first two instances, apply is used on the columns of A with the existing R functions
mean and var. To get the sample sizes we supply our own function that computes the number
of nonmissing entries for each column of A in much the same manner as in Listing 5.2. The
function is applied to the columns of A.

Once all the means, variances and sample sizes are available, sapply is used to perform
the standard calculations for pooled variance t-tests. Our choice for FUN uses the elements
of indexList directly to obtain the indices to use in the mean comparisons.

Another useful function for avoiding explicit R loops is outer. The name derives from its
application to the computation of outer products of vectors or matrices. Given vectors a and
b of dimensions n and m, respectively, their outer product is defined as the n ×m matrix
whose (i, j)th entry is the product of the ith entry of a and the jth entry of b. The outer
product of two vectors in R is written as a%o%b. For example, the 10 by 10 multiplication
table may be generated by invoking the standard outer product operator

1:10%o%1:10

In fact, %o% is just a wrapper for the more general function outer that has prototype

outer(X, Y, FUN)

with X and Y typically vector or array objects and FUN some specified function. The effect
of outer is to carry out an analog of %o% on the X and Y objects wherein multiplica-
tion is replaced by the operation specified in FUN. Thus, the output of outer is a matrix
of dimension length(X) × length(Y) having elements of the form FUN(X[i], Y[j]). In
particular, choosing X = Y = c(1:10) and FUN = "*" reproduces the multiplication table
that was previously obtained via %o%.

In Listing 5.3 an array of index pairs for the columns of the data matrix was created that
was then used to determine which means were to be compared. An alternative spin on our
mean comparison example demonstrates how outer provides a means of bypassing explicit
construction of such an index array.

Listing 5.4 meanCompOuter.r

#meanCompOuter.r

meanCompOuter<- function(A){

#compute the statistics for the columns

meanVec <- apply(A, MARGIN = 2, FUN = mean , na.rm = TRUE)

varVec <- apply(A, MARGIN = 2, FUN = var, na.rm = TRUE)

nVec <- apply(A, MARGIN = 2, FUN =

function(e) length(e) - sum(is.na(e)))
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#now compute the t statistics

outer(1:ncol(A), 1:ncol(A), FUN = function(i, j){

n1 <- nVec[i]

n2 <- nVec[j]

mDiff <- meanVec[i] - meanVec[j]

n <- n1 + n2 - 2

sdFactor <- sqrt(n1^{-1} + n2^{-1})

sPooled <- sqrt(((n1 - 1)*(varVec[i]) +

(n2 - 1)*(varVec[j]))/n)

mDiff/(sPooled*sdFactor)

})[upper.tri(matrix(, ncol(A), ncol(A)))]

}

The vectors of sample means, variances and sample sizes are constructed exactly as in Listing
5.3. The difference is that the indices for the columns that will be used in the comparisons
are provided by all the pairs of values from the first two arguments to outer. Since both of
these are the integer arrays 1:ncol(A), all possible pairwise comparisons will be conducted.
This is wasteful in terms of computational effort and also returns an array that contains
redundant entries. The latter problem is easily solved using the upper.tri function that
takes a matrix argument and returns an array of logical values of the same dimension with
above diagonal entries set to TRUE and all other entries set to FALSE. The lower.tri function
performs a similar operation where only the below diagonal entries evaluate to TRUE. When
the output from upper.tri is given as an argument to the subsetting operator applied to
a matrix of the same dimension, the outcome will be an array consisting of just the upper
diagonal elements of that matrix.

To illustrate how upper.tri works, consider the output below that was produced with
our meanCompOuter function.

> set.seed (123)

> A <- matrix(rnorm(5*100000) , 100000 , 5)

> meanCompOuter(A)

[1] -0.9460884 0.3518758 1.2972025 0.0913167 1.0365320 -0.2603067

[7] 1.5338896 2.4765512 1.1820542 1.4414838

Mean comparisons were performed on the columns of a 100000×5 matrix of pseudo-random
numbers generated from the standard normal distribution. The output corresponds to the
TRUE entries in the matrix

> upper.tri(matrix(, ncol(A), ncol(A)))

[,1] [,2] [,3] [,4] [,5]

[1,] FALSE TRUE TRUE TRUE TRUE

[2,] FALSE FALSE TRUE TRUE TRUE

[3,] FALSE FALSE FALSE TRUE TRUE

[4,] FALSE FALSE FALSE FALSE TRUE

[5,] FALSE FALSE FALSE FALSE FALSE

When processing this array the [] operator works by columns. Thus, for example, the
difference between the means of the second and fifth columns could be viewed as statistically
significant with an approximate upper-tail p-value of

> 1 - pnorm (2.4765512)

[1] 0.00663293

The only hitch in application of outer is that FUN must be ready to take two vectors
as arguments and carry out the necessary pairwise operations. That is, FUN must be “vec-
torized”. The basic R arithmetic operators (+,−, ∗ and /) have been implemented in a
vectorized manner. Thus,
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exp(outer(log(1:10) , log(1:10) , "+"))

will produce once more the 10 by 10 multiplication table. On the other hand, calling

outer(1:5, 1:5, max)

results in

Error in dim(robj) <- c(dX , dY) :

dims [product 25] do not match the length of object [1]

because max, given multiple arguments, simply iteratively computes the maximum of all
entries of all the arguments and returns a single value.

One way to vectorize a function such as max is to use R’s function mapply that has
prototype

mapply(FUN , ...)

The action produced by mapply is to apply FUN to the first elements of each argument given
in the place of the ellipsis (i.e., the . . .), then to the second elements of each argument, etc.
In particular, for our max example this produces

> outer(1:5, 1:5, FUN = function(i, j) mapply(max, i, j))

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 2 2 3 4 5

[3,] 3 3 3 4 5

[4,] 4 4 4 4 5

[5,] 5 5 5 5 5

Thus, max(i, j) with i fixed at 1 was applied to every component of the array 1:5, then
the process was repeated with i fixed at 2, etc. We should note that in this instance there
is a more direct route that can achieve the same goal using the existing R function pmax
(and an analogous pmin for computing minima) that computes the “parallel maxima” of
the input values.

The function Vectorize provides a way of creating a new function that will behave as if
mapply were being used. It has the somewhat simplified (by us) form

Vectorize(FUN , vectorizeArgs)

where FUN is the name of the function to be vectorized and vectorizeArg is a character
vector containing the names of the arguments that will be vectorized. The default value
for vectorizeArg is all the arguments to FUN. To conclude this section, we will use this
approach to create a function that performs mean comparisons using R’s t.test function.

An abbreviated prototype for t.test looks like

t.test(x, y = NULL , var.equal = FALSE)

For two-sample problems both the x and y numeric vector arguments can be supplied to
obtain a t-statistic for comparing their respective means. If the var.equal argument is set
to TRUE, the output component statistic will be the value of a pooled t-test statistic such
as the ones we have been using in this and the previous section.

The R session fragment shown below creates a wrapper function for the pooled variance
version of the t.test function that applies it to the columns of a matrix A that are indicated
by its arguments. This function is vectorized and then used in outer for the analysis of the
same data matrix as in the previous example with the results

> set.seed (123)

> A <- matrix(rnorm(5*100000) , 100000 , 5)

> pooledT <- function(i, j) t.test(A[, i], A[, j],
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+ var.equal = TRUE)$statistic

> vecPooledT <- Vectorize(pooledT)

> outer(1:5, 1:5, vecPooledT )[upper.tri(matrix(, ncol(A), ncol(A)))]

[1] -0.9460884 0.3518758 1.2972025 0.0913167 1.0365320 -0.2603067

[7] 1.5338896 2.4765512 1.1820542 1.4414838

Given that we now have so many ways to carry out paired comparisons, it would seem
worthwhile to assess their relative performance in terms of computing time. One such com-
parison is provided by

> set.seed (123)

> A <- matrix(rnorm(5*10^5), 10^5, 5)

> nreps <- 1000

> timeVec <- rep(0, 4)

> for(i in 1:nreps){

+ timeVec [1] <- timeVec [1] + system.time(meanComp(A))[3]

+ timeVec [2] <- timeVec [2] + system.time(meanCompVec(A))[3]

+ timeVec [3] <- timeVec [3] + system.time(meanCompOuter(A))[3]

+ timeVec [4] <- timeVec [3] + system.time(outer(1:5, 1:5,

+ vecPooledT )[upper.tri(matrix(, ncol(A), ncol(A)))])[3]

+ }

> timeVec/nreps

[1] 0.154999 0.047227 0.046631 0.046870

The three functions meanComp, meanCompVec and meanCompOuter along with the vectorized
pooled t-test function vecPooledT were all applied 1000 times to the same data set and
their respective elapsed computation times were accumulated. The resulting average times
suggest there is little reason to prefer any of the three methods created in this section over
the other. However, they all carried out their task over three times faster than the function
meanComp that uses explicit R loops.

5.6 An example

In this section we will work our way through an example that demonstrates code develop-
ment in the R environment. The objectives are twofold: i) creation of an artificial data set
that will provide the basis for examples in Chapters 6 and 10 and ii) construction of the
tools we will need to analyze the data that is created.

The scenario is that of a fictional game called Guess5 where a lottery organization draws
five balls from a set of 40 without replacement. People who play the game purchase tickets
that specify five numbers between 1 and 40 and win various prizes depending on how many
of the numbers they choose match those drawn by the lottery.

The physical drawings for Guess5 are conducted using two different drawing machines
referred to as A and B and 10 different ball sets numbered 1 to 10. Drawings are conducted
twice a week on Monday and Thursday. The drawing machine and ball set that are used
for a particular draw are chosen randomly with equiprobable selection prior to draw time.
Before the actual draw a series of nine diagnostic test draws are conducted to check for
possible problems with the selected machine or ball set.

With this background, we now want to write an R function that will generate data that
could have come from drawings for the Guess5 game. For this purpose it is first necessary
to decide on what information to record for each draw, a format for storing the data and
then on a mechanism for generating the data that will be stored. In terms of the first issue
some of the information we might want to retain would be the date of the drawing, whether
or not the drawing was on a Monday or Thursday, the machine and ball sets that were used
for the draw and the actual drawing results. By retaining information about the drawing
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machines and ball sets it will be possible to investigate the performance of the individual
components of the drawing equipment. Similarly, including the date and day of the week
for a draw will enable us to address questions related to game history.

As the data “arrives” it will be collected in a white-space delimited format with the
date, machine name, ball set number and day of the week (M or T for Monday or Thursday,
respectively) being given on the first line of the record for a given draw. The next nine
lines will contain the results of the preliminary test draws with the eleventh (and final)
line representing the actual game drawing results. This sequential accumulation perspective
suggests that the data be generated in a for loop. Given what we learned in the previous
section, this is a bit of a step backward into the C++ mindset. A little thought leads us to
the conclusion that, since the end result is an artificial data set, we are free to produce it in
any way we wish provided it has the same probabilistic structure as would be expected from
a sequence of game draws. In this respect, the machine selection, ball set selection and ball
selections are all assumed to be independent which allows us to generate these outcomes
separately and then combine them to produce the actual data set. This is the direction in
which our code development will proceed.

The function below employs the perspective of the previous section to produce the desired
simulated data for the Guess5 game.

Listing 5.5 guess5.r

#guess5.r

guess5 <- function(n, fOut , drawDate = "1952 -1-17"){

if(weekdays(as.Date(drawDate )) == "Monday")

drawDate <- as.Date(drawDate) +

c(0, cumsum(rep(c(3, 4), ceiling((n - 1)/2),

length.out = n - 1)))

else

drawDate <- as.Date(drawDate) +

c(0, cumsum(rep(c(4, 3), ceiling((n - 1)/2),

length.out = n - 1)))

Machine <- sample(c("A", "B"), n, replace = TRUE)

Set <- sample(1:10, n, replace = TRUE)

Day <- substr(weekdays(drawDate), start = 1, stop = 1)

info <- cbind(as.character(drawDate), Machine , Set , Day)

A <- replicate(n*10, sample.int(40, 5))

for(i in 1:n) {

cat(info[i, ], "\n", file = fOut , append = TRUE)

write(A[, (10*i - 9):(10*i)], file = fOut , ncolumns = 5,

append = TRUE)

}

}

The function guess5 has three arguments:
a) n, the number of draws that are to be generated,
b) fOut, the name of the file where the data will be written and
c) drawDate, the day, month and year that the drawing sequence is to begin.
Perhaps the first thing to notice about this listing is the use of a default for the date
argument. From this you can see that the assignment of defaults works much the same
as in C++. Although, in R there are no rules about the ordering of default-specified and
nondefault-specified arguments in an argument list.

The next new feature in Listing 5.5 is the coercion or casting of drawDate to a Date object.
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The Date class in R allows for operations involving addition, subtraction and certain logical
relation operators (e.g., <,>,==) that make it possible to manipulate dates in useful ways.
Our initial use of the Date class is to determine the day of the week for the input value
of drawDate. For this purpose, the character string drawDate is first coerced to a Date
object using the asDate function. Then, the weekdays function is applied to the output to
ascertain if drawDate corresponds to a Monday or Thursday. If the starting day is Thursday,
then the next draw will not occur for four days as compared to a three day interval for a
starting date that falls on a Monday. An if/else block is employed to deal with the two
different possibilities.

Once the day of the week has been determined, the overloaded + operator for the Date
class is used to augment the value of drawDate for the other drawings that will be included
in the data set. The effect of adding an integer to a Date object is to produce a new Date
object that is advanced by the same number of days as the value of the integer. R vectorized
addition applies here as well; adding a vector of integers to a Date object will produce a
vector of Date objects that have been moved forward by the number of days in the integer
vector.

For our particular case, the number of days that will pass between draws is either three
or four and this must accumulate over the course of the drawing process. So, in the case of,
e.g., a Monday start date, we first add 0 to ensure that the start data is the same as that
specified in drawDate. Then, the object as.Date(drawDate) is advanced according to the
vector

cumsum(rep(c(3, 4), ceiling((n - 1)/2), length.out = n - 1))

There are several steps involved in explaining this code segment and we will go through
them one-by-one. First, the rep function discussed in Section 5.1 is applied to the vector
(3, 4). The number of replications is taken to be the smallest integer that is at least half
of the sample size n less 1. If the sample size is odd this gives the desired result. For even
sample sizes, only one of the two elements from the last replications of (2, 3) is needed. To
appropriately truncate the output from rep in this case an additional argument length.out
for rep has been set to n - 1. As a result, the vector returned from rep will be no longer
than n - 1 elements. The idea is illustrated below where rep was used in this context with
and without specification of the length.out argument for n = 5 and n = 6.

> rep(c(3, 4), ceiling(4/2), length.out = 4)

[1] 3 4 3 4

> rep(c(3, 4), ceiling(5/2))

[1] 3 4 3 4 3 4

> rep(c(3, 4), ceiling(5/2), length.out = 5)

[1] 3 4 3 4 3

As seen from the previous example, rep will return a vector consisting of the alternating
integers 3 and 4. These tell us how many days will pass between each draw. To translate
that into actual dates, the increments must be taken cumulatively; i.e., if a drawing occurs
on a Monday then 3 days pass before the Thursday draw, 3 + 4 = 7 days pass before the
next Monday draw, 10 days pass before the subsequent Thursday draw, etc. As suggested by
this progression, the way to augment the initial value of as.Date(drawDate) is to add on
the cumulative (partial) sums of the days between the n draws that will make up the data.
The cumsum function produces such partial sums; given a numeric vector v, cumsum(v) is
a vector of the same length as v with its ith entry equal to the sum of the first i elements
of v. A combination of cumsum and rep then produces the requisite vector of Date objects:
e.g.,
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> weekdays(as.Date("1952 -01 -17"))

[1] "Thursday"

> as.Date("1952 -01 -17") + cumsum(rep(c(4, 3), ceiling(5/2),

+ length.out = 5))

[1] "1952 -01 -21" "1952 -01 -24" "1952 -01 -28" "1952 -01 -31" "1952 -02 -04"

Once the draw dates have been created in Listing 5.5, the next step is to generate the
vectors of machine and ball set selections. Again, not having to actually mimic the drawing
process leaves us free to generate these two arrays directly using the sample function from
Section 3 of Appendix B with the populations consisting of the characters “A” and “B” and
the integers from 1 to 10, respectively.

The day for each draw is implicitly given by the date and can therefore be extracted using
the weekdays function. Rather than store the entire name for a day, only the characters “M”
and “T” are retained. They are picked off from the string that holds the day’s name with
the substr function. The start and stop arguments for this function define the position
of the beginning and ending character to be used in creating the substring. Thus, setting
both start and stop as 1 will return the first character in the string.

The vectors drawDate, Machine, Set and Day are combined into an n-row array called
info using the cbind function. The rows of this array must then be paired with the actual
drawing data. This latter aspect of the simulation is accomplished by a combination of the
replicate and sample functions: namely,

A <- replicate(n*10, sample.int(40, 5))

The replicate function is a member of the apply family that can be used for repeated
evaluation of an expression. Its prototype has the form

replicate(n, expr)

where expr is the expression to be evaluated and n is the requested number of evaluations.
For our application, n is 10 times the total number of drawings: 9 test draws and 1 game
draw occur every time the game is played. The actual numbers for the balls that are drawn
are produced using the function sample.int. This is a specialization of the sample function
that has the basic form

sample.int(n, size , replace)

This version of sample assumes that the population being sampled is the integers from 1
to its first argument n. The replace argument defaults to FALSE as required for our case.

The only remaining task is writing the contents of info and A into an output file. The
two arrays must be meshed correctly with each row of info being paired with 10 columns
of A. This process is carried out directly with a for loop. Execution of our guess5 function
produces results such as

> set.seed (123)

> guess5 (100, "guess5.txt")

NULL

> system("head -n 22 guess5.txt")

1952 -01 -17 A 6 T

10 38 23 20 15

36 15 11 7 37

20 10 9 25 2

29 14 16 31 34

12 38 28 26 2

16 19 22 26 33

25 17 21 3 10

16 8 32 6 29
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22 26 7 24 12

29 16 37 36 27

1952 -01 -21 B 4 M

11 9 23 10 20

32 7 16 18 40

38 35 26 36 19

24 14 39 1 19

35 1 3 7 28

30 38 18 3 24

31 6 16 9 3

16 3 9 39 25

12 4 3 33 28

33 39 4 38 29

The presence of NULL in this output is a bit of a curiosity. The last value returned from an
R function will be the result of the last expression evaluation. The return value from cat
(and, hence, write) will be seen as NULL and that will be printed to standard output when
the function ends. This can be suppressed using the invisible function (Exercise 5.13).

We will develop a framework for dealing with Guess5 data that allows us to look at
subsets of the drawing data corresponding to different machines, ball sets, etc., in the next
chapter. For the present, let us focus on the somewhat more direct problem of analyzing
the data we have stored in guess5.txt in its entirety. From the standpoint of players of the
Guess5 game the question of interest is whether the selection of ball numbers is uniform. By
this we mean that every one of the

(
40
5

)
= 658008 possible combination of five balls chosen

from a set of 40 without replacement has the same chance of occurrence on any given
draw. A test of this hypothesis using, e.g., a chi-square statistic would require a collective
history of millions of draws to be of value thereby precluding that option from practical
consideration (Exercise 5.12). Instead, it is possible to carry out tests of hypotheses about
various marginal distributions whose rejection would imply rejection of the overall uniform
selection hypothesis (Joe 1993). The simplest of these concerns the individual ball selection
probabilities which should be 5/40 per draw. A chi-square test can be used for this purpose
and that is the approach that will be implemented.

The first step in the analysis of data that has been collected from Guess5 draws would
be to import it into R in a form that is suitable for the planned analysis. If the aim is to
calculate a chi-square test statistic using all the draws, only the drawing results are needed;
that is, the information about drawing equipment and dates is extraneous.

For the sake of this example let us now adopt the perspective that the guess5.txt file
represents collected data from Guess5 drawings that is the focus of our analysis. As the
equipment/date information is not needed, one way to import guess5.txt is to simply read
all the drawn numbers into a long vector while filtering out the information about date, ball
set, machine and day of the week. This can be accomplished with a for loop that uses the
skip argument for the scan function.

Assume that the number of draws in guess5.txt (i.e., 100) is known. By using scan to
read from the file with skip = 1 and nlines, the number of lines to read, set equal to ten,
the first line of the file (with all the date and equipment details) will be skipped and only
the results for the 10 draws (nine tests and one game draw) will be imported. This takes
care of the data for the first drawing in the file. The location for the next application of
scan has now moved to the first line of data for the second draw which, again, contains
date and equipment information. This line can now be skipped and the next 10 lines read
exactly as before. The process can be repeated as many times as there are draws in order
to bring in all the data. The code segment below implements this approach and checks the
length of the vector that was created to hold the data.
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> drawData <- NULL

> for(i in 1:100)

+ drawData <- c(drawData , scan("guess5.txt", skip = 1, nlines = 10,

+ quiet = TRUE))

> length(drawData)

[1] 5000

Note the use of the NULL object to initialize the drawData array. Analogous results would be
obtained using a class constructor for either the vector or matrix class with an empty ar-
gument list: e.g., drawData <- vector(). Failure to initialize drawData would have caused
an error the first time the concatenation operator was used in the loop because at that point
its drawData argument would not exist.

The fact that guess5.txt contains a mix of character and numeric data and rows of un-
equal length is what precludes the use of read.table for importing the file. Our for loop
formulation is perhaps the most obvious solution (at least to a C/C++ programmer). Al-
ternatively,

> drawData <- as.integer(unlist(strsplit(readLines("guess5.txt")

+ [-seq(1, 1090, 11)], split = " ")))

avoids explicit looping and, instead, relies on the inherent features of R. To examine this
approach, let us work our way out from the interior of the expression. As noted in Section
5.2, the readLines function brings in the content of a line in a file as an array of character
strings. Thus, the effect of

readLines("guess5.txt")

is to bring in a string vector with 1100 rows corresponding to the 1100 (= 11× 100) rows in
the guess5.txt file. Now seq(1, 1090, 11) produces the integer collection {1, 11, . . . , 1090}
that correspond to the rows of guess5.txt where the date and other nonnumeric drawing
information reside. Prepending - to these indices removes them from the array created with
readLines. So, at the completion of the

readLines("guess5.txt")[-seq(1, 1090, 11)]

command, an array containing 10000 (= 1100−100) strings has been created with each string
containing the five integers produced by a drawing for the Guess5 game. The remainder of
the import command uses strsplit, unlist and as.integer exactly as in Section 5.2 to
convert the strings to their integer form.

Yet another approach for reading in the guess5.txt file‡ is to use

> drawData <- scan(textConnection(readLines("guess5.txt")

+ [-seq(1, 1090, 11)]), what = integer(0))

Read 5000 items

The initial import of data via readLines is the same as before. The difference begins with
the use of the textConnection function that enables an object containing character strings
to be read by a function that reads from a connection (as discussed in Section 5.2). In this
case, the function that expects the connection is scan. The application of textConnection
makes the output of readLines appear to scan as a text file of 5000 numbers which can
be read in the usual way.

Now we have three ways to import the guess5.txt information. Which one works the best?
The system.time function from Section 5.4 provides one means of comparison. Applying
it to the three different import schemes produces

‡ This idea is what motivated the strsplit based approach. It was kindly suggested by one of this book’s
reviewers.
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> system.time(for(i in 1:100)

+ drawData <- c(drawData , scan("guess5.txt", skip = 1, nlines = 10,

+ quiet = TRUE )))

user system elapsed

0.011 0.003 0.014

> system.time(drawData <- as.integer(unlist(strsplit(

+ readLines("guess5.txt")[-seq(1, 1090, 11)], split = " "))))

user system elapsed

0.005 0.000 0.005

> system.time(scan(textConnection(readLines(

+ "guess5.txt")[-seq(1, 1090, 11)]), what = integer(), quiet = TRUE))

user system elapsed

0.008 0.000 0.007

The loop approach is clearly inferior to the other two options in this case. A (much) more
definitive evaluation would require us to repeat the computations in a manner similar to
what we used for the different mean comparison functions in the last section (Exercise 5.18).

Assume now that the draw information recorded in guess5.txt has been imported into
the numeric object drawData. This data can now be used to carry out a chi-square test of
the uniform selection hypothesis. The first step is to count up the frequency of occurrence
of each of the balls with numbers from 1 to 40. The function that accomplishes this in R is
table. An application of this function to drawData produces

> Obs <- table(drawData)

> Obs [1:3]

drawData

1 2 3

140 133 131

> sum(Obs)

[1] 5000

From this it can be seen, for example, that ball number 1 was drawn 140 times in the 5000
(i.e., 5 balls per draw multiplied by 10 draws per drawing times 100 drawings) draws that are
represented in drawData. This can be compared to an expected frequency of 5000/40 = 125.
Note that summing up all the observed frequencies must give the total number of draws
and this was checked and verified in the last session command.

It remains only to compute the chi-square statistic. The usual formula for this is
K∑
i=1

(Obs[i]− E[i])2

E[i]
, (5.1)

where the Obs[i] are the observed frequencies of the K population elements or categories
and the E[i] are the expected frequencies for each category under the null hypothesis. Our
focus is on equally likely categories; i.e., on any given draw from the population, the chance
an object will be from any of the categories is 1/K.

Our previous formula for the chi-square statistic is appropriate for drawing with replace-
ment but must be altered for situations where drawings are conducted without replacement.
Specifically, if n independent draws are conducted where k elements are selected without
replacement, Joe (1993) shows that

χ2 =
K − 1
K − k

K∑
i=1

(
Obs[i]− n k

K

)2
n k
K

will, for large values of n, have an approximate chi-square distribution with K − 1 degrees-
of-freedom when outcomes are being selected with equal probability. Note that the total
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number of elements that are selected is N = nk. Thus, an equivalent formula is

χ2 =
K − 1
K − k

K∑
i=1

(Obs[i]−N/K)2

N/K
. (5.2)

In the case of data from the Guess5 game K = 40 and k = 5.
The R function chisq.test computes the chi-square statistic in (5.1). We have wrapped

it in the hyperChi function in Listing 5.6 to automatically produce the statistic in (5.2).

Listing 5.6 hyperChi.r

#hyperChi.r

hyperChi <-function (O, K, k){

chistat <- (K - 1)*chisq.test(O)[[1]]/(K - k)

names(chistat) <- NULL

list(chistat , 1 - pchisq(chistat , K - 1))

}

The chisq.test function takes the observed frequencies as its first argument and has a vec-
tor argument p that specifies the probabilities of occurrence for observations corresponding
to each row of this frequency vector. The p argument defaults to equally likely categories
which suffices for our case. Our wrapper function has two additional arguments K and k
that represent the size of the population and the number of draws without replacement,
respectively. The chisq.test function returns a list whose first component is the value of
the chi-square statistic. The list subsetting operator [[]] is used to isolate the test value
which is then inflated appropriately according to the values of K and k. The chisq.test
function has left the result with the name “X-squared” attached that we would prefer not
to have appear in our output. The (replacement version of the) names function is used to
suppress this behavior by setting the name to NULL. Finally, the output from the function
is returned as a list whose first component is the chi-square statistic and the second is its
associated upper-tail p-value.

An application of hyperChi to the Guess5 drawing data produces

> hyperChi(Obs , 40, 5)

[[1]]

[1] 27.77691

[[2]]

[1] 0.9100113

The p-value of .91 leads us to the expected conclusion that the data does not exhibit a
significant departure from uniform selection of the ball numbers.

5.7 Using C/C++ code in R

The R “foreign language” interface allows computational routines to be coded in, e.g., C
or C++, and then imported into R as a shared library. In this section we will explore and
illustrate how this can be done.

One situation where it is common to use a combination of R and C/C++ programs
is in the creation of R packages. Descriptions of this process are given in the Writing R
Extensions manual and, e.g., in Chapter 7 of Gentleman (2009). The development here is of
a much smaller scale. Our perspective is that of someone who has written a relatively small
and focused set of C++ code designed for a specific task of their own personal interest.
In some cases this type of program development can benefit from a pairing with R. For
example, one may have developed a new estimation method that has been coded in C++.
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Simulation experiments to assess the properties of the method could be managed in R and
the data analysis tools that R provides could then be used directly for summary and analysis
of the simulation results. There are also many R functions that become available through
the R API. These are the same as the ones discussed in Section 4.9 in our treatment of the
R Standalone Math Library that includes, e.g., methods for random number generation.
The code development process can be simplified in many instances by making use of this
resource.

There are two basic interfaces between R and C/C++: .C and .Call. Both of these
functions pass pointers to R objects to C/C++ code. The difference is that the former
cannot make use of R internal data structures while the latter one can. The use of .C is
therefore less involved and is likely to be the preferred option for our particular setting.
Thus, we focus on .C here. An in-depth description of using .Call and, more generally,
programming with R data structures is contained in the R Internals manual and Chapters
5–6 of the Writing R Extensions manual. Chapter 6 of Gentleman (2009) provides a nice
introduction to the topic.

Let us begin by importing both C and C++ implementations of simple “Hello world!”
programs into R. C code for this purpose might look like

//hello.c

#include "R.h"

void hello(int* n){

int i;

for(i = 0; i < *n; i++)

Rprintf("Hi ya’ll %d times!\n", i);

*n += 1;

}

After a little work we will be able to call this program from inside an R session where it
will print “Hello y’all!” as many times as desired.

The simple hello.c program has some distinguishing features relative to what was seen
in Chapter 3. First, there is no main function. The presence of one in either C or C++
programs will create problems in compiling the shared libraries that are needed for using
such code in R. For creating a shared library that can be called from R, the function that
serves the purpose of main§ in C/C++ code must

1. have void as a return type and

2. have arguments that are pointers.

Both of these qualities are present in the hello.c listing. This program will print out the
greeting phrase a number of times determined by the pointer to int that is the argument for
the hello function. The phrase is then printed to the R console using the Rprintf function
that is made available through the R.h header file. Finally, *n is augmented by one and the
program terminates.

The Rprintf function is an R analog of the printf function that is used to produce
formatted output in the C language. The first argument to Rprintf is a character string
(enclosed in quotes) with % placeholders for the values of each of the argument variables.
The % placeholder is augmented by a character that designates the storage type for its
corresponding arguments. This is accomplished through syntax of the form %?, where ? can
be

c for a character variable,

§ The name main can still be used. However, it must have return type void and that will generally produce
a warning message from the compiler.
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d for an integer variable,

e for a floating-point variable in scientific notation,

f for a floating-point variable and

s for printing a character string.

Carriage returns are created by placing a \n inside the character string argument.
The initial argument to Rprintf in our program is "Hello y’all %d times!\n". The

%d informs the compiler that the next argument is an integer variable and that the printing
format is to be tailored to a variable of that type. The \n character at the end of the
character string produces a new line after printing out the message.

To compile the C code we enter

$ R CMD SHLIB hello.c

on the Unix shell command line. This creates a shared library hello.so that can now be
imported into R using the dyn.load utility. Specifically, this is accomplished inside R with

> dyn.load("hello.so")

> is.loaded("hello")

[1] TRUE

The is.loaded function checks that the shared library has been successfully loaded.
Once a shared C/C++ library has been imported, the underlying program can be executed

using the .C function. For our example the result might appear something like

> .C("hello", as.integer(3))

Hi ya’ll 0 times!

Hi ya’ll 1 times!

Hi ya’ll 2 times!

[[1]]

[1] 4

The list information provided at the end of this output is what has been returned by the
.C function. It represents the values of the arguments (i.e., the values stored in the memory
locations for the pointers that were passed in the function call) that were returned from the
hello program. In particular the output shows that the last line of the C program had the
effect of advancing the value of n (from the initial value assigned in R) by one unit. Also,
note that the use of the as.integer function for passing the integer 3 into the C program
is necessary.

A similar program can be developed in C++ as we now demonstrate. First, we will have
a class X with a header file X.hh (the hh file extension is necessary) that contains the code

//X.hh

#ifndef X_HH

#define X_HH

class X{

int n;

public:

X(int N);

~X();

};

#endif

The class constructor and destructor are defined in X.cc (again, the cc file extension is
necessary) as
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//X.cc

#include <R.h>

#include <Rmath.h>

#include "X.hh"

X::X(int N) {

n = N;

for(int i = 0; i < n; i++)

Rprintf("Hello world %d times!\n", i);

Rprintf("Normal %f \n", pnorm (1.96, 0, 1, 1, 0));

}

X::~X() {

for(int i = 0; i < n; i++)

Rprintf("Goodbye world %d times!\n", i);

}

A driver program shown below uses an object of the X class.

//useX.cc

#include "X.hh"

extern "C" {

void func(int* n){

X x(*n);

}

}

This last program represents the conduit between R and our C++ code. It will be compiled
and linked with C libraries using the C compiler gcc. To allow for this mixing of C and
C++ code, it needs to be enclosed in an extern "C" { } “wrapper” that encapsulates
the function between curly braces. Beyond that, the intent of our program is to call both
the constructor and destructor for the X class and thereby have the corresponding greeting
and farewell messages printed in R.

To compile the X class program use

$ R CMD SHLIB X.cc useX.cc

to create the shared object file X.so. A specific name could have been given to the library
other than X.so using the -o compiler option. In absence of a specified name, the name of
the first file (without extension) is used to name the shared library. Thus, switching X.cc
and useX.cc on the command line would produce the shared library useX.so.

Now an R session can be started and the library can be loaded with

> dyn.load("X.so")

> is.loaded("func")

[1] TRUE

The response from is.loaded indicates that the library has been loaded successfully. Note
that R refers to it by the name of the function that interfaces with R, or func in this
case, rather than the library name. The linked program can now be executed using the .C
function as before to produce, e.g.,

> .C("func", as.integer(3))

Hello world 0 times!

Hello world 1 times!

Hello world 2 times!
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Normal 0.975002

Goodbye world 0 times!

Goodbye world 1 times!

Goodbye world 2 times!

[[1]]

[1] 3

> dyn.unload("X.so")

The final line of code illustrates how to unload a library that has been linked to an R session.
We noted earlier that R has an API that allows functions from the R math library to

be used in our C++ code. Our X class used the R function pnorm for the normal cdf to
illustrate this feature.

The R API becomes available by including the Rmath.h header file that contains the
prototypes for the available functions. A technique for deciphering the meaning of the argu-
ments in these prototypes was described in Section 4.9. Briefly, one matches the arguments
in the prototype to the ones given for that function in its corresponding R help page. In the
case of the pnorm function this approach revealed that
a) the first argument is the evaluation point for the cdf,

b) the second and third arguments are the mean and standard deviation, respectively and

c) choosing 1 and 0 for the fourth and fifth arguments will produce return values that are
lower tail probabilities.

The numeric output produced by using .C to call func indicates that pnorm has been used
correctly.

To use a random number generator from the R API there are two additional functions
that must be used: GetRNGstate and PutRNGstate. They retrieve the current value of the
seed from R and then return the new seed value after the generator has been used. As a
result, GetRNGstate must be called before invoking the generator and PutRNGstate is called
once the generator is no longer required. The idea is illustrated by

//rngEx.cc

#include <R.h>

#include <Rmath.h>

extern "C" {

void rngFunc(int* n, double* mu , double* sig , double* x)

{

GetRNGstate ();

for(int i = 0; i < *n; i++)

x[i] = rnorm(*mu, *sig);

PutRNGstate ();

}

}

The function rngFunc calls the R rnorm function for generating pseudo-random numbers
from a normal distribution. Its arguments for the mean and standard deviation are passed
in as pointers to double with a pointer to double, x, being provided to store the numbers
that are generated. Note that the memory for x must be allocated in R and failure to do
so or a failure to allocate enough memory will produce unpredictable results. The actual
random numbers are generated in a for loop that is sandwiched between the requisite calls
to GetRNGstate and PutRNGstate.

The rngEx.cc code is compiled with

$ R CMD SHLIB rngEx.cc
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and imported into R with

> dyn.load("rngEx.so")

Then, an illustration of the use of rngFunc is

> x <- vector("double", 3) #allocate memory in R

> set.seed (123)

> result <- .C("rngFunc", as.integer(3), as.double(1), as.double(2),

+ x)

> result [[4]]

[1] -0.1209513 0.5396450 4.1174166

> .C("rngFunc", as.integer(3), as.double(1), as.double(2), x)[[4]]

[1] 1.141017 1.258575 4.430130

> set.seed (123)

> .C("rngFunc", as.integer(3), as.double(1), as.double(2), x)[[4]]

[1] -0.1209513 0.5396450 4.1174166

The aim was to generate three random numbers and, as a result, memory was allocated in
R for a three-component, numeric vector object x. The seed was then set and rngFunc was
called using the .C interface function. The output was stored in the list object result
whose fourth entry is the array x that was passed in as the fourth argument to .C. The
rngFunc function was called again producing three new random numbers. The seed was
then reset to its initial value and the resulting output from rngFunc is seen to agree with
our first set of numbers.

The .C interface can be used to import any of the C++ code that has been developed so
far into R. As an example, let us consider how this can be accomplished using our Fishman-
Moore random number generator class from Chapter 4. First, the FM.cpp and FM.h files
from Chapter 4 must be renamed as FM.cc and FM.hh, respectively. Next, an interface
program must be created. For this particular case something like

//fmR.cc

#include "R.h"

#include "FM.hh"

extern "C" {

void rngFM(int* N, int* SEED){

int n = *N;

unsigned long seed = (unsigned long)(*SEED);

FM* pFM = new FM();

double* pu = new double[n];

pFM ->ranGen(seed , n, pu);

Rprintf("Your random numbers are\n");

for(int i = 0; i < n; i++)

Rprintf("%f \n", pu[i]);

delete pFM;

delete[] pu;

}

}

will suffice. Then, the interface program file fmR.cc and the FM.cc file are compiled and
linked into a shared library fmR.so as in

$ R CMD SHLIB fmR.cc FM.cc

The final step is to import the fmR.so library into the R environment using the dyn.load
function in the form
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> dyn.load("fmR.so")

The random number generator program can now be executed using the .C function. It is a
bit less cumbersome to “wrap” rngFM in an R function that takes care of actually calling
and passing the arguments to .C. A function that serves this purpose is

rngFM <- function(N, seed){

.C("rngFM", as.integer(N), as.integer(seed))

}

An example of output from rngFM is

> rngFM(5, 123)

Your random numbers are

0.104714

0.723072

0.156521

0.328550

0.635906

[[1]]

[1] 5

[[2]]

[1] 123

Further examples of using C++ code in R will be given in Chapters 7 and 8.

5.8 Exercises

5.1. Write an R function that will produce a three-number summary as described in Exercise
3.41 for each of the columns of an array. Perform your calculations in two ways:
a) Apply sort to the individual columns of the array.
b) Work only with the full array and use order to rearrange all the rows of the matrix

simultaneously.
Which approach is faster? How does the performance of the two methods compare to using
the R quantile function discussed in Section 3 of Appendix B?
5.2. Write expressions for for loops in R with the properties that
a) the loop index proceeds over the index set of positive integers from 1 to n in steps of size

k for a specified integer k or
b) the loop index proceeds backwards through the integers 1 to n (i.e., it starts at n and

finishes when the index is smaller than 1) in steps of size k for a specified integer k.
5.3. The collection of built-in constants in R includes LETTERS and letters that contain
the 26 letters of the Roman alphabet in upper- and lower-case forms, respectively. Create an
R function that will produce a random sentence containing a specified number of “words”
(in the sense of being a sequence of letters). Your function should print the sentence upon
completion of its task and produce output that adheres to the guidelines given below.
a) The first word in the sentence should begin with an upper case letter.
b) After the first word of a sentence, no upper-case letter should appear.
c) The sentence should end with a period, question mark or exclamation point with the

specific choice of punctuation being unpredictable.
d) Other punctuation should be allowed to appear (at random) in the body of the sentence.
e) Word lengths should be allowed to vary randomly between one letter and some specified

(by the user) upper bound for their size.
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5.4. Write two R functions: one that takes a function as an input argument and another
that returns a function as output.
5.5. Use the R tryCatch function to create a function that will allow you to recover from an
error where scan encounters character data while reading from a file that was presumed
to contain only numeric information.
5.6. Develop an R function that takes an array and a logical expression concerning the array
elements as arguments and returns the matrix elements that satisfy the logical criteria.
5.7. Write an R function that takes an integer argument n and then uses a for loop to
generate n random uniforms using the runif function. Evaluate the performance of your
function using the system.time function. For example, compute the difference in the length
of time it takes your function to return 10 million numbers versus a direct call to runif.
5.8. Let f be a function on the interval [0, 1] with f(0)f(1) ≤ 0. An n-step bisection
algorithm for finding a zero for f is (Exercise 8.20)

Algorithm 5.1 n-step bisection algorithm
a = 0, b = 1
for j = 1 to n do
m := (a+ b)/2
if f(a)f(m) ≤ 0 then
a := a, b := m

else
a := m, b := b

end if
end for
return (a+ b)/2

Write an R function that will apply this algorithm to a specified function that is provided
as its argument.
5.9. The eval function provides a means of evaluating an expression in R. As an illustra-
tion, consider the succeeding code segment

> e <- expression (A[ ,2] == 4)

> E <- A[eval(e),]

The parse function in R will parse a text string (or file) of R code supplied as its text
(respectively, file) argument (without evaluating it) and return an expression object.
Write an alternative to source for importing code into R from a file that uses the parse
function in combination with eval.
5.10. The R function for solving a linear equation system is solve. In particular, solve(A)
returns the inverse of an invertible matrix A. Write an R function that takes a matrix as
input and then
a) checks to see if the matrix is square and returns an error message if this is not the case,
b) if the matrix is square, uses solve to (attempt to) compute its inverse and, assuming the

matrix is nonsingular, returns the inverse of the matrix and the determinant (via the R
function det) and trace of the inverse matrix and

c) uses the tryCatch function to deal with any errors produced in part b).
5.11. Refer to Exercise 3.13. Carry out the calculations for this exercise in R.
5.12. Use the R choose function that computes binomial coefficients to determine the prob-
abilities for all the possible outcomes (e.g., match five, match four, etc.) for the Guess5 game.
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If a minimum of five observations are required per cell/group for carrying out a chi-square
test for uniformity, how many observations would be needed to test for uniform selection
over every possible five number combination that can occur in the Guess5 game?
5.13. Use the invisible function to suppress the NULL output from the guess5 function
of Section 5.6.
5.14. Develop a C++ program that will read in the Guess5 data from Section 5.6 and count
the frequency of occurrence of the ball numbers over the entire collection of draws.
5.15. Numbers are drawn five times with replacement from the integers 0 to 9. Use R to
calculate the probability distribution for the sum of the numbers that are drawn.
5.16. Consider a lottery game where k balls are selected from balls numbered 1 to n1
without replacement and an additional (single) bonus ball is drawn independently from a
set of balls numbered 1 to n2. Players win various prizes depending on how many of the
balls they match from the k balls the lottery draws from the 1 to n1 range and the lottery’s
bonus ball selection.

a) Use the R choose function to create an R function that will compute the chance of
winning for all possible outcomes for the game.

b) What are the chances for all the outcomes when k = 5, n1 = 40 and n2 = 20?

5.17. Suppose that the Guess5 game from Section 5.6 adds a bonus ball where at every
draw an additional independent draw is made of a single ball from a set of balls numbered
1 to 20. There are five ball sets and two machines that are used for the bonus drawings.

a) Create a program similar to the one is Listing 5.5 that will generate a set of artificial
data for this game.

b) Use your program from part a) to create a data file containing the results of 100 simulated
draws of the new Guess5 game.

c) Import the data from the file you created into R in a format that will allow you to
analyze the data using a chi-square test. Note that there are two separate tests that
must be performed corresponding to the 5 of 40 drawings and those involving the bonus
ball.

d) Compute appropriate chi-square statistics to determine if the data you generated suggests
a departure from uniform selection in your generation methodology.

5.18. Compare the run-times for the three ways of reading in the guess5.txt file in Section 5.6
using replicate runs of each program similar to the approach used to compare the meanComp,
meanCompVec, meanCompOuter and vecPooledT functions in Section 5.5.
5.19. A person buys four computer-generated tickets for playing the Guess5 game. That is,
the player purchases four sets of five numbers selected from the integers 1 to 40 without
replacement that have been produced by an assumedly fair random number generation
algorithm of some sort. Use R to calculate the probability distribution for the number of
unique numbers on the four tickets.
5.20. Refer to Exercise 3.10. Write an R program that will perform the same calculations as
the C++ program that you created for part a) of that exercise. Compare its computation
speed to that of the C++ implementation.
5.21. Modify the class X from Section 5.7 to where the constructor and destructor will write
out “Hello World!” and “Goodbye World!” a total of n1 and n2 times, respectively, for
user-supplied values of n1 and n2. Import the resulting program into R as a shared library
and verify that it behaves as expected.
5.22. Import the C++ code for using the Cauchy density to generate pseudo-random nor-
mals (Listings 4.8–4.9) in Section 4.6 into R and package it in an R function that will gen-
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erate a specified number of random deviates from a normal distribution with user-specified
means and variances not all of which are required to be the same.
5.23. Another use of outer is to generate regular grids of function values. For example,
a simple plot function might take as input a function of two variables f, lower and upper
bounds in both the x and y coordinates and a granularity parameter eps. Then, it would
evaluate f at a grid whose edges are at the given minimum and maximum values of x and y
and of granularity eps. Assuming the values of xmin, xmax, ymin, ymax and eps are defined,
write a one line expression using outer that returns a matrix containing the values of f at
a grid spaced by eps and bounded by the given x and y bounds.
5.24. Create an R program that will produce an artificial data set from an r×k factorial ex-
periment with factors A (at levels A1, . . . , Ar) and B (at levels B1, . . . , Bk) for user-specified
values of r and k. The function should allow for any specified number n of observations per
factor level combination, all of which come from normal distributions with unit variance.
Let µij be the mean for the responses that receive the treatment combination of Ai and Bj
for i = 1, . . . , r and j = 1, . . . , k. Then, the means should have the form

µij = δ1i, i = 2, . . . , r, j = 1, . . . , k,

and
µ1j = δ2j, j = 1, . . . , k,

for specified values of δ1, δ2. Use rbind and cbind to return the generated data as either
an rk × n or n× rk matrix.
5.25. Use apply to create an R function that will analyze the result of a balanced r × k
factorial experiment and return the usual F statistics for testing significance of the main
effects and interaction. [Note: This facility is built into R in the aov and lm functions. The
anova function takes, e.g, an lm or aov object as its argument and returns a corresponding
analysis of variance table.]
5.26. Use your programs from Exercises 5.24 and 5.25 to carry out a simple power study.
Specifically, take r = 2, k = 3, n = 100 and work over a grid of values for the parameters δ1
and δ2 in Exercise 5.24 that starts with δ1 = δ2 = 0. For each point on the grid, generate
1000 data sets with the corresponding values for the parameters and, for each of these
data sets, apply your function from Exercise 5.25 to determine if the null hypothesis of no
treatment effect was rejected. Present the final result as a three-dimensional plot (using, e.g.,
the R persp function or the cloud function from the R lattice package) of the proportion
of times the null hypothesis was rejected in the 1000 samples for each value of δ1 and δ2 in
your grid. The grid points should extend sufficiently far that they produce empirical powers
of one at the edge of the grid.
5.27. Implement the FM2 random number generator of Section 4.4 as an R function. Com-
pare the running time of this program with the C++ version from Section 4.4 and the one
in Section 5.4 that uses the .C interface.
5.28. Let x = (x1, . . . , xn)T and x = (y1, . . . , yn)T be two vectors of real numbers. The lag
l cross-correlation between x and y is

r(l) =
∑n
t=r+1(xt − x̄)(yt−r − ȳ)

sxsy

with sx and sy the sample variances for the x and y vectors and x̄ and ȳ their corresponding
means. Write R and C++ code that uses the .C interface to compute the cross-correlations
for two numeric R objects and an integer array of lag values.
5.29. An R matrix object with nRows rows and nCols columns must be passed into C++
as a pointer to a vector of nRows*nCols elements if we use the .C interface. The matrix
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elements are passed in column major order. Write a C++ program that takes two matrices
constructed in R, transforms them to objects of the Matrix class from Section 3.9 and
Appendix D and adds them using the overloaded addition operator for that class.

5.30. The Fibonacci numbers are defined by F0 = F1 = 1 and

Fj = Fj−1 + Fj−2, j = 2, . . . .

a) Write a function in R that computes the Fibonacci numbers using recursion in the sense
of Exercises 3.7-3.10.

b) Use the function created in part a) of Exercise 3.9 to created a shared library for import
into R. Then, write an R function that will perform the same operations as the function
created in part a) except that it employs the shared library using the .C interface.

c) Use the system.time function to compare the run-times for the two approaches for
calculating the Fibonacci numbers in parts a) and b).

5.31. Revise the mean comparison functions from Listings 5.3–5.4 so that they carry out
protected mean comparisons using an experiment-wise level obtained via the Bonferroni
inequality.

5.32. An alternative to controlling the experiment-wise error rate is to control the false dis-
cover rate (FDR). The FDR is essentially the expected number of rejections when the null
hypothesis is true. A procedure for controlling the FDR has been developed by Benjamini
and Hochberg (1995) and Benjamini and Yekutieli (2001). Suppose m hypothesis tests have
been conducted that produced p-values p1, . . . , pm. Then, the Benjamini/Hochberg/Yeku-
tieli method bounds the FDR by a specified value α ∈ (0, 1). The calculations proceed
according to Algorithm 5.2.

Algorithm 5.2 Benjamini-Hochberg-Yekutieli FDR control method
Arrange p1, . . . , pm in numerically ascending order as p(1) ≤ · · · ≤ p(m)

q = α/
∑m
j=1

1
j

k = max
{

1 ≤ i ≤ m : p(i) ≤ q (i/m)
}

if k exists then
Reject the null hypotheses corresponding to p(1), . . . , p(k)

else
Reject nothing

end if

Revise the mean comparison functions from Listings 5.3–5.4 so that they carry out protected
mean comparison using the Benjamini-Hochberg-Yekutieli method. [Note: The Benjamini-
Hochberg and other methods that adjust p-values are available through the R function
p.adjust. There are also several R packages that deal with FDR control. These include
fdrtool, multtest, nFDR and qvalue.]

5.33. Apply the Bonferroni and Benjamini/Hochberg/Yekutieli methodology to 1000 data
sets generated from your function in Exercise 5.24 using r = 2, k = 3, n = 100 and δ1 = δ2 =
0. Compare the results from this with what is obtained using unprotected comparisons.

5.34. The bootstrap is a resampling method that can be used to approximate the distri-
bution of a statistic. Let X1, . . . , Xn be a random sample from some unknown distribution
and let T (X1, . . . , Xn) be a corresponding statistic. Sampling from X1, . . . , Xn is then car-
ried out with replacement to obtain B bootstrap samples X∗1b, . . . , X

∗
nb, b = 1, . . . , B. These
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samples produce the values T ∗b = T (X∗1b, . . . , X
∗
nb), b = 1, . . . , B that lead to

F ∗T (t) =
1
B

B∑
b=1

I(T ∗b ≤ t)

with I(A) the indicator function for the set A. The function F ∗T provides an estimator of
the true distribution function for T that has various consistency and related asymptotic
properties (e.g., Davidson and Hinkley 1997).

The R boot package provides functions that can be used for bootstrapping. In particular,
the boot function has the simplified prototype

boot(data , statistic , R)

The data argument is the array of data that is to be used in the inferential process while
statistic is the function that will be applied to the data. The function that is specified for
statistic must have two arguments: a data array and an array of indices that specifies
the subset of the data that will be used to calculate the statistic. The R parameter is the
number of bootstrap samples that was denoted by B in the above developments.

As an example, the function med0 in the listing below can be used to provide an approxi-
mation to the null distribution of the sample median under the hypothesis that the median
is zero.

med0 <- function(y, indices ){

x <- y - med(y)

median(x[indices ])

}

The centering of the y array is to so that the sample will behave like data from the null
model when resampling takes place. An illustration of how this might be used is provided
by the following.

> set.seed (123)

> y <- runif(20, -1, 1)

> median(y)

[1] 0.0795405

> bootOut <- boot(y, med0 , R = 1000)

> sort(bootOut$t)[c(25, 975)]

[1] -0.3426429 0.5917820

}

In this case 20 observations are generated from a uniform distribution on the interval [−1, 1]
from which 1000 bootstrap samples are taken. The values of the median that are obtained in
resampling are returned as the t member of the boot class object bootOut. These values are
sorted and their 2.5 and 97.5 percentiles are obtained. The sample median falls between these
bounds and, accordingly, the null hypothesis of a zero population median is not rejected.
a) Perform a power study to see how the bootstrap median test performs against alternatives

to the zero median model. For this purpose i) consider alternative distributions that are
uniform on [−1−δ, 1−δ] for δ ≥ 0, ii) test for the one-sided alternative that the median is
less than zero and iii) use .05 as the level for the test. A grid of values should be used for δ
with the choice of δ = 0 corresponding to “powers” that represent the level of the test. In
this regard you should replicate the experiment sufficiently many times that departures
as small as .01 from the nominal .05 level can be detected with 95% confidence.

b) Repeat part a) using the Student’s t-statistic for the hypothesis that the population mean
is 0 and compare the results with the bootstrap approach.





Chapter 6

Creating classes and methods in R

6.1 Introduction

The previous chapter focused on developing applications that worked with existing R classes.
This chapter describes how new R classes and methods can be created for dealing with data
analysis problems that require a more customized approach.

It is possible to create classes in R with member elements that in most ways are consistent
with the C++ paradigm. However, the primary focus in R is on functions rather than classes.
To expand on this last statement, suppose ObjA is an object from a C++ class A. A method
func for class A objects would be invoked via syntax resembling ObjA.func apart from
any arguments that would be needed for the method. If ObjB was an object from another
class B, an expression of the form ObjB.func need not have any meaning and, even if it
did, there is no need for the method func to perform similar or even related operations for
objects from class A or B. The R version of OOP essentially reverses the role of function and
object as compared to the C++ treatment. Classes do not have member functions. Instead,
functions are a class in their own right and specific functions have “methods” that provide
implementation of the function for different types of objects. Thus, if func is an R function,
it may have method functions with exactly the same name that would be applicable to
and perform appropriately on the objects ObjA and ObjB from classes A and B, respectively.
The correct version or method function of func for an object (or objects) supplied as its
argument (or arguments) is determined by the class of the argument (or arguments) through
a process termed method dispatch.

The functions in R can be (and often are) generic in a sense that is analogous to the
template function from C++ discussed in Section 3.11. A template functions func is not tied
to any particular class and, at least in terms of syntax, expressions of the form func(ObjA)
and func(ObjB) for objects ObjA and ObjB from entirely different classes A and B are
conceptually valid, if possibly not particularly meaningful from a practical perspective.
When meanings can be ascribed to func(ObjA) and func(ObjB), the general spirit that
underlies template function creation would lead us to expect that the specializations of func
to class A and B objects will perform similar operations on the objects of each class. For
example, template functions named print or plot would be expected to perform analogous
procedures across objects from different classes. With this in mind, generic functions in R
might be viewed as a collection of template functions that carry out similar operations on
a variety of R class objects.

There are two class systems in R that are often referred to as S3 (or “old style”) classes
(e.g., Chapter 4 of Venables and Ripley 2000 and Chapter 3 of Gentleman 2009) and S4
(or “new style”) classes (e.g., Chapters 7–8 of Chambers 1998, Chapter 5 of Venables and
Ripley 2000 and Chapter 3 of Gentleman 2009). The S3 class concept is essentially a naming
convention that is employed, for example, in method dispatch. In contrast, the S4 class
system allows for the creation of objects with member elements and other features that
would be expected from an object-oriented language. Accordingly, our attention will be
focused on the S4 framework which represents the subject of the next section.

199
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6.2 Creating a new class

Suppose that we wish to construct a new class named regr for dealing with a linear regres-
sion situation where an n× 1 response vector y is to be related to p independent variables
whose values are contained in the columns of an n × p matrix X. The analysis will pro-
duce, e.g., a vector b of least-squares coefficient estimators. Of course R already provides
the facility for this through the linear models (i.e., lm) class and this would be the superior
option in most cases of practical interest. The goal of the present exercise is not to produce
a class that can compete with the lm class or something of much practical utility. Instead,
the objective is to illustrate the steps involved in class creation in a relatively simple setting.
A more detailed and useful illustration of the construction of classes and methods is the
subject of Section 6.4.

To create a new class in R one uses the setClass and representation functions. For
our regr class this might take the form

> setClass("regr", representation(X = "matrix", y = "numeric",

+ b = "numeric", intercept = "logical"))

[1] "regr"

This command creates a class with four members, X, y, b and intercept that are objects
from the existing R classes matrix (for the X matrix), numeric (for the response vector
y and estimated coefficient vector b) and logical. By using the numeric class for y and b
we have stated that they will be represented in R by double precision vector objects. The
Boolean variable intercept will be used to specify whether or not an intercept term is to
be included in the linear regression fit to the data.

The getClass command provides a way to check that a class has been created correctly.
For example, an application of getClass to our regr class returns

> getClass("regr")

Class "regr" [in ".GlobalEnv"]

Slots:

Name: X y b intercept

Class: matrix numeric numeric logical

This output tells us that the class regr has four member elements which R refers to as
being slots. The names of the elements (X, y, b and intercept) as well as their respective
classes (matrix, numeric and logical) are also listed.

The command removeClass("className") will remove an existing class className from
the current R session as demonstrated in the next listing.

> isClass("regr")

[1] TRUE

> removeClass("regr")

[1] TRUE

> isClass("regr")

[1] FALSE

Removal of the class was preceded and followed with an application of the isClass command
that checks to see if its argument is a formally defined class. The FALSE return value from
its second application tells us that the regr class is no longer defined.

An object from a class can be created with the new operator. In particular, using new
with the regr class gives

> regrObj <- new("regr")

> regrObj
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An object of class "regr"

Slot "X":

<0 x 0 matrix >

Slot "y":

numeric(0)

Slot "b":

numeric(0)

Slot "intercept":

logical(0)

This demonstrates that a “blank” regr object has been constructed where the class mem-
bers/slots have been assigned the R default objects for their respective classes.

There are instances where the defaults that new supplies for a given class (or the way
they will propagate into classes that are constructed from user-defined classes) may not
be satisfactory. In the case of C++ a cure for such problems is the inclusion of default
arguments to a constructor which is an option in R as well. But, R provides another means
to accomplish this through use of the prototype function when the class is first created via
the setClass function. For example, in our regr class the X matrix could be specified as
defaulting to a 1 × 1 “matrix” with a single 0 element, the y and b slots could be set as 0
and the value of intercept could be set to TRUE. This latter choice will make the inclusion
of a constant term the default fitting behavior. This can all be accomplished with

> setClass("regr", representation(X = "matrix", y = "numeric",

+ b = "numeric", intercept = "logical"), prototype(X =

+ matrix(0, 1, 1), y = 0, b = 0, intercept = TRUE))

[1] "regr"

> regrObj <- new("regr")

> regrObj

An object of class "regr"

Slot "X":

[,1]

[1,] 0

Slot "y":

[1] 0

Slot "b":

[1] 0

Slot "intercept":

[1] TRUE

The output shows that a regr object regrObj created by using the new operator with no
arguments produces an object with the specified default entries for the X, y, b and intercept
slots.

Let us now create an regr object using a specific data set. For this purpose we will
use a portion of the mtcars data frame that contains performance measures and other
characteristics for 32 cars reported in a 1974 issue of Motor Trend magazine. The data set
is loaded into the R environment with the command data(mtcars). The y slot of our regr
object will then be filled with the first column from the mtcars data frame that corresponds
to miles per gallon and the X slot will be composed of columns 3, 6 and 7 that give the
displacement (in cubic inches), weight and quarter mile speed of the cars. To accomplish
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this a matrix is first created that contains the information to be used in the regr object:
i.e.,

> A <- as.matrix(mtcars[,c(1, 3, 6, 7)])

The desired regr object could then be obtained from

> regrCar <- new("regr", X = A[, 2:4], y = A[, 1])

The slots of an object can be accessed using the @ operator or the function slot. Thus, if
Obj is an object with a slot having the name s, Obj@s or slot(Obj, "s") will return the
contents of that particular slot. The code listing below illustrates how @ and slot can be
used to fill and access the b slot for the regrCar object that was created from the mtcars
data.

> XTX <- t(cbind(1, regrCar@X ))%*%cbind(1, regrCar@X)

> regrCar@b <- solve(XTX , drop(t(cbind(1, regrCar@X ))%*%regrCar@y ))

> regrCar@b

disp wt qsec

19.7775575655 -0.0001278962 -5.0344097167 0.9266492353

> slot(regrCar , "b")[1]

19.77756

The value that goes in the b slot is the least-squares estimator for the coefficients in the
regression of y on X. To create this vector the X slot of regrCar is accessed and, since
intercept is set to TRUE, a column of unit elements is added to the matrix so that the
regression fit will include an intercept term. The resulting XTX matrix is evaluated, stored
as XTX and the vector of regression coefficients is calculated using the R function solve.
This function will be discussed in more detail in the next chapter. For now it is enough to
know that a call to solve of the form solve(A, v) will return the solution b of the system
Ab = v provided that A is a nonsingular matrix. In this particular instance, solve is applied
with A = XTX, v = t(cbind(1, regrCar@X))%*%regrCar@y and the resulting solution is
assigned to the b slot of regrCar. A point of interest here is the use of the drop function
on the t(cbind(1, regrCar@X))%*%regrCar@y array that represents the right-hand side
of the linear system being handled by solve. The problem here is that the multiplication
of regrCar@y by the matrix object t(cbind(1, regrCar@X)) promotes the outcome to
matrix status which conflicts with the numeric class designation that has been given to
the b slot. One approach would be to simply coerce the outcome into the right form with
the as.numeric function. The R help page for %*% suggests instead using the drop function
that will delete the extra dimension from an array that has only one column or row.

Using the new operator directly for the construction of every object of a particular class is
generally too tedious. An alternative approach is to provide class constructors that can be
tailored to particular situations that frequently arise in practice. As in C++, constructor
functions will generally have the same name as their class and involve arguments that
are required to create a class object in some particular situation of interest. Constructor
functions are created in the same way as any function in R. For example, a constructor for
the regr class might look like

regr <- function(X, y, Intercept = TRUE){

regrObj <- new("regr", X = as.matrix(X), y = as.numeric(y),

intercept = Intercept)

if(Intercept ){

XTX <- t(cbind(1, regrObj@X ))%*%cbind(1, regrObj@X)

regrObj@b <- solve(XTX , drop(t(cbind(1, regrObj@X ))%*%regrObj@y ))

}
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else{

XTX <- t(regrObj@X)%*%regrObj@X

regrObj@b <- solve(XTX , drop(t(regrObj@X)%*%regrObj@y ))

}

regrObj

}

Notice that a safeguard has been built into the constructor wherein an attempt is made to
coerce X and y into their appropriate classes. This comes into play when, for example, a
data frame object is inadvertently supplied for the X argument. Also, the behavior of making
inclusion of an intercept term the default has been enforced by assigning intercept the
default value of TRUE in the constructor’s argument list.

Using the regr class constructor with the mtcar data will now produce results such as

> regrCar <- regr(A[,2:4], A[,1])

> regrCar@b

disp wt qsec

19.7775575655 -0.0001278962 -5.0344097167 0.9266492353

> regrCar <- regr(A[,2:4], A[,1], FALSE)

> regrCar@b

disp wt qsec

0.01519605 -5.99044330 2.00209915

Fits with and without a constant term have been obtained. To determine which is preferable
the regr class could be expanded to include measures of lack-of-fit (Exercise 6.2).

It is usually a good practice to provide checks that an object has been constructed in
the proper way. This will be taken care of automatically for slots that are from prespecified
classes like matrix. So, in the case of the regr class, a matrix must be supplied for the X
slot when calling new or an error will occur. But, there are no further checks carried out to
ensure any other form of consistency or that the calculations to be carried out inside the
constructor are actually possible.

One feature that would be expected for an object of type regr is that both the X and y
arrays should have the same number of rows. The nrow function for class matrix and the
length function for class numeric allow us to carry out comparisons of this nature. Also,
in order for solve to work, the matrix X (or X augmented by a unit column vector) must
have full column rank. To check this latter condition the R function qr can be used. This
function returns a list with a component named rank giving the rank of the matrix supplied
as the argument. We will return to the qr function in Section 7.5.

To make sure that the input data is appropriate for creation of an object from a user-
created class one can use the setValidity function. The code listed below employs this
function to check the row length of the X and y slots as well as the appropriate rank
conditions for X.

setValidity("regr", function(object ){

if(nrow(object@X) != length(object@y ))

return("The number of rows for X and y differ")

if(object@intercept ){

if(qr(cbind(1, object@X ))$rank < (ncol(object@X) + 1))

return("The matrix of predictors is singular")

}

else{

if(qr(object@X)$rank < ncol(object@X ))

return("The matrix of predictors is singular")

}

return(TRUE)

})
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The output below demonstrates that objects can no longer be constructed unless they satisfy
the requisite validity conditions.

> regrObj <- regr(matrix(1, 10, 10), rnorm(3))

Error in validObject (. Object) :

invalid class "regr" object: The number of rows for X and y differ

> regrObj <- regr(matrix(1, 10, 10), rnorm(10))

Error in validObject (. Object) :

invalid class "regr" object: The matrix of predictors is singular

> regrObj <- regr(matrix(1, 10, 10), rnorm(10), FALSE)

Error in validObject (. Object) :

invalid class "regr" object: The matrix of predictors is singular

One of the important polymorphic features of an object-oriented language is the ability
to have inherited classes that extend a base class in various directions of interest. The
inheritance mechanism in R is fairly straightforward requiring only the specification of an
additional argument contains for the setClass function. For our purposes, contains will
simply be a character string that gives the name of the parent class. The more general case
of multiple inheritance will not be considered here.

To illustrate inheritance in R, suppose that it is of interest to extend the regr class
by including an additional member corresponding to the vector of fitted values. Again,
there are already tools for this purpose available in R and, in any case, the more direct
approach would be to simply include the fit as a slot in the original regr class. For the
purpose of illustration we will ignore these issues and proceed as if there is a valid reason
for distinguishing between regr type objects that do or do not contain the fit to the data.

Let us call our new class regrFit. The class is created similarly to the regr class using

> setClass("regrFit", contains = "regr", representation(yHat

+ = "numeric"), prototype(yHat = 0))

[1] "regrFit"

This differs from our creation of the regr class through the presence of the contains
argument in setClass that has been set to regr thereby indicating that regrFit is a
derived class for regr. Objects of the regrFit class will automatically inherit all the slots
from the regr class: namely, X, y, b and intercept. It is only necessary to define the new
slot for the fitted values that has been named yHat.

The next step is to create a class constructor such as

regrFit <- function(X, y, intercept = TRUE){

fitObj <- regr(X, y, intercept)

fitObj <- as(fitObj , "regrFit")

if(fitObj@intercept)

fitObj@yHat <- drop(cbind(1, fitObj@X)%*%fitObj@b)

else

fitObj@yHat <- drop(fitObj@X%*%fitObj@b)

fitObj

}

The arguments for the constructor are the same as those for the regr class. Now, there is no
reason to start from scratch as we already know how to create regr objects. To make use of
this fact a regr object is created first with the regr class constructor and then coerced or
promoted to the regrFit class using the as function. In this case the general binary version
of as is being used that has the form

as(object , className)
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with object the R object that is to be coerced into an object of data type className.
When used in this particular context, the effect of as is to map all the values for the slots
of its first argument into the corresponding ones of a new object of the derived class whose
name is supplied in its second argument. This leaves us with the remaining task of filling in
the slots that are unique to the derived class: namely, the fitted values stored in the yHat
slot in this instance. An application of the regrFit class constructor to the mtcars data
will now lead to results such as

> regrCarFit <- regrFit(A[,2:4], A[,1])

> regrCarFit@y [1:3]

[1] 21.0 21.0 22.8

> regrCarFit@yHat [1:3]

Mazda RX4 Mazda RX4 Wag Datsun 710

21.81959 21.05474 25.32886

6.3 Generic methods

As compared to the C++ setting, where functions are linked to a particular class and ac-
cessible only through a class object, functions in R may extend across multiple classes. This
allows us to write a function that operates on objects from a given class and subsequently
extend that function to work on and produce different types of output for objects of some
other class. In this way generic or “template” functions are created with the same name that
take arguments from different classes. This section presents details on how such functions
are created in the R language. Since R comes with a number of predefined generic func-
tions, there are basically two problems that must be addressed: how to extend one of the
predefined generic functions to a new class and how to define a brand new generic function.

As noted at the beginning of the chapter there are two ways to create generic functions
in R: the S3 and S4 systems. The syntax for creating and extending functions under the
two systems is quite different. Thus, the first step in extending an existing function is to
ascertain if it is of the S3 or S4 variety. One way to make such a determination is through
use of the isS4 or isGeneric functions that returns TRUE when applied to the names of
S4 generic functions. In the case of the functions show and coefficients discussed in
Appendix B this produces

> isGeneric("show")

[1] TRUE

> isGeneric("coefficients")

[1] FALSE

which tells us that show is S4 and coefficients is S3. An alternative and more informative
strategy is to look at a function’s “listing” that is returned by entering its names on the
command line. In the case of show and coefficients this generates the output

> show

standardGeneric for "show" defined from package "methods"

function (object)

standardGeneric("show")

<environment: 0x1009212d8 >

Methods may be defined for arguments: object

Use showMethods("show") for currently available ones.

(This generic function excludes non -simple inheritance; see ?setIs)

> coefficients

function (object , ...)
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UseMethod("coef")

<environment: namespace:stats >

The presence of standardGeneric in the description of show designates it as an S4 function
while useMethod signifies that coefficients is S3. The additional information obtained
from the listings is that show has a single argument object while coefficients has argu-
ments object and the catchall ellipsis. New functions that are written to extend show and
coefficients to regr objects should have matching arguments. Functions that provide
such extensions are called method functions.

To extend an existing S3 function func to a new class myClass one need only create a
function named func.myClass. For example, consider the S3 coefficients function that
currently has the method functions
> methods(coefficients)
[1] coef.Arima* coef.aov* coef.default* coef.listof* coef.nls*

Non -visible functions are asterisked
Warning message:
In methods(coefficients) :

generic function ‘coefficients’ dispatches methods for generic ‘coef’

The warning message tells us that methods for coefficients will be dispatched on calls to
functions that have coef. in the beginning of their names. Thus, a version of coefficients
that will work for regr objects is simply

coef.regr <- function(object ){

object@b

}

which now serves as an accessor function for the vector of regression coefficients. With
coef.regr in place an application of methods now produces
> methods(coefficients)
[1] coef.Arima* coef.aov* coef.default* coef.listof* coef.nls*
[6] coef.regr

Non -visible functions are asterisked
Warning message:
In methods(coefficients) :

generic function ‘coefficients’ dispatches methods for generic ‘coef’

revealing that our new function has been successfully installed in the family of method
functions for coefficients. An application of coef to the regr object regrCar from the
previous section gives the expected result: viz,

> coefficients(regrCar)

disp wt qsec

19.7775575655 -0.0001278962 -5.0344097167 0.9266492353

> coefficients(regrCarFit)

disp wt qsec

19.7775575655 -0.0001278962 -5.0344097167 0.9266492353

The polymorphic behavior of coef is illustrated here as well: i.e., the coef function works
equally well when applied to the regrCarFit object from the regrFit class that is derived
from regr.

The presumption was that we were dealing with an existing S3 method. To create a new
S3 method func one uses

> func <- function(x) UseMethod("func")

Method functions for func can now be added in the same manner as with the coefficients
function. For example,
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> func.regr <- function(x) print("func for regr")

> func(regrCar)

[1] "func for regr"

Let us now turn to the case of S4 generic functions. To see the currently available generic
functions enter getGenerics() on the R command line. New method functions for the
functions whose names appear in the resulting list may be created using the setMethod
function. For functions that are not currently present, a new generic function must be
created by first using setGeneric and then invoking setMethod. Simplified prototypes for
setGeneric and setMethod are

setGeneric(name , definition)

and

setMethod(name , signature , definition)

with name a character string that represents the name of the function, definition a function
specification and signature a character string array that defines data types for the non-
ellipsis arguments of the generic function specified in name.

To illustrate the use of setGeneric and setMethod we will initially focus on a simple “toy”
example that will demonstrate the ideas with a minimum of technical detail. Specifically,
suppose that a new two-argument function func is to be introduced into our R session. This
can be accomplished with the command

> setGeneric("func", function(object1 , object2 , ...)

+ standardGeneric("func"))

[1] "func"

This establishes func as a generic function having three arguments: object1, object2 and
the ellipsis. The presence of standardGeneric in the body of the function indicates that this
incarnation of func will serve as the vehicle for methods dispatch. In this sense it represents a
hub or “traffic control center” that directs function calls to the appropriate method function.
It performs this operation based on the non-ellipsis arguments or object1 and object2 in
this instance. To remove a generic function from the workspace use removeGeneric: e.g.,

> removeGeneric("func")

[1] TRUE

This will remove func as well as any method functions it might have. If only a particular
method function should be removed, removeMethod can be used.

To see how method dispatch works consider the introduction of two new method functions
for func via

> setMethod("func", signature("numeric", "numeric"),

+ function(object1 , object2) object1*object2)

[1] "func"

> setMethod("func", signature = c(object1 = "character",

+ object2 = "numeric"), function(object1 , object2)

+ print(paste(object1 , object2 )))

[1] "func"

The signature arguments for the two method functions have been specified using two
different but equally valid ways; the first case employs the signature function that returns
a named list of the classes that will be matched in order to the arguments of the hub function
while the second just specifies the argument character array directly. The signatures that
have been given for the two method functions tell us that the first one will work for cases
where both object1 and object2 are from class numeric while the second is intended
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for cases where object1 is of type character and object2 is numeric. The first method
function will compute the product of its two arguments while the second merely prints out
their values. An application of func will now produce results such as

> func(2, 3)

[1] 6

> func("Hi ya’ll!", 3)

[1] "Hi ya ’ll! 3"

> func(as.character(2), 3)

[1] "2 3"

> func("Hi", "ya’ll!")

Error in function (classes , fdef , mtable) :

unable to find an inherited method for function "func",

for signature "character", "character"

Thus, the hub method for func matches the data types for the arguments that are supplied
to func with its method function signatures to determine which (if any) are appropriate
and then invokes the most appropriate one to “answer” the call to func. If there are no
method functions with signatures that can match the given arguments, an error message is
generated.

Method dispatch cannot be based on additional arguments that come in from the ellipsis
direction. This is illustrated by

> func(2, 3)

[1] 6

> setMethod("func", signature("numeric", "numeric"),

+ function(object1 , object2 , object3) object1*object2*object3)

[1] "func"

> func(2, 3)

Error in object1 * object2 * object3 : ’object3 ’ is missing

> func(2, 3, 4)

[1] 24

Initially the existing func method function with two numeric arguments is used. Then,
a three-argument method function with numeric data types for object1 and object2 is
introduced that is seen to replace the two-argument version. The conclusion is that only the
types of the non-ellipsis arguments can serve as a means to distinguish between different
method functions.

It is possible to have missing function arguments by specifying them to be of data type
missing. In order for functions with missing arguments to be called, one of three things
needs to be true:
• they are explicitly missing; e.g., a comma separated empty argument is present,
• the non-missing arguments are specified by name or
• only trailing arguments from the function’s argument list are missing.
The opposite effect from using missing is achieved by specifying an argument as data type
ANY. In this latter case an object from any class can be provided as the argument’s value.
An illustration of these ideas is provided in the R session output below.

> setMethod("func", signature( "missing", "numeric"),

+ function(object1 ,object2) print("missing and numeric"))

[1] "func"

> setMethod("func", signature("ANY", "numeric"),

+ function(object1 , object2) print("ANY and numeric"))

[1] "func"

> func("a")
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Error in function (classes , fdef , mtable) :

unable to find an inherited method for function "func",

for signature "character", "missing"

> func("a", 2)

[1] "a 2"

> func (2)

Error in function (classes , fdef , mtable) :

unable to find an inherited method for function "func",

for signature "numeric", "missing"

> func(, 2)

[1] "missing and numeric"

> func(object2 = 2)

[1] "missing and numeric"

> setMethod("func", signature("ANY", "missing"),

+ function(object1 , object2) print("ANY and missing"))

[1] "func"

> func("a")

[1] "ANY and missing"

> func (2)

[1] "ANY and missing"

Two additional method functions are introduced initially with numeric second arguments
and first arguments that are missing and ANY. Neither of the functions (nor any of the
previous method functions for func) have signatures that will match a call to func with a
single first argument (and implicitly missing second argument) whether its value is from
class character or numeric. The combination of a character and numeric argument results
in a call to the hub func that will match two of the method function signatures: our previous
one with a character and numeric argument and the new one with arguments of type ANY
and numeric. The character and numeric arguments for the former method function are
more specific and, in that sense, conform more closely (in fact, exactly) with the argument
types that were supplied to the function. Therefore, this is the function that is evaluated.
If the first argument is explicitly omitted as in the func(, 2) statement, the func method
function with the missing argument will be dispatched for numeric object2 data types;
implicit omission of a leading argument will not work and generates an error message. The
other option is to simply assign a numeric value for object2 as demonstrated with the
func(object2 = 2) statement. Finally, a func method function with ANY as the class for
object1 and missing as the data type for object2 will respond to cases where only a single
first argument is supplied to func; since the data type of the first argument is provided,
the hub version of func has enough information to look for an appropriate method function
whose signature will match the first argument (or more generally, the types of the arguments
that have been supplied to the function) with other arguments (or just object2 in this
instance) that are designated as missing.

Arguments need not even be explicitly specified when one defines a method function;
those that are not specified are implicitly assigned data type ANY. For example,

> setMethod("func", signature("ANY", "ANY"),

+ function(object1 , object2) print("ANY and ANY"))

[1] "func"

and

> setMethod("func", signature("ANY"),

+ function(object1) print("just ANY"))

[1] "func"

are functions with the same signature.
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Let us now apply some of what we have learned about creating generic methods to our
regr and regrFit classes of the previous section. Our first illustration will use the existing
S4 function show that can be used either explicitly or implicitly to print out information
about an object. It is called implicitly when an object’s name is entered on the command
line.

At present, a default version of show would be applied to regr objects that employs
appropriate versions of show for the objects that occupy its slot. For large data sets this is
likely much more output than necessary since, for example, the entire X matrix and response
vector would be exhibited. As a result, it is probably worthwhile to extend show to regr
objects in a way that produces more succinct and interpretable output.

To create a new method function for show the arguments must be known for its parent
or hub generic function that will be used for method function dispatch. To discover this
information the function name can be entered on the command line as demonstrated at the
beginning of the section. If there are R manual pages for the function these will also provide
argument details. Still another option is use of the args function as in

> args(show)

function (object)

NULL

This tells us that show has a single argument named object. With this knowledge in hand,
a (very) terse show method function for regr objects is

show.regr <- function(object ){

cat("An object of class regr with", ncol(object@X),

"predictors", "\n")

}

that uses the cat function as described in Section 5.2 for printing output. This is then
installed as a new method function using

> setMethod("show", signature("regr"), show.regr)

[1] "show"

Then,

> regrCar

An object of class regr with 3 predictors

> regrCarFit

An object of class regr with 3 predictors

which demonstrates that the new version of show is now being used for regr objects. As
regrFit is a derived class of regr, this version of show will also work for regrFit objects.

In some cases it is of interest to perform a transformation on the dependent variable when
conducting regression analysis. One option that is often used is a power transformation.
Numeric objects are raised to a power in R with the ^ operator. A check with getGenerics
reveals that ^ is an S4 function in the base package that is loaded whenever an R session is
started. An application of args produces

> args("^")

function (e1, e2)

Thus, new method functions may be defined that have the arguments e1 and e2. A new
method function that will produce an regr object with a power transformed dependent
variable is seen to be

> setMethod("^", signature("regr", "numeric"), function(e1, e2)

+ regr(e1@X , (e1@y)^e2))

[1] "^"
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This can now be used on either regr or regrFit objects as demonstrated by

> newRegrCar <- regrCar ^(.5)

> newRegrCar@b

disp wt qsec

4.5053469796 -0.0002690319 -0.5360063280 0.0961389814

> newRegrCarFit <- regrCarFit ^(.5)

> newRegrCarFit@b

disp wt qsec

4.5053469796 -0.0002690319 -0.5360063280 0.0961389814

> newRegrCarFit@yHat [1]

Error: no slot of name "yHat" for this object of class "regr"

This output reveals a problem. Even though the ^ operator will work with regrFit objects,
the final product is not all that might be desired since the yHat slot is deleted. An alternative
version of ^ that resolves this issue is obtained from

> setMethod("^", signature("regr", "numeric"), function(e1, e2) {

+ if(. hasSlot(e1 , "yHat")) regrFit(e1@X , (e1@y)^e2)

+ else regr(e1@X , (e1@y)^e2)

+ })

[1] "^"

This uses inheritance along with the .hasSlot function to distinguish between regr and
regrFit objects to allow the operator to work on both the base and derived class. With this
new version of ^ in place the previous calculations will now produce the expected results:
e.g.,

> newRegrCarFit <- regrCarFit ^(.5)

> newRegrCarFit@yHat [1]

Mazda RX4

4.640413

There is a bit more to the ^ operator than has been mentioned here. It is part of a
group generic called Arith that includes other arithmetic operators such as +, -, *, etc.
Group generic functions are collections of functions that perform related operations and
have comparable mathematical structure in terms of, e.g., the number of arguments. With
group generic functions it is possible to simultaneously extend all the operators in the group
to work with objects of a given class. We will illustrate this in the next section using the
Compare group generic.

The @ operator and slot function provide us with a means of accessing the slots of an
object. However, as was true for the C++ setting, it is generally preferable to write accessor
functions that simplify code and are named after a mnemonic of the slot of interest. For
example, we might create an accessor function for the coefficient vector of an regr object
with

> setGeneric("bHat", function(object) standardGeneric("bHat"))

[1] "bHat"

> setMethod("bHat", signature = "regr", function(object) object@b)

[1] "bHat"

The method will work equally well with regr and regrFit objects as seen from
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> bHat(regrCar)

disp wt qsec

19.7775575655 -0.0001278962 -5.0344097167 0.9266492353

> bHat(regrCarFit)

disp wt qsec

19.7775575655 -0.0001278962 -5.0344097167 0.9266492353

An examination of the regression coefficients from our continuing mtcars example suggests
that the b slot of regrCar could be simplified to (20, 0,−5, 1). Thus, we might try to perform
the operation

> bHat(regrCar) <- c(20, 0, -5, 1)

Error in bHat(regrCar) <- c(20, 0, -5, 1) :

could not find function "bHat<-"

This error message is a bit confusing as we just wrote and successfully used our bHat accessor
function. The problem is that we are not using bHat here but are, instead, attempting to
use its replacement version bHat<- (see Section 5.4) that indeed has not been defined for
the regr class. This oversight is easy to correct using

> setGeneric("bHat<-", function(x, value) standardGeneric("bHat<-"))

[1] "bHat<-"

We then specify the form of the replacement method function using

> setReplaceMethod("bHat", "regr", function(x, value)

+ {x@b <- value; x})

[1] "bHat<-"

Then, the alternative version of the coefficient vector can be installed with

> bHat(regrCar) <- c(20, 0, -5, 1)

> bHat(regrCar)

[1] 20 0 -5 1

The creation of accessor functions for the other slots of regr and regrFit objects is the
subject of Exercise 6.3.

6.4 An example

To conclude the discussion in this chapter we will consider a particular data analysis problem
corresponding to the fictional Guess5 lottery game discussed in Section 5.6. This game
involved the selection of five (imaginary) balls from a set of forty (imaginary) balls numbered
from 1 to 40. Drawings for the game were conducted twice a week on Monday and Thursday
using two (imaginary) drawing machines (i.e., machines A and B) and 10 (imaginary) ball
sets (i.e., sets 1 to 10). Both the machine and ball set for a drawing were selected at random
and then used to carry out nine preliminary test draws before the actual game drawing.

In Section 5.6 an artificial data set was created that contained the results of 100 Guess5
draws. The data was stored in the file guess5.txt. The first draw in the file looks like

> system("head -n 11 guess5.txt")

1952 -01 -17 A 6 T

10 38 23 20 15

36 15 11 7 37

20 10 9 25 2

29 14 16 31 34

12 38 28 26 2

16 19 22 26 33
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25 17 21 3 10

16 8 32 6 29

22 26 7 24 12

29 16 37 36 27

The results for the other draws in the file are in the same format. Consequently, every draw
will produce 11 lines of text with the first line containing the date, the machine, the set and
the day of the week (M or T for Monday and Thursday) for the draw. Let us now assume
that the drawing results from the Guess5 game data will all be stored in the format shown
above. If regular analysis is to be conducted on this data, time and energy can be conserved
by creating a data analysis structure that is tailored to dealing with data of this type. A
natural way to accomplish this is by building Guess5 related classes and functions and that
is the approach that will be taken here.

The first step in the design process is to consider what classes would be useful and
suitable for Guess5 data. In this respect the smallest data “unit” might be viewed as being
the results of a particular drawing. It is important to be able to access the information
about each individual draw for historical purposes as well as diagnostic analysis related to
unusual drawing events that may occur at various points in time. This suggests that each
draw needs to have its own “identity” and, with that in mind, a natural starting point would
be the creation of a Guess5 class to hold the information about a single Guess5 draw.

In creating a Guess5 class we need to consider what information to retain about the draw
results. The balls can exhibit structural problems from wear and tear and machines can
malfunction. Thus, it may be necessary to look at subsets of the data that correspond to
different ball sets and machines. Also, the date of the draw provides a unique identifier
that can aid in sorting and locating data in a file suggesting that information of this nature
should be included. These considerations lead to a “wish list” for properties that might be
built into Guess5 class objects:

a) A Guess5 object should contain the results of a single night’s draw.

b) Class members should include identifiers for the drawing machine and ball set that were
used to carry out the draw. Other possible class members might represent information
on the date and day of the week for the draw.

c) The actual drawing results (i.e., the numbers for each of the balls that are drawn in
the Guess5 draw and pretest experiments) should be available in a form that is easy to
manipulate for data analysis purposes: e.g., as a matrix.

An R class that adheres to our design guidelines for Guess5 drawing results might be
established with something like

> setClass("g5", representation(drawDate = "Date",

+ mName = "character", sNo = "integer", Day = "character",

+ data="matrix"))

[1] "g5

This creates a class called g5 with class members for the date of the draw (drawDate), the
machine name (mName), the ball set number (sNo) and the day of the week (Day). All these
members derive from the native R classes character, integer and Date. We worked with
the Date class previously in Section 5.6. The actual drawing results will be stored in the
slot data as a matrix object.

The next step is to create a constructor for the class. There are various ways this could
be accomplished depending on the way the drawing data can be accessed. Let us suppose
here that the data come in the form of a 54-element character array: the first four array
entries provide the date, machine name, ball set number and day of the week, respectively,
and the next 50 give the drawing results. A constructor that will work for that scenario is
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g5 <- function(a){

drawdate <- as.Date(a[1])

mname <- a[2]

sno <- as.integer(a[3])

day <- a[4]

A <- matrix(as.integer(a[5:54]) , 10, 5, byrow = TRUE)

g5Obj <- new("g5", drawDate = drawdate , mName = mname , sNo = sno ,

Day = day , data = A)

g5Obj

}

The first four elements of the input array a are used to set the values that will be used to
fill the drawDate, mName, sNo and Day slots for the g5 object. Then, the next 50 elements
are converted from character to integer using the as.integer function and reshaped into
a 10× 5 matrix. This information is used in the basic constructor function new to create a
new class object.

An application of our g5 constructor to data from the guess5.txt file produced

> a <- scan("guess5.txt", what = character(0), n = 108)

Read 108 items

> g5Obj1 <- g5(a[1:54]); g5Obj2 <- g5(a[55:108])

> g5Obj1

An object of class "g5"

Slot "drawDate":

[1] "1952 -01 -17"

Slot "mName":

[1] "A"

Slot "sNo":

[1] 6

Slot "Day":

[1] "T"

Slot "data":

[,1] [,2] [,3] [,4] [,5]

[1,] 10 38 23 20 15

[2,] 36 15 11 7 37

[3,] 20 10 9 25 2

[4,] 29 14 16 31 34

[5,] 12 38 28 26 2

[6,] 16 19 22 26 33

[7,] 25 17 21 3 10

[8,] 16 8 32 6 29

[9,] 22 26 7 24 12

[10,] 29 16 37 36 27

> g5Obj2@drawDate

[1] "1952 -01 -21"

The scan function is used to import the information about the first two draws or first 108
elements from the guess5.txt file. This character array is then processed with the g5 class
constructor to produce two g5 class objects. Examination of the objects indicates that they
agree with the drawing data created in Section 5.6.
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A validity check function should be installed to ensure that the constructor has produced
a valid g5 object. A function that will work for that purpose is

validG5 <- function(object ){

if(object@mName != "A" & object@mName != "B")

return(paste("Incorrect machine name for date", object@drawDate ))

if(object@sNo < 1 | object@sNo > 10)

return(paste("Incorrect set number for date", object@date ))

if(object@Day != "M" & object@Day != "T")

return(paste("Incorrect day for date", object@date ))

if(any(object@data < 1 | object@data > 40))

return(paste("Incorrect ball number for date", object@date ))

return(TRUE)

}

This can be set as the function to check for incorrect g5 member input data through the
command

setValidity("g5", validG5)

The effect will now be to reject situations where the ball set, machine or day entries do not
coincide with those that are appropriate for the game. Similarly a check is performed to
see that all the ball numbers are between 1 and 40. The calculations in this latter case are
carried out using the any function that takes a logical array as its argument and returns
TRUE if any of its elements evaluate as TRUE. If there are any ball number entries with values
that fall outside the 1 to 40 range, any will return TRUE and the date of the draw where an
error has been found will be printed to help in locating the problem and correcting it in the
text file containing the data.

Now that we have created the g5 class some of the R generic functions can be extended
to work with g5 objects. One function of interest is the S3 function summary. We could use
the S3 system discussed in the previous section to define a version of summary that would
be applicable to the g5 class. There is another option: namely, make summary an S4 generic
function with

> setGeneric("summary")

[1] "summary"

> summary

standardGeneric for "summary" defined from package "base"

function (object , ...)

standardGeneric("summary")

<environment: 0x102839c40 >

Methods may be defined for arguments: object

Use showMethods("summary") for currently available ones.

The last part of the output confirms that summary is now an S4 function with the same
arguments, object and the ellipsis, as its S3 progenitor. A method function that might
serve our purpose is then installed with

setMethod("summary", "g5", function(object ){

cat(paste("Drawings for", object@drawDate , "used Machine",

object@mName , "and Ball Set", object@sNo , "\n"))

cat("Drawing results with pretests", "\n")

print(object@data)

}

)

An application of summary to the g5 object g5Obj1 will now produce
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> summary(g5Obj1)

Drawings for 1952 -01 -17 used Machine A and Ball Set 6

Drawing results with pretests

[,1] [,2] [,3] [,4] [,5]

[1,] 10 38 23 20 15

[2,] 36 15 11 7 37

[3,] 20 10 9 25 2

[4,] 29 14 16 31 34

[5,] 12 38 28 26 2

[6,] 16 19 22 26 33

[7,] 25 17 21 3 10

[8,] 16 8 32 6 29

[9,] 22 26 7 24 12

[10,] 29 16 37 36 27

Eventually we will create a function that can sort a collection of g5 objects. The critical
ingredient in accomplishing this is having order relationships that allow us to compare
one g5 object to another. For our purposes the ordering will be in terms of the drawDate
slot that will produce a chronologically sorted arrangement. Rather than define ==, <=,
etc., individually it is possible to define all such operators simultaneously using a slight
modification of our previous approach for defining method functions. The difference is that
now the method functions will be defined for a group or collection of functions named
Compare in this instance. Other group generics include those with names Arith, Logic,
Math and Summary as described on the R help page for S4groupGeneric. For Compare this
help page describes the functions in the group as having the basic form

Compare(e1 , e2)

Thus, they are all binary functions with two arguments e1 and e2. All of them can now be
extended to the g5 class using

> setMethod("Compare", signature(e1 = "g5", e2 = "g5"),

+ function(e1, e2) callGeneric(e1@drawDate , e2@drawDate ))

[1] "Compare"

The callGeneric that appears here is for method dispatch; it will call the current generic
function that is appropriate for the Date class objects e1@drawDate and e2@drawDate in
this instance. This will be sufficient because all the functions in the Compare group generic
have method functions that apply to the Date class as indicated in the R help page for
Ops.Date. A test of our comparison operations gives results such as

> g5Obj1 > g5Obj2

[1] FALSE

> g5Obj1 < g5Obj2

[1] TRUE

> g5Obj1 == g5Obj2

[1] FALSE

> g5Obj1 <= g5Obj2

[1] TRUE

The fact that the date for g5Obj1 (i.e., 1952–01–17) is earlier that the date for g5Obj2 (i.e.,
1952–01–21) suggests that the comparison operators are working correctly.

So far the emphasis has been on constructing an object corresponding to a single Guess5
drawing. In practice a file of drawing data will contain information from multiple draws
as in the guess5.txt file. Thus, a system is needed for bundling together a collection of g5
objects into a framework that is easy to use in a data analysis context. There are many
ways to accomplish this. The approach that will be developed here is to process the raw
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Guess5 data from a text file and then use our g5 constructor to create g5 objects that will
be stored in a list structure. To implement this idea another class called g5List is created
via the command

> setClass("g5List", representation(objList = "list", nDraws =

+ "integer", nSet = "integer", nMach = "integer"))

[1] "g5List"

The essential ingredient of this class is the objList slot that will hold the list of g5 objects.
Additional class members have been added to hold information about i) the number of
times each machine has been used (the nMach slot that will hold a two-component integer
vector), ii) the number of times each ball set was used (the nSet slot that will hold a
10-component integer vector) and iii) the number of draws nDraws or, equivalently, the
number of g5 objects that are stored in the list objList.

The next step is to create a constructor for the g5List class. The ensuing listing accom-
plishes this and we will spend some time discussing the details of this function.

g5List<-function(fileName ){

A <- readG5(fileName)

ndraws <-length(A)/54

objlist <- lapply(1: ndraws , FUN =

function(i) g5(A[(54*i - 53):(54*i)]))

temp <- sapply(objlist , FUN = function(g5obj) g5obj@mName)

tempNMach <- sum(temp == "A")

nmach <- c(tempNMach , ndraws - tempNMach)

temp <- sapply(objlist , FUN = function(g5obj) g5obj@sNo)

nset <- integer(10)

for(i in 1:10) nset[i] <- sum(temp == i)

g5ListObj <- new("g5List", objList = objlist , nDraws =

as.integer(ndraws), nSet = nset ,

nMach = as.integer(nmach))

}

The first action in the g5List constructor is to import the drawing data from the file whose
name fileName is supplied as its argument. The data is brought in as a character array via
the function readG5 that takes the form

readG5 <- function(fileName ){

out <- tryCatch(unlist(strsplit(readLines(fileName), split = " ")),

warning = function(e){print(e)

print("Please enter a file name followed by a return")

newName <- scan(, what = character(0), quiet = TRUE)

readG5(newName)},

error = function(e) print(e))

out

}

This reads the information from a file in exactly the same way as in Section 5.6 except that
the use of scan is now managed by the tryCatch function that, similar to developments
in Section 5.4, allows for recovery from an error in the file name specification. Once the
data has been imported, the number of draws nDraws can be determined as the length of
the A array divided by 54. The contents of A are then transformed into a list of g5 objects
using the lapply function. The first argument to lapply is a vector of integers from 1 to
the number of draws. These values are passed to a function that then uses the appropriate
subsets of the A character array to call the g5 class constructor for each draw in the data
set. The output from lapply is a list which is what is desired in this instance.

There are two members of the g5Array class that remain to be determined: the vector
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nMach that gives the number of times the two machines have appeared and the vector
nSet that contains the number of times that each of the 10 ball sets have been used. To
evaluate the first of these sapply is used on the list of g5 objects in a way that will extract
the information in the mName slot for every element in the list. By using sapply (rather
than lapply) the output will be returned as a character vector temp. The action of (temp
== "A") is to return a vector of Boolean variables of the same length as temp so that
applying sum to its components will return the number of times that "A" appeared in temp.
The number of times the "B" machine was used is the difference between ndraws and the
number of times that the "A" machine was employed.

The idea behind finding the number of occurrences for each ball set is similar to the
calculations that were done concerning the two machines. First a vector of integers giving
the ball set number for each draw is extracted from the list of g5 objects using sapply.
Then, a for loop is used to count the number of TRUE values in each of the vectors of
logical variables (temp == 1), . . ., (temp == 10). The final step puts all the information
that has been accrued into the basic constructor function new and returns the resulting
g5List object.

For convenience of access to the elements of a g5List object we should extend the list sub-
setting operator [[ to work with the g5List class. The most natural way to accomplish this
is by having g5ListObj[[i]] correspond to g5ListObj@objList[[i]] for a g5List object
g5ListObj. The [[ operator is an S4 function whose prototype from the corresponding R
help page takes the form

x[[i, j, ..., exact = TRUE]]

The R help page also tells us that the method is based on internal code which is built into
the R interpreter with the result that methods may only be dispatched on the x argument.
So, by taking x = "g5List" an indexing method function can be introduced with

> setMethod("[[", signature(x = "g5List"), function(x, i, j, ...,

+ exact = TRUE) x@objList [[i]])

[1] "[["

It seems natural to also define a replacement version of [[ at this point which is readily
accomplished with

> setReplaceMethod("[[", signature(x = "g5List"),

+ function(x, i, j, ..., exact , value) {x@objList [[i]] <- value; x})

[1] "[[<-"

The effect is to replace a component of the list with a specified index with the g5 object on
the right side of the <- symbol.

The list indexing operator is probably the most natural way to access the individual g5
objects in a g5List object. This alone is not sufficient in that it does not provide us with
access to the other g5List class members nDraws, nMach and nSet. Of course, these can be
obtained using the @ operator. But, a more aesthetically pleasing approach is provided by
accessor functions created with the code

> setGeneric("nDraws", function(object) standardGeneric("nDraws"))

[1] "nDraws"

> setMethod("nDraws", signature = "g5List", function(object)

+ object@nDraws)

[1] "nDraws"

> setGeneric("nMach", function(object) standardGeneric("nMach"))

[1] "nMach"

> setMethod("nMach", signature = "g5List", function(object)

+ object@nMach)
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[1] "nMach"

> setGeneric("nSet", function(object) standardGeneric("nSet"))

[1] "nSet"

> setMethod("nSet", signature = "g5List", function(object)

+ object@nSet)

[1] "nSet"

The constructor for the g5List class was applied to the data in our guess5.txt file. Some
of the properties of the resulting g5List object are examined below.

> g5ListObj <- g5List("guess5.txt")

> nDraws(g5ListObj)

[1] 100

> nMach(g5ListObj)

[1] 53 47

> nSet(g5ListObj)

[1] 4 8 12 14 12 12 12 7 8 11

> g5ListObj [[2]]

An object of class "g5"

Slot "drawDate":

[1] "1952 -01 -21"

Slot "mName":

[1] "B"

Slot "sNo":

[1] 4

Slot "Day":

[1] "M"

Slot "data":

[,1] [,2] [,3] [,4] [,5]

[1,] 11 9 23 10 20

[2,] 32 7 16 18 40

[3,] 38 35 26 36 19

[4,] 24 14 39 1 19

[5,] 35 1 3 7 28

[6,] 30 38 18 3 24

[7,] 31 6 16 9 3

[8,] 16 3 9 39 25

[9,] 12 4 3 33 28

[10,] 33 39 4 38 29

> temp <- g5ListObj [[2]]

> g5ListObj [[2]] <- g5ListObj [[1]]

> g5ListObj [[2]] @drawDate

[1] "1952 -01 -17"

> g5ListObj [[2]] <- temp

> g5ListObj [[2]] @drawDate

[1] "1952 -01 -21"

The sum of the values for nMach and nSet should be 100 as we find to be the case. A check
with results from Section 5.6 also indicates that the second g5 object agrees with the one
in the guess5.txt file. A test of our replacement version of [[ successfully overwrites the
information from the second draw with that from the first and then reverses the operation.

The task remains of actually analyzing the Guess5 data and, similar to what was done
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in Section 5.6, chi-square tests will be used for that purpose. Instead of looking at all the
drawing information the idea is to now work with subsets of the data corresponding to
different machines and ball sets. There are two obvious ways to proceed in creating the
tools for this type of analysis: namely,

a) an analog of the table function (discussed in Section 5.6) could be created for working
with g5List objects that produces results that can be used directly with the chisq.test
function (also discussed in Section 5.6) or

b) the entire analysis could be packaged in a suitable version of the chisq.test function.

Our approach will take the second path. The other option is the topic of Exercise 6.13.
The first step is to make chisq.test an S4 generic function. This is accomplished with

> setGeneric("chisq.test")
[1] "chisq.test"
> chisq.test
standardGeneric for "chisq.test" defined from package "stats"

function (x, y = NULL , correct = TRUE , p = rep(1/length(x), length(x)),
rescale.p = FALSE , simulate.p.value = FALSE , B = 2000)

standardGeneric("chisq.test")
<environment: 0x100a89e98 >
Methods may be defined for arguments: x, y, correct , p, rescale.p,

simulate.p.value , B
Use showMethods("chisq.test") for currently available ones.

The summary information about chisq.test states that new method functions may be
created that use the arguments x, y, correct, p, rescale.p, simulate.p.value and B. A
new feature is that the y, correct, p, rescale.p, simulate.p.value and B have all been
given default values in the generic function’s specification.

The question is which arguments to use in our new method function and how to use
them. In some respects there is no reason to prefer one over the other (Exercise 6.12). If we
want the name of the argument we choose to have some connection to its purpose, correct,
rescale.p, simulate.p.value and B are not compelling options. The x argument in the
original chisq.test method is the data to be analyzed and usually a vector or matrix of
counts. When applied in the form

chisq.test(x, y)

the vectors x and y provide pairs of values on two categorical variables for the observations
in the data. This is not precisely what we have for our problem. But, a bit of imagination
suggests taking x as a g5List object and y as a list of machines and ball sets to be used in
the analysis.

The listing below gives one possible set of code that could be used to create a new g5List
method function for chisq.test.

chisq.test.g5List <-function (x, y = list(machRange = c("A", "B"),

setRange = 1:10) , correct , p, rescale.p, simulate.p.value , B){

objlist <- x@objList

tempM <- sapply(objlist , FUN = function(g5obj) g5obj@mName)

tempS <- sapply(objlist , FUN = function(g5obj) g5obj@sNo)

tempM <- is.element(tempM , y[[1]])

tempS <- is.element(tempS , y[[2]])

indices <- as.logical(tempM*tempS)

newList <- objlist[indices]

ndraws <- length(newList)

temp <- as.numeric(sapply(1:ndraws , FUN =

function(i) newList [[i]] @data))

chistat = 39*chisq.test(x = table(temp ))[[1]]/35
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names(chistat) <- NULL

list(chistat , 1 - pchisq(chistat , 39))

}

As discussed above, the x argument is a g5List object and y is a list with the machine or
machines to use in the comparison as its first component and the numbers for the ball sets as
its second component. A default value has been provided for the y argument that will result
in the analysis of the entire data set: i.e., a chi-square statistic will be calculated for the
draws produced using both machines and all 10 ball sets. The R help page for setMethods
states that in order for a default argument to be used in a method function “the generic
function must have some default expression for the same argument”. Since, as noted above,
this is true for the y argument in the chisq.test generic function, the specified default list
can be used provided we furnish a a suitable signature when we define the method function.

The initial step in the chisq.test.g5List function is to extract the list of g5 objects
from the x argument. Then, similar to the developments in the g5List constructor, sapply
is used to obtain a vector of characters and a vector of integers that give the machines
and ball sets for each of the g5 objects in the data. The is.element function is applied to
these vectors using the y[[1]] and y[[2]] list components. The result is two vectors of
logical variables, tempM and tempS, whose entries are TRUE or FALSE depending or whether
or not the element’s value lies in the set designated by the machine component y[[1]] and
set component y[[2]] of the y list. Multiplication of two logical variables produces 0 (if
either of the two variables is FALSE) or 1 (if both variables are TRUE). Thus, the product of
tempM and tempS will have all 0 entries except for those g5 objects whose mName and sNo
slots contained values that were in the intersection of y[[1]] and y[[2]]. The as.logical
function returns these values to logical TRUE and FALSE form. The subsetting feature for
R lists has the consequence that when this vector of logical variables is passed to the []
operator, the output will be a sublist corresponding to the elements of the list for which the
index evaluates as TRUE. From this point the development proceeds along the lines of Section
5.6 except that the analysis is working with a subset, rather than the entire collection of
data.

We can now establish chisq.test.g5List as a method function for chisq.test with

> setMethod("chisq.test", signature(x = "g5List", y = "ANY"),

+ definition = chisq.test.g5List)

[1] "chisq.test"

Our choice for the signature perhaps requires a bit of discussion. As a rule, our calls to
chisq.test will involve two specified arguments with the first being a g5List object and
the second an R list object. However, for a call to use the default argument that was
supplied for the method function, the second argument will need to be missing. Thus, we
need a signature that will match both (x = "g5List", y = "list") and (x = "g5List",
y = "missing"). An option that will work is (x = "g5List", y = "ANY").

Examples of how the new chisq.test method function works are given by the output
below.

> chisq.test(g5ListObj , list(machRange = "A", setRange = 1:10))

[[1]]

[1] 39.88722

[[2]]

[1] 0.4304843

> chisq.test(g5ListObj , list(machRange = c("A", "B"), setRange = 10))

[[1]]

[1] 39.02026
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[[2]]

[1] 0.4689672

> chisq.test(g5ListObj)

[[1]]

[1] 27.77691

[[2]]

[1] 0.9100113

The analysis has produced results for subsets of the data that isolate the performance of
machine "A" and ball set 10 alone. The final application of chisq.test uses the default y
argument that entails analysis of the entire data set. The chi-square statistic produced in
this latter case agrees with the answer that was previously obtained in Section 5.6.

Finally, let us consider how to create a method for sorting the data inside a g5List
object. The ordering will be in terms of draw dates with the goal being to arrange the g5
objects in the objList slot in chronologically descending order. The comparison operators
are already in place and the only remaining obstacle is the creation of code to implement a
sorting routine.

Lists in R are basically arrays that can hold objects of general types. Thus, techniques
for sorting arrays can be employed to solve our problem. Chapter 9 discusses some efficient
routines for that purpose. For now we will use a simple, inefficient, method called selection
sort that can be used to sort an array in place. The idea is straightforward; one finds the
minimum value in the array, swaps it with the first entry, repeats the operation on the array
composed of all but the first element, etc.

The driving force behind selection sort is a method that finds the smallest value in an
array. A function that will serve this purpose for our setting is

minIndex <- function(x){

minIndex <- 1

minObj <- x[[1]]

for(i in 1:length(x))

if(x[[i]] < minObj ){

minIndex <- i

minObj <- x[[i]]

}

list(minIndex , minObj)

}

The input argument x is assumed to be a list of objects that can be ordered by the compar-
ison operator <. This is used in conjunction with a for loop to move through the list and
locate the “smallest” (vis-à-vis the definition of <) object.

The function that actually sorts the list is

sortList <- function(x){

y = NULL

if(length(x) > 1){

temp <- minIndex(x)

x[temp [[1]]]<- x[[1]]

x[[1]] <- temp [[2]]

y <- sortList(x[2:length(x)])

}

y = c(y, x[[1]])

y

}
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The sorting process uses recursion (cf. Exercise 3.7); i.e., each time the minimum element is
removed from the list sortList calls itself again. This process continues until the list is of
size one. At that point the last two lines of the function are realized for the first time after
which the minimum elements from the previous iterations are sequentially collected in the
new list y.

There is another way to create an S4 generic function: add a method function to any
existing function. A simple example that illustrates the basic idea is

> func <- function(x, y) x*y

> setMethod("func", signature(y = "integer"), function(x, y) y)

Creating a generic function from function "func"

[1] "func"

> func(3, 3); func(3, as.integer(3));

[1] 9

[1] 3

We can use this last approach to create an S4 generic function from the existing S3
function sort. It has arguments

> args(sort)

function (x, decreasing = FALSE , ...)

NULL

A new S4 generic function that adheres to this format can then be created with

> setMethod("sort", signature("g5List"), function(x,

+ decreasing = FALSE , ...) {newObject <- new("g5List",

+ objList = sortList(x@objList), nDraws = nDraws(x),

+ nSet = nSet(x), nMach = nMach(x))

+ newObject

+ })

Creating a new generic function for "sort" in ".GlobalEnv"

[1] "sort"

The listing below gives some illustrations of using the new sort method function.

> as.Date(sapply(g5ListObj@objList , function(e) as.Date(e@drawDate )),

+ origin = "1970 -01 -01")[1:5]

[1] "1952 -01 -17" "1952 -01 -21" "1952 -01 -24" "1952 -01 -28" "1952 -01 -31"

> as.Date(sapply(sort(g5ListObj)@objList , function(e)

+ as.Date(e@drawDate )), origin = "1970 -01 -01")[1:5]

[1] "1952 -12 -29" "1952 -12 -25" "1952 -12 -22" "1952 -12 -18" "1952 -12 -15"

> set.seed (123)

> newg5ListObj <- new("g5List", objList = sample(g5ListObj@objList),

+ nDraws = nDraws(g5ListObj), nSet = nSet(g5ListObj),

+ nMach = nMach(g5ListObj ))

> as.Date(sapply(sort(newg5ListObj)@objList , function(e)

+ as.Date(e@drawDate )), origin = "1970 -01 -01")[1:5]

[1] "1952 -12 -29" "1952 -12 -25" "1952 -12 -22" "1952 -12 -18" "1952 -12 -15"

The original g5List object g5ListObj holds g5 objects arranged in chronologically ascend-
ing order. Our sort method function successfully reverses this order. It is also applied to
a g5List object that is obtained from g5ListObj by randomly shuffling its contents with
similar results.

6.5 Exercises

6.1. Add a method function to the S3 generic function residuals that will work with regr
class objects.
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6.2. Expand the regr class from Section 6.2 to include

a) both residual and regression sums of squares,

b) an F-statistic for testing the significance of the regression,

c) a p-value for your F-statistic from part b) and

d) the value of the coefficient of determination.

Using this extended class decide whether or not a constant term should be used in creating
an regr object from the mtcars data in Section 6.2.
6.3. Write code for accessor functions to go with your class from Exercise 6.2.
6.4. Make the constructor for your regr class of Exercise 6.2 an S4 generic function. Then,
add two method functions:

a) the original regr constructor from Exercise 6.2 and

b) a constructor that allows the b slot to be a specified vector.

6.5. Create a method for plot that can be used with objects from the regr and regrFit
classes. Exploit the ... argument for plot by including additional arguments to your plot
method that will produce plots of residuals or fits against the independent variables.
6.6. Write a method for the show function that will distinguish between regr and regrFit
objects.
6.7. Extend the Math group generic functions to produce regr and regrFit objects that use
transformations of the response vector. Then, evaluate the performance of the log transform
for the mtcars data example of Sections 6.2–6.3.
6.8. Create a validity check function that can be used for g5List objects.
6.9. Write a method function for print that will work with g5List objects.
6.10. Create a g5List constructor that can be used to append or insert another new g5
object into an existing g5List object. [Hint: Begin with a generic g5List constructor and
then create method functions that work with file input or existing g5List objects.]
6.11. Create new generic functions and associated method functions that provide accessor
and assignment functions for the slots of the g5 class.
6.12. Rewrite the chisq.test.g5List function using one of the other (than y) arguments
for the S4 generic version of chisq.test.
6.13. Extend the table function to work with g5List objects in a way that will produce
frequency counts for the drawing results corresponding to different subsets of the machines
and ball sets used to produce the data.
6.14. Write a method function for + that adds the ball frequencies for g5 objects. Then, use
this addition operator to obtain an alternative version of the chisq.test.g5List function
in Section 6.4.
6.15. Write code that implements a method function for sort with g5List objects that is
based on the bubblesort method described in Algorithm 3.1.
6.16. Write code for a sorting method for g5List objects that relies on the R functions
unlist and order while not directly using the comparison operators.
6.17. Consider the game in Exercise 5.17.

a) Create a class for individual draws.

b) Define generic methods for summary, show and print that will work with objects from
your class in part a).

c) Create accessor and replacement functions for the class data members.
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d) Develop another class that will allow for manipulation and storage of a collection of
objects from the class in part a).

e) Develop a method function for the S4 version of chisq.test that will work with objects
from the class developed in part d).

f) Analyze the data that was generated is Exercise 5.17 using your method from part e).
6.18. Rework Exercise 6.17 using inheritance from the g5 and g5List classes of Section 6.4.
6.19. Create a class that can be used for working with complex numbers. In addition,
a) extend show, summary, print and [ to work with objects from your complex number

class,
b) extend the arithmetic operators ∗,+,− and / to objects of the complex number class,
c) create a sort method function that will arrange complex number objects in numerically

ascending or descending order as determined by their complex modulus or norm and
d) develop a version of the S3 generic plot function that will apply to complex number

objects.
[Note: The resident R class for complex numbers is named complex. You should avoid using
this name for your class.]
6.20. The R array class has the constructor

array(data , dim, dimnames)

with data a vector or list object, dim a vector of integers specifying the size of each
dimension and dimnames the associated dimension names. For example,

> array(rnorm(27), c(3, 3, 3))

, , 1

[,1] [,2] [,3]

[1,] 0.3741209 -0.3761964 0.4679258

[2,] -2.6802921 -0.6930957 -0.7583162

[3,] -0.4875758 -1.4664360 1.5395929

, , 2

[,1] [,2] [,3]

[1,] 1.0333163 -0.3666477 1.1908588

[2,] 2.3681655 -0.2561474 0.3799085

[3,] 0.2180131 0.4169775 -1.1094986

, , 3

[,1] [,2] [,3]

[1,] -0.3157936 -1.9503897 -0.2257388

[2,] 0.5651924 -0.9226202 -0.0743885

[3,] 1.2550420 -0.3217654 1.0233531

creates a 3× 3× 3 array of real numbers while

> A <- array(list(matrix(rnorm(2), 2, 2), 1:5, c("a", "b"),

+ expression(1 + x)), c(2, 2))

> A[1, 1]

[[1]]

[,1] [,2]

[1,] -0.9755330 -0.9755330

[2,] 0.2602563 0.2602563
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> x = 2; eval(A[2, 2][[1]]);

[1] 3

creates a 2 × 2 array of disparate R objects. Notice our use of the eval function from
Exercise 5.9 to evaluate the expression object in the array.

Use the array class to create a class that can be used for working with three-dimensional
numeric arrays. Also,
a) extend show, summary and print to work with objects from your array class and
b) extend the arithmetic operators ∗,+ and − to objects of the array class.
6.21. Create a class that can be used for working with character strings. In addition,
a) extend show, summary and [ to work with objects from your string class,
b) extend the arithmetic operator + to objects of the string class where its action is con-

catenation,
c) provide an S4 method function for match that applies to string class objects and
d) provide an S4 method function for the print function that is appropriate for your string

class.
6.22. Create a class that can be used for working with polynomials.
a) Extend show, summary, print and [ to work with objects from the polynomial class.
b) Extend the arithmetic operators +,− and ∗ to objects of the polynomial class.
c) Provide a method function for plot that will work with a polynomial class object.
d) Use the R function polyroot to create a method function for the solve function that

will work for your polynomial class.
Venables and Ripley (2000)



Chapter 7

Numerical linear algebra

7.1 Introduction

Numerical techniques for solving linear algebra problems represent a dominant theme in
scientific computing. In statistics, linear systems arise from the fitting of linear models and
even iterative methods for fitting nonlinear models. Multivariate analysis includes methods
such as factor analysis, principal components analysis and canonical correlation all of which
attempt to reduce the dimensionality of data through construction of optimal linear com-
binations of collections of variables. This, in turn, leads to eigenvalue-eigenvector problems
that must be addressed numerically.

The next section contains an introductory treatment of techniques for solving linear equa-
tion systems that covers Gaussian elimination and Cholesky factorization for both full and
banded systems. Sections 7.3 and 7.4 deal with eigenvalue-eigenvector and singular-value
decompositions of matrices. Least-squares problems and the QR decomposition are briefly
addressed in Section 7.5. The chapter concludes with an introduction to the open source
Template Numerical Toolkit collection of C++ routines for numerical linear algebra.

Throughout this chapter we will be developing new methods for the class Matrix that
was introduced in Section 3.9. Complete listings of the header and source code files for the
Matrix and Vector classes are contained in Appendix D.

7.2 Solving linear equations

Consider the problem of finding a solution (or solutions) b to the system

Ab = c, (7.1)

where A is a specified n×n real matrix and c is a specified real vector. There are numerous
numerical methods that can be employed for this purpose including variants of the Gaussian
elimination technique discussed in Section 7.2.2.

Linear equations arise in statistics through, e.g., the normal equations for estimation in
regression and linear models that have the form

XTXb = XT y

with X an n×p matrix for n ≥ p, y an n×1 response vector and b a p×1 solution vector of
estimated regression coefficients. This is a special case of (7.1) where the matrix A = XTX
is positive-semidefinite. When X has rank p, XTX is positive-definite which allows us to
employ more specialized procedures, such as the Cholesky decomposition treated in Section
7.2.3, that explicitly use this property.

A standard tactic for solving (7.1) is via factorization to produce a lower- or upper-
triangular system. The reason for this is that triangular systems are easy to solve as ex-
plained in the next section.

7.2.1 Solving triangular systems

The basic premise behind many solution methods for linear equations involves triangular-
ization where (7.1) is transformed into an equivalent system with (the transformed ver-
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sion of) A being upper-triangular. To see why such triangular systems are of interest,
suppose that U = {uij}i,j=1,n is upper-triangular with uij = 0, i > j. Then, assum-
ing all divisions are well defined, the system Ub = c can be solved via bn = cn/unn,
bn−1 = (cn−1 − u(n−1)nbn)/u(n−1)(n−1), etc., with the general step being

bt =

ct − n∑
j=t+1

utjbj

 /utt

for t = n− 1, . . ., 1. This is called a back-solving algorithm.
The computational effort involved in back-solving is on the order of n2 floating-point

operations or flops. Floating-point operations include addition, subtraction, multiplication
and division. To see how we arrive at the n2 figure observe that solving for bn requires one
division while solving for bt involves n−t multiplications, n−t subtractions and one division
for t = n− 1, . . . , 1. Thus, the total effort is

1 +
1∑

t=n−1

{2(n− t) + 1} = n2.

This type of operation count is often referred to as the complexity of the algorithm and that
term is frequently employed along with O notation to describe the order of an algorithm’s
computational effort. Thus, in this case the back-solving algorithm has complexity O(n2).

Back-solving is easily implemented in an iterative form that is amenable for use with a
computer as illustrated by the following new member function for our class Matrix from
Chapter 3.

Vector Matrix :: backward(const Vector& RHS) const {

double temp;//temporary storage

Vector b(nRows , 0.);//solution vector

//initialize the recursion

if(pA[nRows - 1][ nRows - 1] != 0)

b.pA[nRows - 1] = RHS.pA[nRows - 1]/pA[nRows - 1][ nRows - 1];

else{

cout << "Singular system!" << endl;

exit (1);

}

//now work through the remaining rows

for(int i = (nRows - 2); i >= 0; i--){

if(pA[i][i] != 0){

temp = RHS.pA[i];

for(int k = (i + 1); k < nRows; k++)

temp -= b.pA[k]*pA[i][k];

b.pA[i] = temp/pA[i][i];

}

else{

cout << "Singular system!" << endl;

exit (1);

}

}

return b;

}

Notice that checking is done at each step of the outside loop to guard against division by
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zero. When a diagonal entry of a square, upper-triangular matrix is zero this means that
the matrix is singular. In that case, there is no unique solution to the linear system. The
calling Matrix object as well as the right-hand side Vector object should not be altered by
backward. To account for this backward has been made a const member function and the
method’s argument is passed in as a const reference.

Lower-triangular systems can be solved similarly to the upper-triangular case. Specifically,
suppose the system is Lb = c with L a lower-triangular matrix having lij = 0, j > i. Then,
b1 = c1/l11, b2 = (c2 − l21b1)/l22 and

bt = (ct −
t−1∑
j=1

ltjbj)/ltt

for t = 2, . . ., n. The member function forward for class Matrix that implements this
recursion is given in Appendix D.

In general the process of solving (7.1) can be formulated as one of constructing an LU
decomposition of A wherein A = LU for L and U lower- and upper-triangular matrices,
respectively.∗ Given such a decomposition for A, b can be computed using forward and
backward substitution. Specifically, Lz = c is first solved by forward substitution and then
b is calculated from Ub = z via the backward recursion.

7.2.2 Gaussian elimination

The results in the last section provide the means for solving any full rank, upper-triangular
system. More generally, this entails that a solution can be obtained for any linear system
that can be transformed to upper-triangular form through a series of row operations: i.e.,
by left multiplication of A and c by appropriate matrices. This can be accomplished with
iterated Gauss transformations as will now be described.

Let x = (x1, . . ., xn)T be a vector with xk 6= 0 and define the Gauss transformation matrix

Tk(x) =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

...
0 · · · 1 0 · · · 0
0 · · · −xk+1

xk
1 · · · 0

...
...

...
...

. . .
...

0 · · · −xnxk 0 · · · 1


.

Then, one may check that Tk(x)x = (x1, . . . , xk, 0, . . . , 0)T . With this in mind, the system
(7.1) can be transformed to upper-triangular via the Gauss sweep process described in
Algorithm 7.1. The algorithm begins by initializing a work matrix G as the matrix A
for the linear system. Similarly, a right-hand side work vector h is initialized to c. Gauss
transforms are then applied sequentially to the vector and work matrix until the system is
upper-triangular. At that point the solution is available by back-solving.

∗ The LU decomposition of a matrix A exists provided that all the principal minors of A are nonzero. A
more general factorization of A as LUP with L and U lower- and upper-triangular and P a permutation
matrix always exists and reduces to the LU decomposition when the latter exists. An algorithm for
computing an LUP decomposition can be found in Chapter 28 of Cormen, et al. (2001).
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Algorithm 7.1 Gauss sweep algorithm
G = [g1, . . . , gn] = A, h = c
for k = 1, . . . , (n− 1) do
h := Tk(gk)h
G := Tk(gk)G

end for
Back-solve Gb = h
return b

An R function that was created to produce a Gauss transform for a given vector of input
and row designation has the form

gTran <- function(x, k){

n <- length(x)

T <- diag(1, n, n)

e <- vector(mode = "numeric", length = n)

e[k] = 1

temp <- vector(mode = "numeric", length = n)

temp[(k + 1):n] <- -x[(k + 1):n]/x[k]

T<-T + temp%*%t(e)

T

}

This function creates the Gauss transform matrix Tk(x) using the fact that Tk(x) = I+vkeTk
with I the n× n identity matrix, vk = (0, . . . , 1,−xk+1/xk, . . . ,−xn/xk)T and ek an n× 1
vector of all zeros except for a 1 as its kth component. The R function diag is used to create
the identity matrix. Somewhat more generally, diag(a, n, n) with a a scalar will create
a square diagonal matrix with all the diagonal entries equal to a.

We will now use gTran to illustrate Algorithm 7.1 by working through a specific example
in R. First, a matrix A and right-hand side c are generated via

> set.seed (123)

> A <- matrix(rnorm(25), 5, 5)

> A <- t(A)%*%A

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 2.8183730 -3.1452537 -0.2082627 -4.1931724 -1.0827824

[2,] -3.1452537 5.4246530 1.9299179 5.5110075 0.1453005

[3,] -0.2082627 1.9299179 2.1096700 1.9187222 -1.5299804

[4,] -4.1931724 5.5110075 1.9187222 8.0239285 -0.2145681

[5,] -1.0827824 0.1453005 -1.5299804 -0.2145681 3.1624022

> cVector <- rnorm(5)

> cVector

[1] -1.6866933 0.8377870 0.1533731 -1.1381369 1.2538149

Here A and the right-hand-side vector cVector† have been created using pseudo-random
numbers from a standard normal distribution. If the values in A truly represented a sample
from the standard normal distribution and they were stored in infinite precision, A would
be of full rank with probability 1. In practice there is only a (very) remote chance that a
matrix created in this fashion could be singular.

The first step in the recursion is

> ATemp <- A

> cTemp <- cVector

† Using cVector rather than c avoids masking R’s concatenate function c.
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> cTemp <- gTran(ATemp[, 1], 1)%*%cTemp

> ATemp <- gTran(ATemp[, 1], 1)%*%ATemp

This produces a transformed version of the A matrix of the form

> ATemp

[,1] [,2] [,3] [,4] [,5]

[1,] 2.818373 -3.1452537 -0.2082627 -4.1931724 -1.082782

[2,] 0.000000 1.9146064 1.6975005 0.8315023 -1.063065

[3,] 0.000000 1.6975005 2.0942805 1.6088692 -1.609992

[4,] 0.000000 0.8315023 1.6088692 1.7853309 -1.825531

[5,] 0.000000 -1.0630653 -1.6099922 -1.8255307 2.746411

Succeeding steps proceed as

> cTemp <- gTran(ATemp [,2],2)%*%cTemp

> ATemp <- gTran(ATemp [,2],2)%*%ATemp

> cTemp <- gTran(ATemp [,3],3)%*%cTemp

> ATemp <- gTran(ATemp [,3],3)%*%ATemp

> cTemp <- gTran(ATemp [,4],4)%*%cTemp

> ATemp <- gTran(ATemp [,4],4)%*%ATemp

with the final outcome being

> ATemp

[,1] [,2] [,3] [,4] [,5]

[1,] 2.818373 -3.145254 -0.2082627 -4.1931724 -1.0827824

[2,] 0.000000 1.914606 1.6975005 0.8315023 -1.0630653

[3,] 0.000000 0.000000 0.5892672 0.8716547 -0.6674727

[4,] 0.000000 0.000000 0.0000000 0.1348469 -0.3765101

[5,] 0.000000 0.000000 0.0000000 0.0000000 0.3488329

> cTemp

[,1]

[1,] -1.6866933

[2,] -1.0445324

[3,] 0.9548237

[4,] -4.6063557

[5,] -11.7541565

This upper-triangular system can now be solved using the R backsolve function with the
result

> b <- backsolve(ATemp , cTemp)

> b

[,1]

[1,] -303.89287

[2,] -99.34466

[3,] 153.15147

[4,] -128.24258

[5,] -33.69567

The R language comes equipped with three basic functions for solving linear systems:
backsolve, forwardsolve and solve. Commands of the form backsolve(U, cVector) and
forwardsolve(L, cVector) provide solutions to the upper- and lower-triangular systems
Ub = cVector and Lb = cVector, respectively. For a general, nonsingular, square matrix A,
solve(A, cVector) returns the solution of Ab = cVector. The computations are carried
out using a routine from the LAPACK numerical linear algebra package that performs
Gaussian elimination. If solve is now applied to the original matrix A and right-hand side
vector cVector from our example, we obtain
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> solve(A, cVector)

[1] -303.89287 -99.34466 153.15147 -128.24258 -33.69567

which agrees with the result from the Gauss transform iteration. In addition to solving linear
systems, when no right-hand side is specified for solve (i.e., the command is solve(A)), it
returns the inverse of the matrix supplied as its argument.

The example serves to illustrate a case where the Gauss transform approach works. How-
ever, there is more to be realized here through examination of the transform matrices that
were used in the recursion. This will help us see how to code up the algorithm in an efficient
way.

The first Gauss transform matrix is

> ATemp <- A

> gTran(ATemp [,1],1)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000000 0 0 0 0

[2,] 1.11598205 1 0 0 0

[3,] 0.07389464 0 1 0 0

[4,] 1.48779897 0 0 1 0

[5,] 0.38418706 0 0 0 1

that produced the transformed matrix

> ATemp <- gTran(ATemp [,1],1)%*%ATemp

> ATemp

[,1] [,2] [,3] [,4] [,5]

[1,] 2.818373e+00 -3.1452537 -0.2082627 -4.1931724 -1.082782

[2,] 0.000000e+00 1.9146064 1.6975005 0.8315023 -1.063065

[3,] 2.775558e-17 1.6975005 2.0942805 1.6088692 -1.609992

[4,] 0.000000e+00 0.8315023 1.6088692 1.7853309 -1.825531

[5,] 0.000000e+00 -1.0630653 -1.6099922 -1.8255307 2.746411

The next transform matrix is

> gTran(ATemp [,2],2)

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0.0000000 0 0 0

[2,] 0 1.0000000 0 0 0

[3,] 0 -0.8866055 1 0 0

[4,] 0 -0.4342941 0 1 0

[5,] 0 0.5552396 0 0 1

that leads to

> ATemp <- gTran(ATemp [,2],2)%*%ATemp

> ATemp

[,1] [,2] [,3] [,4] [,5]

[1,] 2.818373e+00 -3.145254 -0.2082627 -4.1931724 -1.0827824

[2,] 0.000000e+00 1.914606 1.6975005 0.8315023 -1.0630653

[3,] 2.775558e-17 0.000000 0.5892672 0.8716547 -0.6674727

[4,] 0.000000e+00 0.000000 0.8716547 1.4242143 -1.3638477

[5,] 0.000000e+00 0.000000 -0.6674727 -1.3638477 2.1561552

The pattern that underlies the Gauss sweep algorithm now becomes clear. On the kth
step of the recursion, operations are performed only on the columns whose indices exceed
that of the one being targeted by the transform: i.e., columns with indices k + 1 or larger.
For these columns it is only necessary to work with elements below the kth row. The effect is
that of working on progressively smaller submatrices of A = {aij}i,j=1:n as the calculations
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proceed from right to left in the sweeping process: the first submatrix is {aij}i,j=2:n, the
second is the transformed version of {aij}i,j=3:n, etc.

The new method for class Matrix given below uses the ideas that have just been discussed.

Vector Matrix ::gauss(const Vector& RHS) const {

double multiplier = 0;

Matrix G(nRows , nRows , pA);

Vector h(nRows , RHS.pA);

for(int j = 0; j < nCols; j++){//column to be swept

for(int jj = j + 1; jj < nCols; jj++){//current operation column

if(G[j][j] == 0){

cout << "Oops! Division by 0!" << endl;

exit (1);

}

for(int i = j + 1; i < nRows; i++){//work down rows

multiplier = G[i][j]/G[j][j];

G.pA[i][jj] = G.pA[i][jj] - multiplier*G.pA[j][jj];

}

}

for(int i = j + 1; i < nRows; i++){//do the same to the RHS

multiplier = G[i][j]/G[j][j];

h.pA[i] = h.pA[i] - multiplier*h.pA[j];

}

//now backsolve

Vector b = G.backward(h);

return b;

}

The roles of ATemp and cTemp in our R calculations are occupied by G and h in this listing.
These two quantities are initialized using the (calling) matrix for the left-hand side and the
right-hand side vector that is supplied as an argument to the method. The algorithm then
proceeds across the columns of G working only with row elements below the diagonal while
also carrying out the same calculations on h. At the end of the recursion G is upper-triangular
and the system is solved using the backward method from the previous section. One may
now check that an application of this C++ routine to the matrix and vector created in R
for our example produces the same solution.

The sweep algorithm requires roughly O(n3) flops (Exercise 7.3). Problems can arise with
this approach when one of the diagonal elements of A or one of its Gauss transforms is
small. This can be avoided by implementing a suitable row interchange strategy such as
partial pivoting that ensures that no multiplier can exceed one in magnitude (Exercise 7.2).

7.2.3 Cholesky decomposition

When the matrix A in our linear equation system is positive-definite, it can be transformed
to upper-triangular form using the Cholesky decomposition. While this method can exhibit
some numerical inaccuracies when the matrix in question is near singular, it is still useful
today and occupies an important role in statistics.

To appreciate the basic premise behind the Cholesky algorithm, suppose it is possible to
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write A = {aij} = LLT for

L =


l11 0 0 · · · 0
l21 l22 0 · · · 0
l31 l32 l33 · · · 0
...

...
...

. . .
...

ln1 ln2 ln3 · · · lnn

 .
But, if that is the case, the system A = LLT can be solved directly for the elements lij of
L in terms of the elements of A. This approach produces

l11 =
√
a11

l21 = a21/l11

...
ln1 = an1/l11

which leads to

l22 =
√
a22 − l221

l32 = (a32 − l31l21) /l22

...
ln2 = (an2 − ln1l21) /l22.

The general or jth step is

ljj =

√√√√ajj −
j−1∑
k=1

l2jk (7.2)

lij =

(
aij −

j−1∑
k=1

likljk

)
/ljj , i = j + 1, . . ., n. (7.3)

The Cholesky recursion can be summarized as in Algorithm 7.2.

Algorithm 7.2 Cholesky algorithm
l11 =

√
a11, li1 = ai1/l11, i = 2, . . . , n

for j = 2, . . . , n− 1 do

ljj =
√
ajj −

∑j−1
k=1 l

2
jk

lij =
(
aij −

∑j−1
k=1 likljk

)
/ljj , i = j + 1, . . ., n

end for
lnn =

√
ann −

∑n−1
k=1 l

2
nk

Forward-solve Lh = c for h
Back-solve LT b = h for b
return b

The algorithm uses (7.2)–(7.3) to factorize A. Then, given L, the system Ab = c is solved
as noted in Section 7.2.1 by forward-substitution and then back-solving.

Like Gaussian elimination the Cholesky algorithm has complexity on the order of n3.
However, one can show that it requires only half the effort of Gaussian elimination (Exercise
7.3).
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The details required for implementing Algorithm 7.2 have been collected into another
new method for class Matrix.

Vector Matrix :: cholesky(const Vector& RHS) const {

double temp = 0;

Matrix G(nRows , nCols , 0.);

for(int j = 0; j < nCols; j++){//proceed by columns

if(pA[j][j] == 0){

cout << "Singular system!" << endl;

exit (1);

}

temp = pA[j][j];//starting value for diagonal element recursion

if(j > 0)

for(int k = 0; k < j; k++)

temp -= G[j][k]*G[j][k];

G.pA[j][j] = sqrt(temp);

for(int i = (j + 1); i < nRows; i++){//now do the rest

temp = pA[j][i];

for(int k = 0; k < j; k++)

temp -= G[i][k]*G[j][k];

G.pA[i][j] = temp/G[j][j];

}

}

cout << "Cholesky factor:" << endl;

G.printMatrix ();

Vector h = G.forward(RHS);

Vector b = G.trans (). backward(h);

return b;

}

The code implements the scheme of Algorithm 7.2 to compute the lower-triangular Cholesky
factor and store it in a Matrix object G. In general there is no need to retain G, although
the developments in Section 7.2.5 demonstrate this need not always be the case. Once G has
been obtained it provides the matrix that is used in forward-solving while the transpose of
G is used for back-solving.

An application of our Cholesky method to the matrix A constructed for the example in
the previous section produces

Cholesky factor

1.678801 0 0 0 0

-1.873512 1.383693 0 0 0

-0.1240544 1.22679 0.7676374 0 0

-2.497718 0.6009298 1.135503 0.367215 0

-0.6449736 -0.7682812 -0.8695156 -1.025312 0.5906208

and the solution vector

-303.8929

-99.34466

153.1515

-128.2426

-33.69567

The solution agrees with the one returned previously by Gaussian elimination.
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To check the accuracy of the Cholesky factor and solution we can compare it to answers
produced with the R chol function that performs a Cholesky factorization: namely,

> chol(A)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.678801 -1.873512 -0.1240544 -2.4977185 -0.6449736

[2,] 0.000000 1.383693 1.2267898 0.6009298 -0.7682812

[3,] 0.000000 0.000000 0.7676374 1.1355032 -0.8695156

[4,] 0.000000 0.000000 0.0000000 0.3672150 -1.0253122

[5,] 0.000000 0.000000 0.0000000 0.0000000 0.5906208

The two Cholesky factors agree apart from the fact that the R chol function returns the
upper- rather than lower-triangular factor. Thus, to solve a system in R with the Cholesky
factorization one uses forward-solving with the transpose of the upper-triangular factor and
then back-solving with the factor returned from chol. In terms of the example this translates
to

> U <- chol(A)

> h <- forwardsolve(t(U), cVector)

> backsolve(U, h)

[1] -303.89287 -99.34466 153.15147 -128.24258 -33.69567

A second option is to use the actual inverse matrix computed via the Cholesky method.
This is accomplished with the chol2inv function which takes the Cholesky factor obtained
from chol as input. Again, for our example this produces

> chol2inv(chol(A))%*%cVector

[,1]

[1,] -303.89287

[2,] -99.34466

[3,] 153.15147

[4,] -128.24258

[5,] -33.69567

7.2.4 Banded matrices

Of some interest is the case where the matrix A in a linear system has a band-limited
structure. More precisely, a matrix A = {aij} is said to be banded with bandwidth q if
aij = 0 whenever |i− j| > q. For example, the matrix below is 6× 6 and two-banded

a11 a12 a13 0 0 0
a21 a22 a23 a24 0 0
a31 a32 a33 a34 a35 0
0 a42 a43 a44 a45 a46

0 0 a53 a54 a55 a56

0 0 0 a64 a65 a66


In the case of a positive-definite matrix A, it is easy to see that the matrix L in the

Cholesky factorization must have the same lower bandwidth as A (Exercise 7.6). Thus,
the order of computation can be substantially reduced by restricting attention to only the
nonzero matrix elements.

Suppose, initially, that we are not at the boundary; that is, for a given index i, i± q are
valid row and column indices. Then, by retracing our previous arguments in the nonbanded
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scenario it can be seen that (excluding the trivial case of q = 0) for t = 0, . . ., q

a(i+t)i =
[
0, . . ., l(i+t)(i+t−q), . . ., l(i+t)i, . . ., l(i+t)(i+t), 0, . . . , 0

]



0
...

li(i−q)
...

li(i+t−q)
...
lii
0
...
0



.

This gives a modified version of (7.2)–(7.3) wherein

lii =

√√√√aii −
i−1∑
k=i−q

l2ik (7.4)

l(i+t)i =

a(i+t)i −
i−1∑

k=i+t−q

l(i+t)klik

 /lii, t = 1, . . ., q. (7.5)

The only issue that now remains is dealing with the boundaries. After initializing the first
row of L exactly as for the nonbanded case, we can make certain that the boundaries are
handled correctly by computing all sums in (7.4)–(7.5) from the bound max(1, i+ t−q) and
restricting t to the range from 0 to min(q, n− i).

To maintain computational efficiency, both the forward and backward substitution steps
must explicitly use the band structure. This means beginning, as before, by solving Lz = c
with z1 = c1/l11 and

zj =

cj − j−1∑
k=max(1,j−q)

ljkzk

 /ljj , j = 2, . . ., n, (7.6)

and then back-solving LT b = z via bn = zn/lnn and

bj =

zj − min(n,j+q)∑
k=j+1

lkjbk

 /ljj , j = n− 1, . . ., 1. (7.7)

The claim now is that all of this work can be accomplished in only O(n) flops. To see that
this is true, observe that there are only O(nq) nonzero elements in A and L. Each element
of L can be computed in order q flops and, hence, all the nonzero components of L can be
obtained in a total of order nq2 flops. Finally, the backward and forward substitution steps
are also of order nq which verifies the claim.

The development thus far has ignored storage considerations for the left-hand side matrix
in the linear system. In general, all n2 memory locations will be needed to hold this matrix.
In the case of band structure this can be reduced to n(2q + 1). The implications of this
fact will be explored in this section from an R perspective and again in Section 7.2.6 from
the C++ viewpoint. It should also be noted that symmetric matrices, banded or otherwise,
allow for savings in terms of memory. In general, only n(n + 1)/2 elements of an n × n
symmetric matrix need to be stored and, similarly, a symmetric q-banded matrix can be
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stored in n(q + 1) memory locations without any loss of information. Memory efficient
storage of symmetric matrices is the topic of Exercise 7.21.

The C++ code below implements the banded Cholesky algorithm for a given matrix with
a specified bandwidth. The companion methods bandBack and bandFor for backward and
forward solution of banded systems are given in Appendix D.

Vector Matrix :: bandChol(const Vector& RHS , Matrix& G,

int bWidth) const {

double temp = 0;

int low , up;

for(int j = 0; j < nCols; j++){

if(pA[j][j] == 0){

cout << "Singular system!" << endl;

exit (1);

}

temp = pA[j][j];

low = std::max(0, j - bWidth );

for(int k = low; k < j; k++)

temp -= G[j][k]*G[j][k];

G.pA[j][j] = sqrt(temp);

up = std::min(j + bWidth , nRows - 1);

for(int i = (j + 1); i <= up; i++){

temp = pA[j][i];

for(int k = low; k < j; k++)

temp -= G[j][k]*G[i][k];

G.pA[i][j] = temp/G[j][j];

}

}

Vector h = G.bandFor(RHS , bWidth );

Vector b = G.trans (). bandBack(h, bWidth );

return b;

}

In contrast to the nonbanded Cholesky method from the previous section, our banded
Cholesky code explicitly returns the Cholesky factor to the user in a Matrix object that
is passed in (by reference) from the calling program. The reason for this stems from an
application for this method that will arise in the next section.

The bandChol method uses the C++ min and max functions that become available by
including the algorithm header. Thus, we also need to add

#include <algorithm >

to the beginning of the file that contains the method definitions for class Matrix.
The R package SparseM provides access to tools for computing with sparse matrices.

The routines in this package work on matrices that are stored in a compressed sparse row
(csr) format that essentially adapts to the structure of the matrix. A matrix.csr class has
been created to efficiently store sparse matrix objects with method functions for t, %*%,
backsolve, chol and solve that apply to objects of this class. The library can be installed
from the CRAN website via

> install.packages("SparseM")
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and then loaded with

> library(SparseM)

The slots for objects of class matrix.csr can be determined by the getClass function.
The result is

> getClass("matrix.csr")

Class "matrix.csr" [package "SparseM"]

Slots:

Name: ra ja ia dimension

Class: numeric integer integer integer

The ra slot is a one-dimensional array that holds the nonzero elements of the matrix and
dimension is a two-dimensional array that gives the number of rows and columns of the
matrix as its first and second component, respectively. The ja and ia slots specify where
the elements of ra are located in the matrix. First, ja is a one-dimensional array of the
same length as ra with entries that give the column location of the corresponding entry in
ra. The ia slot consists of a one-dimensional array with length equal to the number of rows
plus 1. The integer elements of ia are the indices of the elements in ra where new rows
should be started. The last entry is where a new row would start if one were to be appended
to the array: i.e., it is the number of nonzero entries plus 1.

To illustrate the use of the SparseM package we first created a positive-definite two-banded
matrix with

> set.seed (123)
> A <- matrix(rnorm(36), 6, 6)
> check <- function(i, j) {
+ if(abs(i - j) > 1) A[i, j] = 0
+ else A[i, j] = A[i, j]
+ }
> vCheck <- Vectorize(check)
> A <- outer(1:6, 1:6, vCheck)
> A <- t(A)%*%A
> A

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.36711463 0.03285631 -0.02547667 0.0000000 0.00000000 0.00000000
[2,] 0.03285631 2.28459052 0.24176066 0.7334378 0.00000000 0.00000000
[3,] -0.02547667 0.24176066 3.51426859 0.2040381 0.27406444 0.00000000
[4,] 0.00000000 0.73343776 0.20403810 2.2404457 1.13430207 -0.84294584
[5,] 0.00000000 0.00000000 0.27406444 1.1343021 2.89093086 -0.07164435
[6,] 0.00000000 0.00000000 0.00000000 -0.8429458 -0.07164435 1.14922087

A 6×6 matrix is created first using random numbers from the standard normal distribution.
To convert it to a banded matrix the Vectorize function from Section 5.5 has been used
to vectorize a function that will replace those elements outside a unit band length with 0
entries. This vectorized function is used with outer to actually carry out the restructuring.
A positive-definite two-banded matrix is then produced from the product of the transpose
of the banded matrix with itself. The as.matrix.csr function can now be used to convert
the matrix object A that we created into an object of class matrix.csr: i.e.,

> A.csr <- as.matrix.csr(A)

The slots of A.csr are

> A.csr@ra
[1] 0.36711463 0.03285631 -0.02547667 0.03285631 2.28459052 0.24176066
[7] 0.73343776 -0.02547667 0.24176066 3.51426859 0.20403810 0.27406444

[13] 0.73343776 0.20403810 2.24044566 1.13430207 -0.84294584 0.27406444
[19] 1.13430207 2.89093086 -0.07164435 -0.84294584 -0.07164435 1.14922087
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> A.csr@ja
[1] 1 2 3 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 4 5 6

> A.csr@ia
[1] 1 4 8 13 18 22 25
> A.csr@dimension
[1] 6 6

From this we see that A.csr has the 24 nonzero elements of A in its ra slot. The ja slot
tells us that the first three nonzero elements of A are in columns 1, 2 and 3, the next four
nonzero elements are in columns 1, 2, 3 and 4, the next five nonzero elements have column
indices one through five, etc. Finally, the components of A.csr@ja tell us that the first row
has elements 1 through 3 of A.csr@ra, the second row has elements 4 through 7, the third
row has elements 8 through 12, etc.

As noted previously, a method for the solve function has been provided for matrix.csr
objects. The solution is carried out via an efficient, sparse matrix, Cholesky algorithm which
entails that in this case solve is intended for use only with positive-definite systems. To
illustrate the idea the following calculations were performed.

> set.seed (456)
> rhs
[1] -1.3435214 0.6217756 0.8008747 -1.3888924 -0.7143569 -0.3240611
> b <- solve(A.csr , rhs)
> b
[1] -3.7187735 0.8250369 0.2124663 -1.6256003 0.3345638 -1.4534930

One may check that the same result is obtained by applying solve to the noncompressed
version of A.

7.2.5 An application: linear smoothing splines

One application of banded Cholesky methods arises in the computation of linear smoothing
splines that are used for nonparametric regression and scatter plot smoothing. The problem
involves bivariate data (xi, yi), i = 1, . . ., n, with 0 ≤ x1 < · · · <xn ≤ 1. A linear smoothing
spline fit fλ to this data is obtained through minimization of the criterion

n∑
i=1

(yi − f(xi))2 + λ

∫ 1

0

(f ′)2(x)dx, λ > 0, (7.8)

over all continuous functions f with square-integrable derivatives f ′. It is known (see, e.g.,
Wahba 1990) that fλ(·) is unique and can be expressed as a natural linear spline with
knots or join points at x1, . . ., xn. More precisely, fλ(·) is a piecewise linear function whose
derivative has jump discontinuities at x1, . . ., xn and vanishes outside of [x1, xn]. The so-
called smoothing parameter λ in (7.8) governs the smoothness or wiggliness of the fit to the
data. As λ grows large fλ tends to the average of the yi while as λ→ 0 the fitted function
interpolates the yi; that is, limλ→0 fλ(xi) = yi, i = 1, . . . , n.

Examples of linear smoothing spline fits to an artificial data set are shown in Figure 7.1
for three different values of λ. The data in the plot was generated using R from the model

yi = 10xi + 10 exp{−15(xi − .5)2}+ ei, i = 1, . . . , 100,

for uniformly spaced xi and ei from a normal distribution with mean zero and standard
deviation 2. Specifically, the data was created with

> set.seed (123)

> x <- 1:100/101

> y <- 10*x + 10*exp(-15*(x - .5)^2) + rnorm(100, 0, 2)

The true response mean function, which can be viewed as the target for the smoothing
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spline estimator fλ, has been overlaid on the plot. Examination of the three fits to the data
indicates that the values of λ = .01 and λ = 100 are too small and too large, respectively.
The λ = .1 choice seems to provide a fit that is more satisfactory from a visual perspective.
The question of how to make objective comparisons of smoothing parameter values will be
addressed shortly.
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λ= 100

λ= .1

λ= .01

Figure 7.1 Linear smoothing splines with different choices for λ

The set of natural linear splines with knots at x1, . . ., xn is a linear space with dimension
n. As a result, it follows that fλ =

∑n
j=1 bjBj with B1, . . ., Bn some suitable set of linear

natural spline basis functions. Substituting this representation into the estimation criterion
produces the normal equations

(BTB + λΩ)b = BT y (7.9)

for b = (b1, . . ., bn)T with

B = {Bj(xi)}i,j=1,n,

Ω =
{∫ 1

0

B′i(x)B′j(x)dx
}
i,j=1,n

and y = (y1, . . ., yn)T the response vector. The resulting vector of fitted values then has the
form

fλ = (fλ(x1), . . ., fλ(xn))T = H(λ)y
for

H(λ) = B(BTB + λΩ)−1BT . (7.10)
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One route to efficient computations is through the use of a local support basis for the
natural linear splines such as

B1(x) =

 1, x ≤ x1,
(x2 − x)/(x2 − x1), x1 < x < x2,
0, x ≥ x2,

Bj(x) =


0, x ≤ xj−1,
(x− xj−1)/(xj − xj−1), xj−1 < x < xj ,
(xj+1 − x)/(xj+1 − xj), xj ≤ x < xj+1,
0, x ≥ xj+1,

for j = 2, . . ., n− 1, and

Bn(x) =

 0, x ≤ xn−1,
(x− xn−1)/(xn − xn−1), xn−1 < x < xn,
1, x ≥ xn.

Using this basis in our normal equation system produces

[I + λΩ]fλ = y (7.11)

with Ω = {ωij} a symmetric one-banded matrix having diagonal elements

ω11 =
1

x2 − x1
, ωii =

1
xi+1 − xi

+
1

xi − xi−1
, i = 2, . . ., n− 1, ωnn =

1
xn − xn−1

(7.12)

and above diagonal entries

ωi(i+1) = − 1
xi+1 − xi

, i = 1, . . ., n− 1. (7.13)

One consequence of (7.12)–(7.13) is that this particular form of the linear smoothing spline
normal equation system can be solved in O(n) operations using the banded Cholesky algo-
rithm from the previous section.

The discussion to this point has failed to address the issue of how the smoothing param-
eter λ should be selected in practice. For this purpose data driven smoothing parameter
selection techniques are frequently employed. One such method relies on minimization of
the generalized cross validation criterion

GCV(λ) =
n−1

∑n
i=1(yi − fλ(xi))2

(1− trH(λ)/n)2 (7.14)

with tr denoting the matrix trace; i.e., trH(λ) =
∑n
i=1 hi(λ) with hi(λ), i = 1, . . . , n, the

diagonal elements of the matrix in (7.10). The minimizer of the GCV criterion is known
to have a variety of optimality properties and tends to estimate the mean-squared error
optimal choice for λ in large samples (e.g., Eubank 1999). There is no closed form for the
minimizer which entails that the minimization process must be carried out numerically
using optimization procedures such as those developed in the next chapter. Thus, for now
our attention will be restricted to the computation of the GCV criterion for a given value
of λ.

A brute force, order n2, approach for computing the diagonal elements of H(λ) is to
simply solve the systems

[I + λΩ]bj = ej , j = 1, . . . , n,

for ej as before the jth column of the n-dimensional identity matrix that consists of all zeros
except for a one in the jth row. Then, hj(λ) is the jth component of bj . It turns out that all
n diagonal elements h1(λ), . . . , hn(λ) can actually be obtained in O(n) operations through
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careful use of the available band structure. Specifically, if H(λ) has (banded) Cholesky
factorization L = {lij}, it can be shown (Exercise 7.13) that the hj(λ) evolve according to
the recursion

hn(λ) = 1/l2nn (7.15)

hj(λ) =
[
1 + l2(j+)jhj+1(λ)

]
/l2jj , j = n− 1, . . . , 1. (7.16)

The fitting of linear smoothing splines has been implemented as a C++ class. The header
file for class Linss appears in Listing 7.1.

Listing 7.1 linss.h

//linss.h

#ifndef LINSS_H

#define LINSS_H

#include "vector.h"

#include "matrix.h"

class Linss{

int n;

Vector x, y;

Matrix lhsMat(double lam) const;

public:

Linss(const Vector& X, const Vector& Y);

Vector smooth(double lam , double* GCV) const;

};

#endif

The class members are two Vector objects that contain the values for the response and
independent variable and an integer variable that represents the number of observations.
The method smooth will return the linear smoothing spline fitted values as a Vector object
for a specified value of the smoothing parameter. The GCV criterion is also evaluated and
returned in a pointer that is passed in from the calling program. As the Linss class requires
the Vector and Matrix class by value, the header files for both classes must be included in
the Linss class header file.

The method definitions for class Linss take the form

Listing 7.2 linss.cpp

//linss.cpp

#include "linss.h"

Linss:: Linss(const Vector& X, const Vector& Y){

x = Vector(X);

y = Vector(Y);

n = x.getnRows ();

}

Vector Linss:: smooth(double lam , double* GCV) const {

Matrix G(n, n, 0.);

Matrix H = lhsMat(lam);

Vector fit = H.bandChol(y, G, 1);
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//compute the GCV criterion

double temp = 1/(G[n - 1][n - 1]*G[n - 1][n - 1]);

double tr = temp;

*GCV = (y[n - 1] - fit[n - 1])*(y[n - 1] - fit[n - 1]);

for(int i = (n - 2); i >= 0; i--){

temp = (1 + G[i + 1][i]*G[i + 1][i]*temp)/(G[i][i]*G[i][i]);

*GCV += (y[i] - fit[i])*(y[i] - fit[i]);

tr += temp;

}

*GCV /= (1. - tr/((double)n))*(1. - tr/((double)n))*(double)n;

return fit;

}

Matrix Linss:: lhsMat(double lam) const {

double** pH = new double*[n];

pH[0] = new double[n];

pH[n - 1] = new double[n];

pH [0][0] = 1. + (lam/(x[1] - x[0]));

pH [0][1] = -lam/(x[1] - x[0]);

pH[n - 1][n - 2] = -lam/(x[n - 1] - x[n - 2]);

pH[n - 1][n - 1] = 1. + (lam/(x[n - 1] - x[n - 2]));

for(int i = 1; i < (n - 1); i++){

pH[i] = new double[n];

pH[i][i - 1] = -lam/(x[i] - x[i - 1]);

pH[i][i] = 1 + (lam/(x[i] - x[i - 1])) + (lam/(x[i + 1] - x[i]));

pH[i][i + 1] = -lam/(x[i + 1] - x[i]);

}

Matrix H(n, n, pH);

for(int i = 0; i < n; i++)

delete[] pH[i];

delete[] pH;

return H;

}

Rather than clutter up the operative method smooth for the class, the task of creating the
matrix (I + λΩ) in (7.11) has been relegated to a method lhsMat. This method is only for
internal use and has been designated as private. Notice that the memory that is allocated
in lhsMat is explicitly released. Had this not been done it would have become inaccessible
once lhsMat returned control to smooth. This would have created a memory leak that could
become problematic if the calling program were to evaluate fits over a number of different
smoothing parameter values as would be the case for an optimization method. The diagonal
elements of (I + λΩ)−1 are obtained via (7.15)–(7.16). Rather than store them, their sum
is merely accumulated and the individual values are overwritten on each step.

The data in Figure 7.1 were written to the file linssDat.txt. Smoothing splines were then
fitted to the data using the simple driver program

Listing 7.3 linssDriver.cpp

//linssDriver.cpp

#include <cstdlib >

#include <iostream >

#include <fstream >
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#include "vector.h"

#include "linss.h"

int main(int argc , char* argv []){

double lam = atof(argv [1]);

int n = atoi(argv [2]);

std:: ifstream inFile(argv [3]);

double* py = new double[n];

double* px = new double[n];

for(int i = 0; i < n; i++){

inFile >> px[i];

inFile >> py[i];

}

inFile.close ();

Vector y(n, py);

Vector x(n, px);

Linss S(x, y);

double gcv = 0.;

Vector fit = S.smooth(lam , &gcv);

std::cout << "The value of GCV at lambda = "

<< lam << " is " << gcv << std::endl;

return 0;

}

This program takes the value of the smoothing parameter, the number of observations and
the name for the file containing the data as command line arguments. It then reads in the
data and creates the two Vector objects that are needed for the Linss class constructor.
Once the Linss object has been created its smooth method is invoked and the value of
the GCV criterion for the specified value of λ is written to standard output. For the values
of λ that were used with our example data set, the executable linssDriver for the linear
smoothing spline code produced the results

$ ./linssDriver .01 100 linssDat.txt

The value of GCV at lambda = 0.01 is 4.21511

$ ./linssDriver .1 100 linssDat.txt

The value of GCV at lambda = 0.1 is 3.7224

$ ./linssDriver 100 100 linssDat.txt

The value of GCV at lambda = 100 is 21.6474

The values of the GCV criterion coincide with our original visual impression that λ = .1
gave the better fit.

Smoothing data is an inherently visual procedure. Thus, it would be useful to be able to
interactively view plots that correspond to different values of λ or possibly have certain data
points removed from a fit. If R is to serve as our graphical engine, the current set-up would
require us to import fits into R and, in that sense, does not have the desired interactive
quality. A more effective approach is to import the C++ linear smoothing spline code into
R as a shared library in a way that can be accessed directly from R.

Recall from Section 5.7 that to create a shared library all files have to end with a .cc
or .hh. Therefore, the first step is to replace the .cpp and .h file extensions on the files for
class Linss, Matrix and Vector with .cc and .hh, respectively. Then, the following driver
program was created to provide the interface to R.
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Listing 7.4 linssDriver.cc

//linssDriver.cc

#include "R.h"

#include "vector.hh"

#include "linss.hh"

extern "C" {

void linss(int* n, double* lam , double* px , double* py,

double* pfit , double* GCV){

Vector y(*n, py);

Vector x(*n, px);

Linss S(x, y);

Vector fit = S.smooth(*lam , GCV);

for(int i = 0; i < *n; i++)

pfit[i] = fit[i];

}

}

The arguments to the linss function are pointers to variables that correspond to the number
of responses (n), the value of the smoothing parameter to use in computing the fit (lam), the
vector of values for the independent variable (px), the response vector (py), a vector (pfit)
being passed in from R that will be filled with the fitted values and an empty memory
location that will hold the value of the GCV criterion on return to the R environment.

The shared library linssDriver.so is created with

$ R CMD SHLIB linssDriver.cc linss.cc matrix.cc vector.cc

Then, from inside R the library is loaded with

> dyn.load("linssDriver.so")

Linear smoothing splines may now be fit to data in R by using the imported library with
the .C function. Rather than do this directly, we will hide the mechanics in the wrapper
function

Listing 7.5 linss.r

#linss.r

function(x, y, lam){

fit <- .C("linss", as.integer(length(x)), as.double(lam),

as.double(x), as.double(y), vector("numeric", length(x)), 0.)

list(fit[[5]] , fit [[6]])

}

In calling linss existing values will be used for x and y that originate in R. The numeric
vector that will hold the fitted values and the variable that will hold the value of the GCV
criterion need to be initialized inside of R as well. Upon completion of its task the C++
program returns control to the .C function that packages the outcome in the form of a list
containing the return values for all the variables that were passed to the C++ program. For
this particular case the result is a list of length six with the fitted values and the value of
the GCV criterion being the fifth and sixth components, respectively. These two quantities
are what the user will want and, accordingly, our wrapper program returns them in a two
component list.

Section 8.3.2 of the next chapter develops an automated procedure for selecting a good
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value of λ in the GCV sense. A crude approach that can be used at this juncture is to carry
out a grid search over values of the smoothing parameter and use this to locate at least a
region (or regions) where the better choices for λ can be found. An R function that carries
out such a search is

gcvSearch <- function(x, y, low , up , nEvals ){

gcVals <- seq(low , up, length.out = nEvals)

cbind(gcVals , sapply(gcVals , function(lLam)

linss(x, y, 10^ lLam )[[2]]))

}

The gcvSearch function takes as input the data vectors x and y along with lower and upper
bounds (low and up, respectively) for the search and size of the grid (nEvals). The actual
grid is then constructed using the R seq function. A slight twist here is that the search
is carried out on a log scale with the grid representing a partition of powers of 10. The
logarithmic scale is appropriate because it is known that the GCV criterion tends to behave
like a power of the smoothing parameter near its minimum. The sapply function is used
in conjunction with our linss wrapper function to evaluate the GCV criterion across the
specified grid.

The gcvSearch function was applied to the data in Figure 7.1 using

> gcVals <- gcvSearch(x, y, -2, 0., 100)

This carried out a search over a 100 point grid for values of λ that are evenly spaced in
log10 scale between −2 and 0. A plot of the result is shown in Figure 7.2. This suggests
that the minimizer lies in the interval [10−1, 10−1/2]. We will return to this observation in
Section 8.3.2.

7.2.6 Banded matrices via inheritance

So far banded matrices have been treated as if they were full matrices (i.e., no pattern of zero
elements) in terms of how they are stored, multiplied, transposed, etc., with efficient solution
of linear systems being the only real use that has been made of the band structure. This is
wasteful from a storage perspective. After all, if the matrix is symmetric with bandwidth
q, there are at most q + 1 unique, nonzero entries per row. This means that if the matrix
has nRows rows, all the nonzero elements can be held in, e.g., nRows*(q + 1) memory
locations rather than in the nRows*nRows locations that would usually be required. The
special structure of band matrices could be built directly into class Matrix by adding new
constructors and methods to the class. Another avenue that will be explored in this section
is to make use of the C++ inheritance mechanism.

Inheritance is a means of formalizing an “is a” relationship between two classes; such a
relationship exists between classes A and B if every object from class B has all the qualities
(i.e., members and methods) of a class A object. Thus, every B object can be viewed as an
A object in the sense that it will have all the functionality provided by the A class. The
relationship is established syntactically in the class B declaration as

class B : public A

which indicates that class B is a class derived from the base class A. Derived classes auto-
matically contain the elements and methods of the base class. The degree of access that
is allowed to the base class components is determined by the type of inheritance that is
specified in the derived class declaration. The most common one is public and that is the
only one that will be considered here.

Under public inheritance, the private members/methods of the base class cannot be
accessed directly by a derived class object. The public portion of the base class is available
for use with the exception of



248 NUMERICAL LINEAR ALGEBRA

−2.0 −1.5 −1.0 −0.5 0.0

3.
8

4.
0

4.
2

4.
4

4.
6

log10(λ)

G
C

V
(λ

)

Figure 7.2 GCV criterion over log 10(λ) ∈ [−2, 0]

a) constructors,
b) destructors,
c) the = or assignment operator and
d) friends.
The reason for a)–c) is that a derived class may have additional members that must be
created, destroyed or assigned values. Friend status indicates a relationship between classes
and, as such, there is no a priori reason to expect it to be inherited in very much the same
sense as with people where friends of a child need not be friends of a parent and conversely.

Listing 7.6 provides a simple example of most of the inheritance syntax and features that
we will use in the remainder of this section.

Listing 7.6 inheritEx.cpp

1//inheritEx.cpp

2#include <iostream >

3

4using std::cout; using std::endl;

5

6struct A{

7int iA;

8A(int ia){iA = ia;}

9void output (){f();}

10
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11void f(){ cout << iA << endl;}

12//virtual void f(){ cout << iA << endl;}

13};

14

15struct B : public A {

16int iB;

17B(int ia , int ib):A(ia){

18iB = ib;

19}

20void f(){ cout << iA << " " << iB << endl;}

21};

22

23int main (){

24A aObj (2);

25B bObj(3, 5);

26A* pA;

27pA = &aObj;

28pA ->f();

29pA = &bObj;

30pA ->f();

31bObj.output ();

32return 0;

33}

Here struct A has a single class member iA of type int and two member functions: the
function f that writes the value of iA to standard output and a function output that serves
as a wrapper for f. The derived struct/class B has an int member iB while also inheriting
iA from class A. The value of iA is set on line 17 of Listing 7.6 where the class B constructor
employs an initializer list that prefaces the constructor’s definition with a colon and a call
to a base class A constructor. We discussed initializer lists in Section 3.8.3 in the context of
const class members. In the inheritance setting initializer lists serve the purpose of forcing
the creation of the members of the inherited base class object prior to the construction of
any that are unique to the derived class. This is essentially the only way derived objects
can be initialized.‡

Class B in Listing 7.6 also has a function named f and the behavior of this function with
B class objects is what we want to investigate. To see what can occur, objects from both
the A and B structs are created in main and a pointer pA is declared for class A objects. The
fact that class B is derived from class A means that pA will point to either class A or class
B objects and this feature is used to call the function f using a pointer to objects of both
classes. Finally, the object from class B calls the output function that it inherits from class
A. The results obtained from compilation and execution of Listing 7.6 are

2

3

3

This indicates that the pA pointer is only using the A class version of the f function regardless
of whether the calling object is from class A or B. The inherited output function performs
similarly in that it uses the A class version of f when called by a B class object. A more
desirable outcome would be polymorphic behavior wherein the call to output as well as
use of the A class pointer would adapt to the object involved in the function call. This is
accomplished by commenting out line 11 and uncommenting line 12 of Listing 7.6. A new
keyword virtual now comes into play whose use allows functions in the derived class to

‡ If an explicit base class constructor is not specified the base class default constructor is called.
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override functions in the base class that have the same name, return type and arguments.
The outcome from running our program is now

2

3 5

3 5

Consequently, the pointer and output function are both adapting to produce the appropriate
behavior for A or B class objects. One may check that similar results are obtained if references
to A class objects are used instead of an A class pointer in Listing 7.6 (Exercise 7.16).

Let us now consider the creation of a class pdBand to represent positive-definite banded
matrices. The “is-a” relationship that exists here makes it natural to develop the pdBand
class as a derived class of class Matrix. The benefit of this approach is that class Matrix
already embodies many of the methods that would be needed for the pdBand class and
these (public) features would become part of the pdBand class automatically under an
inheritance relationship. As a result, design of the pdBand class can instead focus on just
those modifications and enhancements that are appropriate for matrices that are positive-
definite with banding.

To begin consider a pared down version of class Matrix with the header file

Listing 7.7 simpleMat.h

//simpleMat.h

#ifndef MATRIX_H

#define MATRIX_H

#include <iostream >

#include "vector.h"

class Matrix{

int nRows , nCols;

double** pA;

Vector gauss(const Vector& RHS) const;

public:

//constructors and destructors

Matrix(int nrows = 0, int ncols = 0, double a = 0.);

Matrix(int nrows , int ncols , const double* const* pa);

Matrix(const Matrix& A);

virtual ~Matrix ();

//overloaded operators

Matrix& operator=(const Matrix& B);

const double* operator[](int i) const {return pA[i];}

//solution of a linear system

virtual Vector solve(const Vector& RHS) const{

std::cout << "Solution via gauss from class Matrix" << std::endl;

return gauss(RHS);

}

//utilities and accessors

void printMatrix () const;

int getNRows () const {return nRows;}

int getNCols () const {return nCols;}

};

#endif
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This class has the usual pointer-to-pointer and diagonal matrix (default) constructors, a
copy constructor, an explicit destructor to release the memory in the private member pA
and overloaded assignment and indexing operators. Accessor functions are provided to give
access to the private members nRows and nCols.

The principal difference between the Matrix class in Listing 7.7 and previous incarnations
is how we handle the solution of linear equations. The gauss method has been wrapped in
a virtual function solve. The intention is to use a band-limited formulation for solve in
the pdBand class that will be derived from class Matrix.

The header file for the pdBand class is given in the listing below.

Listing 7.8 pdBand.h

1//pdBand.h

2#ifndef PDBAND_H

3#define PDBAND_H

4#include <iostream >

5#include "simpleMatrix.h";

6#include "vector.h"

7

8class pdBand : public Matrix{

9int q;//the bandwidth

10Vector bandBack(const Vector& RHS) const;

11Vector bandForward(const Vector& RHS) const;

12Vector bandChol(const Vector& RHS) const;

13

14public:

15

16pdBand(int nrows = 0, int Q = -1, double a = 0.);

17pdBand(int nrows , int Q, const double* const* pa);

18pdBand(const pdBand& A);

19

20~pdBand (){};

21

22pdBand& operator=(const pdBand& B);

23

24Vector solve(const Vector& RHS) const {

25std::cout << "Solution via banded Cholesky from class pdBand"

26<< std::endl;

27return bandChol(RHS);

28}

29

30Matrix bandToFull () const;

31};

32#endif

The class declaration for pdBand begins on line 8 of Listing 7.8. It takes the usual form except
that is has been augmented by : public Matrix to indicate that pdBand is a derived class
that inherits the public members and member functions from its parent class Matrix. This
entails that a pdBand object can use getNRows, getNCols, the indexing operator, etc., just
like an object from class matrix without having to include them in the class declaration.
In addition to the members that pdBand inherits from class Matrix is has its own unique
member q that will hold the bandwidth of the matrix. With this in mind, it is probably
useful at this point to detail the plan for storing the matrix elements in a pdBand object.

If A is an n × n symmetric banded matrix with bandwidth q and elements aij , i, j =
1, . . . , n, it is only necessary to store its diagonal and above diagonal elements. This means
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that A’s contents can be placed in an n× (q + 1) matrix of the form

Ã =

266666666666664

a11 a12 a13 · · · a1q a1(q+1)

a22 a23 a24 · · · a2(q+1) a3(q+2)

...
...

...
...

a(n−q)(n−q) a(n−q)(n−q+1) a(n−q)(n−q+2) · · · a(n−q)(n−1) a(n−q)n

a(n−q+1)(n−q+1) a(n−q+1)(n−q+2) · · · a(n−q+1)(n−1) a(n−q+1)n 0
a(n−q+2)(n−q+2) · · · a(n−q+2)(n−1) a(n−q+2)n 0 0

...
...

...
...

...
...

ann 0 0 · · · 0 0

377777777777775
There is a useful relationship between the elements of A and those in Ã = {ãij} in that

aij = ãi(j−i+1), j ≤ min(i+ q, n), (7.17)

with ãij the (i, j)th element of Ã (cf. page 220 of Björck 1996). This translates into aij =
ãi(j−i) for 0-offset indexing. Relation (7.17) will be exploited to translate routines from
Section 7.2.4 to work with matrices that are in this compressed storage mode.

As a specific example of a matrix in band storage mode we will use the two-banded matrix
A that was produced in R in Section 7.2.4. This matrix is converted to our band storage
mode with

> Atilde <- matrix(0, 6, 3)

> for(i in 1:4)

+ Atilde[i,] <- A[i, i:(i + 2)]

> Atilde[5, 1:2] <- A[5, 5:6]

> Atilde[6, 1] <- A[6, 6]

with the result that

> Atilde

[,1] [,2] [,3]

[1,] 0.3671146 0.03285631 -0.02547667

[2,] 2.2845905 0.24176066 0.73343776

[3,] 3.5142686 0.20403810 0.27406444

[4,] 2.2404457 1.13430207 -0.84294584

[5,] 2.8909309 -0.07164435 0.00000000

[6,] 1.1492209 0.00000000 0.00000000

As mentioned above, it is necessary to define constructors (including a copy constructor),
a destructor and the assignment operator in a derived class. The definitions for the three
constructors for class pdBand take the form

pdBand :: pdBand(int nrows , int Q, double a)

: Matrix(nrows , Q + 1, a) {

q = Q;

}

pdBand :: pdBand(int nrows , int Q, const double* const* pa)

: Matrix(nrows , Q + 1, pa) {

q = Q;

}

pdBand :: pdBand(const pdBand& A)

: Matrix(A) {

q = A.q;

}
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The approach is the same in all three cases: an initializer list calls the appropriate class
Matrix constructor and the body of the constructor sets the value of the bandwidth param-
eter that is unique to the pdBand class. The utility of the diagonal matrix constructor for
the pdBand class is limited to its default role. In this regard, it uses a default value of −1
for q. Since the number of columns is q + 1, this has the effect of producing an inherited
Matrix object with both nRows and nCols set as zero and, hence, a null pointer for its
pointer-to-pointer member.

The destructor in class Matrix was designated as virtual. Declaring the base class de-
structor as virtual is generally viewed as a good practice when developing an inheritance
relationship. Even though destructors are not inherited, the base class destructor will still
be called when an object goes out of scope. The default behavior for destruction of a derived
class object is to proceed in reverse order through the inheritance chain moving downward
through the hierarchy of children classes until the base class is reached. For example, in the
case of a pdBand object this means that the pdBand destructor will be called prior to that of
the base class Matrix. In most instances this will work fine. However, as seen from Listing
7.6, it is possible to have a pointer for a base class point to a derived class object. In such
cases, only the base class destructor would be called when the pointer goes out of scope. If
memory was dynamically allocated in the derived class the result would be a memory leak.
By making the base class destructor virtual the behavior of the destructor will adapt to
the type of the object being pointed to rather than the type of the pointer. For the case of a
pdBand object, the only new data member is the integer q which needs no special treatment.
Thus, the body of the destructor for the pdBand class on line 21 of Listing 7.8 is left empty.

Our implementation of the pdBand assignment operator takes the form

pdBand& pdBand ::operator=(const pdBand& A){

if(this == &A)//avoid self assignment

return *this;

this ->Matrix ::operator=(A);

q = A.q;

return *this;

}

The development is similar to what transpires with our constructors in that the base class
version of = is used to assign the base class members of the pdBand object with the pdBand
part of assignment taking care of any nonshared class members or q in this case. The syntax
this->Matrix::operator=(A) means that the pdBand object that resides on the left-hand
side of the = operator (i.e., the one that owns the pointer this) is invoking the (public)
Matrix function = to assign values to the class members nRows, nCols and pA. Actually,
the use of this in this context is not necessary. Its use here helps to clarify who is actually
calling the base class = operator.

A new utility method bandToFull has been added to the pdBand class that converts a
matrix from band to full storage form. Its definition is

Matrix pdBand :: bandToFull () const{

int nrows = this ->getNRows ();

double** pTemp = new double*[nrows ];

for(int i = 0; i < nrows; i++){

pTemp[i] = new double[nrows ];

for(int j = i; j < nrows; j++){

if(j <= std::min(nrows , i + q))

pTemp[i][j] = (*this)[i][j - i];

else pTemp[i][j] = 0.;
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}

}

for(int i = 1; i < nrows; i ++)

for(int j = 0; j < i; j++)

pTemp[i][j] = pTemp[j][i];

Matrix A(nrows , nrows , pTemp );

for(int i = 0; i < nrows; i++)

delete[] pTemp[i];

delete[] pTemp;

return A;

}

This function allocates new memory for a Matrix object and then fills in the diagonal
and above diagonal elements using (7.17). The below diagonal entries are obtained from
symmetry. The full pointer-to-pointer configuration is passed to the Matrix class constructor
to obtain a Matrix object. Our use for this function arises in a subsequent example. It also
has other uses that include development of an overloaded + operator for addition of a pdBand
and Matrix object (Exercise 7.20).

The bandToFull method employs the syntax (*this)[i][j] to access the elements of
the pA pointer in a pdBand object. This can be read as follows. Because this is a pointer to
the pdBand object making the call to bandToFull, *this is the pdBand object itself which
means it can use the [] operator from the Matrix class for (read) access of the pointer
pA[i] and, hence, of the stored values in pA[i][j]. The use of this becomes necessary
as a result of pA being a private member of class Matrix that cannot be accessed directly
by a pdBand object. Another way to deal with this is to make pA protected rather than
private in class Matrix via the syntax

protected:

double** pA;

Once this change is made, the occurrence of expressions like (*this)[i][j] in this and
other listings can be replaced by pA[i][j].

One aim of this inheritance exercise is to create a generic solve method that will adapt
to the form of the calling Matrix object; i.e., a method that will adapt to objects from
derived Matrix classes. The method that was used for solve in class Matrix was Gauss
elimination. For a positive-definite banded matrix a much more efficient approach is to use
a banded Cholesky recursion and that is the way solve has been formulated in the pdBand
class.

To use a banded Cholesky it is necessary to have methods for forward and backward
substitution that employ banded structure as do bandBack and bandFor in Appendix D.
There is a little more to do in this case as the Cholesky recursion will also produce Cholesky
factors that are held in a compressed storage format. In this regard, a method for back-
solving that will work with an upper-triangular matrix in band storage mode is

Vector pdBand :: bandBack(const Vector& RHS) const {

double temp;//temporary storage

int up;

int nrows = this ->getNRows ();

Vector b(nrows , 0.);//solution vector

//initialize recursion on last row of right -hand side

if((*this)[nrows - 1][0] != 0)

b.pA[nrows - 1] = RHS.pA[nrows - 1]/(*this)[nrows - 1][0];

else{

cout << "Singular system!" << endl;
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exit (1);

}

//now work through the remaining rows

for(int i = (nrows - 2); i >= 0; i--){

if((*this)[i][0] != 0){

temp = RHS.pA[i];

up = std::min(nrows , q + 1);

for(int k = 1; k < up; k++)

temp -= b.pA[i+k]*(*this)[i][k];

b.pA[i] = temp/(*this)[i][0];

}

else{

cout << "Singular system!" << endl;

exit (1);

}

}

return b;

}

This is a straightforward modification of the bandBack method in Appendix D. There is
an important change to the Vector class that is necessary to make this and subsequent
methods work: namely, the pdBand class must be added as a friend to class Vector. This
allows us to write statements such as b.pA[i] for a Vector object b without producing
compilation errors. As friend status is not inherited from class Matrix,

friend class pdBand;

must be explicitly placed in the Vector class header.
The Cholesky recursion that we will employ will produce an upper-triangular banded

matrix that will be held in band storage mode. This will work fine for the final back-solving
step in the Cholesky method. However, the first step requires us to forward solve a lower-
triangular system using the transpose of the upper-triangular matrix that is being held
in a compressed storage format. Symmetry considerations entail that all the information
that is needed for forward solving is available from the compressed, upper-triangular, array.
The only question is how to extract it. The solution is provided by observing that, due to
symmetry and relation (7.17), formula (7.6) can be expressed as

bj =

cj − j−1∑
k=max(1,j−q)

ajkbk

 /ajj

=

cj − j−1∑
k=max(1,j−q)

ãj(k−j+1)bk

 /ãj0

with the bj and cj representing the elements of the solution vector and the right-hand-side
vector, respectively. The next listing uses this formula to produce the code for our forward
solution method.

Vector pdBand :: bandForward(const Vector& RHS) const {

double temp;//temporary storage

int low;

int nrows = this ->getNRows ();

Vector b(nrows , 0.);//solution vector

//initialize recursion on first row of right -hand side
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if(*this[0][0] != 0){

b.pA[0] = RHS.pA[0]/(*this)[0][0];

}

else{

cout << "Singular system!" << endl;

exit (1);

}

//now work through the remaining rows

for(int i = 1; i < nrows; i++){

if((*this)[i][0] != 0){

temp = RHS.pA[i];

low = std::max(0, i - q);

for(int k = low; k < i; k++)

temp -= b.pA[k]*(*this)[k][i - k];

b.pA[i] = temp/(*this)[i][0];

}

else{

cout << "Singular system!" << endl;

exit (1);

}

}

return b;

}

The pieces are now in place to solve a system provided the Cholesky factorization is
available. The last step is therefore to translate the banded Cholesky algorithm from Section
7.2.4 into one that will work in the band storage setting. That is essentially what will be
done. But, the previous Cholesky algorithms have produced lower-triangular factors. It is
more convenient for band storage to have the upper-triangular factor. Rather than compute
the lower-triangular matrix in band storage and transpose the result, the (0-offset) upper-
triangular matrix Ũ = {ũi,j}i=0:(n−1),j=0:q in band storage can be computed directly from
Ã, the (0-offset) version of A in band storage, via

ũi0 =

ãi0 − i−1∑
k=max(0,i−q)

ũ2
k(i−k)

1/2

(7.18)

for i = 0, . . . , n− 1 and for j = (i+ 1), . . . ,min(i+ q, n− 1)

ũi(j−i) =

ãi(j−i) − i−1∑
k=max(0,j−q)

ũk(i−k)ũk(j−k)

 /ũi0. (7.19)

The listing below is a translation of these relations.

//solve a banded system via Cholesky factorization

Vector pdBand :: bandChol(const Vector& RHS) const{

double temp = 0;

int low , up;

int nrows = this ->getNRows ();

//temporary storage

double** pG = new double*[nrows];

for(int i = 0; i < nrows; i++){

pG[i] = new double[q + 1];

for(int j = 0; j < q + 1; j++){
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pG[i][j] = (*this)[i][j];

}

}

for(int i = 0; i < nrows; i++){

if((*this)[i][0] == 0){

cout << "Singular system!" << endl;

exit (1);

}

temp = (*this)[i][0];

low = std::max(0, i - q);

for(int k = low; k < i; k++)

temp -= pG[k][i - k]*pG[k][i - k];

pG[i][0] = sqrt(temp);

up = std::min(i + q, nrows - 1);

for(int j = (i + 1); j <= up; j++){

temp = (*this)[i][j - i];

low = std::max(0, j - q);

for(int k = low; k < i; k++)

temp -= pG[k][i - k]*pG[k][j - k];

pG[i][j - i] = temp/pG[i][0];

}

}

pdBand G(nrows , q, pG);

Vector h = G.bandForward(RHS);

Vector b = G.bandBack(h);

for(int i = 0; i < nrows; i++)

delete[] pG[i];

delete[] pG;

return b;

}

The following driver program was written to test the pdBand class.

//pdBandDriver.cpp

#include <iostream >

#include <fstream >

#include "simpleMat.h"

#include "vector.h"

#include "pdBand.h"

int main(int argc , char* argv []){

double* pc = new double[6];

double** pA = new double*[6];

std:: ifstream fIn1 , fIn2;

fIn1.open(argv [1]); fIn2.open(argv [2]);

for(int i = 0; i < 6; i++){

pA[i] = new double[3];

for(int j = 0; j < 3; j++){

fIn1 >> pA[i][j];

}
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fIn2 >> pc[i];

}

fIn1.close (); fIn2.close ();

pdBand A(6, 2, pA);

Vector c(6, pc);

Matrix* pMat = &A;

pMat ->solve(c). printVec ();

Matrix B = A.bandToFull ();

pMat = &B;

pMat ->solve(c). printVec ();

return 0;

}

This program begins by reading in the left-hand-side matrix and right-hand-side vector for
a linear system from two different files. The corresponding pdBand and Vector objects are
then created and a pointer to Matrix is initialized with the address of the pdBand object.
This pointer is first used to call the solve method with the pdBand object. A new Matrix
object is created next using the bandToFull method of the pdBand object. The Matrix
pointer is assigned the address of this Matrix object and solve is called again.

The two-banded matrix that was created using R earlier in this section was used as input
to the pdBandDriver.cpp program along with a right-hand-side vector produced by

> set.seed (456)

> rhs <- rnorm(6)

> rhs

[1] -1.3435214 0.6217756 0.8008747 -1.3888924 -0.7143569 -0.3240611

The results produced by our program are

Solution via banded Cholesky from class pdBand

-3.71877

0.825037

0.212466

-1.6256

0.334564

-1.45349

Solution via Gauss from class Matrix

-3.71877

0.825037

0.212466

-1.6256

0.334564

-1.45349

The output confirms that solve is exhibiting the desired polymorphic behavior.

7.3 Eigenvalues and eigenvectors

Eigenvalues play a fundamental role in statistics. This is particularly true in the case of
multivariate analysis where eigenvalues of sample covariance matrices and related quantities
provide the foundation for many tools that are used for statistical inference.

The problem that will be addressed in this section is the computation of eigenvalues
corresponding to a real, positive-semidefinite (and, hence, symmetric), p× p matrix A. The
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rank of A is r ≤ p so that it admits an eigenvalue-eigenvector decomposition of the form

A =
r∑
j=1

λjvjv
T
j (7.20)

for positive eigenvalues λ1, . . . , λr and associated eigenvectors v1, . . . , vr. For simplicity it
will be assumed that the λj are distinct in which case they can be arranged so that λ1 >
λ2 > · · · > λr.

The Euclidean norm of a p-vector v = (v1, . . . , vp)T is

||v|| =


p∑
j=1

v2
j


1/2

and the inner product of two p-vectors v and x = (x1, . . . , xp)T is

〈v, x〉 =
p∑
j=1

vjxj .

The eigenvalue-eigenvector pairs (λi, vi), i = 1, . . . , r, for A then satisfy

Avi = λivi (7.21)

subject to
〈vi, vj〉 = δij (7.22)

with δij equal to 1 when i = j and 0 otherwise. The combination of (7.21)–(7.22) gives

vTi Avi = 〈vi, Avi〉 = λi, i = 1, . . . , r.

The approach that will now be described for computing eigenvalues is generally called the
power method. The idea behind it is quite simple. The eigenvectors v1, . . . , vr are known to
form an orthonormal basis for an r-dimensional subspace of Rp. As a result, an additional
p− r vectors vr+1, . . . , vp can be found so that v1, . . . , vp provide an orthonormal basis for
all of Rp. Using this basis any p-vector v can be written as

v =
p∑
i=1

aivi (7.23)

with ai = 〈v, vi〉. Thus,

Av =
r∑
i=1

λiaivi, A(Av) = A2v =
r∑
i=1

λ2
i aivi, . . . , A

kv =
r∑
i=1

λki aivi, . . . .

But, if a1 6= 0,
r∑
i=1

λki aivi = λk1

[
a1v1 +

r∑
i=2

(λi/λ1)kaivi

]
and ∥∥∥∥∥

r∑
i=2

(λi/λ1)kaivi

∥∥∥∥∥ ≤ ||v||

{
r∑
i=2

(λi/λ1)2k

}1/2

≤
√
r − 1||v||(λ2/λ1)k

since
∑r
j=2 a

2
j ≤ ||v||2. The fact that λ2/λ1 < 1 has the consequence that the remainder

term converges to 0 as k increases.
The procedure for computing λ1 and v1 that stems from the previous development is
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summarized in Algorithm 7.3 below. The algorithm depends on user-specified values of
the tuning parameters δ and itMax that represent the desired level of approximation and
maximum number of iterations, respectively, as well as a starting vector v with vT v1 6= 0.

Algorithm 7.3 Power method
v(0) = Av/||Av||, λ(0) = (v(0))TAv(0), niter = 0, change =∞
while change > δ and niter < itMax do
niter := niter + 1
v(niter) := Av(niter−1)/||Av(niter−1)||
λ(niter) := (v(niter))TAv(niter)

change = |λ(niter) − λ(niter−1)|
end while
return v(niter), λ(niter)

Algorithm 7.3 successively applies A to the vector v, renormalizes and evaluates the ratio of
quadratic forms in A that provides the approximation to λ1. The variable change holds the
changes in the approximations to λ1 from successive iterations. If the magnitude of change
falls below the specified tolerance level δ, execution is terminated. The value of change is
initialized at ∞ so that the while loop will begin.

To illustrate how Algorithm 7.3 works we will use the positive-definite matrix A that was
used for demonstrating the Gauss transform in Section 7.2 and will choose v as the vector

> v

[1] -1.6866933 0.8377870 0.1533731 -1.1381369 1.2538149

that served as the right-hand side for that example. The condition that is needed for v is
that it has a nonzero inner product with the first eigenvector of A. Random selection seems
like a good strategy to produce a v with this property.

The eigenvalues and eigenvectors for

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 2.8183730 -3.1452537 -0.2082627 -4.1931724 -1.0827824

[2,] -3.1452537 5.4246530 1.9299179 5.5110075 0.1453005

[3,] -0.2082627 1.9299179 2.1096700 1.9187222 -1.5299804

[4,] -4.1931724 5.5110075 1.9187222 8.0239285 -0.2145681

[5,] -1.0827824 0.1453005 -1.5299804 -0.2145681 3.1624022

can be obtained using the R eigen function. The results from eigen are returned as a
list with the components values and vectors containing the eigenvalues and eigenvectors,
respectively. For the current matrix of interest this gives

> eigen(A)

$values

[1] 15.199405715 4.577881146 1.344645025 0.413226152 0.003868673

$vectors

[,1] [,2] [,3] [,4] [,5]

[1,] 0.385560633 -0.32572975 0.1754596 0.2661721 0.80225275

[2,] -0.560721905 -0.02432660 0.6461808 -0.4437891 0.26551988

[3,] -0.191942614 -0.50619678 0.4039680 0.6156238 -0.40588179

[4,] -0.707157822 -0.02592964 -0.5284342 0.3267940 0.33647946

[5,] -0.004448737 0.79774734 0.3305018 0.4964037 0.08905766

With this as a basis for comparison, let us see how the power method performs in terms of
computing both λ1 = 15.199405715 and its associated eigenvector.
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The first step in the power iteration is

> v1 <- v

> v1 <- A%*%v1

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

It turns out that t(v1)%*%v1 is of the R class matrix and must be “demoted” to numeric
using the drop function discussed in Section 6.2. The approximation to the first eigenvalue
of A that results from this is

> drop(t(v1)%*%A%*%v1)

[1] 8.327123

Certainly this is not very satisfactory. So, another iteration appears to be needed which
produces

> v1 <- A%*%v1

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

> drop(t(v1)%*%A%*%v1)

[1] 13.82744

The next iteration gives

> v1 <- A%*%v1

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

> drop(t(v1)%*%A%*%v1)

[1] 15.05940

The fourth, fifth and sixth iterations provide further improvements with

> v1 <- A%*%v1

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

> drop(t(v1)%*%A%*%v1)

[1] 15.18656

> v1 <- A%*%v1

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

> drop(t(v1)%*%A%*%v1)

[1] 15.19824

and

> v1 <- A%*%v1

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

> drop(t(v1)%*%A%*%v1)

[1] 15.1993

We might be tempted to stop iterating at this point. However, the vector v1 produced in
the last iteration is

> v1

[,1]

[1,] -0.38658660

[2,] 0.56064349

[3,] 0.19034451

[4,] 0.70707149

[5,] 0.00696751

This represents the approximation to the first eigenvector v1 of A that corresponds to our
approximation for λ1. As such it could stand further improvement. So, four more iterations
are carried out to obtain
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> drop(t(v1)%*%A%*%v1)

[1] 15.19941

> v1

[,1]

[1,] -0.38556909

[2,] 0.56072127

[3,] 0.19192947

[4,] 0.70715715

[5,] 0.00446946

This agrees to several decimals with the results from R apart from the difference in sign.
The example demonstrates that the power method can work in a particular case. More

generally, Theorem 7.1 confirms that for k sufficiently large the value λ(k) and vector v(k)

returned at the kth iteration of the power method algorithm provide numerical approxi-
mations to the largest eigenvalue of A and its associated eigenvector, respectively. Upper
bounds for the size of the approximation errors for both the eigenvalues and eigenvectors
are obtained as a by-product of the proof.

Theorem 7.1. Let v be a p-vector with 〈v, v1〉 6= 0 and let v(k), λ(k) be the approximations
to v1, λ1 that are returned on the kth step of the power method iteration. Then, as k →∞,
v(k) → −± v1 in Euclidean norm and |λ(k) − λ1| → 0.

Proof. Note that v(1) = Av/||Av|| and

v(2) =
Av(1)

||Av(1)||
=

A2v/||Av||
||A2v||/||Av||

.

Proceeding by induction one concludes that on the kth step of the recursion

v(k) = Akv/||Akv||.

Since λ(k) = (v(k))TAv(k), this gives

λ1 − λ(k) = λ1

[
1−

1 +
∑r
j=2 (λj/λ1)2k+1 (aj/a1)2

1 +
∑r
j=2 (λj/λ1)2k (aj/a1)2

]

which converges to 0 at the rate (λ2/λ1)2k.
To establish convergence of v(k), first observe that there is a sign ambiguity in eigenvectors:

i.e., both v1 and −v1 are eigenvectors for λ1. The vectors v(k) will converge to one of these
depending on the sign of a1 in (7.23). The convergence is to v1 if a1 > 0 and to −v1

otherwise. For specificity suppose that a1 > 0 as the other case can be handled analogously.
Then,

〈v(k), v1〉 =
〈v1, A

kv〉
||Akv||

=
a1λ

k
1{

a2
1λ

2k
1 +

∑r
j=2 λ

2k
j a

2
j

}1/2

=
1{

1 +
∑r
j=2 (λj/λ1)2k (aj/a1)2

}1/2
.

Thus, ||v(k) − v1||2 = 2 − 2〈v(k), v1〉 converges to zero like (λ2/λ1)k and the theorem is
proved. �

The proof technique reveals that the sequence of approximations λ(k) returned from Al-
gorithm 7.3 converges to λ1 at the rate (λ2/λ1)2k while the rate for the corresponding
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eigenvectors is only (λ2/λ1)k. A conclusion that might be drawn from this is that eigenvec-
tors are harder to approximate numerically than eigenvalues.

Up to this point only the largest eigenvalue has been considered. But, the power method
approach can be used for other eigenvalues as well. For example, let ṽ1, λ̃1 be the approxi-
mations to v1, λ1 that are returned at the end of the power method recursion for the largest
eigenvalue. Then, a new matrix Ã = A− λ̃1ṽ1ṽ

T
1 and a new vector ṽ = v − 〈v, ṽ1〉ṽ1 can be

defined with the power method now being applied to Ã and ṽ to obtain approximations to
v2 and λ2.

To illustrate how the power method can be used for computing eigenvalues other than
the largest, let us continue with the matrix A and initialization vector v from the previous
example. Using the approximate eigenvector we found for A we make the adjustment

> A <- A - drop(t(v1)%*%A%*%v1)*v1%*%t(v1)

> v <- v - drop(t(v1)%*%v)*v1

Then, the recursion for the second eigenvalue and eigenvector begins with

> v2 <- A%*%v

> v2 <- v2/sqrt(drop(t(v2)%*%v2))

> drop(t(v2)%*%A%*%v2)

[1] 4.366477

and continues to the second step as

> v2 <- A%*%v2

> v2 <- v2/sqrt(drop(t(v2)%*%v2))

> drop(t(v2)%*%A%*%v2)

[1] 4.558759

Proceeding in this manner, the fifth iteration, for example, produces

> v2 <- A%*%v2

> v2 <- v2/sqrt(drop(t(v2)%*%v2))

> drop(t(v2)%*%A%*%v2)

[1] 4.577869

and

> v2

[,1]

[1,] -0.32535367

[2,] -0.02311193

[3,] -0.50542452

[4,] -0.02702335

[5,] 0.79839001

The power method is straightforward to implement in C++. One way this can be accom-
plished is encoded in the eigen method that was added to our class Matrix.

Vector Matrix ::eigen(int Nvals , Vector& v, Matrix& U, int itMax ,

double delta) const {

double change , temp;

int niter;

Matrix ACopy(nRows , nCols , pA);//work copy of A

Vector vCopy;//work copy of v

Vector lambda(Nvals , 0.);

for(int i = 0; i < Nvals; i++){

change = std:: numeric_limits <double >:: infinity ();

niter = 0;
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vCopy = v;

lambda.pA[i] = 0;

while(change > delta && niter < itMax ){

vCopy = ACopy*vCopy;

vCopy = (1./sqrt(vCopy.dotProd(vCopy )))*vCopy;

lambda.pA[i] = vCopy.dotProd(ACopy*vCopy);

if(niter == 0)

temp = lambda.pA[i];

else if(temp != 0.){

change = fabs (1. - lambda.pA[i]/temp);

temp = lambda.pA[i];

}

niter ++;

}

U.vecToMat(i, vCopy);

v -= (vCopy.dotProd(vCopy))*vCopy;

ACopy -= lambda.pA[i]*(vCopy*vCopy );

}

return lambda;

}

The input to the eigen method includes the number of eigenvalues/eigenvectors that are
to be computed (i.e., Nvals), a Vector object v that will be used to initialize the recursion
and a Matrix object passed in by reference from the calling program that will be filled with
Nvals eigenvectors. The final two arguments represent stopping criteria for the recursion.
The actual number of iterations must be controlled in some fashion. The way this has been
accomplished here is to halt the power method recursions if the number of iterations exceeds
itMax or the absolute relative change in the computed eigenvalue from the previous step
(i.e., change) is less than delta. Similar stopping rules are discussed in more detail in the
next chapter. The absolute value function fabs, that becomes accessible via inclusion of the
cmath header, was used to evaluate change.

In order to start the power method iterations a value for the tolerance variable change
is needed at the beginning of the while loop. For this purpose change is set equal to
the C++ representation of positive infinity using the C++ numeric limits template class
that requires the limits header file. A slight twist involves the vecToMat function detailed
in Appendix D (cf. Exercise 3.21). It furnishes a solution to a problem that arises at the
end of each while loop where a vector object that contains the approximate eigenvector
needs to be inserted into the Matrix object U that was provided for eigenvector storage. The
dotProd method that appears in the listing computes the inner product of two vectors and
the outer product of two vectors is computed with an overloaded version of the * operator.
Their definitions can also be found in Appendix D.

As a test for the C++ power method code the original matrix A and vector v from our
running example were written into the file test.txt as a 5 × 6 array with v in the last
column via

> set.seed (123)

> A <- matrix(rnorm(25), 5, 5)

> v <- rnorm(5)

> write.table(cbind(A, v), "test.txt", quote = FALSE ,

+ row.names = FALSE , col.names = FALSE)

Then, the C++ power method function was applied to the data in test.txt with the
number of iterations set at 35 and delta at 10−8. This produced the results
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Eigenvalues and vectors for A

15.1994

4.57788

1.34465

0.413226

0.00386867

-0.385561 -0.325727 0.17546 -0.266174 -0.802252

0.560722 -0.0243302 0.646182 0.443783 -0.265521

0.191941 -0.506198 0.403968 -0.615627 0.405883

0.707158 -0.0259358 -0.528435 -0.326789 -0.336479

0.00445062 0.797748 0.330497 -0.496407 -0.0890564

The eigenvalues and vectors are in general agreement with those that were computed in R.
Although the simplicity of the power method is appealing, it is not the method of choice

for eigenvalue computations. Instead, an algorithm that employs the power method in con-
junction with orthogonal tridiagonalization and the QR decomposition from Section 7.5
tends to give faster convergence (e.g., Golub and Van Loan 1996). The JAMA package
discussed in Section 7.6 uses a version of this approach for computing the eigenvalues of a
symmetric matrix in its Eigenvalue class.

7.4 Singular value decomposition

An extension of the eigenvalue-eigenvector decomposition for a symmetric real matrix leads
to the singular value decomposition, or merely SVD, that is applicable to matrices that are
neither symmetric nor square. The SVD appears in multivariate analysis in the context
of canonical correlation analysis, for example, and also has applications in the solution of
general least-squares problems.

Let A be a real p×m matrix of rank r ≤ min(p,m). Then, AAT is a symmetric positive-
semidefinite matrix that can be written as

AAT =
r∑
j=1

λ2
juju

T
j

for eigenvalues λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
r > 0 and associated eigenvectors u1, . . . , ur. Now, define

vj =
1
λj
ATuj (7.24)

for j = 1, . . . , r and observe that vj is an eigenvector for ATA because

ATAvj =
1
λj
ATAATuj

= λ2
j

(
1
λj
ATuj

)
= λ2

jvj .

Thus, AAT and ATA have the same nonzero eigenvalues and their eigenvectors are related
by (7.24). Additionally.

uTj Avi = (Auj)
T
vj

= λjv
T
j vi

= λjδij (7.25)

with δij either 1 or 0 depending on whether or not i is equal to j.
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The (left) singular vectors u1, . . . , ur can be augmented by an additional p− r orthonor-
mal vectors up+1, . . . , up to create an orthonormal matrix U = [u1, . . . , up]. Similarly, an
additional m − r orthonormal vectors vr+1, . . . , vm can be constructed to create the or-
thonormal matrix V = [v1, . . . , vm] of (right) singular vectors. The vectors ur+1, . . . , up and
vr+1, . . . , vm necessarily correspond to 0 eigenvalues for AAT and ATA, respectively. As a
result, (7.25) can be rewritten in the standard SVD form

UTAV =
[

Λ 0r×(m−r)
0(p−r)×r 0(p−r)×(m−r)

]
(7.26)

or, equivalently, as

A = U

[
Λ 0r×(m−r)

0(p−r)×r 0(p−r)×(m−r)

]
V T (7.27)

for
Λ = diag(λ1, . . . , λr). (7.28)

In combination these developments prove our next theorem.
Theorem 7.2. Let A be a p×m matrix of rank r ≤ min(p,m). Then,

A =
r∑
j=1

λjujv
T
j , (7.29)

where λ2
1, . . . , λ

2
r are the nonzero eigenvalues of AAT and ATA and uj , vj = λ−1

j ATuj , j =
1, . . . , r are the corresponding eigenvectors.
As a result of Theorem 7.2, an SVD can be produced using the computational scheme
described in Algorithm 7.4.

Algorithm 7.4 SVD algorithm
if number of rows for A ≤ number of columns then

compute eigenvalues λ2
j and eigenvectors uj , j = 1, . . . , r of AAT

vj = λ−1
j ATuj , j = 1, . . . , r

else
compute eigenvalues λ2

j and eigenvectors vj , j = 1, . . . , r of ATA
uj = λ−1

j Avj , j = 1, . . . , r
end if
return λj , uj , vj , j = 1, . . . , r

To illustrate how this algorithm is applied we will again work with a specific example in
the R environment. The matrix that will be used is

> set.seed (123)

> A <- matrix(rnorm(20) ,5 ,4)

> A

[,1] [,2] [,3] [,4]

[1,] -0.56047565 1.7150650 1.2240818 1.7869131

[2,] -0.23017749 0.4609162 0.3598138 0.4978505

[3,] 1.55870831 -1.2650612 0.4007715 -1.9666172

[4,] 0.07050839 -0.6868529 0.1106827 0.7013559

[5,] 0.12928774 -0.4456620 -0.5558411 -0.4727914

This is a 5×4 array. So, ATA has the smaller dimension and its eigenvalues and eigenvectors
are the ones that will be computed. The power method recursion will be initialized with the
vector composed of the first four elements of the initialization vector that was used for the
eigenvalue example in the previous section: viz,
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> v <- v[1:4]; v;

[1] -1.6866933 0.8377870 0.1533731 -1.1381369

To begin, take

> v1 <- t(A)%*%A%*%v

> v1 <- v1/sqrt(drop(t(v1)%*%v1))

> sqrt(drop(t(v1)%*%t(A)%*%A%*%v1))

[1] 3.727011

Then, four more iterations lead to

> sqrt(drop(t(v1)%*%t(A)%*%A%*%v1))

[1] 3.898612

> v1

[,1]

[1,] -0.3852381

[2,] 0.5606925

[3,] 0.1924203

[4,] 0.7072411

and

> u1 <- A%*%v1/sqrt(drop(t(v1)%*%t(A)%*%A%*%v1)); u1;

[,1]

[1,] 0.68661807

[2,] 0.19710637

[3,] -0.67294214

[4,] 0.02694537

[5,] -0.19007241

The other eigenvalues can also be computed using the power method as demonstrated in
the previous section.

The R function svd that computes the SVD of a matrix provided as its argument can
be used to assess the accuracy of our power method iterations. The output from svd is
returned as a list; the first component of the list (named d) holds the singular values while
the second and third components (named v and u) contain the right and left singular vectors.
An application of svd to the matrix used in our example produces

> svd(A)

$d

[1] 3.8986117 1.4848168 0.9795070 0.1154849

$u

[,1] [,2] [,3] [,4]

[1,] -0.68663120 -0.5941114 -0.02638716 0.41766365

[2,] -0.19710967 -0.1488653 -0.01012230 -0.49508266

[3,] 0.67292599 -0.7277940 -0.08942548 0.06879205

[4,] -0.02694425 0.1033245 -0.99312907 0.04115105

[5,] 0.19007890 0.2907073 0.06999283 0.75764403

$v

[,1] [,2] [,3] [,4]

[1,] 0.3852091 -0.4864560 -0.1870774 0.7615619

[2,] -0.5607034 -0.2474217 0.7290891 0.3046691

[3,] -0.1924690 -0.8234246 -0.2252240 -0.4839440

[4,] -0.7072350 0.1552902 -0.6186318 0.3049563

Thus, the power method approach would also seem to be effective in this example.
The method SVD below was added to our class Matrix.
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Vector Matrix ::SVD(int Nvals , Vector& v, Matrix& U, Matrix& V,

int itMax , double delta) const {

Vector temp;

Matrix ACopy(nRows , nCols , pA);

if(nRows > nCols ){//work with A^TA

temp = (ACopy.trans ()*ACopy). eigen(Nvals , v, V, itMax , delta);

Matrix Temp(Nvals , Nvals , 0.);

for(int i = 0; i < Nvals; i++)

Temp.pA[i][i] = 1./sqrt(temp[i]);

U = ACopy*V*Temp;

}

else{//work with AA^T

temp = (ACopy*ACopy.trans ()). eigen(Nvals , v, U, itMax , delta);

Matrix Temp(Nvals , Nvals , 0.);

for(int i = 0; i < Nvals; i++)

Temp.pA[i][i] = 1./sqrt(temp[i]);

V = ACopy.trans()*U*Temp;

}

Vector lambda(Nvals , 0.);

for(int i = 0; i < Nvals; i++)

lambda.pA[i] = sqrt(temp[i]);

return lambda;

}

The arguments for the SVD method are the same as those for eigen except that now two
Matrix objects must be supplied to store both the right and left singular vectors. Beyond
that, the program simply carries out Algorithm 7.4 directly with the assistance of our
previously developed eigen method.

An application of the SVD method to the matrix used in the R calculations with 35
iterations and delta = 10−8 produced

Singular values for A

3.89861

1.48482

0.979507

0.115485

Left singular vectors

0.686629 -0.594217 -0.0263068 -0.417663

0.197109 -0.148896 -0.0101026 0.495083

-0.672928 -0.727694 -0.0892991 -0.0687902

0.0269445 0.103291 -0.993146 -0.0411305

-0.190078 0.290738 0.0699508 -0.757645

Right singular vectors

-0.385213 -0.486442 -0.187025 -0.761561

0.560702 -0.247421 0.729112 -0.304671

0.192462 -0.823446 -0.22514 0.483945

0.707236 0.155221 -0.618651 -0.304955

Again, these results are in general agreement with those obtained from R.
As was true for computing eigenvalues and eigenvectors, the power method is not generally

favored for SVD calculations. Beyond the issue of slow convergence there are also accuracy
problems that arise from (unnecessary) round-off errors produced by working with ATA or
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AAT . The preferred SVD algorithm is described in Golub and Van Loan (1996) and Björck
(1996) a version of which is used in the JAMA SVD class introduced in Section 7.6.

7.5 Least squares

Suppose that we have an n× 1 vector y that is to be approximated by a linear combination
of the columns of an n × p real matrix X. That is, the objective is to find a p-vector b
such that Xb provides a good “estimator” for y in some sense. In statistics the vector y
typically represents observed values for a random variable and the columns of X correspond
to observed or preset values of p “predictor” variables. For problems of this nature one can
expect n > p and that is the case that will be addressed here.

The fact that n > p has the consequence that the system

Xb = y (7.30)

is over-determined and generally has no solution. Instead, a least-squares solution can be
sought by attempting to minimize ||y − Xb|| over all b ∈ Rp with b then chosen as the
minimizer with smallest Euclidean norm. This process turns out to be equivalent to looking
for a minimum norm solution to the normal equations

XTXb = XT y

which puts us back in the framework of Section 7.3 with A = XTX and c = XT y provided
that XTX is nonsingular or, equivalently, X has rank p. More generally, for analysis of
variance and other problems arising from the general linear model the rank p assumption
may not hold and some additional work is needed.

At this juncture it is useful to introduce the concept of a generalized inverse for a matrix
as part of our linear algebra repertoire. There are actually several ways to define such
quantities. But, for our purposes is suffices to only consider the Moore-Penrose generalized
inverse (e.g., Ben-Israel and Greville 2003). For an n × p matrix X, its Moore-Penrose
generalized inverse is the unique matrix X† that satisfies the Penrose equations

XX†X = X (7.31)
X†XX† = X† (7.32)
(XX†)T = XX† (7.33)
(X†X)T = X†X. (7.34)

The next theorem gives the connection between the Moore-Penrose inverse and the least-
squares solution of an over-determined linear system. Its proof can be found in Ben-Israel
and Greville (2003, Chapter 3).

Theorem 7.3. Let X be an n× p matrix of rank r with n > p ≥ r. The vector

b = X†y (7.35)

is the minimizer of ||y −Xθ|| that has minimal norm in that

||b|| = inf
{
||θ|| : XTXθ = XT y

}
. (7.36)

The SVD can be used to provide a computable characterization of the solution in (7.35).
To see this, let X = UDV T be the singular-value decomposition of X with U = [u1, . . . , un]
and V = [v1, . . . , vp], respectively, n × n and p × p orthogonal matrices and D = {dij} an
n × p matrix whose only nonzero entries are the square roots of the nonzero eigenvalues
λ2
i , i = 1, . . . , r of XTX. We now claim that

X† = V D†UT (7.37)
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for

D† =
[

diag(1/λ1, . . . , 1/λr) 0r×(n−r)
0(p−r)×r 0(p−r)×(n−r)

]
. (7.38)

The proof (Exercise 7.23) consists of showing that the Penrose equations are satisfied with
this choice for X†. The implication of (7.37)–(7.38) is that b in (7.35) has the form

b = V D†UT y

=
r∑
j=1

λ−1
j ajvj

with aj = uTj y, j = 1, . . . , r. As a result, b can be evaluated once the SVD for X is available.
To give an example of how the SVD can be used in a least-squares context, consider

finding the least-squares solution of Xb = y with X given by

> X

[,1] [,2] [,3]

[1,] 1 1 0

[2,] 1 1 0

[3,] 1 1 0

[4,] 1 0 1

[5,] 1 0 1

[6,] 1 0 1

and the response vector y created in R via

> set.seed (123)

> y <- rnorm(6)

This choice for the X matrix corresponds to a two-sample mean comparison problem under
the model

yij = µ+ τj + eij , i = 1, . . . , 6, j = 1, 2,

for treatment effects τ1 and τ2 and random errors eij , i = 1, . . . , 6, j = 1, 2. With this
formulation the X matrix has rank two with the consequence that XTX is singular.

An application of formulas (7.35) and (7.24)–(7.25) in conjunction with the SVD method
for class Matrix (with parameters itMax and delta set at 35 and 10−8, respectively) pro-
duces
Moore -Penrose inverse of A

0.11111 0.11111 0.11111 0.111112 0.111112 0.111112
0.22222 0.22222 0.22222 -0.111112 -0.111112 -0.111112

-0.11111 -0.11111 -0.11111 0.222224 0.222224 0.222224
Least square solution
0.298103
-0.0420867
0.34019

One may check these calculations with R using the ginv function from the MASS package
that computes the Moore-Penrose inverse of a matrix that is given as its argument (Exercise
7.26).

Assume now that X has rank p. In that instance another avenue to computing a least-
squares solution of Xb = c is through a QR decomposition of X obtained via Gram-Schmidt
orthogonalization. First, the general idea is to factorize X as

X = QR (7.39)

with Q = [q1, . . . , qp] an n×p orthogonal matrix and R a p×p nonsingular, upper-triangular
matrix. To create the Q matrix the columns of X can be orthonormalized using the proce-
dure we now describe.
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Let x1, . . . , xp be linearly independent, n-vector columns of X. The Gram-Schmidt algo-
rithm creates an orthonormal basis q1, . . . , qp for the linear manifold spanned by x1, . . . , xp.

Algorithm 7.5 Gram-Schmidt algorithm
q1 = x1/‖x1‖
for i = 2, . . . , p do
qi = xi −

∑i−1
j=1

(
xTi qj

)
qj

qi := qi/‖qi‖
end for

A proof that q1, . . . , qp are orthonormal and provide a basis for the linear span of x1, . . . , xp
can be obtained by induction (Exercise 7.31). This algorithm can exhibit numerical insta-
bility. But, it is easily modified to resolve such problems (Exercise 7.32).

Since the vectors q1, . . . , qp returned from the Gram-Schmidt algorithm are an orthonor-
mal basis for the columns of X it must be that X = QR with R a p×p matrix with elements
rij = qTi xj the coefficients of xj in its representation under the q1, . . . , qp basis. The order
in which the qi have been constructed guarantees that R is upper-triangular. As a result,
the existence has been established of a factorization of the form (7.39). In addition,

XTX = RTQTQR

= RTR.

But, R is upper-triangular and the Cholesky factorization is unique. Therefore, it must be
that RT is the lower-triangular Cholesky factor for the matrix XTX.

Using our QR decomposition the least-squares normal equations XTXb = XT y become

RTRb = RTQT y.

The fact that R is nonsingular has the consequence that this identity is the same as

Rb = QT y (7.40)

which can be solved directly using back substitution.
The modified Gram-Schmidt method from Exercise 7.32 was implemented in C++ (see

Appendix D) and then used to solve the least-squares problem corresponding to the matrix
used for the SVD example in the previous section with the right-hand-side vector that was
used for our Gaussian elimination example in Section 7.2.2. This produced

The Q matrix

-0.3338547 0.7874465 0.2822091 0.4340472

-0.1371083 0.1474621 0.2109068 -0.4703158

0.9284652 0.3428718 0.1241733 0.01466849

0.04199925 -0.4395243 0.8533937 0.2759971

0.07701195 -0.2178078 -0.363561 0.7169494

The R matrix

1.678801 -1.873512 -0.1240544 -2.497718

0 1.383693 1.22679 0.6009298

0 0 0.7676374 1.135503

0 0 0 0.367215

The product QR

-0.5604756 1.715065 1.224082 1.786913

-0.2301775 0.4609162 0.3598138 0.4978505

1.558708 -1.265061 0.4007715 -1.966617

0.07050839 -0.6868529 0.1106827 0.7013559

0.1292877 -0.445662 -0.5558411 -0.4727914



272 NUMERICAL LINEAR ALGEBRA

Least -squares solution

-1.789488

0.01582229

-0.05267274

-1.468022

The product of the Q and R matrices agrees with the original X matrix through all digits
shown in the output.

The R function for carrying out a QR decomposition is qr. Given a matrix object argu-
ment, it returns an object of class qr that contains the matrices from the decomposition in
a compressed storage format. An application of the functions qr.Q and qr.R to a qr object
will restructure its associated Q and R matrices into their standard forms. The least-squares
solution of Xb = y with X and y both matrix objects is obtained from qr.solve(qr(X),
y). One may check that the results from our C++ QR code for the previous example agree
with those obtained from R (Exercise 7.30).

7.6 The Template Numerical Toolkit

Our particular implementation of the classes Matrix and Vector should be viewed as
merely a first step in the creation of classes that can be employed in statistical computing
applications. In particular, the algorithms for solving linear systems, finding eigenvalues-
eigenvectors, etc., need further refinement before they can be seriously considered for day-
to-day usage. In this regard, a thorough development would require a detour from our
current path into a detailed study of numerical matrix methods along the lines of that in
Golub and Van Loan (1996). In lieu of fine tuning the Matrix and Vector classes another
option is to simply employ existing packages that provide similar features for matrix/vec-
tor manipulation with better supporting routines for numerical methods. There are several
alternatives that can be used for this purpose including the newmat library, Lapack++ and
the Template Numerical Toolkit (TNT) in conjunction with JAMA/C++ that provides
C++ translations of routines in Lapack that use the C++ template feature. We conclude
this chapter by giving a brief introduction to TNT.

The TNT and JAMA libraries can be downloaded from http://math.nist.gov/tnt. The
download will produce all the necessary header files. The fact that the classes are templates
also means that the actual source code is contained in the headers. Consequently, there are
no libraries to compile and everything that is needed for compilation is accomplished with
include directives. In particular, by including the file tnt.h access is obtained to all the basic
matrix and vector functions that include indexing and elementary numerical operations such
as addition and multiplication.

The TNT matrix and vector classes are named Array2D and Array1D, respectively. There
are a variety of constructors that include specifications such as

Array2D ();

Array2D(int m, int n, T* a);

Array2D(int m, int n, const T& a);

for two-dimensional arrays or matrices and

Array1D ();

Array1D(int n, T* a);

Array1D(int n, const T& a);

for one-dimensional arrays or vectors. The default constructors create null arrays. The other
constructors employ the template format discussed in Section 3.11 with T being a generic
place holder for a specific data type whose designation can be postponed until the array
object is actually constructed. The integers m and n are the row and column dimensions of
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the two-dimensional arrays while n designates the number of rows for the one-dimensional
case. The constructors with const T& a arguments return arrays with every entry set equal
to the value a. As was true for our Matrix and Vector classes these constructors can be
used for creation of arrays with all zero entries. The one-dimensional array constructor
with the pointer argument acts like the constructor that was used for our class Vector
in Section 3.9 in that it creates the Array1D object using a pointer (or array). The two-
dimensional case involving a pointer is somewhat more involved. Here a one-dimensional
array of dimension m*n must be given to the constructor with the contents of the underlying
array being arranged in row major form.

In Listing 7.9 below the contents of a matrix are read from a file and subjected to various
manipulations using tools from the TNT package. The scope resolution operator is employed
to specify references to names in the TNT namespace.

Listing 7.9 tntEx1.cpp

//tntEx1.cpp

#include <iostream >

#include <fstream >

#include "tnt.h"

using std::cout; using std::endl;

int main(int argc , char** argv){

int m = atoi(argv [2]); int n = atoi(argv [3]);

double* pc = new double[n];

double* pA = new double[m*n];

std:: ifstream fIn;

fIn.open(argv [1]);

for(int i = 0; i < m; i++){

for(int j = 0; j < n; j++)

fIn >> pA[n*i + j];//row major form

fIn >> pc[i];

}

fIn.close ();

TNT::Array1D <double > c(n, pc);

cout << "The vector c" << endl;

cout << c << endl;

TNT::Array2D <double > A(m, n, pA);

cout << "The matrix A" << endl;

cout << A << endl;

TNT::Array2D <double > B(m, n);

for(int i = 0; i < m; i++){

for(int j = 0; j < n; j++)

B[i][j] = (double)(i + 1)*(j + 1);

}

cout << "The matrix B" << endl;

cout << B << endl;

cout << "The sum of A and B" << endl;

cout << A + B << endl;

cout << "The product of A and B" << endl;

cout << matmult(A, B) << endl;

return 0;

}
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This program uses the one-dimensional pointer based constructors to create both a one-
and two-dimensional array. In accessing the file information that will fill the arrays it is
assumed that the storage format progresses across the n columns and then down the m rows
with the elements of the one-dimensional array residing in the last column. The pointers
that provide access to the data are then used to create the Array2D object A and Array1D
object c that are printed out using overloaded output insertion operators.

Listing 7.9 illustrates the use of an overloaded + operator for matrix addition. There
are also overloaded versions of =, -, +=, -=, *, *=, / and /=. The *, *=, / and /=
operators carry out their respective computations on an element-wise basis. In particular,
this means that * does not produce matrix multiplication. This is instead obtained from the
matmult function as illustrated in the program. It should be noted that both the Array1D
and Array2D copy constructors create shallow copies that are essentially just an alias for
the original; that is, altering the copy changes the original. To obtain an independent copy
it is necessary to use the copy method for the class. For example.

Array2D B = A.copy ();

produces an Array2D object B whose memory is independent of that for object A.
To illustrate the use of Listing 7.9, we will use the 5 × 5 array and five-element right-

hand-side vector that were created with R and used with the Gauss transform example in
Section 7.2.2. For the purposes of this example the two arrays reside in the file array1.txt.
An application of our program to this data produces

$ g++ -Wall tntEx1.cpp -o tntEx1

$ ./tntEx1 array1.txt 5 5

The vector c

5

-1.68669

0.837787

0.153373

-1.13814

1.25381

The matrix A

5 5

2.81837 -3.14525 -0.208263 -4.19317 -1.08278

-3.14525 5.42465 1.92992 5.51101 0.1453

-0.208263 1.92992 2.10967 1.91872 -1.52998

-4.19317 5.51101 1.91872 8.02393 -0.214568

-1.08278 0.1453 -1.52998 -0.214568 3.1624

The matrix B

5 5

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

The sum of A and B

5 5

3.81837 -1.14525 2.79174 -0.193172 3.91722

-1.14525 9.42465 7.92992 13.511 10.1453

2.79174 7.92992 11.1097 13.9187 13.47

-0.193172 13.511 13.9187 24.0239 19.7854

3.91722 10.1453 13.47 19.7854 28.1624
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The product of A and B

5 5

-26.2835 -52.567 -78.8506 -105.134 -131.418

36.2643 72.5287 108.793 145.057 181.322

10.0056 20.0111 30.0167 40.0223 50.0279

43.6079 87.2158 130.824 174.432 218.039

9.57162 19.1432 28.7148 38.2865 47.8581

As one consequence of this output it can be seen that the output insertion operator applied
to Array1D and Array2D objects prints out the dimensions as well as the elements of the
array.

The TNT package can be augmented with the JAMA package to provide the facility
for solving linear systems and carrying out eigenvalue and singular-value decompositions.
JAMA contains the template classes Cholesky, Eigenvalue, QR and SVD for carrying out
Cholesky and QR matrix factorizations and eigenvalue or singular value decompositions. All
the classes have constructors that take Array2D objects as arguments and return objects that
can access class methods that correspond to various numerical routines. The Cholesky and
QR classes have solve methods that take Array1D objects as a right-hand side for a linear
system and return an Array1D object solution. The Eigenvalue class has the methods getV
and getRealEigenvalues that return the eigenvectors and eigenvalues of a real symmetric
matrix in Array2D and Array1D objects that are provided as its arguments. The analogous
functions for the SVD class are getU, GetV and getSingularValues that return the left
and right singular vectors in Array2D objects and the singular values in an Array1D object
with all objects being passed into the functions by reference.

A program that uses the JAMA package is given in the next listing. The idea is that two
arrays will be read in from text files. The first array is comprised of a square n × n array
with an n-vector right-hand side as the last column in the file. This first array and vector
will be used to demonstrate the solution of a linear system and an eigenvalue-eigenvector
decomposition using the JAMA Cholesky and Eigenvalue classes. A second, nonsquare
array will also be imported and used to exemplify using the SVD class.

Listing 7.10 tntEx2.cpp

//tntEx2.cpp

#include <iostream >

#include <fstream >

#include <algorithm >

#include "tnt.h"

#include "jama_cholesky.h"

#include "jama_eig.h"

#include "jama_svd.h"

using std::cout; using std::endl;

int main(int argc , char** argv){

int m = atoi(argv [1]); int n = atoi(argv [2]);

double* pA1 = new double[n*n];

double* pc = new double[n];

double* pA2 = new double[n*m];

std:: ifstream fIn1 , fIn2;

fIn1.open(argv [3]); fIn2.open(argv [4]);

for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++)

fIn1 >> pA1[n*i + j];//row major form
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fIn1 >> pc[i];

}

for(int i = 0; i < n; i++)

for(int j = 0; j < m; j++)

fIn2 >> pA2[m*i + j];

fIn1.close (); fIn2.close ();

TNT::Array2D <double > A1(n, n, pA1);

cout << "The matrix A1" << endl;

cout << A1 << endl;

TNT::Array1D <double > c(n, pc);

cout << "The right -hand side" << endl;

cout << c << endl;

JAMA::Cholesky <double > Ch(A1);

cout << "The solution by Cholesky" << endl;

cout << Ch.solve(c) << endl;

JAMA:: Eigenvalue <double > A1Eig(A1);

TNT::Array2D <double > V1(n, n);

TNT::Array1D <double > lambda(n);

A1Eig.getRealEigenvalues(lambda );

A1Eig.getV(V1);

cout << "The eigenvalues for A1" << endl;

cout << lambda << endl;

cout << "The eigenvectors for A1" << endl;

cout << V1 << endl;

TNT::Array2D <double > A2(n, m, pA2);

cout << "The matrix A2" << endl;

cout << A2 << endl;

int dMin = min(m, n);

JAMA::SVD <double > A2Svd(A2);

TNT::Array2D <double > V2(m, m);

TNT::Array2D <double > U(n, n);

TNT::Array1D <double > s(dMin);

A2Svd.getSingularValues(s); A2Svd.getU(U); A2Svd.getV(V2);

cout << "The singular values for A2" << endl;

cout << s << endl;

cout << "The left singular vectors for A2" << endl;

cout << U << endl;

cout << "The right singular vectors for A2" << endl;

cout << V2 << endl;

return 0;

}

First observe that the header files for the relevant JAMA package classes have been included:
namely, jama cholesky.h, jama eig.h and jama svd.h for classes Cholesky, Eigenvalue and
SVD, respectively. The solution of our linear system is obtained as a direct application of
the solve function using a Cholesky class object. For the eigenvalue and singular-value
decompositions different constructors were employed for the TNT Array1D and Array2D
classes that require specification of only the array dimensions. Blank arrays created in this
manner are passed as arguments to the functions that return the eigenvalues, eigenvectors,
singular values and singular vectors.
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Listing 7.10 was compiled and applied to the 5 × 5 array and right-hand-side vector in
the file array1.txt that was used to demonstrate Listing 7.9. The 5 × 4 array that was
created in Section 7.4 to illustrate our C++ SVD code was stored in the file array2.txt
and used for illustrating the SVD calculations. The results produced by application of the
program to these two files are

$ g++ -Wall tntEx2.cpp -o tntEx2
$ ./tntEx2 4 5 array1.txt array2.txt
The matrix A1
5 5
2.81837 -3.14525 -0.208263 -4.19317 -1.08278
-3.14525 5.42465 1.92992 5.51101 0.1453
-0.208263 1.92992 2.10967 1.91872 -1.52998
-4.19317 5.51101 1.91872 8.02393 -0.214568
-1.08278 0.1453 -1.52998 -0.214568 3.1624

The right -hand side
5
-1.68669
0.837787
0.153373
-1.13814
1.25381

The solution by Cholesky
5
-303.893
-99.3447
153.151
-128.243
-33.6957

The eigenvalues for A1
5
0.00386867
0.413226
1.34465
4.57788
15.1994

The eigenvectors for A1
5 5
-0.802253 0.266172 0.17546 0.32573 -0.385561
-0.26552 -0.443789 0.646181 0.0243266 0.560722
0.405882 0.615624 0.403968 0.506197 0.191943
-0.336479 0.326794 -0.528434 0.0259296 0.707158
-0.0890577 0.496404 0.330502 -0.797747 0.00444874

The matrix A2
5 4
-0.560476 1.71506 1.22408 1.78691
-0.230177 0.460916 0.359814 0.49785
1.55871 -1.26506 0.400771 -1.96662
0.0705084 -0.686853 0.110683 0.701356
0.129288 -0.445662 -0.555841 -0.472791

The singular values for A2
4
3.89861
1.48482
0.979507
0.115485
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The left singular vectors for A2
5 4
-0.686631 -0.594111 0.0263872 -0.417664
-0.19711 -0.148865 0.0101223 0.495083
0.672926 -0.727794 0.0894255 -0.0687921
-0.0269443 0.103324 0.993129 -0.0411511
0.190079 0.290707 -0.0699928 -0.757644

The right singular vectors for A2
4 4
0.385209 -0.486456 0.187077 -0.761562
-0.560703 -0.247422 -0.729089 -0.304669
-0.192469 -0.823425 0.225224 0.483944
-0.707235 0.15529 0.618632 -0.304956

Reference to the results that were obtained in Sections 7.2.3, 7.3 and 7.4 reveals that the
JAMA functions have worked as expected.

7.7 Exercises

7.1. Develop a method for class Matrix that will create a Gauss transform matrix corre-
sponding to a given input vector. Verify that an application of the method to the matrix A
and right-hand-side vector c from Section 7.2.2 gives the correct solution to the equation
system.
7.2. Gaussian elimination can experience accuracy problems when the sweep process en-
counters a (relatively) small diagonal entry. One approach to avoiding such difficulties is to
employ partial pivoting. The idea is that at the kth step of the recursion rows are swapped
so that the array entry with the largest magnitude on or below the diagonal occupies the
diagonal position. As an example, consider the matrix 6 3 2

2 12 7
9 20 4


The largest element in the first column is 9 and the first and third rows are swapped to
obtain the matrix  9 20 4

2 12 7
6 3 2


After application of the Gauss transform for the first column the transformed matrix is 9 20 4

0 7.555556 6.11111
0 −10.333333 −.666667


The next target column is the second for which the value in the third row is again largest
in magnitude. So, the third and second rows are switched and the Gauss transform is again
applied to give  9 20 4

0 −10.333333 −.666667
0 0 5.623656


as the final outcome. With this example in mind,
a) create a method for class Matrix that will swap two specified rows of a Matrix object.
b) use your method from part a) to implement a method for class Matrix that solves a

nonsingular linear system by Gaussian elimination with partial pivoting.
7.3. Show that the Gaussian elimination and Cholesky methods involve 2n3/3 and n2/3
flops, respectively, to convert an n× n system to upper-triangular form.
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7.4. Derive an algorithm for computing the inverse of the lower-triangular Cholesky factor.
Then, use this to create a method for class Matrix that will compute the inverse of a
positive-definite matrix.
7.5. Develop a method for class Matrix that will perform an efficient Gauss sweep for a
banded matrix system.
7.6. Let A be an n×n positive-definite matrix with bandwidth q and let LLT be its Cholesky
factorization. Show that L is banded below the diagonal with lower bandwidth q.
7.7. Write an R function that combines the chol, backsolve and forwardsolve functions
to solve a positive-definite linear system via the Cholesky method. Use the system.time
function to compare the performance of your algorithm to using the chol2inv function for
this purpose.
7.8. Consider the linear system Ab = c with A = {aij}i,j=1:n an n × n matrix, b =
(b1, . . . , bn)T and c = (c1, . . . , cn)T . An iterative approach to solving the system is Al-
gorithm 7.6 that computes an approximate solution according to a specified number of
iterations itMax and relative change in the approximation δ.

Algorithm 7.6 Gauss-Seidel algorithm

select an initial guess b(0) = (b(0)
1 , . . . , b

(0)
n )T for b

change =∞, niter = 0
while change > δ and niter < itMax do

for i = 1, . . . , n do
b
(niter)
i =

(
ci −

∑min(1,i−1)
j=1 aijb

(niter)
j −

∑n
j=min(i+1,n) aijb

(niter−1)
j

)
/aii

end for
change = ‖b(niter) − b(niter−1)‖/‖b(niter−1)‖
niter = niter + 1

end while

Create a method for class Matrix that will perform a Gauss-Seidel iteration and compare
its performance with other solution methods in the class.
7.9. Let Z have a p-variate normal distribution with a mean vector of all zero elements and
identity variance-covariance matrix.
a) Let Σ be a positive-definite matrix with Cholesky factorization LLT . Prove that µ+LZ

is p-variate normal with mean vector µ and variance-covariance matrix Σ.
b) Create a random number generation class that will generate vectors from a p-variate

normal distribution corresponding to some user-specified mean vector and variance-
covariance matrix.

7.10. Modify the methods in class Matrix that can be used for solving linear systems to
allow for multiple right-hand sides.
7.11. Show that the number of nonzero elements in an n×n banded matrix with bandwidth
q is (n− q)(2q + 1) + q2.
7.12. Verify the form of the linear smoothing spline normal equations (7.9). Then, show
that they take the form (7.11)–(7.13) under the local support, linear smoothing spline basis
of Section 7.2.5.
7.13. Explicitly carry out the forward and backward substitution steps that are needed to
establish (7.15)–(7.16). Also, show that the entire computational effort is of order n.
7.14. Develop R code for fitting the linear smoothing spline from Section 7.2.5 using the
SparseM package.
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7.15. Linear smoothing splines have a boundary bias that can reduce the efficiency of the
estimator near the edges of the interval [0, 1]. The problem is easily corrected by including
appropriate polynomial functions in the fit (e.g., Eubank and Kim 1998). Specifically, let

q0(x) = x− .5x2, q1(x) = .5x2.

Then, a boundary corrected estimator is obtained by minimizing

n∑
i=1

yi − a0q0(xi)− a1q1(xi)−
n∑
j=1

bjB(xi)

2

+ λbTΩb,

with respect to a = (a0, a1)T and b = (b1, . . . , bn)T for B1, . . . , Bn the local support basis
functions from Section 7.2.5 and Ω the matrix defined in (7.12)–(7.13).
a) Derive a closed form expression for the fitted values at points x1, . . . , xn for the boundary

corrected estimator.
b) Let Q = {qj(xi)}i=1:n,j=0:1 be the n× 2 matrix containing the values of q0 and q1 at the

xi. Show that the fitted values from part a) can be expressed as f̃λ = fλ + Q̃aλ with fλ
the fitted values for the noncorrected estimator obtained from (7.11),

Q̃ = [I − (I + λΩ)−1]Q

and aλ is the solution of
Q̃T Q̃a = Q̃ỹ

for ỹ = [I − (I + λΩ)−1]y.
c) Use your result from part b) to develop an order n algorithm for computing f̃λ and the

GCV criterion.
d) Create a C++ class that implements your algorithm from part c).
e) Generate data from the model

yi = µ(xi) + ei, i = 1, . . . , 100,

with the ei being uncorrelated normal random variables having mean 0 and standard
deviation .05, xi = (2i− 1)/200, i = 1, . . . , 100 and

µ(x) =
{

16x2(1− x)2, 0 < x < .7,
16x2(1− x)2 + 64(x− .7)3, x ≥ .7.

Fit this data using both the boundary corrected and non-boundary-corrected linear
smoothing spline estimator for various values of λ and compare the results.

7.16. Rework Listing 7.6 to use references rather than pointers.
7.17. Verify identities (7.18)–(7.19).
7.18. Add code to the Matrix and/or pdBand classes that will produce an operable diagonal
matrix constructor for pdBand objects.
7.19. Suppose that a matrix is symmetric and banded but not positive-definite. Develop a
derived class from a class Matrix such as the one in Listing 7.7 that will solve linear systems
for such a matrix via a solve method based on the banded Gaussian elimination approach
of Exercise 7.5.
7.20. Add a virtual + operator to the Matrix class in Listing 7.7. Then, use the bandToFull
method from class pdBand to extend the operator to addition of a pdBand and Matrix object.
7.21. Let A = {aij}i,j=1:n be a symmetric n× n matrix. Then, the unique entries in A can
be stored in a one-dimensional array ã of length n(n+ 1)/2 using the relationship

ãg(i,j) = aij , i ≥ j,
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with the index mapping function g defined by

g(i, j) = (j − 1)n− j(j − 1)/2 + i.

a) Create a derived class SyMatrix from class Matrix in Listing 7.7 that deals with symmet-
ric matrices and stores them efficiently. Provide your class with the requisite constructors,
destructor and assignment operator.

b) Provide a virtual solve method that uses Gaussian elimination to solve a linear system.
7.22. Let Xk = [x1, . . . , xk]T be a k × p matrix. If (XT

mXm)−1 for m ≥ p is available it is
possible to compute (XT

m+1Xm+1)−1 using the rank-one update

(XT
m+1Xm+1)−1 = (XT

mXm)−1

(
I −

xm+1x
T
m+1

1− xTm+1(XT
mXm)−1xm+1

)
(XT

mXm)−1.

Suppose now that observations y1, y2, . . . , arise in a temporal sequence and at each point
t > 2p we wish to compute the coefficients that minimize

t∑
i=p+1

yi − b0 − p∑
j=1

bjyi−j

2

as a function of b0, . . . , bp.
a) Develop an order n algorithm that uses rank-one updates to sequentially compute the

least-squares coefficient estimators.
b) Implement your algorithm in C++.
c) Use the R arima.sim function (see, e.g., Section 10.4.1) to simulate data from an au-

toregressive model and use that to test your code from part b).
7.23. Show that X† defined in (7.37)–(7.38) is the Moore-Penrose generalized inverse of X.
7.24. Consider the linear system Ab = c with A and c determined from

> set.seed (123)

> A <- matrix(rnorm(18), 6, 3)

> v <- matrix(rnorm(6), 6, 1)

Compute a least-squares solution for this system using the svd function from R.
7.25. Expand on Exercise 7.24 and use the svd function in R to create a function that will
compute the generalized inverse of a matrix.
7.26. Write C++ code that will allow you to verify the form of the least-squares solution
for Xb = y in Section 7.5 that was obtained with the X matrix

> X

[,1] [,2] [,3]

[1,] 1 1 0

[2,] 1 1 0

[3,] 1 1 0

[4,] 1 0 1

[5,] 1 0 1

[6,] 1 0 1

and response vector y determined from

> set.seed (123)

> y <- rnorm(6)

Compare the results from your code to that returned by the R functions svd and ginv (from
the MASS package).
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7.27. Provide a method for class Matrix that will compute the Moore-Penrose inverse of
a matrix. Use this method to obtain a least-squares solution for the linear system Ab = c
with A and c obtained from R as in Exercise 7.24.
7.28. Add the following functions to the TNT package.
a) A function to transpose a matrix.
b) An overloaded version of * that performs matrix multiplication.
c) An overloaded version of * that performs matrix-vector multiplication.
7.29. Create Matrix and Vector template classes that rely on the constructors and methods
from the TNT package. The idea is to create wrapper classes for the TNT and JAMA classes
that add both functionality and ease of access.
7.30. Use the R functions qr and qr.solve to check the C++ results for the least-squares
example of Section 7.5.
7.31. Show that the Gram-Schmidt process in Algorithm 7.5 produces an orthogonal basis
for the linear space spanned by the vectors to which it is applied.
7.32. Let x1, . . . , xp be linearly independent n-vectors for n ≥ p. A numerically stable
modification of the Gram-Schmidt procedure is given in Algorithm 7.7 below.

Algorithm 7.7 Modified Gram-Schmidt algorithm
q1 = x1

r11 = ‖q1‖
q1 = q1/r11, r1j = qT1 xj , j = 2, . . . , p
x

(1)
j = xj − r1jq1, j = 2, . . . , p

for i = 2, . . . , p− 1 do
qi = x

(i)
i

rii = ‖qi‖
qi = qi/rii, rij = qTi xj , j = i+ 1, . . . , p
x

(i)
j = xj − rijqi, j = i+ 1, . . . , p

end for
qp = x

(p−1)
p , rpp = ||qp||

qp = qp/||qp||

a) Show that the vectors q1, . . . , qp produced by the modified Gram-Schmidt Algorithm 7.7
provide an orthonormal basis for the linear subspace spanned by x1, . . . , xp.

b) Let X = [x1, . . . , xp]. Show that X = QR, where Q = [q1, . . . , qp] and R is an upper-
triangular matrix with nonzero elements rij , j ≥ i.

c) Use part b) as a basis for code to implement a method for class Matrix that carries out
a QR factorization of a matrix object. There is an outer product form for the changes
that are made to the columns of X that can make the formulation easier to encode.

d) Using the matrix X and right-hand-side vector v from Exercise 7.24, compare the least-
squares solutions obtained from the C++ code developed in part c) to that obtained from
the TNT/JAMA packages (using jama qr.h) and from R via the function solve.qr.

7.33. Extend the R sqrt function to apply to positive-definite matrices. If A is such a
matrix, sqrt should return the unique, symmetric, square matrix A1/2 with the property
that A1/2A1/2 = A.



Chapter 8

Numerical optimization

8.1 Introduction

Statistical estimation methods generally require maximizing or minimizing some sort of
performance criterion. For example, in the case of nonlinear regression one may estimate
the parameters θ in a regression function g(·; θ) via least-squares: i.e., by minimizing

f(θ) =
n∑
i=1

(yi − g(xi; θ))
2

with respect to θ, where yi, i = 1, . . ., n, are responses that were observed at values x1, . . . , xn
of a vector of predictor variables. As another instance, maximum likelihood estimation of
a parameter vector θ involves maximizing the likelihood function L(θ) which is the joint
probability density or mass function for the data evaluated at the observed sample values. In
general, this is accomplished by equivalently minimizing l(θ) = − lnL(θ). As illustrated by
the likelihood setting, all maximization problems can be made into minimization problems.
Thus, it suffices to concentrate on numerical minimization.

The task of finding a global minimizer of an objective function is complicated by the
possibility that there may be multiple local minima. On the other hand, any continuous,
nonconstant, function will necessarily be convex or concave up (i.e., bowl shaped) in an area
around a local minimum. So, in that sense, our focus can be directed toward the simpler
problem of finding the minimum of a convex function. The minimization methods that will
be considered in this chapter are designed for that purpose. The remaining task is then
one of locating all the local minima. Techniques for accomplishing that goal will also be
discussed.

Minimization of the GCV criterion for the linear smoothing spline in Section 7.2.5 rep-
resents a prototypical illustration of the type of optimization problems that will be of the
most interest for our study. The basic framework is that there is a class (i.e., Linss) that
has a method (i.e., GCV) and the aim is to find a minimizing argument or arguments of
that method for a particular object from the class. The first step in this process is to give
a minimization routine access to the object’s member function. This means that the func-
tion to be minimized will originate outside the minimization class and some way of passing
the function into the class will be needed. Consequently, this is the first topic that will be
explored.

8.2 Function objects

The phrase callback refers to the passage of executable code as arguments to other pro-
grams. The discussion throughout this section will focus on the creation of a canonical
callback function that typifies the basic features of the function passing problems that will
be encountered throughout the remainder of the chapter. Specifically, we have a function
f that takes a single argument and the objective is to pass this function to another object
that will “call back” by evaluating it for some given value of its argument.

First, to provide some perspective on the problem, let us assume that the code is being

283
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written in R. In that case, the problem is no “problem” at all since functions are objects in
this language. The point is illustrated by the two R functions in the listing below.

Listing 8.1 func.r

#func.r

func <- function(x){

floor(x)

}

useFunc <- function(f, x){

print(f(x))

}

The first function func is just a wrapper for the R function floor that returns the greatest
integer that does not exceed its argument. The second function useFunc takes any function
f as its first argument and evaluates it at the value of its second argument. Using these two
functions in combination can produce results like

> useFunc(func , 2.5)

[1] 2

The development of an analogous version of Listing 8.1 in C++ is a more formidable task
as C++ is missing the key ingredient from R that endows functions with object status. The
solution is to simply correct this “deficiency” and devise a way to create function objects
in C++. Of course, this is not nearly as easy as it might sound and the formulation of a
satisfactory solution will lead us through some interesting new language territory.

In C++ function objects are often referred to as functors. In a broad sense this can be
taken to mean objects that are created from a class with an overloaded version of (). A
specific example of a functor is provided by the next listing.

Listing 8.2 functorEx.cpp

//functorEx.cpp

#include <iostream >

#include <cmath >

using std::cout; using std::endl;

struct Functor{

int nCalls;

Functor (){ nCalls = 0;}

int operator() (double x){

nCalls ++;

cout << "Calling from ()" << endl;

return floor(x);

}

};

int main (){

Functor f;

cout << f(2.5) << endl;

cout << f.nCalls << endl;

return 0;

}
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The struct functor in Listing 8.2 is similar to the R func in Listing 8.1 in that its pur-
pose is to provide a construct that can hold the C++ floor function. The mechanism for
accomplishing this is an overloaded () operator that takes a double argument and returns
an int. The body of the operator merely evaluates floor at the operator’s argument and
returns the result.

Listing 8.2 reveals another property of functors that differentiates them from the functions
they encapsulate: namely, they can have a state. As functors are classes/structs, they can
also have member elements or data components. This allows them to, e.g., “remember” how
they were last called or their last output. In terms of Listing 8.2 the function object f in
main will retain a record of how many times it is used through the member variable nCalls.
The default constructor for the struct initializes nCalls to 0. So, the program’s output

Calling from ()

2

1

demonstrates that the initial state of f has been updated.
One criticism that can be directed at a functor such as the one in Listing 8.2 is that it

can encapsulate only one function. For example, a new functor would have to be created to
contain the ceiling function ceil that returns the greatest integer that is not smaller than
its argument. These two functions are of a very similar nature in the sense that they both
take a double argument and return an integer.∗ It would be nice to have a single functor
class/struct that could hold either of these functions or, more generally, any function that
takes a double argument and returns an int. One avenue for creating this type of functor
object is provided by function pointers.

The syntax for creating an ordinary function pointer is

returnType (*pFunc)( arguments)

This produces a pointer pFunc that can point to any function with returnType as its return
type and an argument list of the same length with data types that match, in order, those
listed for pFunc. Similarly, the pointer pFunc can be passed to a function which has a
function pointer as an argument with returnType as its return type and an argument list
with length and data types matching the one for pFunc. The pFunc pointer can be used as
if it were an ordinary function; writing pFunc(argumentValues) with argumentValues the
specific values to be used for the arguments has the effect of dereferencing the pointer.

The listing below shows how a function pointer can be used to solve our simple function
passing problem.

Listing 8.3 pointToFunc.cpp

//pointToFunc.cpp

#include <iostream >

#include <cmath >

using std::cout; using std::endl;

struct Z{

int func(double x){

cout << "Calling from func" << endl;

return ceil(x);

}

∗ Actually, the C++ floor and ceil functions have double, rather than int, return types even though the
values they return are integers. The int return type is instead enforced in the wrapper functions that
have been created to hold them.
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};

struct Functor{

int (*pF)(double x);

Functor(int (*pf)(double x)){

pF = pf;

}

int operator()(double x){

cout << "Calling from ()" << endl;

return pF(x);

}

};

int func1(double x){

cout << "Calling from func1" << endl;

return floor(x);

}

int func2(double x){

cout << "Calling from func2" << endl;

return ceil(x);

}

int main (){

Functor f1(&func1 );

cout << f1(2.5) << endl;

Functor f2(&func2 );

cout << f2(2.5) << endl;

Z z;

//Functor f3(&z.func);

//cout << f3(2.5) << endl;

return 0;

}

The Functor struct in Listing 8.3 has a member that is a pointer to a function with a single
double argument and an int return type. This pointer member is initialized via the struct’s
constructor and a callback is carried out via the overloaded () operator. The program also
contains two functions, func1 and func2, that provide wrappers for the floor and ceil
functions, respectively. Both wrapper functions have a single double argument and an int
return type.

The main function in Listing 8.3 uses the addresses for func1 and func2 to create two
functor objects that are used to access their respective functions. The output

Calling from ()

Calling from func1

2

Calling from ()

Calling from func2

3

illustrates the flexibility of our new Functor struct.
Listing 8.3 also contains a struct Z whose member method func is another wrapper for the

ceil function. At the end of main an attempt is made to create a functor object using func.
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This fails and removal of the comments from this block of code will result in a compilation
error. To make this work it is necessary to use a slightly different approach.

To create a pointer to a member function for a class/struct X one uses syntax such as

returnType (X::*pFunc )( arguments)

The only real difference between this case and an ordinary function pointer is that the
scope resolution operator is used to specify that the pointer is for functions/methods from
a class/struct X. Then, just like a regular function pointer, pFunc can point to any member
function of the class with the same return and argument types.

The code listing below provides an alternative spin on executing the tasks performed by
the previous listings in this section. In this case a class Z has two member functions func1
and func2 that are wrappers for floor and ceil. A functor struct is created with two
members: a pointer to a Z object and a pointer to a Z class method that has a double
argument and int return type.

Listing 8.4 pointToMemFunc.cpp

//pointToMemFunc.cpp

#include <iostream >

#include <cmath >

using std::cout; using std::endl;

class Z{

public:

int func1(double x){

cout << "Calling from Z func1" << endl;

return floor(x);

}

int func2(double x){

cout << "Calling from Z func2" << endl;

return ceil(x);

}

};

struct Functor{

Z* pZ;

int (Z::*pF)(double x);

Functor(Z* pz , int (Z::*pf)(double x)){

pZ = pz; pF = pf;

}

int operator() (double x) const {

return (pZ ->*pF)(x);

}

};

int main (){

Z z;

Functor f1(&z, &Z:: func1);

cout << f1(2.5) << endl;

Functor f2(&z, &Z:: func2);



288 NUMERICAL OPTIMIZATION

cout << f2(2.5) << endl;

return 0;

}

In the main function of Listing 8.4 an object is created from the Z class whose address
is passed to the Functor constructor along with the address of the func1 method. The
resulting Functor object is then used to call func1. As before, this is accomplished with an
overloaded version of () in the Functor struct that makes the process resemble evaluation
of an ordinary function in main. The syntax that appears in the body of the () operator
seems somewhat complicated at first. But, pZ->*pF translates to i) dereference the pointer
pF to obtain the actual Z method and ii) use the pointer pZ to access the method with the
member access operator ->. The same results would be produced using *pZ.*pF instead
of pZ->*pF. Both .* and ->* are called member dereferencing operators. The sole purpose
of the functor struct is to evaluate a class method and it should not need nor be able to
alter the class object that is used to invoke that method. The const designation for the ()
operator ensures that this is the case.

The output from Listing 8.4 is

Calling from Z func1

2

Calling from Z func2

3

Thus, Functor class objects have successfully encapsulated both of the member functions
of the Z class.

Simple functors such as those in Listings 8.2 and 8.4 can be quite effective and will suffice
for many purposes. Nonetheless, the Functor class in Listing 8.4 is still constrained to work
only with the particular class Z. The next step is to allow for both Z and the member
function to be arbitrary. Template classes provide the means to attain that end.

Proceeding as in Section 3.10, a “general purpose” functor might take the form

Listing 8.5 funcTemp.h

//funcTemp.h

template <class T> class Functor{

int (T::*pF)(double);

T* pT;

public:

Functor (){}

Functor(T* pt , int (T::*pf)(double)){pT = pt; pF = pf;}

int operator() (double u) const {

return (pT ->*pF)(u);

}

};

In essence the functor in Listing 8.5 is the same as the one in Listing 8.4. The only difference
is that the class Z argument has been replaced with the generic “place-holder” T.

The following program was written to test our new Functor class.

Listing 8.6 functorDriver.cpp

//functorDriver.cpp

#include <iostream >

#include <cmath >
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#include "funcTemp.h"

using std::cout; using std::endl;

struct Y{

int func(double x){

cout << "Calling from Y func" << endl;

return ceil(x);

}

};

class Z{

public:

int func(double x){

cout << "Calling from Z func" << endl;

return floor(x);

}

};

int main (){

Y y; Z z;

Functor <Y> f1(&y, &Y::func);

cout << f1(2.5) << endl;

Functor <Z> f2(&z, &Z::func);

cout << f2(2.5) << endl;

return 0;

}

Both Y and Z objects are created in the program and Functor class objects are used to call
the func method from both classes. The only trick is that the template parameters must be
specified (i.e., the specific choices for T must be given) when the Functor class constructor
is called. The output from the program is

Calling from Y func

3

Calling from Z func

2

The complaint could now be lodged that our newest version of the Functor class is limited
by the fact that it can handle only a member function with prespecified argument and return
types of double and int. This restriction can also be removed using the template approach
(Exercise 8.1). For now, the generality provided by the formulation in Listing 8.5 will be
sufficient.

8.3 Golden section

In this section we develop our first optimization method. To begin, let us deal with a very
simple case where a convex function f is defined on the integers Nm = {1, . . .,m}. The
objective is to find the fastest algorithm in the sense that it takes the fewest evaluations νm
of f on Nm to find its minimum. Our discussion of this problem stems from developments
in Kiefer (1953) and Monahan (2001).

One may check that if an arbitrary choice is allowed for f , then ν2 = 2 and ν3 = 3. For
m = 4 and N4 = {1, 2, 3, 4}, the minimizer can be found in ν4 = 3 evaluations if f is first
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evaluated at 2 and 3. If f(2) < f(3) it is only necessary to evaluate f(1) to decide between
2 and 1 for the minimizer. Similarly, if f(3) < f(2) only f(4) need be evaluated.

For m = 7 evaluation at 3 and 5 will eliminate either {5, 6, 7} or {1, 2, 3}, reduce the prob-
lem to the situation with m = 4 and thereby allow for minimization in ν7 = 4 evaluations.
Finally, for m = 12 evaluation at 5 and 8 eliminates five points (i.e., either {8, 9, 10, 11, 12}
or {1, 2, 3, 4, 5}) and puts the remaining evaluation in the ideal location for the best seven
point search.

The pattern can now be seen to go like this. Define the Fibonacci numbers F0 = F1 = 1
and

Fj = Fj−1 + Fj−2, j = 2, . . . .

Then, for m = Fk − 1, evaluate f at Fk−1 and Fk−2 thereby eliminating Fk−2 points and
reducing the problem to one that is equivalent to having m = Fk−1 − 1. The total number
of evaluations is νFk−1 = k − 1.

Of course, situations involving minimization of a function over a grid whose size is deter-
mined by a Fibonacci number are rare. However, the results for this setting can be applied
to deal with a case that actually is of some interest.

Suppose that f(θ) is a continuous function with argument θ taking values in the interval
[0, 1]. Let us now consider doing a grid search over the m-point set{

0,
1

m− 1
, . . .,

m− 2
m− 1

, 1
}
.

We want to see what transpires as the grid grows dense on [0, 1]. So, it suffices to take
m = Fk − 1 and let k →∞.

The search is defined by the first two evaluation points which are Fk−2
Fk−1 and Fk−1

Fk−1 . Thus,

letting r = limk→∞
Fk−1
Fk

, we see that

lim
k→∞

Fk−2

Fk − 1
= lim
k→∞

Fk−2

Fk−2 + Fk−1 − 1
=

r

r + 1

and
lim
k→∞

Fk−1

Fk − 1
= lim
k→∞

Fk−1

Fk−2 + Fk−1 − 1
=

1
r + 1

are the limiting points for evaluation of f . It only remains to determine r. This derives from
the fact that

r = lim
k→∞

Fk−1

Fk
= lim
k→∞

Fk−1

Fk−2 + Fk−1
=

1
1 + r

.

Thus, r is the positive root of the quadratic equation r2 + r − 1 = 0; i.e.,

r =
−1 +

√
4 + 1

2
.= .618.

Consequently, the two evaluation points are now seen to be r2 = 1− r and r.
The development thus far suggests a simple dyadic minimization strategy. At the begin-

ning f(1− r) is compared to f(r). If f(1− r) < f(r), the minimizer must lie in the interval
[0, r] and it now suffices to search for the minimizer of f(ru) with u ∈ [0, 1]. This entails
evaluations at u = 1 − r and u = r as before or, equivalently, f(r(1 − r)) is compared to
f(r2) = f(1− r) with the latter value already available from the previous comparison.

On the other hand, if f(1 − r) > f(r), the minimizer must lie in the interval [1 − r, 1]
and the search proceeds by looking for the minimizer of f(1− r+ur) over u ∈ [0, 1]. In this
instance f(1− r + r(1− r)) = f(1− r2) = f(r) has already been computed.

To describe the general case, suppose that f is defined on some interval [a, b] that need not
be [0, 1]. In that case f(a+u(b−a)) is a function on [0, 1] and our minimization scheme tells us
to evaluate it at u = 1−r and u = r. If f(a+(1−r)(b−a)) < f(a+r(b−a)), the minimizer is
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in [a, a+r(b−a)] and we consider f(a+ur(b−a)) as a function on [0, 1] that must be evaluated
at u = 1− r and u = r. But, at u = r the value of f(a+ r2(b− a)) = f(a+ (1− r)(b− a))
has already been computed. So, redefine b as b := a+ r(b−a), evaluate f(a+ (1− r)(b−a))
and begin the minimization again with this “new” function on a new subinterval.

Alternatively, if f(a+(1−r)(b−a)) > f(a+r(b−a)), the minimizer is in [a+(1−r)(b−a), b].
We now work with f(a+ (1− r)(b− a) + ur(b− a)) on [0, 1]. At u = 1− r this is

f(a+ (1 + r)(1− r)(b− a)) = f(a+ (1− r2)(b− a)) = f(a+ r(b− a))

that has already been calculated. Thus, we now redefine a as a := a+(1−r)(b−a), evaluate
f at a+ r(b− a) and proceed to the next iteration.

In its current form our search procedure would, in theory, continue indefinitely. Thus, for
implementation with a computer there must be safeguards that will eventually terminate
the search. A typical stopping rule would conclude the search if some preset maximum
number of iterations was exceeded or

|minTemp(k+1) −minTemp(k)| < δ|minTemp(k)|

with minTemp(k) our approximation to the actual minimizer on the kth iteration and δ a
small constant. From Section 2.5 we know that for single and double precision one cannot
detect relative differences that are much smaller than 10−7 or 10−16 which would seem to
make them obvious choices for δ. However, these options are much too small for general
purposes and instead 10−7/2 and 10−8 represent more attainable choices as will be explained
below.

The search procedure that we have described is called the golden section algorithm. A
formal pseudo-code summary of the method is provided in Algorithm 8.1 for user-specified
values of δ and the maximum number of iterations itMax.

Algorithm 8.1 Golden section algorithm

niter = 1, r = −1+
√

5
2 ,minTemp = b, change =∞

low = a, up = b, flow = f(a+ (1− r)(b− a)), fup = f(a+ r(b− a))
while |change| > δ |minTempLast| and niter < itMax do
minTempLast = minTemp
minTemp = (low + up)/2
if flow < fup then
up = low + r(up− low), fup = flow
flow = f(low + (1− r)(up− low))

else
low = low + (1− r)(up− low), flow = fup
fup = f(low + r(up− low))

end if
change = minTemp−minTempLast
niter = niter + 1

end while
return minTemp

A measure of the efficiency of an optimization procedure such as Algorithm 8.1 is its
convergence rate. If θmin is the value of θ that minimizes f and θ(k) is the approximation to
θmin that is produced on the kth step of the search, the convergence rate for the algorithm
is the (relative) rate at which εk = θmin− θ(k) decays to 0 as k →∞. The convergence rate
is linear if |εk+1|

.= C|εk| for some constant C when k is large. The golden section search
provides one example of an algorithm that exhibits linear convergence.

The golden section algorithm will provide the first member function for the optimization
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class Optim that will be extended and modified in subsequent sections and in the exercises.
The initial version of the class header file is

Listing 8.7 optim.h

//optim.h

#ifndef OPTIM_H

#define OPTIM_H

class Functor;//forward declaration

class Optim{

int itMax;

double delta;

public:

Optim(int ItMax = 38, double delta = 0.);

double golden(const Functor& f, double low , double up) const;

};

#endif

The Optim class has two data members: itMax and delta. The itMax and delta members
are user-supplied stopping parameters and therefore initialized in the class constructor.
Default values of 38 and 0 are specified for itMax and delta, respectively. So, calling the
Optim class constructor with no arguments will constrain any golden section search to no
more than 38 iterations.

The golden method in Listing 8.7 takes three arguments. The last two are the lower and
upper bounds for the interval to be used in the search. The first argument is a reference to
a Functor object that represents some encapsulation of the function to be minimized. As
Functor objects are not used by value in the header, it suffices to merely give a forward
reference to the Functor class. The Functor class header is then included in the optim.cpp
file shown in Listing 8.8 where the Optim class methods are defined.

Listing 8.8 optim.cpp

//optim.cpp

#include <cmath >

#include <limits >

#include "optim.h"

#include "functor.h"

const double rup = (-1. + sqrt (5.))/2;

const double rlow = 1 - rup;

Optim:: Optim(int ItMax , double Delta){

itMax = ItMax;

delta = Delta;

}

double Optim:: golden(const Functor& f, double low , double up) const {

int niter = 0;

double minTempLast = low , minTemp = up;

double flow = f(low + rlow*(up - low));

double fup = f(low + rup*(up - low));
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double change = std:: numeric_limits <double >:: infinity ();

while(change > delta*fabs(minTempLast) && niter < itMax){

minTempLast = minTemp;

minTemp = (low + up)/2.;

if(flow < fup){

up = low + rup*(up - low), fup = flow;

flow = f(low + rlow*(up - low));

}

else{

low = low + rlow*(up - low), flow = fup;

fup = f(low + rup*(up - low));

}

change = fabs(minTemp - minTempLast );

niter ++;

}

return minTemp;

}

First note the definition of the two constants at the beginning of the file that correspond to
r and 1− r in Algorithm 8.1. Seeing that they are specified outside the body of any method
they have global file scope which makes them available to all the functions in the file. Per-
haps of more importance for future applications of the method is that they will not need to
be recomputed each time the golden method is called. The const designation also makes
sure that their values cannot be inadvertently altered. The code for the golden method
essentially proceeds as in Algorithm 8.1. A question does arise about how to implement the
initialization step of change =∞. This is accomplished through the C++ numeric limits
template class that allows us to set the program’s change variable at the machine represen-
tation for positive infinity (cf. the eigen method for class Matrix in Section 7.3).

The golden function takes a functor reference as an argument. For the present purpose
a functor formulation along the lines of Listing 8.3 will suffice. Specifically, we will use

//functor.h

#ifndef FUNCTOR_H

#define FUNCTOR_H

struct Functor{

double (*pF)(double theta);

Functor(double (*pf)(double theta )){

pF = pf;

}

double operator()(double theta){

return pF(theta );

}

};

#endif

Since the class is so simple, it is given in its entirety in a header file. The include guards
become essential in this case and strange things can occur if they are not present.

As a test, the Optim class was used with the simple function f(θ) = −θ(1− θ) that has a
global minimum of −.25 at θmin = .5. The minimization process was then managed by the
following driver program.
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//optDriver.cpp

#include <iostream >

#include <cstdlib >

#include <iomanip >

#include "optim.h"

#include "functor.h"

double fun(double theta ){

return (-theta*(1. - theta ));

}

int main(int argc , char** argv){

int itMax = atoi(argv [1]);

double delta = atof(argv [2]);

Functor f(&fun);

Optim Opt = Optim(itMax , delta);

double fMin = Opt.golden(f, 0., 1.);

std::cout << "The approximate minimizer is "

<< std:: setprecision (16) << fMin << std::endl;

return 0;

}

This program takes the maximum number of iterations (itMax) and the lower bound for
the relative change in the approximate minimizer (delta) as command line arguments and
converts them from character to int and double using the atoi and atof utility functions
(accessed by including the cstdlib header). The address of the function fun that is to be
minimized is used to create a Functor object. Next the Optim class object is initialized
using the user-supplied values of itMax and delta and the golden method is applied to
the Functor object. The final step is to print a summary of the results to standard output.
For reasons that will become clear momentarily, the output is to be printed to 16 decimal
accuracy. For this purpose the C++ standard library function setprecision (see Section
2.5) is accessed via inclusion of the iomanip header.

To actually carry out the minimization process using the optDriver.cpp program it is
necessary to provide values for the stopping parameters itMax and delta. As noted above,
since the computations are being done in double precision there is no obvious reason to
choose delta smaller than about 10−16. The selection of itMax can be guided by similar
considerations. Specifically, if the golden section search is over an interval [a, b] then at each
step of the recursion the length of the interval that remains to be searched is reduced in size
by the factor r. Thus, after the kth iteration the current search interval will have length
rk(b− a). For a = 0 and b = 1 this gives k = −16/log10(r) .= 76 as the number of iterations
that will be required to produce changes in the minimizer that are no longer detectable in
double precision.

The optim.cpp and optDriver.cpp programs were compiled and linked to create an exe-
cutable titled opt. An application of the golden section method then produced

$ . /opt 76 .0000000000000001
The approximate minimizer i s 0.5000000037252904

The performance of golden section here seems somewhat disappointing. Certainly, the search
has placed us in the right general location for minimization of the target function. But,
there are only eight decimals of accuracy and as many as 16 might have been expected.
The culprit here is round-off error; but, not from the approximation of the minimizer per
se. The problem is that the objective function f(θ) = −θ(1− θ) behaves like −θ2 for θ near
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.5. Consequently, in the neighborhood of the minimizer, there are really only eight digits of
the argument that are effectively being used to obtain the double precision value of f . The
only way to achieve greater accuracy is to increase precision in the program (Exercise 8.2).

The effect of round-off error on minimization that was seen in our example holds quite
generally. To see this observe as in Press, et al. (2005) that for θ near the minimum θmin of
a twice differentiable objective function f

f(θ) .= f(θmin) +
f ′′(θmin)

2
(θmin − θ)2

or

|θmin − θ|
.=

√
2(f(θ)− f(θmin))
|f ′′(θmin)|

with f ′′ the second derivative of f . Thus, if the difference f(θ)− f(θmin) can be evaluated
to an accuracy of no more than 10−k, the best that can be expected is that the minimizer
can be approximated to within an order of 10−k/2. As a result, 10−7/2 and 10−8 rather
than 10−7 and 10−16 represent obtainable relative error bounds for single and double pre-
cision calculations, respectively. In terms of the number of effective iterations in double
precision for the golden section method on [0, 1] this translates to an upper bound of about
−8/log10(r) .= 38.

The function optimize in R conducts a search for a minimizer (or maximizer) using
Brent’s method (e.g., Press, et al. 2005). This algorithm is a modification of the golden
section search that attempts to enhance its performance by mixing in parabolic extrapola-
tion (Exercise 8.5) with the ordinary golden section partitioning. A simplified version of the
prototype for optimize is

optimize(f = func , lower = a, upper = b, maximum = FALSE)

Here func is a function that has been defined in R and a and b are the lower and upper
bounds for the interval to be searched. The logical parameter maximum has False as its
default value and need not be specified for minimization. By setting maximum = TRUE the
search will be conducted for a maximizer of func. The optimize function returns a two-
component list containing the approximate minimizer and the value of the objective function
at the approximate minimizer.

An application of optimize to f(θ) = −θ(1− θ) produces

> func <- function(theta){-theta*(1 - theta )}

> optimize(func , lower = 0, upper = 1)

$minimum

[1] 0.5

$objective

[1] -0.25

The objective function is quadratic which entails that parabolic extrapolation is exact here
and the minimizer can be produced in a single step without the need for sectioning (Exercise
8.5).

The golden section algorithm is one of several optimization methods that do not require
the existence (or knowledge) of the objective function’s derivative. Other options include
the bisection (Exercise 8.20), regula falsi and secant methods discussed in, e.g., Conte and
de Boor (1972), Press, et al. (2005) and Flowers (2006).

8.3.1 Dealing with multiple minima

Up until now the premise has been that the objective function was globally convex and, as
a result, had a single, global minimizer. Situations such as this are rare in practice. A more
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Figure 8.1 The function f(θ) = θ sin(4πθ2)

realistic example is provided by the function in Figure 8.1 that has multiple local minima.
An application of the Optim class golden method to this function results in

$ ./opt 38 .00000001

The approximate minimizer is 0.619058

A glance at Figure 8.1 reveals what has happened; the search has become trapped in the
function’s shallower middle trough and, as a result, has returned only a local minimizer.

In this particular case it is easy to see how to proceed by simply looking at the function.
The solution is to start the golden section search in an interval that contains the minimizer
such as [.9, 1]. But, for many practical applications the minimization process needs to
be automated. It may be that the minimization step is just a small part of some larger
computing endeavor and looking at the function is not an option. Simulation experiments
fall into this category where, e.g., estimators are being computed via optimization of some
random criterion function. Human intervention in the minimization process is simply not
feasible in that context. It is also typically the case that θ is vector valued in which event
visual location of a suitable search region tends to becomes problematic if there are more
than two dimensions for the parameter space.

The only method that can be assured of locating a global minimum is a full search where
the function to be minimized is evaluated at every value of its arguments. This approach can
be implemented exactly if the arguments take values on a finite-dimensional set. In the case
of continuous arguments, searches are carried out over a fine grid to find an approximate
answer. This is generally too time consuming to be practical. Suppose, for example, that
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θ is a p-vector and the minimization is carried out over a p-dimensional hyper-cube with
the same number of grid points, n, being allocated to the range of each variable. Then, the
search grid has size np. As a result, global searches in even three dimensions can be tasks
that require a multiprocessor strategy and the search process can quickly pass beyond the
capabilities of even modern super-computers as p increases.

A simple alternative to a global search is to partition the search interval into smaller
subintervals and apply the golden section method (or some other minimization algorithm)
to each of the subinterval. Of course, the success of this approach will depend on the
partition and could fail if some of the subintervals contain more than one local minimum.
Another similar, but distinctly different, option is to search using random subintervals. Two
numbers u1, u2 are generated from the uniform distribution over the search interval [a, b]
and a golden section search is conducted over the interval [min(u1, u2),max(u1, u2)]. The
process is repeated until some stopping criterion is met. This is the approach that will be
considered here.

The random golden section search method in Listing 8.9 was added to class Optim.

Listing 8.9 Optim::ranGolden

double Optim:: ranGolden(const Functor& f, double a, double b,

int nSearch , unsigned long seed) const {

double newMinTemp , minTemp = b;

double up, low;

//instantiate ranGen object

ranGen RNG;

RNG.setSeed(seed);

//pointer for random uniforms

double* pu = new double[2];

//random search begins

for(int i = 0; i < nSearch ; i++){

//generate uniforms for the search interval

RNG.ranUnif(2, pu);

up = a + (b - a)*std::max(pu[0], pu [1]);

low = a + (b - a)*std::min(pu[0],pu [1]);

newMinTemp = golden(f, low , up);

//compare local to global minimizer

if(f(newMinTemp) < f(minTemp )){

minTemp = newMinTemp;

}

}

delete[] pu;

return minTemp;

}

The WH random number generator from Section 4.5 is used here to generate random num-
bers from a uniform distribution over a search interval with a user-specified lower bound a
and upper bound b. The WH algorithm is obtained from a class ranGen of random number
generators that was developed in the same spirit as Exercise 4.33 and is given explicitly
in Appendix E. An object RNG from the ranGen class is created and used to call the class
method setSeed with a user-supplied initial seed. This method uses the input value seed
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in conjunction with the FM2 generator from Section 4.4 to create the three seeds that are
needed to initialize the WH generator.

The ranGen object in Listing 8.9 is used to access the ranUnif class method and thereby
produce two random uniforms from the interval [0, 1] that are returned in the pointer pu.
These two values are translated into a subinterval of the form [low, up] using the functions
min and max that become available by inclusion of the algorithm header as in Section 7.2.4.

The ordinary golden section method is applied to the random search intervals bounded
by low = a + (b - a)*min(pu[0], pu[1]) and up = a + (b - a)*max(pu[0], pu[1])
with min(pu[0], pu[1]) and max(pu[0], pu[1]) the smaller and larger of pu[0] and
pu[1], respectively. This process is repeated a specified number nSearch times with a
check made on each iteration to see if the corresponding subinterval has produced a value
that improved the approximation to the minimizer.

The ranGolden method for class optim was combined with a driver program that took
the values of itMax, nSearch, seed and delta, in that order, as command line arguments.
The resulting executable named opt was used to produce the results below.

$ ./opt 38 4 123 .00000001

The approximate minimizer is 0.619058

$ ./opt 38 5 123 .00000001

The approximate minimizer is 0.937337

The number of random search intervals is one of the “tuning” parameter for the algorithm.
In general, the right choice for this quantity will depend on the complexity of the function
and, of course, the choice for the generator’s seed. In this instance it turns out that there is
no further improvement to six decimals by choosing nSearch to be larger than 5.

It is also quite easy to implement the same type of random search in R with the optimize
function. A program that accomplishes this is given in the next listing.

Listing 8.10 ranGolden.r

#ranGolden.r

ranGolden <- function(f, a, b, nSearch , seed){

set.seed(seed)

bounds <- matrix(runif(2*nSearch), 2, nSearch)

minVec <- apply(bounds , MARGIN = 2,

FUN = function(v){temp = a + (b - a)*sort(v)

optimize(f, lower = temp[1], upper = temp [2])[[2]]})

location <- order(minVec )[1]

temp = a + (b - a)*sort(c(bounds[1, location],

bounds[2, location ]))

optimize(f, lower = temp[1], upper = temp [2])

}

The ranGolden R function has the same basic arguments as its C++ analog: the objective
function f, the lower and upper limits of the search interval a and b, the number of random
searches to be performed and the value of the initial seed for the random number generator.
The first line of code in the function’s body sets the seed for the local R environment to
the supplied value of seed using the R set.seed function. Next, an array named bounds
of uniform random deviates is created with two rows and nSearch columns. The columns
of this array will be used to construct the random subintervals of [0, 1] to which optimize
will be applied. The apply function manages the search. Its input argument is the bounds
array. Our choice for the FUN argument to apply will work on the columns of bounds,
sorting each pair of random uniforms and rescaling them to fall in the search interval
between a and b. The optimize function is applied to this subinterval and only the second
component from its output list is retained. The result is that the output from apply is a
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vector minVec with nSearch elements that give all the local minimum function values that
have been found in the subinterval searches. The smallest value in this vector represents the
value of the objective function at the best approximation that has been found to the global
minimum. The index for this element is order(minVec)[1] which means it was produced by
using optimize on the interval determined by the order(minVec)[1] column of bounds.
Accordingly, optimize is used a final time on this subinterval and its output is what is
returned by the function.

An application of our R ranGolden function to the function in Figure 8.1 led to the
output

> ranGolden(func , 0, 1, 11, 123)

$minimum

[1] 0.619059

$objective

[1] -0.615748

> ranGolden(func , 0, 1, 12, 123)

$minimum

[1] 0.9373562

$objective

[1] -0.9363776

The ranGolden function finds the location of the minimum after 12 searches.

8.3.2 An application: linear smoothing splines revisited

Let us now return to the linear smoothing spline example of Section 7.3 and minimization
of the GCV criterion as a function of the smoothing parameter λ. A class Linss was created
there that could be used to fit linear smoothing splines to data. In particular, the class had
a method smooth with the prototype

Vector smooth(double lam , double* GCV) const;

This function returns the linear smoothing spline fit to a set of data for a given value of the
smoothing parameter furnished in the argument lam. The corresponding value of the GCV
criterion is also returned through a pointer that is passed in from the calling function.

Perhaps the first task that should be undertaken is creation of a function object that can
be used to manage the evaluation of the GCV criterion for Linss objects. For this purpose
a member function gcv with prototype

double gcv(double lLam) const;

was added to the Linss class. Its definition is

double Linss::gcv(double lLam) const {

double GCV = 0;

Vector fit = smooth(pow(10, lLam), &GCV);

return GCV;

}

The gcv method is essentially an alternate way of packaging the smooth method that returns
only the value of the GCV criterion. One important difference is that the argument is
assumed to be in units of log10(λ) that represents the preferred scale for optimization
purposes in this instance. Inside the method the C++ function pow (made available through
the cmath header) takes the value of log λ, lLam, and transforms it back into smoothing
parameter units.
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With the gcv method in place a functor class that is suitable for use in the optimization
process must now be created. Our choice is essentially the one in Listing 8.5 apart from
replacing int with double throughout the struct. Note that the file extension should also
be changed to hh as we plan to use it in the creation of a shared library that will allow us
to fit linear smoothing splines directly within an R session.

Since class Functor depends on an arbitrary class T and class Optim uses class Functor,
we should make our optimization class a template class as well. A version of Optim that
will serve this purpose has the declaration

template <class T> class Optim{

int itMax;

double delta;

public:

Optim(int ItMax = 38, double Delta = 0.){

itMax = ItMax; delta = Delta;

}

double golden(const Functor <T>& f, double low , double up) const;

double gridSearch(const Functor <T>& f, double low , double up,

int nGridPts) const;

};

In addition to the template formulation a new method gridSearch has been introduced.
It takes the lower and upper bounds low and up of the search interval as input and then
searches for the smallest value of the objective function corresponding to the Functor object
over nGridPts evenly spaced evaluation points in the interval. The method definition is

template <class T> double Optim <T>:: gridSearch(const Functor <T>& f,

double low , double up , int nGridPts) const {

double minTemp , fTemp , gridVal , range = (up - low);

double minF = std:: numeric_limits <double >:: infinity ();

for(int i = 0; i < nGridPts; i++){

gridVal = low + range*((double)i)/((double)nGridPts );

fTemp = f(gridVal );

if(fTemp < minF){

minF = fTemp;

minTemp = gridVal;

}

}

return minTemp;

}

Note that Optim is now a template class with the consequence that all the method definitions
must be included in the header file as well. Also, the other class methods will need to have
similar syntax to modify their definition as that used for gridSearch; for example, the
definition of the golden method must now begin with

template <class T> double Optim <T>:: golden(const Functor <T>& f,

double low , double up) const {

Minimization of the GCV criterion will be carried out in two phases. The Optim class
gridSearch method will be used first. Once it has done its job the neighboring grid points
for the approximate minimizer can be used as an interval for a golden section search to
complete the minimization process. The entire task will be managed by an overloaded
smooth method from the Linss class for which the declaration is
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Vector smooth(double* lam , double* GCV , double a = -5, double b = 5,

int nGridPts = 100) const;

When the Optim class object has completed its work the GCV and lam arguments will point
to memory that contains the value for the approximate minimizing smoothing parameter
and the corresponding value of the objective function. Additional arguments that provide
the lower and upper search interval (for powers of 10) and the number of grid points to
use in the search have been given suitable default values that will be effective in most
instances. Thus, the user can simply call the smooth method and receive a “best” fit in
the returned Vector object. There is a bit of subtlety here that merits a comment. The
reason the compiler can distinguish between the second version of smooth with its default
arguments and the first is due to the use of double* (as opposed to double) for the type
of the lam argument of the newer version. The pointer type for lam is the correct choice in
the second instance because lam is really an output rather than input entity.

The definition for the new smooth method is

Vector Linss:: smooth(double* lam , double* GCV , double a, double b,

int nGridPts) const {

Functor <const Linss > F(this , &Linss::gcv);

Optim <const Linss > Opt;

//initial grid search

double gcvMin = Opt.gridSearch(F, a, b, nGridPts );

//golden section in the neighborhood of the minimizer

double halfRange = (b - a)/((double)nGridPts );

double low = gcvMin - halfRange;

double up = gcvMin + halfRange;

gcvMin = Opt.golden(F, low , up);

*lam = pow(10, gcvMin );

//now compute the fit at the GCV optimal lambda

Vector fit = smooth(*lam , GCV);

return fit;

}

The method begins by creating a functor for the object’s gcv function using the this pointer
and with template parameter set at T = const Linss. A class Optim object, also with T
= const Linss, is then created and used with the gcv functor to apply the gridSearch
method. If the default arguments are used, a 100 point grid search is carried out over the
range λ ∈ [10−5, 105]. This provides two points that bound the (possibly local) minimizer
that are then passed on to the Optim class golden method. Finally, the value of λ returned
from golden is used by the original, two argument, smooth method to obtain the fit to the
data at the approximate minimizer that is returned to the calling program.

Some discussion may be helpful here and subsequently on how the const modifier was
used in creating the functor objects in the smooth method. First, smooth should not alter
the members of a linss object which is why it has been designated as a const class method.
This has the effect of making the object’s this pointer a const pointer to a const linss
object. The template parameter must therefore be set as const linss. However, there is a
bit more going on here. The optimization is applied to the linss class gcv function which
will be called using the this pointer by an optim object. Seeing as only const functions can
be called by const objects, it is necessary that gcv also be made a const class methods.
Failure to do so will lead to a compilation error.

Upon compilation, the Linss class automated smooth method was applied to the data set
created in Section 7.2.5 that is shown again in Figure 8.2. This produced a minimizing value
of λopt = .1559798 and GCV(λopt) = 3.700569. In Section 7.2.5 the value λ = .1 was used



302 NUMERICAL OPTIMIZATION

to obtain a linear smoothing spline fit to this same data that produced a value of 3.7224
for the GCV function. Given the extra effort that went into obtaining the .1559798 value,
the fact that it leads to a similar value for the GCV function as our ad hoc choice of λ = .1
raises the question of whether the additional labor has provided any visible improvement in
the fit to the data. Plots are needed to address this type of question which means it is now
time to return to R.

The most effective way to proceed is via creation of a shared library using, e.g., the
interface program

//linssDriver.cc

#include "R.h"

#include "vector.hh"

#include "linss.hh"

extern "C" {

void linss(int* n, double* lam , double* px , double* py,

double* pfit , double* GCV){

Vector y(*n, py);

Vector x(*n, px);

Linss S(x, y);

Vector fit = S.smooth(GCV , lam);

for(int i = 0; i < *n; i++)

pfit[i] = fit[i];

Rprintf("The value of GCV at lambdaOpt = %f is %f\n", *lam ,

*GCV);

}

}

This is a slightly modified version of Listing 7.4. The first difference is in function rather than
form. For Listing 7.4 the lam pointer provided information being passed into the program
whereas now it is a memory location that will be filled in with the GCV optimal smoothing
parameter that is returned from the smooth method. The second difference is the use of the
Rprintf function that was discussed in Section 5.7.

A shared library using all the required classes is compiled with

$ R CMD SHLIB linssDriver.cc linss.cc matrix.cc vector.cc

Once linssDriver.so is brought into R with the dyn.load function, it will be accessible
through the name linss of the function that manages the transfer of information from and
to the R session. As in Section 7.2.5 a wrapper function along the lines of Listing 7.5 can
be created to facilitate its use. One possibility is

#linssGCV.r

linss <- function(x, y){

fit <- .C("linss", as.integer(length(x)), 0., as.double(x),

as.double(y), vector("numeric", length(x)), 0.)

list(fit[[5]] , fit [[6]])

}

An application of this function to the data in Figure 8.2 produces

> linss(x, y)

The value of GCV at lambdaOpt = 0.155980 is 370.056890
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Figure 8.2 Linear smoothing spline fits

The resulting fit is shown in Figure 8.2 along with the one having λ = .1. As might have
been suspected by the similarity of their two GCV values, there is little that distinguishes
one from the other.

8.4 Newton’s method

The golden section method is quite satisfactory in many settings. Its performance is nonethe-
less limited by the fact that no derivative information is utilized. In something like our GCV
example of the previous section, golden section is likely the most reasonable approach. On
the other hand, when f ’s first two derivatives are known (or can be approximated) a much
faster rate of convergence to the minimizer can be obtained by using the Newton or Newton-
Raphson method.

Assume that f has two continuous derivatives and is convex on an interval [a, b] of the
real line. In that case minimizing the function is equivalent to finding the unique point θmin
in [a, b] where f ′(θmin) = 0. An application of Taylor’s theorem with exact remainder gives

f ′(θmin) = 0 = f ′(θ) + f ′′(θ∗)(θmin − θ),

where θ∗ is a point between θ and θmin. This suggests that an initial guess θ(0) for the
minimizer can be updated using

θ(1) = θ(0) − f ′(θ(0))
f ′′(θ(0))

.
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The process can be continued and, in general, movement from the kth to the (k + 1)st
update is accomplished via

θ(k+1) = θ(k) − f ′(θ(k))
f ′′(θ(k))

.

Algorithm 8.2 summarizes the form of the Newton recursions for user-specified values of
the tolerance parameter δ for the minimum allowable relative difference between successive
approximations to the minimizer, the maximum number of iterations itMax and an initial
starting point θ(0).

Algorithm 8.2 Newton-Raphson algorithm
niter = 1,minTemp = θ(0),minTempLast = b
while |minTempLast−minTemp| > δ|minTempLast| and niter < itMax do
minTempLast = minTemp
minTemp = minTempLast− f ′(minTempLast)/f ′′(minTempLast)
niter = niter + 1

end while
return minTemp

Not only does the Newton approach work but it actually produces quadratic rates of
convergence near a minimum as compared to the linear rate achieved by the golden section
method. To see this first define

εk = θmin − θ(k).

Now note that if f has a third derivative f ′′′ the condition f ′(θmin) = 0 implies that

f ′(θ(k)) + f ′′(θ(k))
(
θmin − θ(k)

)
+
f ′′′(θ∗)

2

(
θmin − θ(k)

)2

= 0

or, equivalently, that

θmin −
[
θ(k) − f ′(θ(k))

f ′′(θ(k))

]
= − f ′′′(θ∗)

2f ′′(θ(k))

(
θmin − θ(k)

)2

with θ∗ a point between θmin and θ(k). Thus,

|εk+1| = ε2
k

∣∣∣∣ f ′′′(θ∗)2f ′′(θ(k))

∣∣∣∣
and our claim has been verified.

The values of the objective function’s first two derivatives will be needed to implement
the Newton method. Rather than spread them across different function objects they can
instead be packaged collectively using a functor class such as the one in the next listing.

Listing 8.11 functor.h (with derivatives)

//functor.h

#ifndef FUNCTOR_H

#define FUNCTOR_H

struct Functor{

double (*pF)(double theta);

double (*pF1)(double theta );

double (*pF2)(double theta );

Functor(double (*pf)(double theta), double (*pf1)(double theta),

double (*pf2)(double theta )){
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pF = pf; pF1 = pf1; pF2 = pf2;

}

Functor(double (*pf)(double theta )){

pF = pf;

}

double operator()(double theta , int i) const {

if(i == 1) return pF1(theta);

return pF2(theta);

}

double operator()(double theta) const {

return pF(theta );

}

};

#endif

This class Functor uses what is probably the most direct approach and overloads the ()
operator with two arguments. The first corresponds to the optimization variable, as before,
while the second is an integer that is combined with if statements to determine which of
the two functions f ′ or f ′′ will be evaluated. Our previous one-argument version of () can
live in harmony with the two-argument version and suffices for access to the function itself.
An overloaded constructor that takes only one function pointer has been provided to handle
cases where no derivative information is available. The fact that the one-argument version
of () will work with an object created from either class constructor means that the Listing
8.11 functor can be used interchangeably with derivative and nonderivative based methods
without changing our previous code that was created for the latter methods.

The prototype for the newton method for class Optim now takes the form

double newton(Functor& f, double a, double b, double start ,

int* ier) const;

The arguments for newton are a Functor object, the lower and upper terminals (a and
b) of the interval that should contain the minimizer and a value start to be used as an
initial “guess” for the minimizer’s location. For a convex function, specification of a and b
would be extraneous to the algorithm. But, when dealing with functions that have multiple
minima the inclusion of a and b provides the means to check that the Newton method does
not take us beyond the region of interest. In general, there is no reason that the Newton
step f ′(θ(k))/f ′′(θ(k)) should produce a new value θ(k+1) that lies in the region of interest
and the divisor in this ratio f ′′(θ(k)) can also evaluate to a floating-point 0. Both of these
problems must be taken into account and that is the purpose of the ier pointer argument
for newton. This variable will return an error code that indicates whether either of these
two problems has been encountered.

The definition for the newton method is

double Optim:: newton(const Functor& f, double a, double b,

double start , int* ier) const {

int niter = 0;

*ier = 0;

double minTemp = start , minTempLast = b;

while(fabs(minTemp - minTempLast) > delta*fabs(minTempLast)

&& niter < itMax){

minTempLast = minTemp;
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if(f(minTempLast , 2) != 0)

minTemp = minTempLast - f(minTempLast , 1)/f(minTempLast , 2);

else{

*ier = 1;

break;

}

if(minTemp > b || minTemp < a){

*ier = 2;

break;

}

niter ++;

}

return minTemp;

}

The code in the method mimics the pseudo-code development in Algorithm 8.2. The actual
Newton steps are computed using a Functor object with the second argument for the ()
operator being used to evaluate both the first and second derivatives of f . Additional if
blocks have been included to guard against cases where f ′′ might be 0 or the Newton update
takes us outside the interval over which f is being minimized. Such occurrences produce
return values of 1 and 2, respectively, for the integer corresponding to ier. When either
error occurs there is no reason to proceed further and the most expedient solution is likely to
try a new value for start. Rather than stopping execution with the exit function, a break
statement (e.g., Section 3.4) has been used. The current loop is terminated when break
is encountered but the program will continue to run and end gracefully. In particular, this
allows the value of *ier to be returned to the calling program for use in diagnosing the
source of the difficulty.

The driver program in Listing 8.12 was written to apply the Newton method to the
function f(θ) = −θ(1− θ) from Section 8.3.

Listing 8.12 optDriver.cpp

//optDriver.cpp

#include <iostream >

#include <cstdlib >

#include "optim.h"

#include "functor.h"

double fun(double theta ){

return (-theta*(1. - theta ));

}

double fun1(double theta ){

return (-1. + 2.*theta );

}

double fun2(double theta ){

return 2.;

}

int main(int argc , char** argv){

int itMax = atoi(argv [1]);

double delta = atof(argv [2]);

double start = atof(argv [3]);
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Functor f(&fun , &fun1 , &fun2);

Optim Opt = Optim(itMax , delta);

int ier = 0;

double fMin = Opt.newton(f, 0., 1., start , &ier);

std::cout << "The approximate minimizer is "

<< fMin << std::endl;

std::cout << "The error code is " << ier << std::endl;

return 0;

}

The functions fun, fun1 and fun2 are f and its first two derivatives. The addresses of these
three functions are used to obtain the requisite Functor object. An Optim class object is
created next using values for delta and itMax that are provided through command line
input. Finally, the Optim object calls the newton class method using the Functor object
and a starting value obtained from the command line. The resulting approximate minimizer
and the value of the error code returned from newton are then written to standard output.

The optim.cpp and optimDriver.cpp files were compiled and linked to create the exe-
cutable opt. Using this we obtained

$ ./opt 38 .00000001 .1

The approximate minimizer is 0.5

The error code is 0

$ ./opt 38 .00000001 .25

The approximate minimizer is 0.5

The error code is 0

$ ./opt 38 .00000001 .9

The approximate minimizer is 0.5

The error code is 0

It seems like every choice for the starting value works. A little checking reveals that iterations
are always terminated after the niter variable inside the newton method reaches two. Of
course, this is no real surprise because a function of this nature is an ideal case for the
Newton algorithm. The same would occur for any other convex quadratic function; i.e.,
the newton method for class Optim would always return the exact (to machine precision)
minimizer with niter = 2 (Exercise 8.14).

A criticism could be leveled against the way that errors are handled by our implementation
of the Newton method. The current “solution” is to simply terminate the search when things
go awry. This actually works fine if the method is applied to a sequence of random starting
points as we did with the golden section algorithm. For general use there is no reason
to stop computation. A new search can be started with the same parameters, apart from
the starting value, using the C++ exception mechanism from Section 3.8.7. An alternative
version of the newton method that employs this fix is shown in the listing below.

double Optim:: newton(const Functor& f, double a, double b,

double start) const {

int niter = 0;

double minTemp = start , minTempLast = b;

while(fabs(minTemp - minTempLast) > delta*fabs(minTempLast)

&& niter < itMax){

minTempLast = minTemp;

try{

if(f(minTempLast , 2) == 0)

throw std:: overflow_error("Division by zero: ");

minTemp = minTempLast - f(minTempLast , 1)/f(minTempLast , 2);
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}

catch(std:: overflow_error e){

std::cout << e.what() << std::endl;

std::cout << "Enter another starting value (q to quit)"

<< std::endl;

std::cin >> minTemp;

minTempLast = b;

continue;

}

try{

if(minTemp > b || minTemp < a)

throw std::out_of_range("Value outside [a, b]: ");

}

catch(std::out_of_range e){

std::cout << e.what() << std::endl;

std::cout << "Enter another starting value (q to quit)"

<< std::endl;

std::cin >> minTemp;

minTempLast = b;

continue;

}

niter ++;

}

return minTemp;

}

The basic search procedure is, of course, the same. The difference is that the user is allowed
to input a new starting value if the second derivative evaluates as zero or if the search goes
outside of the designated domain. The error objects that are thrown are from the classes
overflow error and out of range that require inclusion of the stdexcept header file.

We tried our alternative version of the newton method on the function in Figure 8.1 with
the results shown below.

$ ./opt 38 .00000001 .1

The approximate minimizer is 3.58977e-13

$ ./opt 38 .00000001 .25

Value outside [a, b]:

Enter another starting value (q to quit)

.5

The approximate minimizer is 0.382298

$ ./opt 38 .00000001 .75

The approximate minimizer is 0.793737

$ ./opt 38 .00000001 .9

The approximate minimizer is 0.937337

The performance of the method is notably less impressive for this choice of an objective
function and a little bit of everything has occurred here. A value for start of .1 causes
the method to travel along the gentle downhill slope with increasingly smaller steps toward
θ = 0. The choice of start = .25 places the algorithm on the right-hand side of a local
minimum and it takes an overly aggressive backward step (of about −.28) that moves it
out of the search region and causes a prompt for a new starting value by the error handling
catch block. The Newton method searches for a place where the derivative is zero and, as a
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consequence, is equally adept at finding a maximum as a minimum which is what transpired
with the new choice of .5 for start. This value is to the left of an inflection point leading
the method to climb up the hill to the smaller of the function’s two peaks. The value start
= .75 is also to the left of an inflection point except on the right-hand side of a trough. So,
the Newton recursion goes down the slope to a local minimum. Finally, by taking start =
.9 we land in the right position for locating the global minimum.

The previous example illustrates the way to use Newton’s method for functions with
multiple local minima: try lots of different starting values. A simple way to implement this
idea is to proceed along the lines of Listing 8.9 and generate starting points randomly over
the search interval. A program that accomplishes this is given in the listing below.

double Optim:: ranNewton(Functor& f, double a, double b,

int nSearch , unsigned long seed , int* nFail) const {

double start , newMinTemp , minTemp = b;

int ier = 0;

*nFail = 0;

//instantiate ranGen object

ranGen RNG;

RNG.setSeed(seed);

//pointer for random uniforms

double* pu = new double;

//random search begins

for(int i = 0; i < nSearch ; i++){

//generate a uniform for the starting value

RNG.ranUnif(1, pu);

start = a + (b - a)*(*pu);

newMinTemp = newton(f, a, b, start , &ier);

//compare local to global minimizer

if(f(newMinTemp , 0) < f(minTemp , 0) && ier == 0)

minTemp = newMinTemp;

else if(ier != 0)

++*nFail;

}

delete pu;

return minTemp;

}

The premise behind the ranNewton method is essentially the same as that in Listing 8.9;
nSearch random numbers are generated in the interval a to b that are used as starting
values for Newton iterations. The method requires a function object and the limits of the
search interval as input which it then passes on to our first version of the newton method
that terminates the recursion when errors occur. It also requires a seed to start the random
number generator that is obtained through a ranGen object as in Listing 8.9. The use
of break statements in the newton method pays dividends here by allowing us to simply
return to ranNewton when a starting value causes problems for newton rather than having
the entire program terminate. A record is maintained through the variable nFail that tells
us how many of the searches were ended before they were completed.

A driver program (stored in the file optDriverTrig.cpp whose name appears below) was
written to apply ranNewton to the Figure 8.1 function. Its main function has the form
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int main(int argc , char** argv){

int itMax = atoi(argv [1]);

int nSearch = atoi(argv [2]);

int seed = atoi(argv [3]);

double delta = atof(argv [4]);

Functor f(&fun , &fun1 , &fun2);

Optim Opt = Optim(itMax , delta);

int nFail = 0;

double fMin = Opt.ranNewton(f, 0., 1., nSearch , seed , &nFail);

std::cout << "The approximate minimizer is "

<< fMin << std::endl;

std::cout << "The number of failures is " << nFail << std::endl;

return 0;

}

The values of itMax, nSearch, delta and the starting seed for the random number generator
are taken from command line input and the addresses of the function and its first two
derivatives are used to create a Functor object. The ranNewton method is then applied with
both the approximate minimizer and the number of starting values that caused difficulties
being reported on completion of the optimization process.

The various programs were compiled and linked using the makefile ranNewton.mk that
is shown in the listing below.

opt : optDriverTrig.o optim.o ranGen.o

g++ -Wall optDriverTrig.o optim.o ranGen.o -o opt

ranGen.o : ranGen.cpp ranGen.h

g++ -Wall -c ranGen.cpp

optim.o : optim.cpp optim.h ranGen.h functor.h

g++ -Wall -c optim.cpp

optDriverTrig.o : optDriverTrig.cpp optim.h functor.h

g++ -Wall -c optDriverTrig.cpp

This was employed to produce the results

$ make -f ranNewton.mk

g++ -Wall -c optDriverTrig.cpp

g++ -Wall -c optim.cpp

g++ -Wall -c ranGen.cpp

g++ -Wall optDriverTrig.o optim.o ranGen.o -o opt

$ ./opt 38 9 123 .00000001

The approximate minimizer is 0.619058

The number of failures is 3

$ ./opt 38 10 123 .00000001

The approximate minimizer is 0.937337

The number of failures is 3

The ranNewton method therefore requires five more searches to find the minimizer than
did ranGolden. However, in this instance the Newton approach converges much faster to
local minimizers usually using only three to six of the 38 allotted iterations while the golden
section based search tends to use all 38 cycles.

There are (at least) two functions that carry out Newton type optimization in R: optim
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and nlm. Both of these functions perform minimization via quasi-Newton type algorithms
that use finite difference approximations for the first and second derivatives that appear in
the Newton updating step. The optim function provides access to several other minimization
techniques including simulated annealing that will be covered in Section 8.6. It also allows
for and enforces range constraints while nlm does not have that option. As a result, our
focus will be on the use of optim.

A simplified version of the prototype for optim is

optim(par, fn , method = "L-BFGS -B", lower , upper)

The par argument is the starting value to initiate the recursion, fn is the function to be min-
imized and lower and upper are the bounds for the search interval that default to the entire
real line in the univariate case. The method L-BFGS-B is a limited memory, quasi-Newton
algorithm that employs the Broyden-Fletcher-Goldfarb-Shanno or BFGS updating scheme
for second derivative approximations and allows for constraints in the form of bounds (see,
e.g., Byrd, et al. 1995 and Zhu, et al. 1997). The limited memory aspect is not particularly
relevant for our one-dimensional setting. In general, the optim function can be used for
optimization in higher dimensions where such issues become more important.

An application of the optim function for minimization of f(θ) = θ sin(4πθ2) resulted in

> optim(.5, func , method = "L-BFGS -B", lower = 0, upper = 1)

$par

[1] 0.61905665

$value

[1] -0.61574799

$counts

function gradient

17 17

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

A five component list is returned by optim whose first two components are the approximate
minimizer (par) and the corresponding value of the objective function (value). The counts
component indicates the number of evaluations that were required for the function (i.e.,
func in this case) and the number of approximations that were computed for the function’s
derivatives both of which are 17 in this instance. The value of convergence represents an
error message with 0 indicating successful convergence. The last component message is a
report of any additional information returned by the optimizing algorithm. In this instance,
the optimizer has indicated that the algorithm terminated when the relative change in the
objective function fell below a constant multiple factr of the machine epsilon or minimum
detectable relative absolute rounding error that was discussed in Section 2.5. The value
of factr can be specified as an argument to optim and defaults to 107 otherwise. The
derivative of the objective function can also be supplied to optim as its gr argument.

Some further experimentation with optim leads to

> optim(.25, fn = func , method="L-BFGS -B", lower = 0, upper = 1)[1]

$par

[1] 0

> optim(.65, fn = func , method="L-BFGS -B", lower = 0, upper = 1)[1]
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$par

[1] 0.6190567

> optim(.8, fn = func , method="L-BFGS -B", lower = 0, upper = 1)[1]

$par

[1] 0.9373372

So, optim will find the global minimizer if it is started in the right location. To make sure
that this happens a scheme such as the one in Listing 8.10 is needed to automate the task of
selecting starting values that will produce a global minimum. This is the topic of Exercise
8.6.

8.5 Maximum likelihood

The technique of maximum likelihood estimation leads to an optimization problem that
is unique to statistics. First, let X1, . . . , Xn be a collection of random variables with joint
density (or probability mass function) g(·; θ∗) for θ∗ some fixed, unknown member of a set
Θ that is a subset of the real line. Suppose now that the Xi have been observed in the
sense that we have seen X1 = x1O, . . . , Xn = xnO with the O subscript indicating observed
values that are now fixed rather than random. The question is how to “best” extract the
information about the parameter value θ∗ from the observed data.

The sample likelihood is defined to be

L(θ) = g(x1O, . . . , xnO; θ).

It is a function of θ alone because x1O, . . . , xnO are now fixed. The maximum likelihood
estimator, or mle, of θ is then given by

θ̂ = argmaxθ∈ΘL(θ).

The motivation for using the mle as an estimator is most easily seen for the case where
the components of X are discrete valued. In that instance

L(θ) = Prob(X1 = x1O, . . . , Xn = xnO; θ);

i.e., L(θ) is the probability of seeing the observed sample values x1O, . . . , xnO for a given
value θ of the parameter. This gives θ̂ the interpretation of being the choice for θ that
assigns the highest probability for the data that was actually collected.

Our treatment of maximum likelihood will deal with the special case where X1, . . . , Xn

represent a random sample in the sense of Definition 4.1. Let f(·; θ) be the common (univari-
ate) density or probability mass function for some value of θ in which case g(x1, . . . , xn; θ) =∏n
i=1 f(xi; θ). This makes it easier to work with the negative natural logarithm of the like-

lihood

`(θ) = −
n∑
i=1

ln f(xiO; θ)

for optimization purposes. Minimizing `(θ) is equivalent to maximizing L(θ) and this prob-
lem can be addressed using our work in the previous two sections. In order to accomplish
that the likelihood function (and its derivatives if we are to use Newton’s method) must
first be constructed from the observed data and packaged in a form that is amenable for
use with a version of our Optim class. The C++ way to approach this is through creation
of a likelihood class.

The design that will be used for our likelihood class is similar in spirit to the approach that
was used for class Linss in Section 8.3.2. Access to the data will be provided by the calling
program. Then, a function object will be created that will be passed to an optimization
class object. The end result will be the mle that will be returned as output.



MAXIMUM LIKELIHOOD 313

To provide some variation in the development, we will have our likelihood class Like
manage the input of data using a template input class fileIn that is similar to the one
created in Exercise 3.33. The calling program will simply supply the name of the file that
contains the data and furnish the functions that are to be used in the optimization process.
For the Newton method the logarithm of the density and its first two derivatives will need
to be passed in to a Like class object. The Functor class that will be used for this is

Listing 8.13 functorIn.h

//functorIn.h

#ifndef FUNCTORIN_H

#define FUNCTORIN_H

struct FunctorIn{

double (*pF )(double x, double theta );

double (*pF1)(double x, double theta );

double (*pF2)(double x, double theta );

FunctorIn (){}

FunctorIn(double (*pf)(double x, double theta),

double (*pf1)(double x, double theta),

double (*pf2)(double x, double theta )){

pF = pf; pF1 = pf1; pF2 = pf2;

}

double operator()(double x, double theta , int i) const {

if(i == 0) return pF(x, theta );

if(i == 1) return pF1(x, theta);

return pF2(x, theta);

}

};

#endif

The primary difference between Listing 8.13 and Listing 8.11 is that () has three arguments
rather than two: the variable to be used in optimization, theta, the index i that determines
which function to evaluate and an x variable that corresponds to the observed sample values.

This header file for our likelihood class is given in Listing 8.14 below.

Listing 8.14 like.h

//like.h

#ifndef LIKE_H

#define LIKE_H

#include "functorIn.h"

class Like{

int n;

FunctorIn f;

double* pxO;

double l(double theta) const;

double lp(double theta) const;

double lpp(double theta) const;

public:

Like(int N, char* fname , FunctorIn& F);
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double mle(double a, double b, double start , int itMax = 38,

double delta = 0.) const;

};

#endif

The Like class has three members: the sample size n, a FunctorIn class object and a pointer
to double that will hold the data values. The class constructor takes the sample size and a
FunctorIn object as arguments as well as a C-style string (i.e., a null-terminated via “\0”
character array or pointer to char) that contains the name of the file where the data is
stored. The class method mle that manages the optimization work requires specification of
the lower and upper bounds a and b for the parameter space interval and a starting value to
use in initialization of Newton’s method. The remaining two arguments itMax and delta
that set the stopping criteria for the Newton iteration have been given default values and
need not be specified. Recall that once an argument is given a default value all subsequent
arguments in the function’s signature must have defaults as well. This is why itMax and
delta appear at the end of the argument list for the mle method.

The content of the file that contains the class Like method definitions is shown in the
next listing.

Listing 8.15 like.cpp

//like.cpp

#include "like.h"

#include "functor.h"

#include "optim.h"

#include "fileIn.h"

Like::Like(int N, char* fname , FunctorIn& F){

n = N; f = F;

pxO = new double[n];

fileIn <double > inObj(fname);

inObj.read(n, pxO);

}

double Like::l(double theta) const {

double logL = 0;

for(int i = 0; i < n; i++)

logL += f(pxO[i], theta , 0);

return (-logL);

}

double Like::lp(double theta) const {

double logLp = 0;

for(int i = 0; i < n; i++)

logLp += f(pxO[i], theta , 1);

return (-logLp );

}

double Like::lpp(double theta) const {

double logLpp = 0;

for(int i = 0; i < n; i++)

logLpp += f(pxO[i], theta , 2);

return (-logLpp );

}
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double Like::mle(double a, double b, double start , int itMax ,

double delta) const {

int ier = 0;

Functor <const Like > logL(this , &Like::l, &Like::lp, &Like::lpp);

Optim <const Like > Opt(itMax , delta );

double thetaHat = Opt.newton(logL , a, b, start , &ier);

return thetaHat;

}

The class constructor allocates sufficient memory to hold the data array and then uses the
input file name to create a fileIn object that is suitable for reading floating-point data
in double precision. The read method for this particular incarnation of class fileIn looks
like

template <class T> void fileIn <T>:: read(int n, T* pData ){

std:: ifstream inFile(fName);

if(!inFile.is_open ()){

std::cout << "Error opening input file!" << std::endl;

exit (1);

}

for(int i = 0; i < n; i++)

inFile >> pData[i];

inFile.close ();

}

This method uses an ifstream object (cf. Section 3.10) to open the input file, reads in the
data while placing it in the supplied memory location and then closes the file connection.

The functions l, lp and lpp in Listing 8.15 calculate the negative log-likelihood and
its derivatives at a given value theta for the parameter. For this purpose they use the
FunctorIn object that was supplied to the class constructor to sum across the observed
sample values and directly evaluate `, `′ and `′′. These functions were designated as private
in the class header because they are primarily for internal use in this particular application.

The form of the mle method in Listing 8.15 is perhaps somewhat deceptive in its seeming
simplicity. Certainly the idea is straightforward; a function object that encapsulates the l,
lp and lpp methods (i.e., a Functor object from Listing 8.16 below) is constructed and is
then passed out to an optimization object that uses Newton’s algorithm to find the mle.
However, similar to the smoothing spline example of Section 8.3.1, the fact that mle is a
const method has the consequence that the template class parameter must be set as const
like. Also, the functions l, lp and lpp must all be const member functions in order for
them to be invoked by the this pointer that is passed to the Optim object.

The function objects in Listing 8.15 derive from

Listing 8.16 functor.h (template with derivatives)

//functor.h

#ifndef FUNCTOR_H

#define FUNCTOR_H

template <class T>

class Functor{

double (T::*pF)(double);

double (T::*pF1)(double);

double (T::*pF2)(double);

T* pT;
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public:

Functor (){}

Functor(T* pt , double (T::*pf)(double)){

pT = pt; pF = pf;

}

Functor(T* pt , double (T::*pf)(double), double (T::*pf1)(double),

double (T::*pf2)(double)){

pT = pt; pF = pf; pF1 = pf1; pF2 = pf2;

}

double operator() (double u) const {

return (pT ->*pF)(u);

}

double operator() (double u, int i) const {

if(i == 1) return (pT ->*pF1)(u);

return (pT ->*pF2)(u);

}

};

#endif

This is a template version of the functor class in Listing 8.11. As it is a template class, our
optimization class should be structured similarly. The template version of Optim described
in Section 8.3.2 was adapted for the job by adding in a template version of the Newton
method with prototype

template <class T> double Optim <T>:: newton(Functor <T>& f, double a,

double b, double start , int* ier)

The Like class will be used to obtain the mle for data from the exponential distribution
with density

f(x) =
{
θ exp{−θx}, x > 0,

0, otherwise,
for θ > 0. This is a trivial case in the sense that the mle has a closed form and is found to
be the reciprocal of the sample mean

∑n
i=1 xiO/n. Its utility lies in the fact that it gives a

test case where the answer is known.
The driver program for the exponential scenario is

//likeDriver.cpp

#include <cmath >

#include <iostream >

#include <cstdlib >

#include <limits >

#include "like.h"

#include "functorIn.h"

double f(double x, double theta){

return (log(theta) - theta*x);

}

double fp(double x, double theta){

return ((1./theta) - x);

}
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double fpp(double x, double theta ){

return (-(1./(theta*theta )));

}

int main(int argc , char* argv []){

int n = atoi(argv [1]);

FunctorIn F(&f, &fp, &fpp);

Like expLike(n, argv[2], F);

double up = std:: numeric_limits <double >:: infinity ();

double mle = expLike.mle(0., up , atof(argv [3]));

std::cout << mle << std::endl;

return 0;

}

The functions f, fp and fpp are the natural logarithm of the exponential density and its first
two derivatives that are used to create the FunctorIn object in main. The sample size, file
name (for the data) and a starting value for the recursion are obtained from command line
arguments. For the exponential distribution the parameter space is the positive real line.
Thus, a lower limit value of a = 0 is specified while the upper limit is set to the machine
definition of infinity for a double using the numeric limits template class.

The data to use in testing our Like class was generated in R and written to a file with

> set.seed (123)

> xO <- rexp(100, 1)

> 1/mean(xO)

[1] 0.9562801

> write.table(xO ,"edat.txt",quote = FALSE , row.names = FALSE ,

+ col.names = FALSE)

from which the maximum likelihood estimator is seen to be .95628. A makefile like.mk was
then created and used to compile our C++ code with the result being

$ make -f like.mk

g++ -Wall -c likeDriver.cpp

g++ -Wall -c like.cpp

g++ -Wall likeDriver.o like.o -o mle

$ ./mle 100 edat.txt .5

0.95628

The code seems to perform as expected. However, not all is perfect here and a poor choice for
the starting value can lead the Newton method astray. Preliminary grid or random searches
(Exercise 8.16) provide means to resolve such difficulties.

The R stats4 package includes the function mle that can be used for univariate and
multivariate maximum likelihood problems. This function appears to be a wrapper for the
optim function that allows some arguments to be fixed in the likelihood function. In practice
this provides us with an ability to fix the data aspect of the likelihood and only optimize
with respect to the parameter(s).

The prototype for mle appears like

mle(minuslogl , start = list(), method = "BFGS", fixed = list(), ...)

The minuslogl argument is the negative of the logarithm of the likelihood function that
is to be minimized. The start parameter is a list of starting values for the minuslogl
arguments specified by the parameter name. The fixed parameter is a similar list that
designates arguments that are to be held fixed while assigning them specific values. The
default optimization method is the quasi-Newton BFGS algorithm. But, any of the other
methods available for optim can be used as with their arguments specified via the ellipsis.



318 NUMERICAL OPTIMIZATION

To illustrate the use of mle, consider the function

lfunc <- function(theta , xbar , n){-n*log(theta) + n*xbar*theta}

This evaluates the negative log-likelihood for an exponential distribution given the sample
size n and the sample mean xbar. For optimization purposes, the values of n and xbar must
be held fixed and the fixed argument for mle can be used to handle this. The listing below
demonstrates this with the same data that was used with our like class.

> set.seed (123)
> xO <- rexp(100, 1)
> library("stats4")
> mle(lfunc , start = list(theta = .5), fixed = list(xbar = mean(xO),
+ n = length(xO)))

Call:
mle(minuslogl = lfunc ,start = list(theta = 0.5), fixed = list(xbar = mean(xO),

n = length(xO)))

Coefficients:
theta xbar n

0.95628036 1.04571871 100.00000000

8.6 Random search

Deterministic optimization methods such as the golden section and Newton’s method pro-
vide practical alternatives to a global search strategy for finding the global minimizer of a
function f . However, they are limited by their requirement of a good initial search location.
The use of random number generators to find such locations can be quite effective. This
raises the question of why use deterministic methods at all? Why not simply search the
entire optimization region with a sequence of random numbers? There are many methods
that do precisely this. An overview of this area is provided by Spall (2003).

The simplest strategy is a blind search method where one simulates in the region of interest
until, e.g., a suitable approximation to the minimizer has been found. Spall (2003) shows
that, under weak restrictions on f , the resulting sequence of approximate minimizers will
converge to the global minimizer with probability one. The approach is summarized formally
in Algorithm 8.3 that requires a choice for the maximum iteration count parameters itMax.

Algorithm 8.3 Blind random search
niter = 0
Generate minTemp uniformly distributed on [a, b]
while niter < itMax do

Generate U uniformly distributed on [a, b]
if f(U) < f(minTemp) then
minTemp = U

end if
niter = niter + 1

end while
return minTemp

The ranSearch method below that was added to Listing 8.8 directly implements Algorithm
8.3 using a ranGen object from Appendix E.
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double Optim:: ranSearch(Functor& f, double a, double b,

unsigned long seed) const {

double minTemp , U;

int niter = 0;

ranGen RNG;

RNG.setSeed(seed);

double* pu = new double;

RNG.ranUnif(1, pu);

minTemp = a + (b - a)*(*pu);

while(niter < itMax){

RNG.ranUnif(1, pu);

U = a + (b - a)*(*pu);

if(f(U) < f(minTemp ))

minTemp = U;

niter ++;

}

delete pu;

return minTemp;

}

Simulated annealing is a blind search variant that attempts to move more quickly toward
the minimum using an accept-reject strategy. Values that decrease the objective function
are always accepted; on the kth step a value θ that increases the objective function will be
accepted with probability p = exp

{
(f(θ(k−1))− f(θ))/Tk

}
, where θ(k−1) is the approximate

minimizer from the previous iteration and the Tk are a decreasing sequence of positive values
called the cooling schedule. Since Tk is decreasing, values that increase the objective function
will occur with decreasing probability while the accept-reject scheme allows for movement
to escape local minima in the early stages of the search. Simulated annealing produces a
sequence that will converge with probability one to the global minimizer assuming, e.g.,
continuity of the objective function (e.g., Bélisle 1992 and Spall 2003).

Simulated annealing relies on user choices for the cooling schedule, the maximum number
of iterations (itMax) and a parameter d that governs the size of the step that can be taken
away from the current approximation to the minimizer. A pseudo-code summary of the
method is provided in Algorithm 8.4.

Algorithm 8.4 Simulated annealing algorithm
niter = 0, generate minTemp uniformly on [a, b]
while niter < itMax do

Generate U uniformly on [max(minTemp− d, a),min(minTemp+ d, b)].
if f(U) < f(minTemp) then
minTemp = U

else
p = exp {(f(minTemp)− f(U))/Tniter}
Generate V uniformly distributed on [0, 1]
if V < p then
minTemp = U

end if
end if
niter = niter + 1

end while
return minTemp
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Our C++ implementation of simulated annealing for class Optim is given in the listing
below.

double Optim::sAnn(Functor& f, double a, double b, double d,

double rho , unsigned long seed) const {

double minTemp , U, low , up , prob;

int niter = 0;

ranGen RNG;

RNG.setSeed(seed);

double* pu = new double;

RNG.ranUnif(1, pu);

//random search begins

double T = 1.;

while(niter < itMax){

T *= rho;

RNG.ranUnif(1, pu);

low = std::max(minTemp - d, a);

up = std::min(minTemp + d, b);

U = low + (up - low)*(*pu);

//always accept if the objective function is decreased

if(f(U) < f(minTemp )){

minTemp = U;

}

else{//the annealing step

prob = exp((f(minTemp) - f(U))/T);

RNG.ranUnif(1, pu);

if(*pu < prob)

minTemp = U;

}

niter ++;

}

delete pu;

return minTemp;

}

The geometric cooling schedule is used where Tk = ρTk−1 and T0 = 1 for 0 < ρ < 1. The
value of ρ is yet another tuning parameter that is required as user input to the method.
There are other popular cooling schedule options that include Tk = 1/ log(k + 1).

The ranSearch and sAnn methods were combined with our previous versions of ranGolden
and ranNewton to obtain a new Optim class. This was compiled along with a driver program
that contains the Figure 8.1 function to produce an executable called opt. The command
line input in this case is, in order, the maximum number of iterations, the number of
searches (for ranGolden and ranNewton), the random seed, the tolerance factor delta, the
maximum allowed change in the approximate minimizer d for simulated annealing and the
multiplier rho for the geometric cooling schedule. Some experimentation with the choice of
these tuning parameters produced

$ ./opt 100 10 123 .00000001 .25 .99

The approximate minimizer from Newton is 0.93733736

The number of failures is 3

The approximate minimizer from Golden section is 0.93733735

The approximate minimizer from a blind search is 0.92800939

The approximate minimizer from simulated annealing is 0.59431479
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$ ./opt 500 10 123 .00000001 .25 .99

The approximate minimizer from Newton is 0.93733736

The number of failures is 3

The approximate minimizer from Golden section is 0.93733735

The approximate minimizer from a blind search is 0.93680426

The approximate minimizer from simulated annealing is 0.93380905

$ ./opt 1000 10 123 .00000001 .25 .99

The approximate minimizer from Newton is 0.93733736

The number of failures is 3

The approximate minimizer from Golden section is 0.93733735

The approximate minimizer from a blind search is 0.93786242

The approximate minimizer from simulated annealing is 0.93715934

A “glass half full” view on this type of outcome would be to conclude that all four methods
are capable of producing solutions that are in the neighborhood of the global minimizer.
Further experience with this particular example suggests that simulated annealing is the
most sensitive to the choice of its tuning parameters and, in that respect, the other three
methods are more reliable. Part of this is undoubtedly due to the details of our particu-
lar implementation. However, in a general sense, it should be pointed out that simulated
annealing is really more relevant for high-dimensional situations with possibly nonsmooth
objective functions. In that context, blind search is not a viable option and the golden sec-
tion concept quickly becomes intractable. Although Newton’s method readily extends to
the case of more than one variable, the objective function needs to be twice differentiable.

As noted in Section 8.4 the R optim function has a simulated annealing option that
becomes available through the choice of method = "SANN". The cooling schedule that is
used by optim is Tk = temp/ ln((k − 1) mod tmax)tmax + e), where temp is the starting
temperature for the cooling schedule (which defaults to 10) and tmax is the number of
function evaluations that are allowed at each temperature (and also defaults to 10). The
values of temp and tmax are set by the argument control for optim that must be given as
a list that specifies the parameter values by name. Another general parameter for optim
is maxit that sets the maximum number of iterations. It is also set using the control
argument and defaults to 100 for the derivative-based methods and 10,000 for SANN.

To compare with our C++ code we should apply optim to the Figure 8.1 function. There
is a bit of a problem in doing this because the SANN method does not allow for a specification
of bounds for the search interval. Without such restrictions results such as

> set.seed (123)

> optim(par = .5, fn = func , method = "SANN")[1:2]

$par

[1] 11.52728

$value

[1] -11.51742

will be produced. Here optim was used to apply the simulated annealing method with
a starting value of par = .5, func = function(theta){theta*sin(4*pi*theta^2)} and
all other arguments left at their default values. As a result, optim attempts to search the
whole real line and locates a point that is not in the desired optimization region.

In the case of something like simulated annealing that does not rely on continuity, the
range problem is easy to fix: simply redefine func as

func <- function(theta){

if(theta < 1 & theta > 0) f = theta*sin(4*pi*theta ^2)

else f = Inf

f }
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This version of func agrees with the original on [0, 1] and evaluates at the R representation
for positive infinity otherwise. Thus, values outside of [0, 1] are effectively excluded from
consideration. With this new version of func things go much more smoothly with optim
returning

> set.seed (123)

> optim(par = .5, fn = func , method = "SANN")[1:2]

$par

[1] 0.9373296

$value

[1] -0.9363776

The default parameter choices were used here and worked reasonably well in this instance.
To see how sensitive the method is to the choices of temp, tmax and maxit a few other cases
were considered giving results like

> set.seed (123)

> optim(par = .2, fn = func , method = "SANN",

+ control = list(maxit = 5, temp = 2, tmax = 1))[1]

$par

[1] 0.1829546

> set.seed (123)

> optim(par = .2, fn = func , method = "SANN",

+ control = list(maxit = 10, temp = 2, tmax = 1))[1]

$par

[1] 0.9542554

> set.seed (123)

> optim(par = .2, fn = func , method = "SANN",

+ control = list(maxit = 100, temp = 2))[1]

$par

[1] 0.9651814

> set.seed (123)

> optim(par = .2, fn = func , method = "SANN",

+ control = list(tmax = 250))[1]

$par

[1] 0.9373416

At least in the context of this example, the algorithm appears to behave robustly with
respect to the choice of the tuning parameters. It placed us in the right area for locating
the global minimizer even when the number of iterations, for example, has been set to be
quite small.

8.7 Exercises

8.1. It is possible to have more than one template parameter. (See, e.g., Section 9.5.2 for
an example.) In particular, syntax such as

template class <T1 , T2 , T3 > class myClass

will produce a class with three template parameters. Using this fact, create a functor tem-
plate class with the properties that
a) the class encapsulates a pointer to a member function from an arbitrary class with a

single arbitrary argument and return type and
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b) the class members are i) a pointer to an object from an arbitrary class and ii) a pointer
to (any) one of its member functions.

Demonstrate that your functor class works as expected.
8.2. Let f(θ) = −θ(1− θ) for θ ∈ [0, 1].

a) How many actual (not approximate) iterations does it take the golden section algorithm
as implemented in the Optim class to reach the point where the approximate minimizer
no longer changes its value.

b) Rework the golden section code that was applied to f so that 16 digits of accuracy can
be achieved. [Hint: Evaluate f as a long double.]

8.3. Show that the golden section algorithm will produce a sequence of values that converge
to the minimizer of f at a linear rate and determine the corresponding slope.
8.4. Write code that will allow you to replicate the C++ and R examples for the random
interval golden section algorithm of Section 8.3.1.
8.5. Another minimization technique can be based on parabolic interpolation. Suppose that
f(θ) is a continuous function on an interval [a, b] and that θ0 < θ1 < θ2 are points in that
interval such that f(θ1) < f(θ0), f(θ2). Let f̃(θ) = c0 + c1θ + c2θ

2.

a) Find values for c0, c1, c2 such that f̃ interpolates f at the θi: i.e., f̃(θi) = f(θi), i = 0, 1, 2.

b) Derive a formula for the minimizer of the quadratic function that was obtained in part
a).

c) Construct an iterative algorithm based on your formula from part b) that can be used
to find the minimizer of a convex function.

d) Implement the algorithm from part c) in C++ and add it to the Optim class from Section
8.3.

e) Apply your algorithm to f(θ) = −θ(1− θ) with a = 0 and b = 1. How many steps does
it take to produce the minimizer? Explain why this occurs.

f) Experiment with the code developed in part d) on the function f(θ) = sin(2πθ) exp {−θ}
with a = 1 and b = 2. The minimizer is at θmin = (2π)−1 arctan(2π) + 1.5.

g) Adapt the method created in part d) for use with a function having multiple minima as
in Listing 8.9 and add the result to your Optim class.

Flowers (2006)
8.6. Create an R function that uses the optim function with the “L-BFGS-B” method
option in conjunction with random placement of starting values to deal with functions
having multiple minima.
8.7. Instead of the template functor class that was used in Section 8.3.2 consider using

class Functor{

Linss* pS;

public:

Functor(Linss* ps){pS = ps;}

double operator() (lam) const {

return (pS ->gcv)(lam);

}

};

which encapsulates the gcv method directly using a Linss object. Combine this functor
class with the Optim class to obtain an alternative version of the Linss smooth method for
minimization of the GCV criterion.
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8.8. Create your own version of class Linss that reads data in from a file using your file
input class from Exercise 3.33.
8.9. Bring the Linss class into R as a shared library and use the R optimize function
(instead of class Optim) to find the smoothing parameter value that minimizes the GCV
criterion.
8.10. Use your results from Exercise 8.9 to create a class in R that will hold linear smoothing
spline objects with the smoothing parameters being either specified or selected by general-
ized cross validation. In addition,
a) Develop methods for show, summary and print that are applicable to linear smoothing

spline objects.
b) Write accessor and replacement functions that will work with objects from the linear

smoothing class.
c) Create a method function for fitted that can be used on linear smoothing spline objects.
d) Provide a method function for plot that will work with objects from the linear smoothing

spline class.
8.11. Refer to Exercise 7.15.
a) Develop C++ code that will carry out the minimization of the GCV criterion for this

estimator using a combination of grid search and golden section algorithms.
b) Apply your code from part a) to the data generated in part e) of Exercise 7.15 and

compare the result with the non-boundary-corrected linear smoothing spline using its
GCV optimal value for the smoothing parameter.

8.12. Bring the C++ boundary corrected linear smoothing spline class from Exercise 7.15
into R as a shared library and use the R optimize function (instead of class Optim) to find
the smoothing parameter value that minimizes the GCV criterion.
8.13. Repeat Exercise 8.10 using the boundary corrected linear smoothing spline from Ex-
ercises 7.15, 8.11 and 8.12.
8.14. Let f(θ) = c0 + c1θ + c2θ

2 be convex and attain its minimum at θmin in the interval
(a, b). Show that for any starting point θ0 ∈ (a, b), the Newton update will produce θmin.
8.15. Let f be a function with three derivatives and define

∆f(θ) =
f(θ + h)− f(θ − h)

2h

∆2f(θ) =
f(θ + h)− 2f(θ) + f(θ − h)

h2

for h > 0.
a) Obtain expressions (in terms of h) for the errors in the approximation of f ′ and f ′′ by

∆f and ∆2f , respectively.
b) Use the formulas for ∆f and ∆2f to create C++ code for numeric differentiation. Then,

experiment with the functions from Figure 8.1 and part f) of Exercise 8.5, to assess the
sensitivity of these approximations to the choice of h.

c) Use your results from parts a) and b) to create a version of the Optim class newton
method that does not require the function’s derivative. Experiment to determine how
this new method fares relative to newton.

8.16. Expand the template Optim class used in Section 8.5 to include preliminary grid or
random searches prior to use of the Newton algorithm.
8.17. Evaluate the performance of simulated annealing for minimization of f(θ) = θ sin(4πθ2)
with the cooling schedule Tk = 1/ log(k + 1), k = 1, . . .. Also, compare the geometric and
logarithmic cooling schedules for minimization of the function in part f) of Exercise 8.5.
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8.18. Use the simulated annealing option for the R optim function to minimize the GCV
criterion for linear smoothing spline objects deriving from the class in Exercise 8.10. Com-
pare its performance to the grid search/golden section scheme that was used in Section
8.3.2.
8.19. Use simulated annealing for minimization of the GCV criterion for the boundary-
corrected linear smoothing spline objects that derive from the class created in Exercise
8.13.
8.20. Assume that f is a continuous convex function on a closed interval [a, b] of the real line
with f(a) and f(b) having opposite signs and that there is a single unknown root x ∈ [a, b]
for which f(x) = 0. The modified version of Algorithm 5.1 below can be used to locate the
root. The values of δ and the maximum number of iterations itMax are provided by user
input.

Algorithm 8.5 Bisection algorithm
low = a, up = temp = b
while up− low > δ and niter < itMax do
temp = (up+ low)/2
if f(low)f(temp) < 0 then
up = temp

else
low = temp

end if
niter = niter + 1

end while
return temp

a) Prove that this algorithm produces a sequence of approximations to the true root that
converges linearly to the solution and give an expression for the corresponding slope.

b) If a = 0, b = 1 and δ = 10−8, show that the loop in Algorithm 8.5 will necessarily
terminate after about 27 iterations in double precision.

c) Implement Algorithm 8.5 in C++ with the function f passed into the method using a
functor.

d) Provide an alternative version of your answer to part c) that uses recursion in the sense
of Exercises 3.7–3.10.

e) Compare your answers for parts c) and d) in terms of computation times.

8.21. Develop analogs of Algorithm 8.5 that derive from the golden section and Newton
optimization methods and implement them in C++. Combine these methods with your
code from Exercise 8.20 to form a root-finder class.
8.22. Develop an alternative version of Algorithm 8.5 that can be used to find the minimum
of a convex function on an interval [a, b]. Implement the algorithm in C++ and add it to
the Optim class from Section 8.3.
8.23. Modify the method created in Exercise 8.22 to work on functions having multiple
minima as was done for the golden section algorithm in Listing 8.9 and add it to the Optim
class.
8.24. Compare the performances of ranGolden, ranNewton, the random bisection search of
Exercise 8.23 and the random parabolic extrapolation search of Exercise 8.5 for finding the
global minimizer of the function from Figure 8.1. Your comparisons should be in terms of



326 NUMERICAL OPTIMIZATION

running times (measured via the clock function discussed in Section 3.8) and in terms of
the total number of iterations.
8.25. Repeat Exercise 8.24 except with all the functions being written in R. For timing
purposes you can use the system.time function discussed in Section 5.4.
8.26. Describe how golden section or bisection algorithms can be used to numerically eval-
uate the quantile function for a continuous distribution. Implement this approach as a
quantile function class in C++ and evaluate its performance in the case of the exponential
distribution (where the quantile function is known and given in Section 4.6) and for the
normal distribution. There is no closed form for the normal cumulative distribution func-
tion and it must be evaluated numerically. The function pnorm from the R Standalone Math
Library or the R API performs this approximation and can be used for this purpose in your
code.
8.27. Repeat the code development part of Exercise 8.26 except with the optimize function
in R.
8.28. The R function uniroot can be used to find the zeros of a function. Write an R function
that uses uniroot to find a specified quantile of a cumulative distribution function. Assess
the performance of your code with the exponential and normal distributions and compare
it to the bisection and golden section algorithms of Exercises 8.26–8.27.
8.29. Develop a version of the C++ Like class in R. Then, construct a new method function
for mle that can be used on objects from your R class. [Note: The stats4 package contains
a likelihood class mle-class. So, this name should be avoided.]
8.30. Create a set of code that will allow you to replicate the C++ and R maximum likeli-
hood examples for the exponential distribution in Section 8.5.
8.31. A standard result concerning Fisher information is that (under regularity conditions)
when θ∗ is the true parameter value

E

[(
∂f(X; θ∗)

∂θ

)2
]

= −E
[
∂2f(X; θ∗)

∂2θ

]
.

This suggests an alternative strategy wherein the second derivative of the likelihood function
is replaced with

−
n∑
i=1

(
∂f(xiO; θ)

∂θ

)2

.

This approach is called Fisher scoring and has the advantage of circumventing the need for
evaluation of a second derivative. Modify the Like class to incorporate a method that uses
Fisher scoring and compare its performance to the mle method.



Chapter 9

Abstract data structures

9.1 Introduction

The developments in Chapters 5–8 focused on methods for computing various quantities of
statistical interest. Very little thought was given to the data that was used in the illustrative
examples beyond it being appropriate for use with the method and in a form that was readily
accessible to the program or function that used it in calculations. In practice, neither of these
properties are likely to obtain for any data analysis problem of substance. Instead, the data
will need to be manipulated (e.g., ordered, subsetted, etc.) in order to carry out the desired
analyses. Thus, the development of effective statistical computing methods must begin at
the point of access to the data with the creation of algorithms to perform the requisite
manipulations. The form of such algorithms is dictated by the way the data is stored. As a
result, the design of data storage methods can be viewed as the statistical computing analog
of experimental design; experiments must be run in a way that makes the factors of interest
estimable and, similarly, data must be stored in a way that makes it possible to perform
the proper analysis.

Until now our primary vehicle for storing data has been an array. Although arrays work
quite well for many applications, there are situations that arise where they become unwieldy
to the point of being impractical. For example, they are not ideal for dealing with dynamic
data sets that must grow or shrink in a manner that requires frequent resizing of the storage
container. Similarly, insertion of new elements or deletion of current ones from an array will
require shifting of the other elements which can be prohibitively time consuming when such
operations are commonplace. Fortunately, there are many alternatives to array storage that
provide great flexibility in tailoring a particular storage method to work best with the data
at hand.

In the next two chapters we explore the concept of data storage from the perspective of
abstract data structures or abstract data types (ADTs, subsequently). In a general sense, an
ADT represents a model for storing and organizing data in a way that simplifies the com-
putations that are of interest and, in some cases, makes the desired computations possible.
They generally come equipped with operations that let us efficiently examine, modify (e.g.,
insert or delete) and carry out computations (e.g., sorting) with the stored data. What dis-
tinguishes one ADT from another is not only the storage space it requires to hold the data
(often referred to as space complexity), but also the associated efficiency, in terms of execu-
tion time, of the operations it provides under its particular storage paradigm (often referred
to as time complexity). Although our discussions will pay some attention to the space and
computation time issues, a more satisfactory treatment of computational complexity goes
beyond what can be presented here. Detailed studies of this area are provided, for example,
in Papadimitriou (1994) and Arora and Barak (2009).

The collection of all ADTs represents a data storage toolbox of sorts. In that respect the
proper tool should be selected for the storage job at hand. For example, if one has data
that needs to be maintained in a particular order while easily allowing element insertion,
the linked list structure of Section 9.2.2 serves as a good storage option. For this type of
ADT insertion and deletion operations involve a fixed time expense that is independent
of the number of elements in the data set. Searching for specific elements is another mat-
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ter and this type of operation requires an effort that grows linearly with the data size.
For situations where searches are an important part of the data management process, the
chaining hash table of Section 9.2.4 may provide a better option wherein searching and
insertion/deletion tasks can both be carried out in nearly constant time. Comparisons of
this nature extend across all ADTs and, as a result, selection of the proper “tool” from the
ADT “toolbox” requires a familiarity with both the available types of ADTs as well as their
respective strengths and weaknesses. This and the next chapter are aimed at initializing
this familiarization process.

The present chapter gives a high level overview of ADTs. Our perspective here is much
the same as for creating a class declaration in C++. With arrays as a case in point, the
listing below is the declaration for a pared down version of our Vector class from Chapter
3 and Appendix D.

class Vector{

double* pA;

int nRows;

public:

Vector(int nrows , double const* pa);

Vector(const Vector& v);

~Vector ();

Vector& operator=(const Vector& v);

double operator[](int i) const {return pA[i];}

};

This declaration can be viewed as a contract that guarantees i) Vector objects can be
created and copied, ii) a Vector object may be assigned to another Vector object and
iii) (random) access (using []) will be provided to the elements of the underlying array of
doubles that is encapsulated by a Vector object.

There is nothing special about using doubles for array elements and, as in Exercise 3.31,
a template approach can be used to allow them to be of type int or char, for example.
Taking this one step further leads to Vector objects that serve as containers in the sense
of being able to hold arbitrary, user-defined data types. But, even in this generic form the
operations laid out in the Vector class declaration make sense and represent at least the
minimum one would want from something that provides a generalization of a numeric array;
i.e., a generic Vector container class should at least include functions that
a) create a new container object,

b) create a copy of an existing Vector object,

c) assign one Vector object to another and

d) allow (random) access to the objects in the container.
This list of operations represents a public interface for a Vector class in the same sense as
does a class declaration.

Our treatment of ADTs in this chapter will be geared toward describing their public inter-
faces through abstract, somewhat axiomatic “statements” that indicate the way that data
will be stored and the operations that will be expected from the structure. This will often
be supplemented by pseudo-code implementations of the operations. In most cases, specific
examples of simple C++ implementations will be provided that illustrate the concept with
a (relative) minimum of technical clutter. The R language has certain ADT capabilities that
will also be explored here.

Much of the code development in this chapter illustrates how to build ADT implementa-
tions from the ground up. The resulting structures are simplistic in nature and of conceptual,
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rather than practical, utility. Instead, there are excellent packages of existing code that can
be used for applications that require ADTs and these will be the preferred option for most
users. For C++ programmers, the first resort should be the Standard Template Library
(STL) which provides implementations of basic data structures that include queues, pri-
ority queues, stacks and dictionaries. A much more comprehensive, yet nevertheless free,
collection of C++ libraries is provided by BOOST. In Chapter 10, we examine some of the
basic features of the STL.

9.2 ADT dictionary

The ADT called dictionary is a general data storage framework whose implementation
leads to several useful data structures. As its name suggests, a dictionary ADT provides
a mechanism for data storage that is modeled after the way a literary dictionary holds
words; it is intended to contain a set of objects each of which has a unique name. The
name is referred to as the key and represents the means by which a particular object can be
distinguished from other objects in the collection. Each object will generally also have a data
component that corresponds to the information that is to be stored. The lexicon analogy
becomes complete by taking the key to correspond to a word and the data to correspond
to information on the word’s pronunciation, definition and usage.

The desired operations for an abstract dictionary implementation mimic those for the
physical, linguistic variety. They are

• makeDictionary() which creates a new empty dictionary,

• lookUp(k) that returns the object with key k and

• insert(obj, k) whose purpose is to insert the object obj with key k into the dictionary.

It will be seen that various implementation of a dictionary will allow some of these operations
to be performed in constant time (on average), while using space proportional to the number
of objects that need to be stored.

There exist a number of ways to implement ADT dictionary. If the keys in a dictionary are
a fixed set of integers or naturally associated with integer values, it may be possible to store
the dictionary in a simple array. For example, suppose each key is an integer in {1, . . . , n}.
Then, all the dictionary objects can be placed in the array A with elements A[1], . . . , A[n].
If the number of elements to be stored is not known a priori or will be subject to change,
the array that holds the data will need to expand or shrink adaptively. This leads to the
dynamic array ADT that represents the subject of the next section.

9.2.1 Dynamic arrays and quicksort

For this section it will be assumed that integer values are to be used for the dictionary keys.
In that case one possible implementation of a dictionary is through the use of a dynamic
array. This data structure stores objects of arbitrary type in a way that mimics how an
ordinary vector stores numeric values. Unlike vectors of fixed length, the size of the array is
allowed to grow (or even shrink) depending on the space/memory requirements for storing
its content.

To illustrate the idea, the listing below provides the class declaration for a dynamic array
class dArray in C++. To simplify the presentation, the class will produce objects that
can hold data of type int rather than generic forms. This is less restrictive than it might
seem because it is relatively simple to reformulate this particular class as a template to
accommodate general data types (Exercise 9.37).
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Listing 9.1 dArray.h

#ifndef DARRAY_H

#define DARRAY_H

class dArray{

int* pA;

int Size , containerSize;

void pointerCheck(int* pa) const;

void reSize ();

void swap(int i, int j);

public:

dArray () : pA(0), Size(0), containerSize (0){}

dArray(int size , const int* pa);

dArray(int size);

dArray(const dArray& v);

~dArray ();

dArray& operator=(const dArray& v);

int operator[](int k) const;

void quickSort(int left , int right);

void append(int value );

void insert(int k, int value);

int getSize () const {return Size;}

int getContainerSize () const {return containerSize ;}

};

#endif

The dArray class has three member elements: a pointer to int, pA, that holds the address
of the beginning of a block of memory where the data in the dArray object is stored, a
variable Size that gives the number of int objects that are currently held in storage and
containerSize which represents the total number of storage locations. An overloaded []
operator and two accessor functions provide access to these class members.

The constructors for class dArray needs to allocate sufficient memory to hold the initial
input data as well as allow some room for additional data that may arrive after the array’s
creation. There are various ways to accomplish this. A simple option might look something
like
dArray :: dArray(int size , const int* pa){

Size = size;

containerSize = 2*Size;

pA = new int[containerSize ];

pointerCheck(pA);

for(int i = 0; i < Size; i++)

pA[i] = pa[i];

}

The input to this constructor is a pointer to int and an integer value size that gives
the number of int objects that are stored (beginning) at the address held in the pointer.
The value of size is used to initialize Size and pA after which the information in pa is
transferred to the pA class member. Although only Size memory locations are needed to
store the input data, memory is allocated for twice that many, or containerSize, objects
and the data is copied into just the first Size of these locations. Prior to copying the success
of the memory allocation step for pA is checked using a variant of the pointerCheck function
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seen previously in Section 3.9. Thus, the resulting dArray object will hold all the input data
while being able to accommodate an additional Size objects as needed.

Another possibility is that one wants an “empty” array object that will then be filled by
adding new elements. The constructor provided for this purpose is

dArray :: dArray(int size) : Size(size){

containerSize = 2*Size;

pA = new int[containerSize ];

pointerCheck(pA);

}

The only parameter that must be specified in this instance is Size. Its value is taken as
input and assigned via an initializer list (cf. Section 3.8.3). The memory is then obtained as
in the previous constructor. A default constructor has also been given that uses an initializer
list to set the Size and containerSize members to 0 and define pA as a null pointer.

If data is being continually added to a dynamic array at some juncture the array will
become full and require expansion. The reSize function in Listing 9.1 provides the means
to grow dArray objects. Its definition is

void dArray :: reSize (){

std::cout << "Resize was called" << std::endl;

containerSize *= 2;

int* temp = new int[containerSize ];

pointerCheck(temp);

for(int i = 0; i < Size; i++)

temp[i] = pA[i];

delete[] pA;

pA = temp;

}

As in the class constructor, the current array size containerSize is doubled by reSize.
This is accomplished in four steps. First, the necessary memory is allocated. Then, the data
is copied into the new memory locations, the current memory is released and the member
pointer pA is reassigned to point to the new memory. The copying aspect of resizing is time
consuming in that it requires an operation count that is proportional to Size. Thus, the
frequency of resizing should be minimized. Our strategy for accomplishing this is to expand
to twice the current capacity whenever growth is needed, thereby attempting to strike a
balance between wasting memory and excessive copying. Note that the output statement
that has been included in the reSize method is only for illustrative purposes in an example.

The dArray class involves dynamic memory allocation and therefore needs explicit defi-
nitions for i) a copy constructor, ii) a destructor and iii) the = operator. The prototypes for
these methods are shown in Listing 9.1. Creation of appropriate definitions is the subject
of Exercise 9.1.

The methods for component access and insertion in Listing 9.1 highlight the strengths
and weaknesses of dynamic arrays. The overloaded [] operator gives the analog of the
dictionary lookUp function. Its definition is

int dArray ::operator[](int k) const {

if(k > Size){

std::cout << "This is not a valid index!" << std::endl;

exit (1);

}

return pA[k];

}
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Thus, (random) access to the contents of a known memory location can be obtained in
constant time. The same is true of appending a new entry to the end of a dArray object,
except for the case when the object is already full. Specifically, our definition for the append
method is

void dArray :: append(int value ){

if(Size < containerSize ){

pA[Size] = value;

Size ++;

}

else{

reSize ();

pA[Size] = value;

Size ++;

}

}

The location of the last object in the array is always available through the value of the
member variable Size; i.e., it has index Size - 1. Thus, provided an open memory location
exists, the append operation requires constant time. Otherwise, the reSize function must
be called before the new int object can be stored.

While arrays are good for accessing and appending new elements, the insertion operation
can be quite slow depending on where a new data object must be placed. Algorithm 9.1
describes the process for inserting a new entry x into the kth slot of an n-element array
with existing entries A[1], . . . , A[m] for m < n.

Algorithm 9.1 insert(k, a): Insert a new array entry
tempLow = A[k]
A[k] = a
for j = k to m− 1 do
tempUp = A[j + 1]
A[j + 1] = tempLow
tempLow = tempUp

end for
A[m+ 1] = tempLow

The time needed to accomplish insertion is therefore dependent on the location where in-
sertion is to take place, with the average time complexity being proportional to the number
of elements in storage.

Our insert method for class dArray below uses a variation of Algorithm 9.1.

void dArray :: insert(int k, int value){

if(k > Size){

std::cout << "This is not a valid index!" << std::endl;

exit (1);

}

if(Size == containerSize)

reSize ();

Size ++;

for(int j = Size; j > k; j--)

pA[j] = pA[j - 1];

pA[k] = value;

}
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The first modification of Algorithm 9.1 is that reSize is called when the array becomes too
full to accommodate another stored entry. The other is the way the elements of the array
are shifted. First, the value of Size is augmented. This allows us to start at the slot with
index Size - 1 and work our way backward while shifting each entry forward by one array
slot. An advantage of this approach is that it avoids the need for temporary storage.

The other side of insertion is deletion. It may be of interest to remove elements from
a dArray object and, if the Size variable becomes sufficiently small after a number of
deletions, resizing may be of value as a means of conserving memory. Implementation of
these operations is the subject of Exercises 9.3–9.4.

The code below provides a test for our dArray class.

//dArrayDriver.cpp

#include <iostream >

#include "dArray.h"

int main (){

int* pa;

pa = new int[2];

pa[0] = 2; pa[1] = 4;

dArray v(2, pa);

v.append (7); v.append (14);

std::cout << v.getSize () << " " << v.getContainerSize ()

<< std::endl;

v.insert(1, 9);

std::cout << v.getSize () << " " << v.getContainerSize ()

<< std::endl;

for(int i = 0; i < v.getSize (); i++)

std::cout << v[i] << " ";

std::cout << std::endl;

return 0;

}

A dArray object is initialized with a pointer to int that corresponds to two integer objects.
Thus, the initial Size value should be 2 and the initial value of containerSize should be
4. An additional pair of integers are appended to the array and the values of Size and
containerSize are checked. An int is then inserted to force a call to the reSize method,
after which Size and containerSize are checked again and the contents of the dArray
object are printed to standard output. The program produces

4 4

Resize was called

5 8

2 9 4 7 14

It is often necessary to sort the elements in a numeric array to obtain, e.g., statistics of
interest. We have seen examples of a sorting method in the form of the bubblesort Algorithm
3.1 and the selection sort method of Section 6.4. These sorting schemes are slow and require
an order of n2 operations on the average to sort an n-element array. A better sorting option
is the quicksort algorithm that requires an average of only O(n log n) operations to order
the array elements.

The idea behind quicksort is simple: recursively split the unsorted array into two parts
that can be sorted independently. The easiest way to achieve this is to ensure that each value
in the first part is no greater than any in the second part. This is perhaps best illustrated
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with a specific example. For that purpose consider the following unordered collection of
integers.

15 1 18 28 27 19 49 38 6 2 40

The numbers at the right and left ends of this sequence will be called left and right,
respectively. The first step in the sorting operation is to pick a value for a pivot that will
be used to split the numbers into two parts. One possibility is to choose the value in the
“middle” location or, in this case, the value in slot 6 of the array. This gives a pivot value
of 19. Two new indices, low and high, are now introduced and initialized to left and right,
respectively. Thus, at this point we have our array represented as

15︸︷︷︸
left=low

1 18 28 27 19 49 38 6 2 40︸︷︷︸
right=high

with the pivot value at 19.
The next step is to increment the low index sequentially until it corresponds to a value

that is greater than the pivot. Similarly, the high index is decremented until it reaches an
array entry that is less than the pivot. This results in

15︸︷︷︸
left

1 18 28︸︷︷︸
low

27 19 49 38 6 2︸︷︷︸
high

40︸︷︷︸
right

The array element indexed by low and the one indexed by high are swapped, low is
incremented and high is decremented. If necessary, the process of incrementing and decre-
menting low and high would be repeated again until they reached elements that were larger
and smaller than the pivot element, respectively. The initial increment/decrement is suffi-
cient in this instance as it produced

15︸︷︷︸
left

1 18 2 27︸︷︷︸
low

19 49 38 6︸︷︷︸
high

28 40︸︷︷︸
right

.

The low and high index elements are swapped again and the indices are incremented and
decremented to give

15︸︷︷︸
left

1 18 2 6 19︸︷︷︸
low

49︸︷︷︸
high

38 27 28 40︸︷︷︸
right

Since high still exceeds the pivot it is decremented again at which point low and high
coincide. A trivial swap of their two (identical) values is made and the indices are increased
and decreased a final time. At this point they have crossed and the index point low (i.e., the
seventh element of the array) has the property that i) all elements with indices smaller than
low have corresponding values that are smaller than or equal to the pivot and ii) elements
with indices of low or higher have values that are greater than or equal to the pivot. Thus,
we can now independently apply the same process to each of the two subarrays

15︸︷︷︸
left=low

1 18 2 6 19︸︷︷︸
right=high

and
49︸︷︷︸

left=low

38 27 28 40︸︷︷︸
right=high

.

If we continue to split arrays in this fashion, the end result will be eleven arrays with one
entry each. All this work is done in place; i.e., the subarrays are not physically formed but
rather swapping occurs inside the original parent array. The final outcome of the recursion
will be an array with values arranged in numerically ascending order.

With our example as a guideline, Algorithm 9.2 provides a formulation of the quicksort
procedure.
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Algorithm 9.2 quickSort(A, left , right): Sort array elements A[left ], . . . , A[right]
low = left , pivotIndex = b(left + right)/2c, pivot = A[pivotIndex], high = right
while low ≤ high do

while pivot > A[low] do
low = low + 1

end while
while A[high] > pivot do
high = high− 1

end while
if low ≤ high then
temp = A[low], A[low] = A[high], A[high] = temp
low = low + 1, high = high− 1

end if
end while
if low < right then
quickSort(A, low, right)

end if
if left < low − 1 then
quickSort(A, left , low − 1)

end if

The algorithm starts with low and high as the left-most and right-most array indices,
respectively, and takes the pivot to be the value of the entry with a “middle” array index.
It then moves the low index across the array until it encounters an entry whose value is
greater than or equal to the pivot succeeded by a decrease of the high index until a value
smaller than or equal to the pivot is located. If low is less than or equal to high the array
elements are swapped and low and high are incremented and decremented. Otherwise, the
subarray composed of those array elements with indices of low or larger will have entries
whose values are all greater than or equal to the pivot. A recursive call can then be made to
quickSort using this subarray as the array argument. Similarly, the values in the subarray
constructed from elements with indices less than low will all be smaller than or equal to the
pivot and the quickSort function can be applied to them as well.

The average running time for quicksort is proportional to n log n for an n-element array.
To gain some intuition regarding why this is so, assume that n = 2k for some integer k and
that the pivot index falls at the center of the array in each step of the recursion. Then, the
first partitioning step will require order n operations to produce two arrays of size 2k−1.
These two arrays will, in turn, each need O(2k−1) flops to produce two subarrays giving a
total of four arrays of size 2k−2 which, again, will require a total of order n operations to
advance to the next stage of the recursion. This remains true at every step in the recursion
which means that the overall effort is on the order of nk = n log2(n). It may be proved that,
assuming the initial order of the elements in the array is random (regardless of what the
elements’ values really are), the expected number of comparisons in quicksort is O(n log n)
(see Exercise 9.6 or Cormen, et al. 2003).

On the other hand, the worst case in terms of running time for quicksort occurs when
the partitioning always produces a subarray of size one. If this happens, either the low or
high index will remain at left or right, respectively. For an array of size n this gives rise to
n+ 1 comparisons: one comparison between the stationary index (either left or right) and
the pivot and the n comparisons that occur as the other index works its way down or up
the array. Applying this to the subarrays that are produced by the sequential partitioning
produces an effort on the order of

∑n+1
i=1 i = (n + 2)(n + 1)/2 operations; i.e., the method
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requires O(n2) operations. Note that this is far from an impossible event; it is exactly what
happens if the pivot is selected from the beginning (or the end) of a sorted array. Somewhat
paradoxically, we see that the hard cases for quicksort are those where the array elements
are already ordered or partially ordered.

The methods swap and quickSort provide an implementation of the quicksort algo-
rithm for our dArray class. The swap method is a utility that is used by the quickSort
method. Thus, it was made a private member of the dArray class while quickSort was
made public. The int variables in swap designate the elements that are to be swapped in
the dArray object while the left and right arguments for quickSort specify the index
subrange on which the algorithm will be applied.

The definition of the swap method is

void dArray ::swap(int i, int j){

int temp = pA[i]; pA[i] = pA[j]; pA[j] = temp;

}

Temporary storage is used to hold the value of one array element while it is overwritten
after which the remaining component is replaced with the stored value. The implementation
of the quicksort algorithm then takes the form

void dArray :: quickSort(int left , int right){

int pivotIndex = floor ((left + right)/2);

int pivot = pA[pivotIndex ];

int low = left , high = right;

while(high >= low){

while(pivot > pA[low])

low++;

while(pA[high] > pivot)

high --;

if(low <= high){

swap(low , high);

low++; high --;

}

}

if(left < low - 1)

quickSort(left , low - 1);

if(low < right)

quickSort(low , right);

}

The following main function was written to test our quickSort method.

int main (){

int* pa = new int[11];

pa[0] = 15; pa[1] = 1; pa[2] = 18; pa[3] = 28; pa[4] = 27;

pa[5] = 19; pa[6] = 49; pa[7] = 38; pa[8] = 6; pa[9] = 2;

pa[10] = 40;

dArray dArrayObj (11, pa);

dArrayObj.quickSort(0, 10);

for(int i = 0; i < 10; i++)

std::cout << dArrayObj[i] << " ";

std::cout << std::endl;

return 0;

}
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The unordered set of integers used to illustrate the quicksort algorithm is placed into memory
corresponding to a pointer to int that is then used to create a dArray object. This object
calls its quickSort method and its contents are printed. This resulting output is

1 2 6 15 18 19 27 28 38 40 49

9.2.2 Linked lists and mergesort

Linked lists provide another approach to implementation of a dictionary. They arise, for
example, in applications such as the storage of sparse matrices and polynomial arithmetic
(Exercises 10.26–10.27). Like dynamic arrays, they also provide a foundation from which
other useful data structures such as hash tables, queues and stacks can be built.

As we saw in the previous section, insertion of new elements or resizing operations are
computationally expensive for array type structures. Linked lists provide one means of over-
coming such problems. For these data types resizing is actually unnecessary, while insertion
can be performed in constant time. As with most compromises, there is a downside which,
in this case, comes in the form of slow performance for access of list elements.

A linked list data structure consists of a collection of objects that have both key and
data components, as well as a member next which designates (e.g., by a pointer) the next
element in the list. The components of the list are generally called nodes with the first node
having the name head and the last node referred to as the tail. The next value of the tail of
a linked list is the NULL value (e.g., a null pointer) indicating it has no successor. Lists of
this particular type are generally called singly linked because the connection between nodes
only goes in one direction; i.e., it is only possible to move toward the tail of the list by
“stepping” through the next members of the node objects in the list. A simple extension
is the doubly linked list, where the nodes have an additional member that points to the
preceding list entry thereby making both forward and reverse movements possible.

Let us now take a look at the operations required to implement a linked list. A linked list
can be built by “pushing” new nodes onto the front of the list as in

Algorithm 9.3 push(a): Add a new node to a linked list
a.next = head
head = a

Here and subsequently the . notation represents a generic member selection operators; e.g.,
a.next is the “value” of next for the a object. So, the value of next for the new node a is
assigned the address of the current head node. Then, a becomes the head node and the list
has grown by one object. Note that no matter how many nodes are currently in the list only
two simple steps are needed to add a node. The operation can therefore be accomplished in
constant time.

The look-up operation for a linked list is described in Algorithm 9.4.

Algorithm 9.4 lookUp(key): Look-up in a linked list
a := head
while a 6= NULL do

if a.key = key then
return a

end if
a := a.next

end while
return NULL
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The implementation is quite simple in that one iteratively steps through the list by moving
from each node to its next member until either the end of the list is encountered or the
designated key value is found. The algorithm returns the node that has the desired key
value or NULL if no node exists with that key. Note that potentially every node in the list
must be examined to find the one with the targeted key value. Thus, this operation can
require order n operations in an n-element list.

To insert a node to the right of (i.e., immediately after) a node with a given key value,
we first look up the key to find where the new node should be placed. This also allows us
to check if an element with the same key is already present which should trigger an error
report. The idea is implemented in Algorithm 9.5.

Algorithm 9.5 insert(a, key): Find the location and insert a node into a linked list
if lookUp(a.key) == NULL then
b := lookUp(key)
a.next = b.next
b.next = a

else
return Error: duplicate key!

end if

There is nothing special about insertion to the right. In fact, insertion to the left or between
two specified keys may be of more interest in some applications (Exercise 9.12).

As was true for dynamic arrays, it is also of interest to be able to sort the elements in
a list. The method of choice in this case is known as mergesort. Like quicksort, it uses a
divide-and-conquer strategy although the details differ in how that is accomplished.

To illustrate the mergesort method, let us again consider sorting the integer array

15 1 18 28 27 19 49 38 6 2 40

that was used in Section 9.2.1. To begin, divide this array into the subarrays (15, 1, 18, 28, 27)
and (19, 49, 38, 6, 2, 40). Let us focus on the second array which we split into two more three
component arrays (19, 49, 38) and (6, 2, 40). Again, working with the second subarray, we
arrive at a singleton 6 and (2, 40) the latter of which is already sorted. The next step is
to merge these last two “arrays”. To accomplish this the larger of the two array elements,
40, is retained to start the new merged array. The pair (6, 2) is now sorted and appended
to 40 to give us (2, 6, 40). By exactly the same process (19, 49, 38) is ordered as (19, 38, 49)
and this must now be merged with the (2, 6, 40) array. But, the basic idea remains the
same; first, the largest value from the two arrays, 49, is retained to start the new array and
the problem reduces to merging (2, 6, 40) and (19, 38). For this latter purpose we retain 40
and then must merge (2, 6) and (19, 38). Now 38 is retained and (2, 6) is merged with 19.
Working our way backward, (2, 6, 19) becomes (2, 6, 19, 38) that leads to (2, 6, 19, 38, 40) and,
finally, to (2, 6, 9, 38, 40, 49). The algorithmic scheme is now hopefully clear and it should be
apparent that taking this process to its logical conclusion will return a fully ordered array.

Our example illustrates that the real work in this sorting method is done by the recursive
merging procedure. For the case of two arrays, A1 and A2, this can be described as in
Algorithm 9.6.
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Algorithm 9.6 merge(A1, A2): Merge A1 and A2 of size n and m into A of size n+m

if A1[n] > A2[m] then
A[n+m] = A1[n]
merge((A1[1], . . . , A1[n− 1]), A2)

else
A[n+m] = A2[m]
merge(A1, (A2[1], . . . , A2[m− 1]))

end if
return A

With the merge method in place, the mergesort algorithm for an array takes the form

Algorithm 9.7 mergeSort(B): Sort an n-element array
mid = bn/2c
if mid = 0 then

return B
end if
A1 = mergeSort((B[1], . . . , B[mid]))
A2 = mergeSort((B[mid+ 1], . . . , B[n]))
A = merge(A1, A2)
return A

Mergesort is an order n log n method (Exercise 9.9). Its worst-case efficiency is also
O(n log n) as compared to n2 for quicksort. The disadvantage of mergesort is the need
for temporary storage when sorting arrays. Linked lists are another story. In that case the
use of pointers makes it possible to dodge the extra storage requirement as we will eventually
illustrate.

It will now be useful to look at a specific example of linked list encoding. For this purpose
we will consider a simple linked list struct in C++. For specificity, the objects in the list
will also be structs of the form

struct Node{

int dataValue;

int keyValue;

Node* Next;

Node (){}

Node (int data , int key , Node* next = 0)

: dataValue(data), keyValue(key), Next(next) {}

};

The data member (dataValue) and key (keyValue) of a Node object are both integers and
the Next member is a pointer to another Node object. There are two constructors: a default
constructor and another that uses an initializer list to specify all three class members with
Next being given a default value of the null pointer or 0.

The declaration of our linked list struct for Node objects is provided by the next listing.

Listing 9.2 linkedList.h

struct linkedList{

Node* Head;

int Size;

void mergeSortList(Node** pHead );
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Node* merge(Node* a, Node* b);

void split(Node* head , Node** midNode );

linkedList (){ Head = 0;}

linkedList(const linkedList& L);

~linkedList ();

linkedList& operator=(const linkedList& L);

void push(int newData , int newKey );

Node* lookUp(int key) const;

void insert(int newData , int newKey , int key);

void sort (){ mergeSortList(&Head );}

};

The struct has two data members: a pointer to the head Node object and the integer Size
that represents the number of nodes in the list. A constructor and copy constructor have
been given; the constructor simply creates an “empty” linkedList object with a null
pointer for its head node. There are three methods that correspond to the push, lookUp
and insert Algorithms 9.3–9.5. There are also four methods that, in combination, will sort
the nodes in a list via mergesort. The sort method is a wrapper function for mergesort
with mergeSortList and merge corresponding to Algorithms 9.7 and 9.6, respectively.

The copy constructor was encoded as

linkedList :: linkedList(const linkedList& L){

if(L.Size == 0){

Head = 0;

Size = 0;

}

else{

Size = L.Size;

Node* temp = 0;

for(Node* iter = L.Head; iter !=0; iter = iter ->Next){

if(temp == 0){//empty list

Head = new Node(iter ->dataValue , iter ->keyValue );

temp = Head;

}

else{

temp ->Next = new Node(iter ->dataValue , iter ->keyValue );

temp = temp ->Next;

}

}

temp ->Next = 0;//null pointer as Next for tail node

}

}

The case of copying an empty list is dealt with initially. To copy a nonempty list, the value
of size is initially set. Then, one uses a pointer to Node to move through the existing
list while appending nodes to the new linkedList object. The appending is done using a
pointer to Node, temp, that sequentially ties the new nodes to each other. After the head
node is initialized using the head node of the list that is being copied, temp is used to create
the next node in the list by defining the Next member of the Node object at its current
location. It next moves to the node it just created and repeats the process.

The for loop in the linkedList copy constructor is an explicit example of the basic
recursion for navigating through a list that was seen, e.g., in Algorithm 9.4. The role of the
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index variable is played by the pointer iter rather than an integer in this case; nonetheless,
it works perfectly well because there is a well-defined place to begin (i.e., the head node), end
(i.e., when the null pointer is encountered) and a natural choice for the increment operation
(i.e., the iter = iter.Next step). An abstraction of this idea leads to the concept of
iterators discussed in Section 9.5.

The Node objects in our linkedList class will be stored on the free-store. Thus, an
explicit destructor is needed such as

linkedList ::~linkedList (){

Node* temp;

while(Head != 0){

temp = Head ->Next;

delete Head;

Head = temp;

}

}

An overloaded assignment operator must also be supplied (Exercise 9.10).
The definition of the push method is

void linkedList ::push(int newData , int newKey ){

Node* newNode = new Node(newData , newKey , Head);

Head = newNode;

Size ++;

}

This uses the nondefault Node constructor to initialize a new Node object with its Next
member given the address of the current head node. The new node that is pushed onto the
list becomes the head node, its Next member points to the former head node and the Size
member is incremented.

The lookUp method for the linkedList struct looks like

Node* linkedList :: lookUp(int key) const {

Node* iter = Head;

while(iter != 0){

if(iter ->keyValue == key){

return iter;

}

iter = iter ->Next;

}

return 0;

}

This follows verbatim from Algorithm 9.4 and provides an example of the general way to
iterate through a list using a while, rather than a for, loop.

The insert method takes the form

void linkedList :: insert(int newData , int newKey , int key){

if(lookUp(newKey) == 0){//key does not exits

Node* iter = lookUp(key);

if(iter != 0){//target does exist

Node* newNode = new Node(newData , newKey );

newNode ->Next = iter ->Next;

iter ->Next = newNode;

Size ++;

}

else

std::cout << "Key not found!" << std::endl;
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}

else

std::cout << "Duplicate key!" << std::endl;

}

The new aspect in this implementation beyond that in Algorithm 9.5 is allowance for the
possibility that there may be no node in the list with the key value specified in the search.
In that instance an error message is returned.

In line with Algorithm 9.7, our code for the application of mergesort to our simple
linkedList class is

void linkedList :: mergeSortList(Node** pHead ){

Node* head = *pHead;

Node* midNode;

if (head == 0 || head ->Next == 0)//nothing to do

return;

split(head , &midNode );

//recursion

mergeSortList(&head);

mergeSortList(&midNode );

//now merge

*pHead = merge(head , midNode );

}

An oddity of sorts that arises in this listing is the Node** method argument. The reason for
this is that mergeSort will actually rearrange the pointers that connect the nodes in the
list. In particular, this requires it to be able to change the value of the Head member of a
linkedList object. If we simply passed Head to the function, only a local copy of the pointer
would be available and changing it would not actually alter the value of Head. Unlike the
array setting, we do not know how to partition the list into sublists of roughly equal length.
The method split accomplishes this; it takes the head node pointer as its first argument and
returns the “middle” node pointer in its pointer to Node* second argument. The mergeSort
method is then applied to references to both head and “middle” node pointers thereby
setting off the recursion. The final step is an application of the merge method that produces
the new head node pointer.

Our code for the split function given below employs a standard approach for finding the
“middle” node in a linked list.

void linkedList ::split(Node* head , Node** midNode ){

struct Node* fast;

struct Node* slow;

if (head == 0 || head ->Next == 0)

*midNode = 0;

else{

slow = head;

fast = head ->Next;

while (fast != 0){

fast = fast ->Next;

if (fast != 0){

slow = slow ->Next;
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fast = fast ->Next;

}

}

*midNode = slow ->Next;//new list has slow ->Next as head node

slow ->Next = 0;//terminate the other list at slow

}

}

A pair of pointers to Node are defined that move down the list (i.e., toward the tail node)
with the fast pointer progressing twice as fast as its slow counterpart. When the fast
pointer reaches the end of the list, signaled by its Next member being the null pointer, the
slow->Next pointer will be pointing to what can be viewed as a “middle” node. There is
more here than it may seem. The “middle” node that has been located with the algorithm
is returned in the function’s pointer argument and will then serve as the head node of the
resulting new sublist. The original list that begins at the head argument to split still runs
to its current tail node and this must be rectified before there will actually be two separate
sublists. Making slow->Next a null pointer effectively terminates the original list at a new
tail node that immediately precedes the “middle” node located by the algorithm.

With arrays the merging process requires the use of temporary storage. However, with
linked lists, all that is required is a rearrangement of the next pointers which can be done
“in place”. For our linkedList class this rearrangement can be accomplish with

Node* linkedList ::merge(Node* a, Node* b){

Node* newHead;

if(a == 0)

return(b);

else if(b == 0)

return(a);

if (a->keyValue > b->keyValue ){//a is new head node

newHead = a;

newHead ->Next = merge(a->Next , b);

}

else{//b is new head node

newHead = b;

newHead ->Next = merge(a, b->Next);

}

return newHead;

}

The merge method is in the same spirit as Algorithm 9.6 and the motivating mergesort
example. The Head pointer for the head node with the larger key becomes the new Head
pointer for a combined list. The algorithm is then applied again except now one of the two
lists will be shorter by an element.

A portion of a program that was written to test the linkedList struct is given below.

void f(linkedList L){

std::cout << L.Head ->Next ->dataValue << std::endl;

}

int main (){

linkedList L;

L.push(2, 15); L.push(3, 18); L.push(4, 28); L.push(5, 27);

L.push(6, 19); L.push(7, 49); L.push(2, 38); L.push(4, 6);

L.push (100, 2); L.push(-1, 40);
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L.insert(-4, 1, 18);

f(L);//test of copy constructor

std::cout << L.lookUp(1)-> dataValue << std::endl;

Node* iter;

for(iter = L.Head; iter != 0; iter = iter ->Next)

std::cout << iter ->keyValue << " ";

std::cout << std::endl;

L.sort ();

for(iter = L.Head; iter != 0; iter = iter ->Next)

std::cout << iter ->keyValue << " ";

std::cout << std::endl;

return 0;

}

This listing begins with the definition of a function f that will print out the data module
for the second node in a linkedList object. This function will be called from the main
function which will force a call to and, hence, provide a check for the copy constructor.
Upon entering main, a linkedList struct with 10 node objects is created via the push
method. Then, another Node object is incorporated into the list with insert, the function
f is called and the lookUp method is tested. Next, a pointer to Node is used to iterate
through the list and print out the keys for each of the Node objects it contains. Finally, the
list is sorted and the keys are printed again. The output from the program is

100

-4

40 2 6 38 49 19 27 28 18 1 15

49 40 38 28 27 19 18 15 6 2 1

9.2.3 Stacks and queues

The stack and queue ADTs are essentially special types of linked lists that have restrictions
on the way their nodes can be inserted or removed. Stacks operate on a last-in first-out
basis while queues provide a first-in first-out option.

Objects may only be added and removed from the head of a stack. This restriction leads
to a simple set of operation that can be performed by the data structure: viz,

• makeStack() which creates a new empty stack,

• push() that adds a new object to the front of the stack,

• pop() that removes the objects at the front of a nonempty stack,

• preview() a function that allows for examination, without removal, of the stack’s head
node and

• isEmpty() that returns true if the stack contains no objects and false otherwise.

For queues, objects can only enter the structure at the tail of the list while removal occurs
only at the head. The operations that are supported by a queue ADT are

• makeQueue() that creates a new empty queue,

• enqueue() which adds a new object to the tail of the queue,

• dequeue() for removing an object at the head of a nonempty queue and

• isEmpty() that returns true if the queue contains no objects and false otherwise.
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Both stack and queue ADTs are easily implemented using either dynamic arrays or linked
lists. The creation of C++ code for this purpose is the subject of Exercises 9.38–9.40.

The R filehash package provides implementations of stack and queue ADTs. Stack and
queue databases are created on disk using the functions createS and createQ. The databases
are then linked to R with initS or initQ. For example, the listing below corresponds to an
R session where both stack and queue databases were created.

> library(filehash)

filehash: Simple key -value database (2.2 2011 -07 -21)

> system("ls")

filehashEx.r

> createS("myStack")

<stack: myStack >

> mS <- initS("myStack")

> createQ("myQueue")

<queue: myQueue >

> mQ <- initQ("myQueue")

> system("ls")

filehashEx.r myQueue myStack

> class(mS)

[1] "stack"

attr(,"package")

[1] "filehash"

> class(mQ)

[1] "queue"

attr(,"package")

[1] "filehash"

The system function is used to check the contents of the current working directory with the
Unix ls command. We see that two “empty” database files myQueue and myStack have
been created on disk. After linking the databases to R (with initQ and initS) the result
is that two new objects of type stack and queue are present in the R workspace that can
be used to read and write from their respective databases in the current working directory.

Both the stack and queue objects obtained through filehash support the operations push,
pop, top and isEmpty. The push and pop functions represent the enqueue and dequeue
operations for queue objects while top is the analog of preview. The isEmpty function
returns TRUE when applied to empty objects and FALSE otherwise.

Some experimentation with the stack object myStack produced

> isEmpty(mS)

[1] TRUE

> push(mS, 1)

> isEmpty(mS)

[1] FALSE

> push(mS, matrix(rnorm(16), 4, 4))

> push(mS, expression(1 + pi))

> push(mS, 1:5)

> print(pop(mS))

[1] 1 2 3 4 5

> top(mS)

expression(1 + pi)

Among other things, this illustrates the last-in first-out property of the stack object.
Similar operations performed on the queue object led to

> set.seed (123)

> isEmpty(mQ)
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[1] TRUE

> push(mQ, 1)

> isEmpty(mQ)

[1] FALSE

> push(mQ, matrix(rnorm(16), 4, 4))

> push(mQ, expression(1 + pi))

> push(mQ, 1:5)

> print(pop(mQ))

[1] 1

> top(mQ)

[,1] [,2] [,3] [,4]

[1,] -0.56047565 0.1292877 -0.6868529 0.4007715

[2,] -0.23017749 1.7150650 -0.4456620 0.1106827

[3,] 1.55870831 0.4609162 1.2240818 -0.5558411

[4,] 0.07050839 -1.2650612 0.3598138 1.7869131

The output is consistent with the first-in first-out behavior that is expected from a queue
object.

The databases created with createS and createQ continue to exist beyond the end of
the R session where they were created. To access them in a future session one again uses
the initS or initQ functions. To demonstrate this we ended our R session and then started
a new one in the same working directory with the results

> library(filehash)

filehash: Simple key -value database (2.1 2010 -02 -04)

> mS <- initS (" myStack ")

> top(mS)

expression (1 + pi)

> mQ <- initQ (" myQueue ")

> invisible(pop(mQ))

> top(mQ)

expression (1 + pi)

The filehash library was loaded again and the existing databases myStack and myQueue were
connected to stack and queue objects. A preview of the top element on the stack object
reveals it is the same as before. Then the pop function was used to remove the matrix object
from the queue. The command was “wrapped” in the invisible function to suppress the
printed output this would have otherwise produced. The next component of the queue is
found to be the expected expression object.

9.2.4 Hash tables

A hash table is a data structure that solves the problem of efficiently mapping a sparse
set of keys, or more generally a set of keys that are not integers, into an array while still
conserving storage. Knuth (1998b) is one of the best references for hashing. An overview of
the topic from a C++ perspective is provided by Sedgewick (1998).

The two main ingredients of a hash table are the hash function and a mechanism for
collision resolution. The hash function is a mapping h : K → Nm, where K is the key space
(the set of all possible keys) and Nm = {1, . . . ,m} for some integer m. A given key k is then
said to hash to h(k). The data is stored in an array A = (A[1], . . . , A[m]) indexed by Nm
with the consequence that m is also the size of the table.

To insert an object a with key a.key into the hash table, first compute the value h(a.key)
and then stores a in A[h(a.key)]. If there is already an object stored in A[h(a.key)], either
the object a has already been inserted into the table or there has been a collision where
two different keys map to the same slot in the table. Collisions are generally impossible to
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avoid. But, by careful design their frequency can be kept to a minimum. Chaining and open
addressing are two methods that can be used to deal with collisions.

In the chaining collision resolution system the entries of the table (i.e., A[1], . . . , A[m])
store not individual objects, but rather linked lists that are sometimes called buckets. Ini-
tially empty, each bucket contains all the objects whose keys map to the same location. The
contents of a bucket are searched linearly with the consequence that the average access time
for an object is half the length of the list where it resides; that is, half the number of all
the objects that have hashed into the bucket (Exercise 9.16). On the other hand, after the
initial look-up, insertion takes constant time.

For a hash table consisting of linked lists A[1], . . . , A[m], an implementation of the look-up
operation might look like

Algorithm 9.8 lookUp(key): Look-up in a chaining hash table
i := h(key)
return A[i].lookUp(key)

Note that the lookUp method called by A[i] is the one in Algorithm 9.4. Thus, the look-up
operation in a chaining hash table is primarily an application of the look-up operation for
a linked list.

Insertion in a chaining hash table first requires an application of Algorithm 9.8. Then, a
check is made to see whether the location lookUp returns already contains an object with
the given key. If so, an error is reported. The idea is summarized in Algorithm 9.9.

Algorithm 9.9 insert(a): Insert in a chaining hash table
b := lookUp(a.key)
if b.next = NULL then
b.next := a

else if b.key = a.key then
return Error: duplicate key

end if

Assume that the hash function maps each key to a location chosen uniformly at random
and independently of the locations to which other keys are mapped. If there are n elements
already in a table of size m, the average length of a list is equal to the table’s load factor
f = n/m giving O(n/m) as the average number of queries in a look-up operation. Thus, the
effort required for both look-up and insert operations, if implemented correctly, is decreased
by a factor of m−1 relative to the linked list case.

Depending on the load factor, insertion/look-up operation in a chaining hash table can
take (roughly) constant time on the average. In fact, Knuth (1998b) demonstrates that
the average number of operations for look-up and insertion are approximately 1 + f/2 and
1 + f2/2, respectively.

Of course, the uniform location condition is not possible to achieve with a well-defined
deterministic function. Still, it turns out that there exist even very simple functions that
for practical purposes satisfy this criterion.

In open addressing, no other storage is used beyond the array itself; i.e., only the m slots
of the array A are available to store the data. The slots of the array will either be filled
with objects that are accessible by the indexing operator [] or they will evaluate as NULL.
In contrast to the chaining scenario, when a collision happens, the object is not inserted
in the location indicated by the hash value. Instead, it is placed in an alternate location
determined by another rule. The simplest rule is linear probing. After a collision occurs at
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h(k), the positions h(k) + 1, h(k) + 2, etc., are tried until an empty location is found. A
slightly more complex alternative is to try the sequence h(k) + s, h(k) + 2s, etc., for some s
relatively prime to m. A generalization of this approach, called double hashing, is the topic
of Exercise 9.17.

Algorithm 9.10 implements the look-up operation using linear probing with shift s. The
search continues until either the target key is found or an empty slot is located. Until one
of these two conditions is satisfied, we continue shifting the location by s. The choice of s
for best performance depends on the size m of the array in which the table is stored. For
example, consider the insertion of many elements that all hash to the same value. Only if s
and m are relatively prime will it be possible to actually fill the whole array (Exercise 9.29).

Algorithm 9.10 lookUp(key): Hash table look-up with linear probing and shift s
i := h(key)
while A[i] 6= NULL and A[i].key 6= key do
i := i+ s

end while
return A[i]

With open addressing the load factor is at most 1. Under the assumption of uniform
hashing Knuth (1998b) shows that the average number of operations is approximately 1

2 (1+
(1 − f)−2) for insertion and 1

2 (1 + (1 − f)−1) for look-up when s = 1. So, (near) constant
time insertion and look-up can also be expected for linear probing.

9.2.4.1 Choosing a hash function

A good hash function should possess two important properties: it should be easy to compute
and its values should in some sense distribute uniformly across the range of the table size.
Normally, a hash function should be designed for the individual type of keys that are used
for the objects that will be stored. If more detailed knowledge of the distribution of the keys
is available, this can often be used to improve performance.

The two examples below provide specific instances of hash functions that are commonly
used in practice.
Example 9.1. Suppose the keys are floating-point numbers in the range (0, 1). In this
instance, the function defined by h(x) = bmxc is a natural candidate for the hash function
to use with an m-element table.
Example 9.2. A hash function for integers that is very efficient and usually distributes the
values well is given by the modulo operation; to hash the key k into a table of size m, just
take h(k) = k mod m.

The table size may have an influence on the behavior of a hash function. Suppose the
simple modular hash function of Example 9.2 is used on b-bit integers with a table of size
2k. In that case, the k bits of lowest significance will be ignored, which is clearly undesirable.
As noted in the previous section, this and other bad configurations for linear probing can be
avoided by having a table size and shift that are relatively prime. Satisfying this condition
lets us avoid cycling before the table is completely full. Most such problems can also be
avoided by picking a prime number for the table size.

9.2.4.2 A simple C++hash table

In this section we will create an open addressing hash table that uses linear probing. The
objects in the table will derive from a built-in C++ template struct called pair that allows
two different data types to be packaged in one object. The key and data pairing that occurs
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in dictionaries in general and in hash tables in particular makes pair objects convenient
data containers. As a result, pair objects will have a recurring role in this and the next
chapter. An extension of pair that can hold multiple objects of multiple types is discussed
in Appendix C.

First, the pair class is made available via the include directive

#include <utility >

The basic structure of the pair class can then be described as in the next listing.∗

template <class dataType1 , class dataType2 >

struct pair {

dataType1 first;

dataType2 second;

pair ();

pair(const dataType1& t1, const dataType2& t2);

};

As the name suggests, a pair object is composed of two member objects; the first member
is an object of type dataType1 and the second member is an object of type dataType2. The
pair struct has a default constructor that initializes first and second members as the
defaults for their respective classes. A second constructor initializes first and second using
specified values for the two data types. In keeping with our previous examples, both the
key and data components for our hash table will be of type int. Thus, we will be storing
pair<int, int> objects in the table although this particular pair struct is not entirely
suited for our purpose. The problem surfaces when one attempts to apply a look-up method
to pair objects. A key step in Algorithm 9.10 is the check to see that an array slot is
empty in the sense of containing something that can be uniquely distinguished as a NULL
entry. Being able to locate such empty slots is what makes the insertion operation feasible
and efficient. If the hash table is implemented using an array structure as will be done
here, the empty slots in the array will typically be filled using the default class constructor.
This produces an “empty” pair<int, int> object that has no obvious way of making its
“empty” status known to a look-up function.

To provide a true NULL object we will slightly extend the pair class via inheritance to
obtain the newPair class described in the listing below.

Listing 9.3 newPair.h

struct newPair : public pair <int, int>

{

bool isNull;

newPair () : pair <int, int >() {

isNull = true;

}

newPair(const int& key , const int& data) :

pair <int, int >(key , data){

isNull = false;

}

newPair(const newPair& pairObj) :

pair <int, int >( pairObj.first , pairObj.second)

{this ->isNull = pairObj.isNull ;}

};

∗ There are additional constructors that allow for implicit type conversion. See Chapter 21 of Vandervoorde
and Josuttis (2003).
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Since pair is a struct, public inheritance allows newPair objects to have the same access
to the members first and second as would a pair object. Notice how the newPair con-
structors invoke the base class (i.e., pair) constructors via the mandatory initializer lists.
This leaves them with the task of defining the Boolean variable isNull that represents the
main point of departure from the base class. This new class member provides the “fix” for
our problem by evaluating to true whenever the default constructor is used. An alternative
approach that would work equally well here would be to use composition (i.e., imbed a pair
object in the newPair class) rather than inheritance. This idea is explored in Exercise 9.20.

The class declaration for a class hashTable that will hold newPair objects is now given
by

Listing 9.4 hashTable.h

class hashTable {

int Size , tableSize;

int Shift;

newPair* pTable;

bool empty(int i) const {

cout << std:: boolalpha << " isNull is "

<< pTable[i]. isNull << endl;

return pTable[i]. isNull;

}

public:

hashTable () {};

hashTable(int tablesize , int shift = 1);

hashTable(const hashTable& hT);

~hashTable ();

hashTable& operator=(const hashTable& hT);

bool operator==(const hashTable& hT) const;

int insert(newPair a);

int lookUp(int a) const;

int hash(int a) const;

int getData(int a) const;

};

The class has four private data members: the number of slots in the table tableSize, the
current number of objects in the table Size, the shift parameter for linear probing Shift
and a pointer to newPair that points to the beginning location where newPair objects will
be stored in memory. The utility function empty that checks whether a designated array
slot is empty is for internal use and, accordingly, has been made private. Note the use
of the isNull member of the newPair class in the definition of the empty method. The
boolalpha format flag from Exercise 3.1 is used here to convert the 0 and 1 values for a
Boolean variable into a true/false format.

The public methods for class hashTable include the constructors, destructor, hash func-
tion and functions for filling in and looking up values in the table. A default “do nothing”
constructor is given inline in Listing 9.4. The other constructor definition is

hashTable :: hashTable(int tablesize , int shift):

tableSize(tablesize), Shift(shift), Size (0) {

pTable = new newPair[tableSize ];

}
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The input values for the shift and table size are used in an initializer list to set the values
of the class members Shift and tableSize. The Size member is set to 0 and a pointer to
newPair is initialized to hold tableSize newPair objects.

As dynamic memory allocation is involved, an explicit destructor is needed such as

hashTable ::~hashTable (){

if(pTable != 0)

delete[] pTable;

}

For the same reason a copy constructor and an overloaded assignment operator are needed.
The task of creating these functions as well as the overloaded comparison operator == is
relegated to Exercise 9.18.

The hash function that will be used is the one from Example 9.2. The code that imple-
ments it is

int hashTable ::hash(int a) const {

cout << a << " hashes to " << a % tableSize << endl;

return a % tableSize;

}

This uses the C++ modulus operator that requires us to include the cmath header file.
The look-up operation is carried out with

int hashTable :: lookUp(int a) const {

int ind = hash(a);

while (!empty(ind) and !(pTable[ind]. first == a)) {

cout << "Collision at " << ind << endl;

cout << "Next try " << ind + Shift;

ind = (ind + Shift) % tableSize;

cout << " that hashes to " << ind << endl;

}

return ind;

}

First, the supplied key value is hashed. Then, linear probing according to the value of the
Shift class member is used to find either a nonempty array slot corresponding to the hashed
key value or one whose index hashes to the given key. Some additional output statements
have been included here for the purpose of a later example. With the lookUp method in
place the actual retrieval of a data value is straightforward to accomplish using

int hashTable :: getData(int a) const {

return pTable[lookUp(a)]. second;

}

A hashTable object is filled using the insert method below.

int hashTable :: insert(newPair a) {

int ind = lookUp(a.first);

if (pTable[ind]. first == a.first) {

cout << "Already inserted this value" << endl;

return -1;

}

cout << "Inserting at " << ind << endl;

pTable[ind] = a; Size ++;

return ind;

}
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The lookUp method is first applied to the key value for the input newPair object to obtain
a target storage location. There are two things that can happen: either lookUp returns
the index of an empty slot or the slot is occupied which means that the input key already
exists. In the latter instance an “error” index of −1 is returned. Otherwise, the new object
is inserted at the hashed key value and the Size member is augmented by 1. As with the
lookUp method, some unnecessary output has been built into the function to allow us to
track the hashing process in a test case.

A driver program with the main function below was used to illustrate the operation of
our hashTable class.

int main (){

hashTable ht(53, 13);

ht.insert(newPair (213, 10));

ht.insert(newPair (54, 11));

cout << ht.getData (54) << endl;

return 0;

}

A request is made for a table with 53 slots and the Shift value is set to 13. Then, two
newPair objects are inserted into the table and the Data component of the second object
is accessed. The output produced by the program is

213 hashes to 1

isNull is true

Inserting at 1

54 hashes to 1

isNull is false

Collision at 1

Next try 14 that hashes to 14

isNull is true

Inserting at 14

54 hashes to 1

isNull is false

Collision at 1

Next try 14 that hashes to 14

isNull is false

11

Since 213 = 53× 4 + 1, 213 mod 53 = 1 and the first key value hashes to 1. The array slot
with index 1 is empty (i.e., its isNull member evaluates to true) and a newPair object
with a data component of 10 is inserted at that point in the table. The second object has a
key of 54 that also initially hashes to 1. But, the slot is full (isNull is false) and the key
value of 54 for the new object is not the same as that of the occupying object (i.e., 213).
So, the search continues with a new shifted hash value 1 + 13 = 14 that hashes to 14. This
slot is empty and the newPair object with data component 11 is inserted into the table at
that location. Up to this point the lookUp method has been used to find an empty slot with
the while loop in lookUp being terminated when a slot’s isEmpty member is found to be
true. The request for the data value of the object with key 54 goes in the other direction;
the search is for a specific, nonempty slot. The hashing process proceeds through exactly
the same steps as when the targeted object was inserted: initially hashing to 1 before the
probe shifts it to slot 14. In this case the isNull member still evaluates to false; but, the
while loop ends when a comparison of the element’s key value with the one being sought
returns true. The requested data value is then retrieved successfully.
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9.2.4.3 Hash tables in R

Hash tables are present in the internals of most programming languages, either inside the
compiler in the case of compiled languages such as C++ or inside the interpreter in the
case of interpreted languages such as R or Python. An interpreter must be able to retrieve
information about any object previously defined and, from that perspective, it is easy to
imagine that a hash table may be useful if only as a means to obtain information about an
object given its name. Both R and Python use a general hash table mechanism to store the
information about objects defined and manipulated by the user, as well as for internal use
by the interpreter. In fact, a good portion of the time used in executing both R and Python
code is spent in looking up objects in dictionaries. While dictionaries (or associative arrays,
another synonym for a hash table) are a prominent language feature in Python, R’s hash
tables are much less obvious to a casual user. Nonetheless, its internal hash table mechanism
is available and easy to use for storage purposes. There are at least two ways to make use of
this R feature: directly, using environments, or through the hash package. Another option
is provided by the filehash package that creates an external (from R) hash table database.
All three approaches will be discussed in this section.

The key to creation of hash tables in R is the R environment concept. An environment
consists of a set of symbol-value pairs (called a frame), and a pointer to another environment
(called the enclosure). The details of the implementation or internal usage of environments
are not of interest for us here; instead, we want to examine how to use them to create hash
tables for storage of R objects.

The constructor for the environment class has prototype

new.env(hash = FALSE , parent , size)

The first argument in the constructor gives us the option of having the environment be a
chaining hash table. The second argument parent is the environment that is to contain
the object created by the constructor. As this plays no role in the current development, we
will set parent to be emptyenv() which, according to the R environment help page, is the
“the ultimate enclosure of any environment [. . .] to which nothing may be assigned”. The
size argument is the number of buckets to be used in the hash table and defaults to 29.

The insert and look-up operations for an environment are carried out using the assign
function and either the get or mget functions; get allows access to one object while mget
returns (as a list) the objects whose names/keys are specified in its list argument.

An abbreviated prototype for assign is

assign(x, value , pos)

The x argument is a character string that represents the name that will be given to the
object specified by the value argument. The pos argument specifies the environment where
the assignment is to take place. Similarly, a condensed prototype for get looks like

get(x, pos)

with x the name of the object to be retrieved from the environment specified by pos.
To determine if an object with name x is present in an environment one uses the exists

function in the form

exists(x, pos)

with the pos argument set to the environment that is the target for the search. The ls func-
tion will list the contents of an environment, environmentName via ls(environmentName).
Finally, rm(objectName, envir = environmentName) can be used to delete an object
objectName from environmentName. All elements are deleted by the command rm(list
= ls(), envir = environmentName).

Some experimentation with the R hash table facility produced the following results.
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> set.seed (123)

> hT <- new.env(hash = TRUE , parent = emptyenv(), size = 3)

> env.profile(hT)

$size

[1] 3

$nchains

[1] 0

$counts

[1] 0 0 0

> assign("x", 1, envir = hT)

> assign("mat", matrix(rnorm(16), 4, 4), envir = hT)

> assign("expr", expression(1 + pi), envir = hT)

> assign("intSeq", 1:5, envir = hT)

> env.profile(hT)

$size

[1] 3

$nchains

[1] 2

$counts

[1] 2 2 0

> eval(get("expr", envir = hT))

[1] 4.141593

> hT[["intSeq"]]

[1] 1 2 3 4 5

> hT$intSeq

[1] 1 2 3 4 5

> rm("intSeq", envir = hT)

> exists("intSeq", envir = hT)

[1] FALSE

First, an empty chaining hash table hT is created and examined using the env.profile
function. The output from env.profile tells us that hT has three buckets (i.e., size is
three) with no chains (or linked lists) and no elements in any of the buckets as indicated by
the values of counts. Next, four R objects are inserted into hT using assign and its profile
is examined again. The hash table now has two chains or linked lists with two elements in
each bucket and a third bucket that is empty. The indexing operator [[]] and extraction
operator $ provide alternatives to get for accessing elements in an environment as illustrated
by retrieving the expression and sequence objects from hT. Note that the “index” that is
used with [[]] must be the object’s name or key. Finally, the sequence object is deleted
from hT using rm and exists is used to check that the deletion has been successful.

A more user-friendly front end for R hash tables is provided by the hash package where
hash tables have been implemented as an S4 class called hash. The class constructor can
take the form

hash(key , values)

with key a set of keys (in the form, e.g., of a list) whose corresponding data objects are
given in a list as the values argument. For example, we can recreate some aspects of the
previous example with



ADT DICTIONARY 355

> library(hash)

hash -2.1.0 provided by Decision Patterns

> hT <- hash(list(1, 2, 3, 4), list(1, matrix(rnorm(16), 4, 4),

+ expression(1 + pi), 1:5))

> class(hT)

[1] "hash"

attr(,"package")

[1] "hash"

> eval(hT[["3"]])

[1] 4.141593

First the hash package is loaded into the current environment. Then, a hash table object
is formed using a group of R objects. A check reveals that the new hash table is an object
of the hash class. Evaluation of the expression object demonstrates that the entries in a
hash object can be accessed with the indexing operator [[]] using the object’s key as the
index value.

The functions delete and has.key provide the same utility for hash objects as we ob-
tained with rm and exists for environments. There is also a clear function that empties
the table. The use of these functions in terms of our running example produces

> delete(c("3", "4"), hT)

> has.key("4", hT)

4

FALSE

> clear(hT)

> hT

<hash > containing 0 key -value pair(s).

NA : NULL

The third and fourth entry are removed from the table with delete and has.key is employed
to check that removal actually occurred. The clear function is then applied to the hash
object and an application of show indicates the table is now empty.

Hash tables created with environments (and, hence, those produced with the hash pack-
age) store both the keys and their corresponding data objects in memory. For large data
sets this can become problematic. One solution to problems of this nature can be obtained
by using the filehash package from Section 9.3 where the key values are retained in memory
while the corresponding data is stored on disk and then accessed as needed.

The listing below demonstrates the steps in creation of a filehash object.

> library(filehash)

> dbCreate("myData")

[1] TRUE

> hT <- dbInit("myData")

[1] "hT"

> class(hT)

[1] "filehashDB1"

attr(,"package")

[1] "filehash"

First the filehash library is loaded and an empty database called myData is created on
disk using the dbCreate function. The myData file is “linked” to a filehash object hT with
the dbInit function using the database filename (myData in this case) as its argument. An
application of the class function reveals that a filehash object has been created. The DB1
that appears in the class name corresponds to the default storage options where keys and
data are stored in a single file.
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The functions dbInsert, dbFetch (or the indexing operator [[]]) and dbDelete perform
the hash table insertion, look-up and deletion operation while dbExists can be used to check
for the existence of a specified key. For example, the listing below involves the same types
of computations that were carried out previously using environments.

> set.seed (123)

> dbInsert(hT, "a", 1)

> dbInsert(hT, "b", matrix(rnorm(16), 4, 4))

> dbInsert(hT, "c", expression(1 + pi))

> dbInsert(hT, "d", 1:5)

> eval(hT[["c"]])

[1] 4.141593

> dbExists(hT, "d")

[1] TRUE

> dbDelete(hT, "d")

> dbExists(hT, "d")

[1] FALSE

As before, four objects are inserted into the hash table and the third expression object is
evaluated using the index operator to perform the table look-up. The existence of the fourth
object is tested using the dbExists function, it is removed from the table with dbDelete
and the success of removal is checked using dbExists.

The databases created using the filehash package persist and can be accessed in future
R sessions using the dbInt function. To illustrate this we created a “large” data file and
ended the R session with

> dbCreate("bigfile")

[1] TRUE

> hT <- dbInit("bigFile")

> set.seed (123)

> invisible(sapply(1:4, FUN = function (i){

+ dbInsert(hT , paste("a", i, sep = ""),

+ rnorm(10^7 , .05*i))}))

> q()

A new session was started in the same directory and a new filehash object was linked to
the file with

> library(filehash)

filehash: Simple key -value database (2.1-1 2010 -10 -04)

> hT <- dbInit (" bigFile ")

> lapply(hT[c("a1", "a2", "a3", "a4")], FUN = mean)

$a1

[1] 0.05011525

$a2

[1] 0.1002785

$a3

[1] 0.1499748

$a4

[1] 0.1997805

The filehash library must be loaded again. But, the dbInit function makes the necessary
connection with bigFile and lapply is used to compute the means of the four arrays that
are held in the database. There is a bit of subtlety here in the use of [] rather than [[]].
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The former returns a list that contains the requested elements from the database thereby
making it possible to use the lapply function.

9.2.4.4 Pairwise independent and universal hash families

In real life, input data may obey some regular pattern or its distribution may contain some
unknown bias. Our uniform hashing assumption may not be satisfied in such a situation,
leading to poor performance. In this section we explain an approach that avoids this problem.

Imagine you are the administrator of a site that uses an open-source program that contains
a hash table implementation. The behavior of the hash table and its efficiency depends on
the input to the program. A good hash table (and in particular, its hash function) is designed
to work well for typical input sequences. For example, the results we discussed that support
the claim that the expected number of steps for a hash table look-up is nearly constant
require that the input come from a “typical” input sequence. Now imagine an adversary
whose goal is to disrupt the performance of your program. Having inspected the code and
knowing the hash function, your malicious foe may be able to choose a sequence of keys
that all hash to the same slot, thus causing the hash table to perform much less efficiently
or even causing errors that, with a “typical” input sequence, would be extremely unlikely
to happen.

A simple solution to this problem is to avoid specifying the hash function in the code.
Instead, choose the hash function randomly from a family of hash functions that is both
large and diverse enough to guarantee a high probability of good behavior on any input. A
family H of hash functions with range {0, 1, . . . ,m− 1} is said to be universal if, for every
two keys k1 and k2, when an h ∈ H is randomly selected we have P [h(k1) = h(k2)] ≤ 1/m.
Universal hash families were introduced by Carter and Wegman (1979).

A stronger condition, useful in a large variety of settings (e.g., in de-randomization of
randomized algorithms), is to require that for every key pair (k1, k2) and every pair (x, y)
of hash values, when h is chosen uniformly at random from the family, we have P [h(k1) =
x, h(k2) = y] = 1/m2. In other words, every pair of values (h(k1), h(k2)) is equally likely.
Such a family of hash functions is called strongly 2-universal or pairwise independent.

Universal hash families have other interesting and useful properties. For example, if n
objects are hashed into a table of size m ≥ n, the expected number of collisions per hashed
key is no more than 1.
Theorem 9.1. Suppose there are n ≤ m keys in a table of size m with the hash function
chosen uniformly at random from a universal family. Then, for every key k,

E[number of collisions on insertion of k] ≤ 1.

Proof. For every key k̃ 6= k, the probability that h(k̃) = h(k) is at most 1/m. Thus, the
expected number of keys in the table with hash values equal to h(k) is at most n/m ≤ 1.

Efficient universal hash families are not difficult to find as demonstrated by the following
two examples.
Example 9.3. A frequently used hash function for strings is defined by h(S) = h(s1) +
h(s2) + · · · + h(sn) mod m, for the string S = s1s2 · · · sn, where m is the size of the hash
table and h is a hash function mapping the set of all characters into {0, . . . ,m − 1}. An
extension of this idea is to randomly and independently select N functions h1, . . . , hN from
the set of all functions mapping the set of characters into {0, . . . ,m− 1} and define

h(S) = h1(s1) + h2(s2) + · · ·+ hn(sn) mod m (9.1)

for any string of length n ≤ N . It is easy to show that this gives a universal hash family
(Exercise 9.26).
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Example 9.4. Consider hashing the set of integers {0, 1, . . . , r − 1}. Let p ≥ r be a prime
number and take h(k) = ((ak+ b) mod p) mod m, where a and b are chosen randomly from
{0, 1, . . . , p− 1} with a 6= 0. Carter and Wegman (1979) show that this gives a universal
hash family.

9.2.4.5 Extensions

We have not discussed how to remove elements from a hash table. Some choices in designing
a hash table lead to easier implementation of this operation than others. If the hash table
uses chaining for collision resolution, it is easy to delete an element: just remove it from
the linked list in which it is found (e.g., Exercise 9.11). Open addressing presents a more
difficult challenge; after finding the table entry x that is to be deleted, it is necessary to
move any elements hashing to the same value as x that may have been inserted after x. This
becomes complicated due to the possibility that additional collisions may have happened
after the probe at the location of x. We must at least find the end of the probe sequence and
relocate the last inserted entry with hash value equal to that of x. This is not all; that entry
may have caused other collisions which must now be tracked down. The simplest approach
is to replace the deleted element by a sentinel value indicating a deletion has occurred. This
lets the look-up operation skip over this location while also letting the insert procedure use
the location (Exercise 9.19).

A hash table may need to be resized if it gets close to full. There is no cheap way to do
this; every table entry must be rehashed into a larger table. On the other hand, this is not
done frequently. A standard way to maintain a hash table of dynamically changing size is
to double its size when it becomes half full and to halve its size when it becomes less than
a quarter or eighth full. This prevents frequent resizing and in an amortized sense does not
increase the number of operations by more than a small constant factor.

9.3 ADT priority queue

In many situations a set that needs to be represented or managed in a computer program has
additional structure and is used according to this structure. One of the simplest examples is
a priority queue. In this setting components are both inserted and removed during operation.
Associated with each element is a numerical attribute that represents its priority relative
to the other members of the queue and thereby dictates the sequencing of its removal.

The objects being stored will again be assumed to consist of key and data modules with
an element’s key value now being synonymous with its priority. Under this formulation,
each removal step will result in the object with the smallest key (highest priority) being
removed from the queue.

Situations where priority queues are useful are frequent in practice. For example, the
way a business distributes products to dealerships may be prioritized in terms of past sales
performance. The scheduling of jobs on a computer cluster is likely to be managed with a
priority queue. The future event queues that arise in a discrete event simulation are often
handled using priority queues as implemented through a heap (discussed in the next section)
or one of its variants (e.g., Mansharamani 1997). The problem of finding the shortest travel
route between two locations is an example of the shortest path problem from graph theory.
In that setting, Dijkstra’s algorithm for finding the optimal path benefits greatly from an
efficient priority queue implementation (Exercise 9.32).

The operations that are supported by a priority queue are
• insert(key) that inserts an object with priority level key into the queue,

• minimum() which returns the object with the smallest key in the queue and

• extractMin() that both returns and extracts the object with the smallest key.
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Figure 9.1 A heap

Here the assumption is that higher priority corresponds to a smaller key. A similar formu-
lation is possible for the case where an object’s priority increases with its key value.

Priority queues are easiest to visualize as binary trees. This perspective also makes it
easier to develop algorithms and code for the data structure’s operations. A binary tree is
an abstract combinatorial object that is useful for representing a number of different data
structures. Thus, it is worthwhile to invest a moment now on introducing the idea.

The definition of a binary tree is recursive. A binary tree is either 1) empty or 2) consists
of a node called root and two binary trees that are called the left and right subtrees of the
root, respectively. The roots of a node’s subtrees are called its children and the root node
is their parent. We visualize a tree as a graph whose vertices are nodes and whose edges
link nodes to their children as in Figure 9.1. Note that, by definition, a node in a binary
tree may have zero, one or two children and a node’s child is either its left child or its right
child. A node for which both subtrees are empty is called a leaf. A node that is not a leaf
is an internal node. A level of a tree consists of all the nodes that are the same number of
generations/steps removed from the root.

The binary tree in Figure 9.1 has four levels and all but the fourth level are full. The
node containing the value 5 is the root. It has both a left and right child: i.e., the nodes
with values 6 and 8, respectively. Both of these latter two nodes are internal. All the nodes
on the last level of the tree are leaves as well as the node with value 18.

9.3.1 Heaps

The simplest efficient implementation of a priority queue uses the data structure called a
heap. A heap is a binary tree that at each node stores a member of the set and satisfies the
properties

• every node has two children, except for the nodes in the lowest two levels of the tree,

• the lowest level of the tree is filled left to right (see Figure 9.1) and

• the key value of every node is no greater than that of either of its children (known as the
heap property).

Figure 9.1 shows an example of a heap with nodes having the integer keys 5, 6, 8, 12, 7, 9,
18, 15, 25, 13, 11 and 10.



360 ABSTRACT DATA STRUCTURES

It is easy to see how to find the node with the minimum key in a heap by the heap
property; it is just the root of the heap. Less obvious is that a heap can be efficiently
implemented using an array and this is what we describe next.

To store an n-element heap in an array one begins by allocating an array A of size at
least n. This array in then filled in order, level by level from the root towards the leaves
and left to right within every level. Thus, the root is stored in A[1], its left and right
children, respectively, are placed in A[2] and A[3], the nodes at the third level are placed
in A[4], A[5], A[6] and A[7], etc. The idea is illustrated in Table 9.1 for the binary tree in
Figure 9.1.

Table 9.1 Array representation of the heap in Figure 9.1

Array Index 1 2 3 4 5 6 7 8 9 10 11 12

Key Value 5 6 8 12 7 9 18 15 25 13 11 10

In general, for a node at A[i], its children are placed at A[2i] and A[2i+ 1] and its parent
at A[bi/2c]. This, of course, assumes that the array index starts at 1. For 0-offset indexing,
the left and right child of A[i] are A[2i+ 1] and A[2i+ 2] and its parent is A[b(i− 1)/2c].

If the value of a single node in the heap changes, it is easy to rearrange the structure back
into a heap. If the kth node’s key value is decreased, its subtree is still a heap. The only
possible violation of the heap property is if its key is now smaller than that of its parent.
In this case, swap the node with its parent and continue the process up the tree until the
heap property is restored. If, instead, the node’s key is increased, swap it with the one of its
children that has the smallest value and continue the process down the tree until the heap
property is again satisfied. The operation of moving nodes up and down the tree in order
to correct violations of the heap property is called heapifying. The process of heapifying
upward toward the root is described by Algorithm 9.11 and Figures 9.2–9.5.

Algorithm 9.11 upHeapify(i): Float A[i] up to its correct location
while i > 0 and A[i].key < A[bi/2c].key do

Swap the values of A[i] and A[bi/2c]
i := bi/2c

end while

Figures 9.2–9.5 illustrate Algorithm 9.11 for the heap in Figure 9.1. A new node is added
in the first open position on the fourth level of the tree (Figure 9.2) or, equivalently, the
object is inserted in the thirteenth slot of the array in Table 9.1. The new node’s key value of
4 is less than that of its parent (i.e., 9) and they are swapped (Figure 9.3). This corresponds
to swapping entries 13 and b13/2c = 6 in the heap’s array representation. Again, the new
node is seen to have a key that is smaller than its parent; so, we swap the elements with
indices 6 and 6/2 = 3 in the array (Figure 9.4). Finally, 4 is smaller than the key of the root
(or b3/2c = 1) node and once these two nodes are swapped (Figure 9.5) the heap property
has been restored.

The up-heapifying procedure must terminate at or before it reaches the root and array
indices used in making the swaps will always be valid. Some caution is required going down
the heap as there is no assurance that an object occupies every node at the bottom level. If
size is the number of objects that are currently in a heap, then a down-heapifying analog
of Algorithm 9.11 is provided by Algorithm 9.12 below.
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Figure 9.2 New node “arrives”: shaded gray with a key of 4
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Figure 9.3 Swap the new node with its parent that has a key of 9
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Figure 9.4 Swap the nodes with keys of 4 and 8
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Figure 9.5 Swap the root and the node with the key of 4 to restore the heap property

Algorithm 9.12 downHeapify(i): Float A[i] down to its correct location
while 2i < size do

if A[2i].key > A[2i+ 1].key then
j = 2i+ 1

else
j = 2i

end if
if A[i].key > A[j].key then

Swap A[i] and A[j]
i := j

else
Break

end if
end while
if 2i = size and A[i].key > A[2i].key then

Swap A[i] and A[2i]
end if

The number of operations involved in an application of either downHeapify or upHeapify
is proportional to the number of steps from the kth node to some leaf below it, or to the
root, respectively. The number of nodes is at most n = 2r+1− 1 for a tree with r levels and
there can be at most r nodes on any branch of the tree. Therefore, the number of operations
is proportional to log2(n).

To insert a node into a heap, the size of the heap is first enlarged by one and the new
component is placed in this new position. Then, the new object is floated up the heap with
the upHeapify method. Algorithm 9.13 describes the procedure. Insertion operations takes
only linear time because, on average over the sequence of inserted elements, each call to
upHeapify takes constant time.
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Algorithm 9.13 insert(a): Insert a node into a heap stored in an array A
size := size+ 1
A[size] := a
upHeapify(size)

Algorithm 9.14 shows how to extract a node from a heap. One swaps the highest-indexed
element and the root, reduces the size by one, down-heapifys the root and then returns the
former root as output. The idea is illustrated in Figures 9.6–9.8 for the heap in Figure 9.1.
The first step is to swap the elements in the first and thirteenth (or last) positions producing
Figure 9.6. Then, the first node is swapped with the second node in Figure 9.7 since this is
its smallest child. Next, the new second node is swapped with its smallest child in Figure
9.8 and the heap property is restored.

Algorithm 9.14 extractMin(): Extract the minimum from a heap in an array A
Swap A[1] and A[size]
size := size− 1
downHeapify(1)
return A[size+ 1]

This same process used for removing the minimum can be used to sort objects that are
stored in a heap. For a size-element heap, all that is necessary is to make size consecutive
calls to extractMin as in Algorithm 9.15.

Algorithm 9.15 heapSort(): Sort objects in a heap by their key values
for i = 1 to size− 1 do
extractMin()

end for

This procedure can actually be carried out in place as will be seen in the next section.
Like any other comparison sorting method, heap sort requires on the order of n log n flops
(Exercise 9.23).

9.3.2 A simple heap in C++

In this section we provide a simple C++ version of a heap for data of type int. In particular,
this will allow us to use the dArray class of Section 9.2.1 to provide the array structure that
will hold the objects in the heap.

The declaration for our Heap class is given in Listing 9.5 below.

Listing 9.5 heap.h

//simpleHeap.h

#ifndef HEAP_H

#define HEAP_H

#include "dArray.h"

class Heap {

dArray A;

void swap(int i, int j){
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Figure 9.6 Shaded nodes from the first and thirteenth positions have been swapped
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Figure 9.7 First position and second position nodes are swapped
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Figure 9.8 The second position node is swapped with its smallest child
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int temp = A.pA[i]; A.pA[i] = A.pA[j];

A.pA[j] = temp;

}

void upHeapify(int i);

void downHeapify(int i, int size);

public:

Heap(int x) : A(dArray(1, &x)) {}

Heap(const dArray& a);

void insert(const int& x);

int minimum () const {

return A.pA[0];

}

int& extractMin ();

void heapSort ();

void printHeap () const;

};

#endif

The Heap class uses the array representation for a heap that was discussed in the previous
section with the array storage being furnished by a dArray object. It is important for the
Heap class methods to be able to manipulate the objects in A as they must be reordered to
preserve the heap property when elements are either added or extracted from the queue.
An expedient way to gain the access that is needed for such manipulations is to make Heap
a friend of dArray. This is accomplished by adding

friend class Heap;

to the dArray class declaration in Listing 9.1.
The Heap class constructor only initializes a Heap object. The actual process of build-

ing the heap is accomplished with the insert method. There are private methods swap,
upHeapify and downHeapify that perform the re-arrangements of objects that are required
for internal operations in a heap. These method are used in the public methods extractMin
and heapSort that remove the smallest value from the heap and sort the heap elements,
respectively. In contrast to extractMin, the minimum method simply returns the node at
the top of the heap without removing it. As a result, no rearrangement of the heap elements
is necessary. There is also a utility printHeap that will print the contents of the heap to
standard output.

The upHeapify method proceeds along the path laid in Algorithm 9.11.

void Heap:: upHeapify(int i){

int temp = i;

while(A.pA[(temp - 1)/2] > A.pA[temp ]){

swap(temp , (temp - 1)/2);

temp = (temp - 1)/2;

}

}

The main difference between the code here and Algorithm 9.11 is the use of 0-offset indexing
when accessing the elements of the array. Also, note that integer division automatically
performs the floor operation in Algorithm 9.11.

The downHeapify method is slightly more complicated. Also, rather than giving a rote
implementation of Algorithm 9.12 we will allow downHeapify to only work on a portion of
the tree. This feature will become useful in our heap sort code.
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void Heap:: downHeapify(int i, int size){

int temp = i, newTemp;

bool done = 0;

while(2*temp + 1 <= size && !done){//still a remaining node

if(2*temp + 1 == size){//no right child: bottom of the heap

if(A.pA[temp] > A.pA[2*temp + 1])

swap(temp , 2*temp + 1);

done = 1;

}

else if(A.pA[2*temp + 1] < A.pA[2*temp + 2] && !done){

if(A.pA[temp] > A.pA[2*temp + 1])

swap(temp , 2*temp + 1);

newTemp = 2*temp + 1;

}

else if(A.pA[2*temp + 1] >= A.pA[2*temp + 2] && !done){

if(A.pA[temp] > A.pA[2*temp + 2])

swap(temp , 2*temp + 2);

newTemp = 2*temp + 2;

}

else

done = 1;

temp = newTemp;

}

}

As indicated by Algorithm 9.12 there are several cases that must be considered. If we are
at the bottom of the heap and there is no right child, simply swap the two elements if the
parent is smaller. Otherwise, there will be two children and the parent is swapped with the
child having the smallest key provided its key is the smaller of the two. The whole process
is managed by a while loop that will terminate the downward movement of the i-indexed
node at the level determined by the size argument. The other option is that none of the
if or else if statements evaluate as true which means that the heap property has been
restored. When that happens the last else statement activates a Boolean flag done that
terminates the while loop when it evaluates to true. This is an alternative to using a break
statement as in Algorithm 9.12. There is a subtle, but important, step where a temporary
variable newTemp is used to store the current value of the index temp as the while loop
progresses. This allows the value to be reset in the first else if block without altering the
temp loop variable itself until the end of an iteration.

The downHeapify and upHeapify methods really do all the work in a heap and the other
methods use them to achieve their particular goals. For example, the insert method takes
the form

void Heap:: insert(const int& x){

A.append(x);

upHeapify(A.Size - 1);

}

The append method from the dArray class is used to append the new object x as the last
node in the heap. Then, upHeapify does the rest and moves the node up to its proper po-
sition. Similarly, extractMin uses downHeapify in the listing below to perform its function
of removing the element with the smallest key from the heap.

int& Heap:: extractMin (){

if(A.Size == 1)//only 1 object in the heap

return A.pA[0];
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swap(A.Size - 1, 0);

A.Size --;

downHeapify (0, A.Size);

return A.pA[A.Size];

}

If the heap has only one element, then that is returned to the calling program. Otherwise,
the top (or 0 index) node is swapped with the bottom (or A.Size - 1 index) node and the
new top node is down-heapified. Note that the “minimum” node is not actually extracted
but allowed to remain in the dArray object A. But, the Size parameter for A is decremented
meaning that the slot that is now occupied by the “minimum” node is viewed as free space
by A. Its content will therefore be overwritten by the next item that is inserted into the
heap.

Finally, let us consider the heapSort method in the next listing.

void Heap:: heapSort (){

for(int i = A.Size - 1; i > 0; i--){

swap(i, 0);

downHeapify (0, i - 1);

}

for(int i = 0; i <= (A.Size - 1)/2; i++)

swap(i, A.Size - 1 - i);

}

This method sequentially removes objects from the top of the heap and inserts them on
the bottom where they accumulate in decreasing order. The re-arranging is done using
progressively smaller subtrees with a new subtree being formed on each step by excluding
the current bottom node. So, for example, on the first iteration the bottom node that
represents the object with the smallest key value is “excluded” to give a subtree of A.Size
- 1 nodes that is converted back into a heap using downHeapify. The process is repeated
and this time the object with the second smallest key will be placed in the A.Size - 2 slot
of A and the new subtree will consist of all but the last two (non-null) elements of A, etc.
At the end of the sorting process the objects will be arranged in a dArray object with keys
that decrease from left to right. The last step in the heapSort method reverses the order
so that the object with the minimum key is the first entry in the array.

As a simple application of our Heap class let us use it to sort the values in Figure 9.1.
The main function for the program that was written to accomplish this is given below.

int main (){

Heap H(5);

H.insert (6); H.insert (8); H.insert (12); H.insert (7);

H.insert (9); H.insert (18); H.insert (15); H.insert (25);

H.insert (13); H.insert (11); H.insert (10);

H.printHeap ();

H.heapSort ();

H.printHeap ();

return 0;

}

First, a Heap container is initialized. Then, the remaining elements from our array are
inserted into the heap with the insert method. The resulting heap is printed to standard
output, sorted and printed again. The output produced by the program is

5 6 8 12 7 9 18 15 25 13 11 10
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(4, 4)

(0, 1) (6, 5)

(-15, 99) (1, 2)

(-16, 5) (-3, 3) (3, 1)

(5, 5) (7, 4)

(21, -3)

(-1, 9)

(-2, 14)

(2, 11)

Figure 9.9 A binary search tree

5 6 7 8 9 10 11 12 13 15 18 25

Note that the order of entry for the key values has produced the heap shown in Figure 9.1.
An application of heapSort rearranges its elements in numerically ascending order.

9.4 ADT ordered set

Heaps are used to store ordered sets when only a few operations are necessary. In some
situations it may be useful to have more information about the elements stored in the
data structure. For example, the operations next or previous that return an element’s
successor or predecessor, respectively, are not easy to implement efficiently on a heap. The
ADT ordered set provides a structure that is more amenable to these and several other
operations. Specifically, an ordered set requires the operations
• makeOrderedSet() that creates a new ordered set,
• getMax() and getMin(), methods that return the ordered set elements with the largest

and smallest keys,
• lookUp(key) that performs a look-up of the specified key value in the data structure and
• insert(key, object) that inserts a new object with a specified key.

The basic structure that implements ADT ordered set is called a binary search tree. This
can be visualized as a binary tree in which each node contains a member of the ordered set.
The elements are arranged in the tree according to their keys so that they satisfy an order
property: the key value of the node’s left child is no larger than that of the node itself and
the key value of a node’s right child is no smaller than that of the node itself. In contrast
to the previous ADTs we have considered, binary search trees are nonlinear in nature; that
is, the data is not stored in a sequence as is the case for, e.g., dynamic arrays and lists.

Figure 9.9 shows an example of a binary search tree. The nodes are composed of (key,
data) pairs with both the key and data objects being integers.

To find the node with the minimum key in a binary search tree, descend from the root to
its left child and continue descending until reaching a node without a left child. This node’s
key value is the minimum of the set. The idea is summarized in Algorithm 9.16.
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Algorithm 9.16 getMin(): Find the node with minimum key value in a binary search tree
a = root
while a.left 6= NULL do
a := a.left

end while
return a

The algorithm begins at the top or root node and descends along the left-hand edge of the
tree. In the case of Figure 9.9 the progression is from the root node (4, 4) to the (0, 1) and
(−15, 99) nodes before stopping at the node with (key, data) value (−16, 5). The same basic
idea produces a function that returns the node with the largest key in the tree.

Searching in a binary search tree consists of moving into the left or the right subtree,
depending on the outcome of the comparison between the key of the sought-for node and
that of the node at the current location. Algorithm 9.17 gives the details.

Algorithm 9.17 lookUp(key): Find a node with key value key in a binary search tree
a := root
while a 6= NULL and a.key 6= key do

if key < a.key then
a := a.left

else
a := a.right

end if
end while
return a

Suppose, for example, a search is to be conducted to find the node with key value 3 in
Figure 9.9. The starting point is the root node that has the key value 4. As 3 < 4, the
algorithm moves to the left node with a key of 0. The target key is larger than the key of
this node. So, the search must move to the right child with key value 1. This node has no
left child. But, even if it had, the fact that 3 is larger than the current node’s key would
have moved the search to its right child where the target key is actually located.

Insertion of an object into a binary search tree is much like the look-up operation. One
proceeds as in Algorithm 9.18 below.

Algorithm 9.18 insert(a): Insert a node a into a binary search tree
b := root
while b 6= NULL do

if a.key < b.key then
b := b.left

else
b := b.right

end if
end while
if a.key < b.key then
b.left := a

else
b.right := a

end if
return b
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Similar to the lookUp method, the algorithm moves down the tree by stepping to the left
child of a node if it has a smaller key than that of the node to be inserted and to the
right child otherwise. The difference is that the process continues until a node without a
left or right child, depending on the value of its key, is located. The node to be inserted
then becomes the appropriate child. The parent node must be updated to account for the
changes in its children.

9.4.1 A simple C++ binary search tree

In this section we will develop a C++ binary search tree class Tree. The beginning point
is creation of code for the node objects. A variation of the newPair struct from Listing 9.3
will be used for this purpose. It takes the form

struct Node : public pair <int, int>

{

Node *Left , *Right;

Node() : pair <int, int >() {

Left = 0; Right = 0;

}

Node(const int& key , const int& data) : pair <int, int >(key , data){

Left = 0; Right = 0;

}

};

The members Left and Right are pointers to the Node objects that are the left and right
children. Both constructors initialize these pointers to a null pointer; the tree will be built
by insertion and the values of the pointers will be set at that juncture. There is a default
constructor that takes no arguments and a constructor that creates a node with a specified
value for its key and data component that will be held in the first and second member
of the base class pair object.

We have also created an overloaded output insertion operator << to work with a Node
struct (cf. Exercise 3.19). A prototype for one version of the output insertion operator <<
is

ostream& operator <<(ostream& out , dataType& object)

Its first argument is a reference to an ostream object and its second is a reference to an
object that has been targeted for output. The reason for the ostream& return type is that
successive applications of << will be used to chain together output; e.g.,

cout << object1 << object2

translates to

operator <<(operator <<(cout , object1), object2)

The definition of << that resulted from these considerations is

std:: ostream& operator <<(std:: ostream& out , const Node& node) {

out << "(" << node.first << ", " << node.second <<")";

return out;

}

Note that if Node was a class rather than a struct, it would be necessary to make << a friend
function as in Exercise 3.19.

The declaration for the Tree class is provided in Listing 9.6.
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Listing 9.6 tree.h

class Tree{

Node* Root;

int Size;

public:

Tree() : Root(0), Size (0){}

const Node* insert(const pair <int, int>& pairObj );

const Node* lookUp(const int& key) const;

const Node* getMin () const;

const Node* getMax () const;

int getSize () const {return Size;}

};

The class members are an integer variable Size that will contain the number of nodes in
the tree and a pointer to a Node object Root that will be the first node to be inserted in
the tree. The class constructor is of the default variety and initializes the class members to
0 (for Size) and the null pointer (for Root).

The methods for the Tree class include functions to locate the nodes in the tree with the
largest (getMax) and smallest (getMin) keys. The tree is built using a method insert that
takes a pair object as an argument while a tree entry with a specified key value is located
with the lookUp method. All four of these methods return a pointer to a const Node that
points to the memory location where the operation was performed or the requested key was
found.

To find that largest or smallest key values in a Tree, one traverses the far right- or
left-hand branch of the tree as in Algorithm 9.16. The next listing contains the code that
implements these two procedures.

const Node* Tree:: getMin () const {

Node* temp = Root;

if(temp != 0){

while(temp ->Left != 0)

temp = temp ->Left;

}

return temp;

}

const Node* Tree:: getMax () const {

Node* temp = Root;

if(temp != 0){

while(temp ->Right != 0)

temp = temp ->Right;

}

return temp;

}

The insert and look-up methods below both move down the tree by descending from the
root while comparing keys to determine whether a left or right child should be the next step
in the descent. The difference is in what is accomplished once the sought-after location has
been found.



372 ABSTRACT DATA STRUCTURES

const Node* Tree:: lookUp(const int& key) const {

const Node* temp = Root;

while(temp != 0 && temp ->first != key){

if(key < temp ->first)

temp = temp ->Left;

else

temp = temp ->Right;

}

return temp;

}

const Node* Tree:: insert(const pair <int, int>& pairObj ){

Node *Previous , *Next = Root;

Node* newNode = new Node(pairObj.first , pairObj.second );

if(Next == 0){

Root = newNode;

Size ++;

return Root;

}

while(Next !=0){

Previous = Next;

if(pairObj.first < Next ->first){

Next = Next ->Left;

}

else

Next = Next ->Right;

}

//an empty spot has been found

if(newNode ->first < Previous ->first){

Previous ->Left = newNode;

}

else{

Previous ->Right = newNode;

}

Size ++;

return newNode;

}

In the case of lookUp, a pointer that points to the location of the node with the specified
key value is returned. For the insert method, a new Node object must first be created
using the pair object that has been passed into the function. The search begins with the
Root node pointer and inserts the new node there if the tree is empty. Otherwise, the same
descent method as in lookUp is used to find the location where the node can be added. In
doing this the pointer to Node, previous, is used to keep track of the previous node that
was encountered at each step on the way down. This process necessarily ends with a node
that has at most one child thereby allowing a new node to be appended. The only question
is whether it should be appended as a left or right child. The trailing pointer previous
contains this information. After insertion the Size member is incremented by one.

A program with the main function below was written to provide a test for our Tree class.
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int main (){

Tree T;

T.insert(pair <int, int> (4, 4));

T.insert(pair <int, int> (0, 1));

T.insert(pair <int, int> (1, 2));

T.insert(pair <int, int> (3, 1));

T.insert(pair <int, int> (2, 11));

T.insert(pair <int, int> (6, 5));

T.insert(pair <int, int> (7, 4));

T.insert(pair <int, int> (5, 5));

T.insert(pair <int, int> (21, -3));

T.insert(pair <int, int> ( -15 ,99));

T.insert(pair <int, int> (-16, 5));

T.insert(pair <int, int> (-3, -3));

T.insert(pair <int, int> (-1, 9));

T.insert(pair <int, int> (-2, 14));

cout << "The minimum is at " << *T.getMin () << endl;

cout << "The maximum is at " << *T.getMax () << endl;

cout << "The data value for key -1 is "

<< T.lookUp(-1)->second << endl;

return 0;

}

An empty Tree object is initialized and the insert method is used to build the tree in Figure
9.9. The nodes with the smallest (getMin) and largest (getMax) keys are then accessed and
lookUp is used to find the data component for a node object with a specified key value. The
output from our test program is

The minimum is at (-16, 5)

The maximum is at (21, -3)

The data value for key -1 is 9

9.4.2 Balancing binary trees

Binary search trees can become unbalanced which makes them computationally inefficient.
Figure 9.10 illustrates such a case. Here sequential insertion of the integers from 1 to 15
has led to an inefficient, unbalanced search tree that is actually a simple path. Instead of
a maximum of fifteen comparisons, if the same set is represented by the perfectly balanced
search tree in the figure, four comparisons suffice to find any element.

There are several ways to maintain the balance of a binary search tree under an arbitrary
sequence of insertions and deletions. One of the more frequently used approaches is known
as a red-black tree and requires each node in the tree to have an associated “color” attribute.
The arrangement of these “colors” in the tree must satisfy a certain invariant. Specifically,

1. the root is “colored” black,

2. any child of a red node is black and

3. every path from the root to a leaf has the same number of black nodes.

These conditions imply a balance property of the red-black tree: namely, the lengths of any
two paths from the root to a leaf of a red-black tree are within a factor of 2. Indeed, take
any two root–leaf paths. By the second invariant, they contain the same number of black
nodes, so their lengths may differ only in the number of red nodes. Between any two red
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Figure 9.10 An unbalanced and perfectly balanced search tree

nodes in either of these two paths there is a black node. Thus, the longer of these paths has
at most twice as many nodes as the shorter one.

To insert a node into a red-black tree, we begin by inserting it as if the tree were an ordi-
nary binary search tree and coloring the node red. At this point, actions become contingent
on restoring any of the invariant conditions that may have been violated.

If the node was inserted at the root, then the node must have been inserted into an empty
tree. The first invariant is therefore violated and restored by simply recoloring the node as
black.

If the new node is inserted as a leaf, there are two possibilities: its parent is black or red.
In the first instance, all invariants are satisfied and there is nothing to do. If the parent
node is red, matters become considerably more complicated as we now describe.

First, let us consider the scenario in Figure 9.11. The subtree there consists of four nodes:
a new node to be inserted (indicated by c, for child, in the figure) that is initially given
the color red (indicated by r with b for black), the parent node (indicated by p in the
figure), its parent or, equivalently, the grandparent (or gp) of the new node and a sibling
(i.e., aunt/uncle denoted by au) for the new node’s parent. The parent and aunt/uncle are
both colored red in this case while the grandparent is colored black. To restore the invariant
property in this subtree, one recolors the parent and aunt/uncle as black and designates the
grandparent as now being red. This provides a local fix and restores the third invariant. But,
there will be a problem if the parent of the grandparent is red. This is resolved recursively
by treating the grandparent as if it were a new node being added to the tree at its location.
In that respect, the general scenario will involve the case where the “new” node as well as
its parent and aunt/uncle have other children. Unless stated otherwise these relationships
will not need to be changed and, as a result, do not explicitly appear in the figures or enter
the discussion.

The next possibility is that the parent node is red while the aunt/uncle node is black.
The procedure for restoring the invariant involves either a right or left rotation depending
on whether the parent is a left or right child of the grandparent. We will deal with the
case that the parent is a left child here and pose the treatment of the other scenario as an
exercise (Exercise 9.34).

Suppose we are in the setting of Figure 9.12 where the new node is a left child of its
parent. Then, the solution is to
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(b) After recoloring

Figure 9.11 Red node with red parent and aunt/uncle in a red-black tree: c, g, p, au stand for child,
grandparent, parent, aunt/uncle and b and r indicate red and black
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(a) Before rotation

(c, r) (g, r)

(au, b)

(p, b)

(b) After rotation

Figure 9.12 Right rotation in a red-black tree: c, g, p, au stand for child, grandparent, parent,
aunt/uncle, b and r indicate red and black and the dotted node is a possible child

1. replace the grandparent with the parent while coloring it black,

2. replace the parent with the child,

3. replace the aunt/uncle with the grandparent with the aunt/uncle as its right child and
recolor it red and

4. make the right child of the parent, should one exist (e.g., the dotted node in Figure 9.12),
the left child of the grandparent.

These steps restore the third invariant while not changing the number of black nodes on
either branch of the tree. The process of rearranging the nodes in Figure 9.12(a) to have
the form in Figure 9.12(b) is called a right rotation.
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All that remains is the case where the new node is a right child of its parent. In that
instance, the steps are to
1. swap the child node with its parent,

2. make the former parent the left child of its former child,

3. attach the left child of the “new” node, should one exist (e.g., the dotted node 2 in Figure
9.13(a)), as the right child of the former parent node and

4. perform a right rotation with the former parent now occupying the role of the “new”
node.

Figure 9.13(b) shows the result from applying Steps 1–3 to the tree in Figure 9.13(a). The
outcome is analogous to the tree in Figure 9.12(a) except that the former parent has taken
the place of the “new” node. Thus, the invariant can now be restored by a right rotation.

The removal of a node from a red-black tree is somewhat more complicated than insertion
although it involves similar operations. Details are provided, for example, in Cormen, et al.
(2003).

It turns out that the additional information used in red-black trees is not needed if the
efficiency requirement for each operation is replaced with an amortized bound. One example
of a data structure that achieves an amortized logarithmic time per operation is the splay
tree discovered by Sleator and Tarjan (1985). Unlike the red-black tree case, splay tree
operations are quite simple. The basic outline is that after every access to a node, a series of
rotations is used to float the node up to the root of the tree. For example, if a small number
of nodes is accessed quite frequently, over time they will tend to stay close to the root for
quick access. Also, given a random sequence of accesses to the elements of a splay tree, the
tree tends to balance itself and its depth is reduced appreciably. See Sedgewick (1998) for
more details.

9.5 Pointer arithmetic, iterators and templates

In this final section we lay the stage for transition into the C++ Standard Template Library
(STL) container classes in the next chapter. These classes have two features of particular
importance: they are all implemented as templates and they all contain internal classes of
pointer-like objects called iterator that provide the means to navigate inside a container.

To appreciate and understand iterators one must write code that creates and uses them.
That is a task that is undertaken in this section and in the exercises. Our development
mirrors the STL in that we will create an iterator class that is nested inside an ADT class.
This requires a bit of new C++ syntax that will expand our language skills.

To this point all our C++ ADT classes have consisted of simple integer key and/or data
components. The second goal of this section is to illustrate how easy it is to eliminate such
restriction by using templates. For that purpose we will take the simple linked list class
of Section 9.2.2 and alter it to allow the nodes in the container to have keys and data
components of arbitrary types.

9.5.1 Iterators

On one hand pointers are probably the most difficult aspect of the C and C++ languages.
On the other, they provide a powerful tool for creating compile time adaptive programs
through the use of an (at least somewhat) intuitive array structure. We have used the array
connection to access the information that resides in the memory location that represents
the actual value of a pointer. Specifically, if p is a pointer, p[0] will return the value
stored in the memory location that is pointed to by p. The transition from p to p[0] is
called dereferencing. In many cases we have considered, p[0] corresponds to the beginning of
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Figure 9.13 Initial rotation for dealing with a “new” right child: c, g, p, au stand for child, grand-
parent, parent, aunt/uncle, b and r indicate red and black and the dotted nodes are possible children

consecutive blocks of memory. The ith block in this sequence can be accessed or dereferenced
by the array type syntax p[i].

In Section 3.5 we mentioned that a pointer can also be dereferenced with the * operator;
for a pointer p both *p and p[0] produce the same result. There is an alternative way to
access the ith component in a sequence of consecutive blocks of memory, as well. If the
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sequence begins at the value of the pointer p, the syntax *(p + i) gives the same result
as p[i]. This approach uses what is generally referred to as pointer arithmetic. The idea
is that p + i is a pointer to the memory location i blocks removed from p and *(p +
i) dereferences this pointer. In contrast to the array dereferencing approach, this makes a
pointer look more like an index variable and we will use that perspective to generalize the
pointer concept.

The simple program below illustrates the use of pointer arithmetic.

int main (){

int* p = new int[5];

for(int i = 0; i < 5; i++)

*(p + i) = 3*i;

for(int i = 0; i < 5; i++)

cout << *(p++) << " ";

cout << endl;

return 0;

}

Both the addition and postfix increment operators are used here to traverse the memory
that has been allocated to a pointer to int. The output from the program is

0 3 6 9 12

A somewhat different spin on the previous code uses the pointer directly in the indexing
process.

int main (){

int* begin = new int[5];

int* end = begin + 5;

int i = 0;

for(int* iter = begin; iter != end; iter ++){

*iter = 3*i;

cout << *iter << " ";

i++;

}

cout << endl;

return 0;

}

Here the roles of the integer index and the pointer to int are reversed. The pointer iter now
travels across the memory locations allocated to the pointer begin with its value restricted
to lie between begin and another pointer end. The end pointer refers to the one-past-the-
end memory location discussed in Section 3.5 that always exists and can be pointed to but
not dereferenced. An equivalent formulation of the previous listing that uses a while loop
is

int main (){

int* begin = new int[5];

int* end = begin + 5;

int* iter = begin;

int i = 0;

while(iter != end){

*iter = 3*i;

cout << *iter << " ";

iter ++;
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i++;

}

cout << endl;

return 0;

}

Other than providing information about a (possibly) interesting feature of C/C++ the
development thus far would seem to have little to do with the ADT focus of this chapter. A
connection can be made through a re-examination of the lookUp method for the linkedList
class in Section 9.2.2. The basic recursion that was used there was

Node* iter = Head;

while(iter != 0){

if(iter ->Key == key)

return iter;

iter = iter ->Next;

}

A comparison of this with the while loop version of our pointer arithmetic example re-
veals a certain similarity. They are, in fact, conceptually the same with Head playing the
role of begin, the 0 or null pointer end node representing end and iter = iter->Next
performing the function of the postfix increment operator for the pointer iter. Both our
pointer arithmetic example and the lookUp function represent particular solutions to the
more general problem of traversing and accessing a collection of objects; for the pointer
arithmetic example the objects were data of type int while for lookUp the objects are of a
more abstract nature.

The iterator (sometimes called a cursor) concept has developed as a standardized ap-
proach to navigation of ADTs. An iterator is an abstract, generic analog of a pointer. The
generic part of this description manifests as a “guaranteed” set of operations provided by
any iterator class: namely,
• ++, a postfix increment operator that advances the iterator to the next object in the

ADT,
• *, a dereferencing operator that returns the current object being “pointed” to by the

iterator and
• !=, a logical operator that allows for the comparison of two iterator objects.
The details behind the implementation of iterators for various ADTs will, of course, be
(possibly very) different. Nonetheless, the user can expect these three basic operations to
be provided and, in that sense, need not be familiar with the structure of the underlying
ADT in order to explore and access its contents.

In many cases iterators possess other pointer-like operation such as -- (to move the
iterator back to the previous object) or -> to access an object or some aspect of an object.
Because iterators are ADT specific, the operations they will and can provide are determined
by their underlying ADT. For example, in a singly linked list the decrement operator --
becomes problematic since the connection between nodes only moves from the head to the
tail of the list. However, both ++ and -- are options if the list is doubly linked so that nodes
have connections to both the next and preceding node in the list.

9.5.2 A linked list template class

Iterators require a close connection to the ADTs they traverse. In particular, an iterator
must have access to the private members of its associated ADT. There are two ways that
are typically used to create such a connection: a friend relationship between the iterator
and ADT class or having the iterator class nested within the ADT class. We will take the
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latter approach here since it allows us to touch on a new topic (i.e., nested classes) and
coincides with the way the C++ container classes treated in the next chapter have been
implemented.

To illustrate the construction of a nested iterator class we will again work with a singly
linked list class. In addition, to give the class some real utility, it will be implemented as a
template.

The first step is to give the Node class a template structure. This is accomplished in the
listing below.

template <class Key , class Data >

struct Node {

Data dataValue;

Key keyValue;

Node* Next;

Node (){}

Node (Data data , Key key , Node* next = 0)

: dataValue(data), keyValue(key), Next(next) {}

};

This is very similar to the definition of the Node struct from Section 9.2.2. The only substan-
tive change is that the int data types for the key and data components have been replaced
by the generic template parameters Key and Data.

The declaration for our linked list template container class LTC is given in Listing 9.7.

Listing 9.7 LTC.h

template <class Key , class Data >

struct LTC{

Node <Key , Data >* Head;

int Size;

LTC(){ Head = 0;}

LTC(const LTC <Key , Data >& L);

~LTC ();

LTC <Key , Data >& operator=(const LTC <Key , Data >& L);

//nested iterator class

struct iterator{

Node <Key , Data >* current;

iterator(Node <Key , Data >* node = 0){ current = node;}

iterator(const LTC <Key , Data >& L) : current(L.Head) {}

Node <Key , Data >& operator*();

Node <Key , Data >* operator ->();

iterator& operator=(const iterator& iter);

bool operator==(const iterator& iter) const;

bool operator!=(const iterator& iter) const;

iterator operator ++();

iterator operator++(int){return operator ++();}

};

struct const_iterator : public iterator{
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const_iterator(Node <Key , Data >* node = 0) : iterator(node) {}

const_iterator(const LTC <Key , Data >& L) : iterator(L){}

const Node <Key , Data >& operator*();

const Node <Key , Data >* operator ->();

const_iterator& operator=(const const_iterator& iter);

};

iterator begin ();

iterator end();

const_iterator begin () const;

const_iterator end() const;

void push(const Data& newData , const Key& newKey );

iterator lookUp(const Key& key);

iterator insert(const Data& newData , const Key& newKey ,

const Key& key);

};

It looks like there are many new features here and that is certainly the case. But, a com-
parison between Listing 9.7 and Listing 9.2 reveals that this new class is not far removed
conceptually from the linkedList class of Section 9.2.2. To be a bit more specific, if the two
internal iterator classes and the begin and end methods are ignored, the two classes have
the same basic elements and methods with the same number (if not type) of arguments.
As with the Node struct, the changes required to adapt the LTC class from its linkedList
predecessor mostly involve replacing the int key and data types with template parameters
to allow for indexing and storage using objects of general types.

Let us begin the discussion of Listing 9.7 by examining the internal iterator struct for
the LTC struct. As the phrase “nested” suggests, the entire declaration for class iterator
is contained within the LTC class declaration.

The operative aspect of the iterator class in Listing 9.7 is its current member. This
is a cursor-like object that moves between the different nodes in an LTC object. There are
two class constructors: a default constructor that takes a pointer to Node argument with
current initialized as the null pointer by default and a constructor that takes an LTC object
as its argument and initializes current as the Head member of the object. Class methods
are provided for dereferencing or object access (i.e., *), assignment, comparison of iterator
objects (i.e., == and !=) and prefix and postfix increment operators that move current
forward. In this latter respect, the postfix and prefix operators are the same with the latter
being obtained by application of the former. Note the presence of a dummy int argument
that allows the postfix operator to be overloaded.

The syntax for giving definitions of nested class methods outside of a template class can
become somewhat involved. For example, the definitions for the prefix increment operators
is
template <class Key , class Data > typename LTC <Key , Data >:: iterator

LTC <Key , Data >:: iterator ::operator ++(){

if(current != 0)

current = current ->Next;

return *this;

}

The body of the method is straightforward in that the current member of the iterator
object is set to the Next pointer thereby moving it to the next node in the list. It is the code
leading up to that point that requires a bit of deciphering. First, there is the by now familiar
template <class Key, class Data> code segment that informs the compiler that Key
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and Data are template parameters that will be defined elsewhere. The fact that iterator
is nested in the LTC class means that the scope resolution operator must be used twice;
the syntax LTC<Key, Data>::iterator::operator++ states that operator++ is a member
of the iterator class which, in turn, is a member of the LTC class. The final issue is the
return type. In this case LTC<Key, Data>::iterator indicates that the return type is an
iterator object where the identity of iterator is contained in the class LTC<Key, Data>.
In such cases the keyword typename tells the compiler that LTC<Key, Data>::iterator is,
in fact, a class (e.g., Vandervoorde and Josuttis 2003). The same consideration applies to
the assignment operator whose definition is

template <class Key , class Data > typename LTC <Key , Data >:: iterator&

LTC <Key , Data >:: iterator ::operator=(const iterator& iter){

current = iter.current;

return *this;

}

The definitions for the two comparison operators for the iterator class are given in the
next listing.

template <class Key , class Data > bool

LTC <Key , Data >:: iterator ::operator==(const iterator& iter)

const {

return (current == iter.current );

}

template <class Key , class Data > bool

LTC <Key , Data >:: iterator ::operator!=(const iterator& iter)

const {

return !(*this == iter);

}

The == operator involves a straightforward comparison of the current member pointers of
two iterator objects. Seeing that != is the logical complement of ==, the latter operator
can be obtained directly from the former. Note that the typename keyword does not appear
in either return type because bool is already a recognized data type.

Finally, the dereferencing operators are defined as

template <class Key , class Data > Node <Key , Data >&

LTC <Key , Data >:: iterator ::operator*(){

if(current != 0)

return *current;

}

template <class Key , class Data > Node <Key , Data >*

LTC <Key , Data >:: iterator ::operator ->(){

if(current != 0)

return current;

else return 0;

}

If the “cursor” is not at the end of the list, the object pointed to by the current pointer is
returned as either a pointer or reference to Node.

Now that one of the two iterator classes is in place we can give the forms for some of
the LTC class methods. Let us consider the begin and end methods of the LTC class. These
return starting and stopping point iterator objects for movement inside a list. They look
like
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template <class Key , class Data > typename LTC <Key , Data >:: iterator

LTC <Key , Data >:: begin (){

return iterator(*this);

}

template <class Key , class Data > typename LTC <Key , Data >:: iterator

LTC <Key , Data >:: end (){

return iterator ();

}

The begin method returns an iterator object whose current pointer points to the head
node of the list while end produces an iterator object with a null pointer as its current
member.

The push method for the LTC class is given in the next listing.

template <class Key , class Data > void

LTC <Key , Data >:: push(const Data& data , const Key& key){

Node <Key , Data >* newNode = new Node <Key , Data >(data , key , Head);

Head = newNode;

Size ++;

}

Apart from the template parameters, this is just the push method for the linkedList class.
It makes no use of iterators as there is no need to perform actions anywhere inside the class.
In contrast, the lookUp method is iterator driven as seen from

template <class Key , class Data > typename LTC <Key , Data >:: iterator

LTC <Key , Data >:: lookUp(const Key& key){

iterator iter(*this);

while(iter != end ()){

if(iter ->keyValue == key)

return iter;

iter ++;

}

return 0;

}

This has the same basic form as the lookUp method of the linkedList class. Except now
the details behind explicitly using a pointer to Node to iterate through the list have been
encapsulated in an iterator object iter. The object is created with the constructor that
takes an LTC object as its argument with the consequence that its current member points
to the head node. It is moved through the list via the increment operator until either the
requested key value is located or the end of the list is reached. The key values that are
compared to the target are obtained by dereferencing the iter object.

The insert method for the LTC struct was encoded as

template <class Key , class Data > typename LTC <Key ,Data >:: iterator

LTC <Key , Data >:: insert(const Data& newData , const Key& newKey ,

const Key& key){

if(lookUp(newKey) == end ()){//key does not exits

iterator iter = lookUp(key);

if(iter != end ()){//target does exist

Node <Key , Data >* newNode =

new Node <Key , Data >(newData , newKey );

newNode ->Next = iter ->Next;

iter ->Next = newNode;

Size ++;
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return iter;

}

else{

std::cout << "Key not found!" << std::endl;

return end ();

}

}

else{

std::cout << "Duplicate key!" << std::endl;

return end();

}

}

For the most part this repeats the theme of this section in that the code for the LTC class
insert method mimics that for our previous linkedList class apart from some modifica-
tions to incorporate template parameters and the replacement of pointers to Node objects
with iterators. A slight alteration has been made in that, upon completion of the insertion
operation, the LTC insert method returns an iterator object that points to the spot of
insertion.

Now let us return to the other iterator class: const iterator. As the name suggests,
this class provides iterators that can be used for read-only access to const LTC objects.
To appreciate the need for this type of iterator consider the nonoperative implementation
below of the LTC class copy constructor.

template <class Key , class Data > LTC <Key , Data >:: LTC(const LTC& L){

if(L.Size == 0){

Head = 0;

Size = 0;

}

else{

Size = L.Size;

iterator iter;

Node <Key , Data >* temp = 0;

for(iter = L.begin (); iter != L.end(); iter ++){

if(temp == 0){//empty list

Head = new Node <Key , Data >(iter ->dataValue ,

iter ->keyValue );

temp = Head;

}

else{

temp ->Next = new Node <Key , Data >(iter ->dataValue ,

iter ->keyValue );

temp = temp ->Next;

}

}

temp ->Next = 0;//null pointer as Next for tail node

}

}

An attempt at compilation using this form of the constructor will produce a complicated
error message including the standard admonishment that one receives when attempting to
handle a const object with a method that can potentially alter its arguments: namely, that
passing the this pointer to a non-const method (i.e., begin)“discards qualifiers”.

The solution to the problem is to create another iterator class that can access but not alter
nodes. Motivated by the analogous STL concept, the class has been named const iterator.
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The basic iterator class methods for comparing and incrementing will work perfectly
well for our new class. Hence, const iterator has been made a derived class from class
iterator. The changes occur for the dereferencing operators which now take the form

template <class Key , class Data > const Node <Key , Data >&

LTC <Key , Data >::const_iterator ::operator*(){

if(iterator :: current != 0)

return *iterator :: current;

}

template <class Key , class Data > const Node <Key , Data >*

LTC <Key , Data >::const_iterator ::operator ->(){

if(iterator :: current != 0)

return iterator :: current;

else return 0;

}

Both methods have been specified to have const return types which forbids alteration of the
data in the underlying LTC object. In addition to these two methods, overloaded versions
of the begin and end methods are needed that will return const iterator, rather than
iterator, objects: namely,

template <class Key , class Data >

typename LTC <Key , Data >::const_iterator

LTC <Key , Data >:: begin () const {

return const_iterator(*this);

}

template <class Key , class Data >

typename LTC <Key , Data >::const_iterator

LTC <Key , Data >:: end() const {

return const_iterator ();

}

To fix the LTC copy constructor it now suffices to replace the previous iterator iter;
code segment with const iterator iter;. The same basic idea works for the assignment
operator shown below.

template <class Key , class Data > LTC <Key , Data >&

LTC <Key , Data >::operator=(const LTC& L){

if(this == &L)

return *this;

if(L.Head == 0){

Head = 0; Size = 0;

return *this;

}

Size = L.Size;

Node <Key , Data >* temp = 0;

for(const_iterator iter = L.begin (); iter !=L.end(); iter ++){

if(temp == 0){//empty list

Head = new Node <Key , Data >(iter ->Data , iter ->Key);

temp = Head;

}

else{

temp ->Next = new Node <Key , Data >(iter ->Data , iter ->Key);
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temp = temp ->Next;

}

temp ->Next = 0;//Next for tail node

}

return *this;

}

Code was written to test the LLC class parts of which are shown in the next listing.

void f(const LTC <int, int> L){

std::cout << L.Head ->Next ->dataValue << std::endl;

}

int main (){

LTC <int, int> L;

L.push(2, 15); L.push(3, 18); L.push(4, 28); L.push(5, 27);

L.push(6, 19); L.push(7, 49); L.push(2, 38); L.push(4, 6);

L.push (100, 2); L.push(-1, 40);

L.insert(-4, 1, 18);

f(L);//test of copy constructor

std::cout << L.lookUp(1)-> dataValue << std::endl;

LTC <int, int >:: iterator iter(L);

for(iter = L.begin (); iter != L.end(); iter ++)

std::cout << iter ->keyValue << " ";

std::cout << std::endl;

LTC <int, int> newL = L;//test of = operator

std::cout << newL.Head ->Next ->keyValue << std::endl;

return 0;

}

An LTC object is created using the push and insert methods. The function f is then used
to force a call to the copy constructor after which the lookUp method is used. An iterator
object is created next and used to explore the LTC object. Finally, the assignment operator
is used to create another LTC object whose second node is examined. The output produced
by this code is the expected

100

-4

40 2 6 38 49 19 27 28 18 1 15

2

9.6 Exercises

9.1. Write the definitions for the copy constructor, destructor and assignment operator in
Listing 9.1 and demonstrate through an example that they work as expected.
9.2. Write a program that allows for adaptive selection of dArray class elements through
user input. Then, rework the [] operator by using try and catch blocks to handle inap-
propriate index choices with prompts to the user for new values.
9.3. Write a method for the dArray class of Listing 9.1 that will delete the data at a specified
index value and restructure the array so that none of its Size entries are empty.
9.4. Reformulate the dArray class to where it both grows and shrinks dynamically. To
accomplish this the reSize method should be renamed grow and called whenever the array
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object becomes full. Then, add a new method shrink that reduces the memory allocated
to a dArray object by a fixed proportion whenever the number of objects in the container
drops sufficiently far below the current value of containerSize.
9.5. Create a dynamic array class in R with associated constructor and method functions
for insertion, deletion and resizing.
9.6. Let a1, . . . , an be the n elements of an array. Consider a randomized version of quicksort
in which the pivot is chosen uniformly at random at every level of the recursion and in every
subarray.

a) Show that the expected number of comparisons in an execution of the algorithm is
O(n log n). For simplicity, assume that all the ai are distinct. [Hint: let i < j be an
arbitrary pair of indices. Show that the probability that ai and aj are compared during
a complete execution of this randomized version of quicksort is 2/(j − i).]

b) Use your result from part a) to show that if the elements of the array are input in
a uniformly random order, the expected running time of the deterministic quicksort
algorithm from Section 9.2.1 is O(n log n).

9.7. Write C++ code for the recursive mergesort Algorithm 9.7 for arrays from Section
9.2.1.
9.8. Write R code that uses the Compare group generic functions to implement both quick-
sort and mergesort for the g5List objects of Section 6.4 with ordering based on draw dates.
9.9. Show that when n = 2k the worst-case running time for mergesort is O(n log n).
9.10. Write the code for the overloaded = operator for the linkedList class of Section 9.2.2.
9.11. Write code for remove and clear methods in the linkedList class of Section 9.2.2
that will delete a specific node or remove all the nodes from a list object.
9.12. Develop a version of Algorithm 9.5 that will insert an object to the left of (i.e.,
immediately prior to) an object with a designated key in the singly linked list class of
Section 9.2.2.
9.13. Add a pop method that removes and returns the head node from the linkedList
class of Section 9.2.2.
9.14. Write an alternative version of the push method for the linkedList class of Section
9.2.2 that builds a linked list by appending new objects to the tail of the list.
9.15. In some instances the look-up of items in a list is driven by their “popularity”: e.g.,
some nodes have data that needs to be accessed more often than others. In such instances
the look-up operation can be made more efficient by moving the “popular” nodes to the
head of the list. The result is referred to as a self-organizing list. Create a self-organizing
version of the linkedList class in Listing 9.2. To achieve the self-organizing property, alter
the lookUp method to where it moves the node with the requested key to the head of the
list.
9.16. Show that the average access time (where average is taken over all permutations of
the sequence of insert and look-up operations) for an element a in a chaining hash table is
half the number of all elements that are hashed into the same location as a.
9.17. Double hashing uses two hash functions, h1 and h2, in an open addressing scheme
where the ith attempt to find an empty slot for an item with key k is made at (h1(k) +
ih2(k)) mod m where m is the size of the table. Discuss the pros and cons of this approach.
In particular, can you envision a case where this approach can fail to produce a useful probe
sequence?
9.18. Write the code for the copy constructor and overloaded = and == operators for the
hashTable class of Section 9.2.4.2. Why is the == operator needed here?
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9.19. Implement a delete method for the hashTable class in Section 9.2.4.2 that uses a
sentinel to replace a deleted value.
9.20. Create an alternative version of the newPair class that uses composition rather than
inheritance; i.e., newPair is not a derived class of pair but, instead, has a pair object as
a class member. How does this affect the hashTable class in Section 9.2.4.2?
9.21. Create a chaining hash table for integer key and data components based on the
linkedList class of Section 9.2.4.2.
9.22. Write a function for the hashTable class in Listing 9.4 of Section 9.2.4.2 that will
resize an existing hashTable object. Create a similar function that will work with your
chaining hash table from Exercise 9.21.
9.23. An algorithm is said to sort an n-element set by comparison if the only operations
used to determine the ordering are direct element-to-element comparisons (for example, no
arithmetic, manipulation of set members or counting is allowed). Prove that any algorithm
that sorts by comparison requires at least order n log n operations. [Hint: Consider the
change in the set of potential solutions when a single comparison is made and use Stirling’s
approximation formula.]
9.24. Suppose keys come from the set of floating-point numbers in the open interval (a, b).
Generalize the simple hash function of Example 9.1 to this range.
9.25. Suppose keys are integers represented by b binary digits. Show how to reduce the
problem of finding a hash function to the floating-point case of Exercise 9.24.
9.26. Show that (9.1) defines a universal hash family.

Knuth (1998b), Carter and Wegman (1979) and Wegman and Carter(1981)
9.27. A Bloom filter consists of an m-bit array (whose entries are all initialized to 0) and
d hash functions h1, . . . , hd with range {0, . . . ,m − 1}. It is used to compactly represent a
finite set A = {x1, . . . , xn}. To insert x into A, set the d bits h1(x), . . . , hd(x) to all be 1.
To check if x ∈ A one then checks to see if all of these d bits are equal to 1. Clearly, the
only possibility for error is a false positive; even if x does not actually belong to A, it may
be that h1(x), . . . , hd(x) are all 1 because one or more elements of A map into this same bit
pattern. Assume that the d hash functions are random (i.e., hi maps each x uniformly, at
random into {0, . . . ,m− 1}).
a) Estimate the probability of a false positive. [Hint: First show the expected number of bits

that are still equal to 0 after the insertion of all n elements of A into the data structure
is about p = e−dn/m. Then, show that the probability of a false positive is (1 − p)d by
conditioning on the fraction of zero bits.]

b) If n and m are fixed, show that to minimize the false positive probability we should have
p = 1/2: i.e., d = (m/n) ln 2.

Broder and Mitzenmacher (2005)
9.28. Surprisingly, it is possible to implement hashing so that look-up operations take guar-
anteed constant time. One of the simplest such schemes is called cuckoo hashing (e.g., Pagh
and Rodler 2004). This implementation of a dictionary consists of two tables, T1 and T2,
each of size m and two hash functions, h1 and h2, each with range {0, . . . ,m − 1}. Each
key of the dictionary is stored in exactly one of the two tables. Thus, to check if a is in the
dictionary, we only need check if a can be found at location h1(a.key) of T1 or at location
h2(a.key) of T2. To insert a, first try T1[h1(a.key)]. If this entry is empty, insertion is done.
Otherwise, a is still inserted and the current occupant is moved to T2 using the same process
with hash function h2. Should that spot be occupied, the resident is replaced leaving a new
homeless object at which point the roles of T1 and T2 are reversed.

If the process of kicking out elements to replace them by new ones continues for too long,
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it is possibly in a loop. So, we keep track of the number of iterations and if some prespecified
upper bound is exceeded, we pick a new pair of hash functions and rehash everything. While
drastic, this final step happens only rarely in practice. Give a pseudo-code implementation
of cuckoo hashing.
9.29. Consider the problem of repeatedly inserting objects with different keys into a hash
table with m array slots. Show that if collision resolution is by linear probing, the table will
eventually be filled if and only if m and the shift parameter are relatively prime.
9.30. Add the following new methods to the Heap class in Listing 9.5.
a) A constructor that takes a reference to a dArray object as its argument.

b) A constructor that takes a reference to a linked list object as its argument.

c) A method clear that empties the heap.

d) A delete method that finds an object with a specified key and removes if from the heap.
9.31. Rework the Heap class of Section 9.3.2 to produce a max-heap: i.e., the key value of
every node is no smaller than that of its left and right child.
9.32. The shortest path problem is usually defined on a graph G = (V,E). Each edge in
e ∈ E has a nonnegative length c(e) associated with it. Given two vertices in V , the source
s and the destination t, the shortest path problem is to find a path from s to t of minimum
total length.

In Dijkstra’s algorithm we maintain a set S of “explored” vertices. Together with each
vertex v ∈ S, we store the length d(v) of the shortest path from s to v. In each step, we
select an edge e = uv such that u ∈ S, v 6∈ S and d(u) + c(uv) is minimized. The vertex v is
then added to S and for each edge vw, we check if going from s to v and then to w produces
a shorter path than the shortest one currently known to w. Every time such a shortcut is
found, the relevant information is updated. This process repeats until t is added to S.
a) Prove correctness of this algorithm by establishing the following invariant: at any point

during the execution of the algorithm, the value d(v) for any v ∈ S is the length of the
shortest path from s to v.

b) Give a pseudocode description of Dijkstra’s algorithm based on the outline just presented.
Use a priority queue to efficiently implement the updates.

9.33. One application of the shortest path problem of Exercise 9.32 is to finding the most
reliable paths in networks. Suppose instead of length, the value associated with each edge
gives the probability that the edge is “active”. Show how to use any algorithm for the
shortest path to find the “most reliable” path between a pair of vertices, where the reliability
of a path is expressed as the product of the reliabilities of its constituent edges.
9.34. Write pseudo-code for the insertion of a node into a red-black tree for the case where
the parent of the new node is a right child.
9.35. Another simple data structure that is in a sense equivalent to a (randomized) binary
search tree is a skip list (e.g., Pugh 1990). The idea here is to begin with an ordinary linked
list containing elements in a sorted order and correct its inefficiencies. The only real problem
is the search operation for which a simple trick is to add another list that works at a coarser
resolution. This second list would contain only a subset of the elements, and its entries
would be linked directly to the corresponding ones in the first (exhaustive) list. The second
list could then be used to roughly locate an element by walking through it until two entries
are found that “bracket” the target of the search. At this point a descent can be made into
the exhaustive list with the search now restricted to the smaller range indicated by the first
list.

The natural generalization of this idea with a view towards efficiency quickly leads to
representing an n-element set by using log2 n lists (“levels”), each of which contains roughly
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half of the elements of the previous one. To implement this in practice, we use randomization.
To insert a node a, start in the top list and walk from the smallest element until two elements
are found with keys that surround the key for a. Then, descend to the next lower level and
continue the process. Once a location for a is found in the lowest (exhaustive) list, it may
be inserted there. Insertion needs to consider the higher levels as well. To maintain useful
properties, always insert the new entry into the lowest list, and then, for each level above
it, flip an unbiased coin to decide whether to add it to the list in the higher level. This
ensures that every list is roughly half the size of the list immediately below it and that with
high probability there are about log2 n lists. Prove that the search time for a skip list is
O(log2 n). Then, implement a C++ skip list version of the Tree class of Section 9.4 and
compare the running times of look-up operations for these two classes.
9.36. Alter the LTC class in Listing 9.7 to obtain a doubly linked list where every node has
two pointers: one that points to the next list object and one that points to the previous
element. Add further functionality to this class by creating the new methods/operators
a) sort that uses mergesort to arrange the nodes in the list with either increasing or de-

creasing values for their keys,
b) -- for the nested iterator classes that allows for reverse iteration or backward movement

of an iterator,
c) rbegin and rend that provide the reverse iterator analogs of begin and end and
d) pushFront, pushBack, popFront and popBack that allow nodes to be added or removed

from either end of a list object.
9.37. Create a C++ dynamic matrix container that will hold objects from a generic class
T in a row and column format with both the number of rows and columns being allowed to
expand as needed to hold data. Include an appropriate nested iterator class.
9.38. Write C++ code for a template class stack data structure.
9.39. Use the stack class from Exercise 9.38 to implement Algorithm 2.4 from Chapter 2.
9.40. Create an internal iterator class/struct for the Tree class of Section 9.4.1 that will
traverse the nodes of a Tree object by moving in sequence from elements with smaller to
larger key values. [Hint: Use your stack class from Exercise 9.38.]
9.41. Use a template approach to generalize your chaining hash table from Exercise 9.21
to hold an arbitrary (i.e., not necessarily integers) data type. Create an internal iterator
class/struct that will work with this hash table.



Chapter 10

Data structures in C++

10.1 Introduction

The previous chapter presented a variety of abstract data structures (ADTs) that were
implemented in C++ and R. This introduction served three purposes:

• it provided an overview of the ADTs that are available in R,

• it gave a general treatment of several important ADTs and their properties and

• it provided illustrations of how one could originate their own code for an ADT of interest.

The present chapter takes a perspective that is similar to our use of the Template Numerical
Toolkit for numerical linear algebra in Section 7.6. That is, rather than create code for an
ADT from scratch, in most instances it is more advisable to use an existing, third-party ADT
implementation. The C++ Standard Template Library (STL) provides a readily available
source with support for many of the common ADTs.

The STL includes three basic components: container classes, iterators and algorithms.
The phrase container class refers to a class that can hold objects from some general class.
The container classes in the STL are all ADTs.

Iterators are pointer-like objects that provide the means to explore and access the objects
in an ADT. We discussed the concept of iterators in Section 9.5. All the STL containers
implement iterators that have been tailored to work effectively with the different ADTs.

The STL algorithm component is a collection of functions that can be used with containers
for purposes that include inserting, finding or removing objects and sorting. Its applications
are not restricted to just the STL containers. The algorithm library is implemented in a
generic fashion that allows it to work with, e.g., user-defined containers as well as many other
applications. In fact, we have already used the max and min functions from the algorithm
library in previous chapters.

In subsequent sections we will examine some of what the STL has to offer. The objective is
to demonstrate how to use the essential features of the different containers and algorithms
while also applying them in example settings that illustrate their utility. More detailed
discussions can be found in a myriad of books and on-line tutorials. In particular, Josuttis
(1999) provides a thorough and very readable overview of all three of the STL’s components.

10.2 Container basics

The standard STL containers are

• the vector and deque dynamic array classes,

• the linked list container list and

• map, multimap, set and multiset.

The vector class is an implementation of a dynamic array ADT. The name deque stands
for “double-ended queue”. Thus, as might be expected, objects can be inserted or removed
from either end of this container. The random access that deque provides to its contents as
well as other features make it a dynamic array rather than a queue in the usual first-in first-
out sense of the term. The list container is a doubly-linked list class. The map container is

391
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a dictionary where the objects in the container have both a key and a data component. For
map the keys must be unique while multimap allows for repeated keys. The set containers
are simplified versions of map containers where objects have a single member that serves as
both the key and data component.

There are certain operations that are provided by all the standard container classes in the
STL. In this section we will discuss several of these “global” methods. Later sections will
illustrate their use for specific container types as well as other methods that are container-
type specific.

To use a particular container, ADTName, from the STL one needs the include directive

#include <ADTName >

All the container classes are equipped with a default constructor, a constructor that takes
arguments appropriate for the specific ADT, a copy constructor, an assignment operator
and a destructor. Thus, for example, the default constructor for ADTName would be invoked
with a command such as

ADTName <T> ADTObject;

Of course, a specific value (i.e., a data type name) must be supplied for T to define an actual
ADTName object. That choice is at the user’s discretion. This serves the same purpose as in
our developments in Section 9.5: namely, it makes the ADT a container in the sense that it
can hold objects from an arbitrary class.

The methods empty and size can be used with any of the STL containers. If ADTObject
is an ADTName object, then

ADTObject.empty ();

will return true if ADTObject contains no elements and false, otherwise. Similarly,

ADTObject.size ();

returns the number of elements in ADTObject.
Movement through STL containers (and in some cases other indexing-type operations) is

carried out via iterators. In this regard, every STL container has the two methods begin()
and end() that return iterators pointing to the first element of the container and to one
position past its last element, respectively. The reverse iterators rbegin() and rend()
are also available. The iterator returned by rbegin() points to the last element in the
container and the one returned by rend() points to one location before the first element in
the container. As might be expected, reverse iterators work the same as regular or forward
iterators except that ++ and -- have the opposite effect of moving the iterator backward
and forward, respectively. An example of using a reverse iterator is given in Section 10.4.1.

The comparison operators == and != return values of a Boolean variable. For two ADTName
objects ADTObject1 and ADTObject2, the expression

ADTObject1 == ADTObject2

will evaluate to true if the two objects contain the same elements arranged in the same
order. The <, >, <=, >= operators will also work in the sense of providing lexicographical
comparisons between two containers. For example, the < operator compares two containers
element-by-element until
• two elements are found that are not equal; the result of applying < to the two containers

is then taken to be the result of applying < to these two elements,
• one of the containers has fewer elements than the other; the one with fewer elements is

viewed as being “smaller”,
• the two containers are found to be equal in which case < returns false.
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The common methods that actually modify containers are insert, erase and clear. For
an ADT object, ADTObject,

ADTObject.insert(iter , object );

will insert object into the container at the position specified by the iterator iter. The
command

ADTObject.erase(iter1 , iter2);

will remove all the elements in ADTObject in the positions starting with iter1 and ending
one position prior to iter2. The use of

ADTObject.clear ();

is equivalent in its effect to ADTObject.erase(begin(), end()) (apart from return values
for some containers) in the sense that all elements in the container will be removed and the
container will be empty; i.e., ADTObject.empty() will evaluate to true.

In addition to the standard containers, the STL includes the container adapters stack,
queue and priority queue. These are adaptations of the standard containers that function
like stacks, queues and priority queues. That is, the stack container operates under a last-
in first-out paradigm while queue containers remove elements on a first-in first-out basis.
The priority queue container implements a queue where objects are withdrawn according
to their “priority” (see Section 9.3). At any given point, the only member of a stack or
queue that can be accessed is the one on top and the same is true for the stack, queue
and priority queue containers. Thus, the internal elements of these containers cannot be
accessed and, accordingly, iterators are not defined for these classes.

The starting point for our discussion of specific container types is the vector container
that provided the model for our dArray class in Section 9.2.1. This is the subject of the
next section.

10.3 Vector and deque

The C+ vector container class is a very flexible data structure that, as its name suggests,
possesses similar features to a one-dimensional array. However, as a type of dynamic array it
represents a major upgrade of the array concept. In particular, it provides storage flexibility
in the sense that the size of a vector object can be expanded adaptively at run-time. This
is precisely what is typically needed when trying to access data files of unknown size and/or
structure.

Although the deque title is an acronym for “double ended queue”, the implementation
of this ADT is through a dynamic array structure that allows for random access to its
elements. In that sense it is more closely related to the vector container than to the other
STL queue containers. Accordingly, we will also discuss the deque class briefly at the end
of this section.

Access to the vector container class is obtained via the directive

#include <vector >

As noted in the previous section, to create a vector container object v holding objects of
type className one would employ the syntax

vector <className > v;

So, for example,

vector <double > v;
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would produce something that would work just like an ordinary double precision array
in that the ith component of v would be accessed using the familiar syntax v[i]. This
dereferencing works quite generally in that regardless of the type of object that is stored in
the vector container, the use of v[i] will always return the object that is stored in its ith
slot.

Of particular interest for data analysis purposes is the case

vector <vector <double > > v;

that produces a container where v[i] now corresponds to an “ordinary” array of doubles
in its own right. So, for all practical purposes, v is a matrix with ith row v[i] and its
(i, j)th entry is accessed with v[i][j]. Note that the extra space after the first > in the
declaration for v is necessary.

The advantage of using something like vector<vector<double> > v in lieu of double
v[][] or double** v, is in the infrastructure provided by the STL. For example, when using
pointers or arrays, a programmer must, at some point, make a commitment in terms of the
size of the structure. Subsequent resizing is, at best, tedious and error-prone. In contrast,
class vector provides built-in methods that allow the user to adaptively add elements to
the structure: either one-by-one or by inserting multiple elements at a time.

The specific methods for the vector class that will be of most immediate utility for us
are capacity, size, pop back, push back, insert and assign. The function size returns
an integer value that represents the number of objects that are currently being held in a
vector object. The capacity method gives the number of slots in a vector object. The
difference between the value returned by capacity and size is the number of objects that
can be added to a vector object before more memory must be allocated.

The push back function adds an additional element onto the end of the vector. So, the
code snippet

vector <int> v;

int a = 1;

v.push_back(a);

creates a new empty vector object to hold variables of type int and creates a new slot at
the end of v that is filled with the value in the variable a (or 1, in this case). To remove the
last component from a vector we proceed similarly using the function pop back. So,

v.pop_back ();

would undo what we had previously accomplished with push back.
Insertion of an object obj into a vector object requires us to use the iterator class that

is an internal (i.e., nested) feature of class vector. In general, such iterators are obtained
via the syntax

vector <className >:: iterator iter;

Then, as in Section 10.2, the insert method for class vector takes the form

v.insert(iter , obj);

where obj is the object to be inserted into the container. The effect of this command will
be to insert the object in the slot immediately prior to that specified by iter and return
an iterator that points to the inserted object. Thus, for example,

vector <className >:: iterator iter = v.insert(begin() + 2, obj);

(*iter). methodName ();

will insert obj in the third slot of v while shifting all the other objects one slot to the right.
The iterator returned from insert is used to call a method methodName for the class of which
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obj is a member. The last line of code is therefore equivalent to obj.methodName();. The
fact that begin() + 2 will work in the previous code snippet is not immediately obvious. It
resembles what can be done with pointer arithmetic (cf. Section 9.5.1). In general this type
of syntax would not be meaningful. Random access iterators (as provided by the vector
and deque classes) are the special case where it is allowed. Similarly, expressions such as
iter[i], iter - k, iter -= k and iter += k for k an integer are valid in the random
access case.

The code below illustrates using the methods that have been described so far.

Listing 10.1 vecEx1.cpp

//vecEx1.cpp

#include <iostream >

#include <vector >

using std::cout; using std::endl; using std:: vector;

void printSize(int size , int cap){

cout << "The size is " << size <<

" and the capacity is " << cap << endl;

}

int main (){

vector <int> v(1);

v[0] = 12;

printSize(v.size(), v.capacity ());

v.push_back (1);

printSize(v.size(), v.capacity ());

v.push_back (2);

printSize(v.size(), v.capacity ());

for(int i = 0; i < v.size (); i++)

cout << "v[" << i << "] = " << v[i] << " ";

cout << endl;

v.pop_back ();

vector <int >:: iterator iter = v.insert(v.begin() + 1, 17);

cout << "Dereferenced iterator = " << *iter << endl;

for(iter = v.begin (); iter != v.end(); iter ++)

cout << *iter << " ";

cout << endl;

v.clear ();

printSize(v.size(), v.capacity ());

return 0;

}

Listing 10.1 begins with a print utility program. Then, the main function initializes a vector
container for int variables, places the integer 12 in its first slot and uses the push back
method to append two integers to the array. After each addition, the values returned from
size and capacity are printed to standard output before finally examining the contents
of the vector object. Next, the last inserted element is removed with pop back and the
insert method is employed to insert the integer 17 between the first and second int in
the container (i.e., in the slot with index 1). The position for insertion is designated by
incrementing the begin() iterator for the vector object. A new iterator is defined to hold
the one returned from insert and this new iterator is dereferenced to view the int value
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that was inserted. The contents of the vector object are checked again at this point with a
for loop. In contrast to the previous traversal of the container that used the [] operator and
an integer index, this time it is done using an iterator that i) is initialized with begin(), ii) is
moved to the next object in the container via the postfix ++ operator and iii) terminates the
loop when it reaches the object at the slot immediately before the end() iterator. Finally,
the clear method from Section 10.2 is called and the values of size and capacity are
checked again to see its effect.

Upon execution, our program produced the output

The size is 1 and the capacity is 1

The size is 2 and the capacity is 2

The size is 3 and the capacity is 4

v[0] = 12 v[1] = 1 v[2] = 2

Dereferenced iterator = 17

12 17 1

The size is 0 and the capacity is 4

As with our dArray class of Section 9.2.1, the capacity of the vector object is doubled each
time a resizing operation is required. The last component of the array (i.e., 2) is successfully
removed with pop back and then the integer 17 is inserted between the first and second
elements that have values of 12 and 1, respectively. After calling clear we see that the
capacity of the array has not changed; but, its content has been removed so that the value
of size() is 0.

An illustration of the creation of a vector<vector<> > construct is provided in the next
listing.

Listing 10.2 vecEx2.cpp

//vecEx2.cpp

#include <iostream >

#include <vector >

using std::cout; using std::endl; using std:: vector;

int main (){

int nrows = 3, ncols = 2;

vector <vector <int> > v;

v.resize(nrows);

for(int i = 0; i < nrows; i++){

v[i]. resize(ncols);

for(int j = 0; j < ncols; j++)

v[i][j] = (i + 1)*(j + 1);

}

for(int i = 0; i < v.size (); i++){

for(int j = 0; j < v[i].size (); j++)

cout << "v[" << i << "][" << j << "] = "

<< v[i][j] << " ";

cout << endl;

}

return 0;

}

In this example a 3×2 array v of integers is created. Initially, the default vector constructor
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is used to obtain an “empty” array v with no slots. Then, slots are added to v using the
resize method.

In general, for a vector object v the statement

v.resize(k);

will change its number of elements from v.size() to k. If the container has more than k
objects, the first k elements are retained and the others are deleted. If, as is the case in
Listing 10.2, k (i.e., 3) is larger than the current value of v.size() (i.e., 0), the contents
of v are expanded by an additional k - v.size() objects created with their default class
constructor while the existing content of v remains unchanged. Thus, for our case where v
contains vector objects, the command

v.resize(nrows);

will expand the vector object v to have nrows slots holding vector objects that all have
the default length 0. A similar outcome is obtained from

v[i]. resize(ncols);

in Listing 10.2 in that the vector object v[i] is dimensioned to have ncols slots or,
equivalently, the array corresponding to v will be of dimension nrows × ncols. The ncols
elements of v[i] are then filled using a for loop. The output from running Listing 10.2 is

v[0][0] = 1 v[0][1] = 2

v[1][0] = 2 v[1][1] = 4

v[2][0] = 3 v[2][1] = 6

Finally, let us discuss copying of one vector object into another. If v is a vector<T>
object for some given class T, the simplest way to create a new vector<T> object that
contains the content of v is with the class copy constructor using syntax like

vector <T> v1(v);

This produces an independent copy of v in the vector<T> object v1. Alternatively, to copy
one vector object or, more generally, some portion of the object, into another, existing
vector object the assign method for the vector class can be used. For example, the same
result that was obtained with the copy constructor is produced by

vector <T> v1;

v1.assign(v.begin(), v.end ());

Our choice of the range v.begin() to v.end() here is arbitrary and a subset of the elements
of v can be copied by replacing these iterators with ones that point to other location in the
vector that is being copied.

Listing 10.3 below illustrates copying using the vector class copy constructor and assign
method.

Listing 10.3 vecEx3.cpp

//vecEx3.cpp

#include <iostream >

#include <vector >

#include <string >

using std::cout; using std::endl; using std:: vector;

using std:: string;

void printVec(vector <vector <int > > v, string s);
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int main (){

vector <vector <int> > v, v1;

int nrows = 3, ncols = 2;

v.resize(nrows);

for(int i = 0; i < nrows; i++){

v[i]. resize(ncols);

for(int j = 0; j < ncols; j++)

v[i][j] = (i + 1)*(j + 1);

}

v1.assign(v.begin () + 2, v.end ());

printVec(v1, "v1");

vector <vector <int> > v2(v);

printVec(v2, "v2");

return 0;

}

void printVec(vector < vector <int> > v, string s){

cout << "The number of rows in " << s << " is "

<< v.size() << endl;

for(int i = 0; i < v.size (); i++){

cout << "The length of row " << i << " is " << v[i].size()

<< endl;

for(int j = 0; j < v[i].size (); j++)

cout << s + "[" << i << "][" << j << "] = "

<< v[i][j] << " ";

cout << endl;

}

}

The main function creates a vector<vector<int> > object that is then populated with six
integers arranged in three rows and two columns. The begin() iterator is incremented by
two in an application of assign which should have the consequence that only the last row
of the vector object v will be copied into the object v1. Next, the copy constructor is used
to copy all of v into a new vector object v2. The results of this copying are printed to
standard output using a utility function printVec created for that purpose. The program
produces

The number of rows in v1 is 1

The length of row 0 is 2

v1 [0][0] = 3 v1 [0][1] = 6

The number of rows in v2 is 3

The length of row 0 is 2

v2 [0][0] = 1 v2 [0][1] = 2

The length of row 1 is 2

v2 [1][0] = 2 v2 [1][1] = 4

The length of row 2 is 2

v2 [2][0] = 3 v2 [2][1] = 6

The output demonstrate that both copying procedures were successful.
The STL container class deque is similar to the vector class. The difference is that new

elements can be prepended as well as appended in constant time. The deque containers
become available through the include statement

#include <deque >
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Then, a deque object, Q, is obtained via

deque <className > Q;

with className some specific choice for the template data-type parameter. The class meth-
ods include all of those given above for the vector class as well as push front and pop front
that add and remove elements from the front of the container. Exercise 10.3 and Exercise
10.16 explore these and other properties of the deque class.

10.3.1 Streaming data

In applications that require the analysis of huge data sets it may be impractical to store
the data in memory or even examine any portion of it multiple times. The streaming model
of computation assumes that data arrive in a stream of observations. Depending on the
particular application, each observation may consist of several attributes. The program
must perform any computation on each individual observation immediately. The standard
assumptions are that
• the size of the data set is too large to store and
• the diversity of the attributes or keys precludes the use of counters to tabulate the

frequencies of their individual values.
Muthukrishnan (2005) gives an introduction to data streaming models, applications and
results from an algorithmic standpoint. Aggarwal (2007) contains a collection of surveys
that are oriented toward data mining applications.

Cormode and Muthukrishnan (2005) propose a simple but effective ADT called count-min
sketch that can be used to answer queries about the distribution of variables in a streaming
data set. This structure contains a d × w array B of nonnegative integers B[i, j], 1 ≤ i ≤
d, 1 ≤ j ≤ w that will hold estimates of the frequency of occurrence of the values of
a variable. The row and column dimensions of B correspond to d hash functions h1, . . . hd
that map {1, . . . ,m} into {1, . . . , w}. The integers {1, . . . ,m} represents the set of, typically,
discretized or grouped values that the stream elements may take. The discretization occurs,
for example, when a key/attribute is continuous and rounded to fall into a finite number of
groups with some desired precision. In practice, the discretization need not produce integer
values; but, there is no loss here in assuming that to be the case. The d hash functions are
chosen uniformly at random from a pairwise independent hash family.

The elements of B are all initialized to zero and then updated as the data values arrive.
Specifically, if a key value k is found to occur in the stream, B[j, hj(k)], j = 1, . . . , d will all
be incremented by one. At any point in time, an estimate of the frequency of that key value
is

nk = min
j
B[j, hj(k)]. (10.1)

Let nk denote the actual number of observations with the key k that have been observed in
the first N elements from a data stream. An indication of the performance of the count-min
sketch data structure is then provided by Theorem 10.1.
Theorem 10.1. For ε, δ > 0 let w = de/εe and d = dln(1/δ)e. Then, nk ≤ nk and
Prob(nk ≤ nk + εN) ≥ 1− δ.
Thus, the sketch estimator always overestimates its target and, with probability at least
1 − δ, exceeds it by no more than εN . Although the parameters δ and ε in Theorem 10.1
can be set arbitrarily, their choices will have fundamental consequences for the size of the
resulting data structure.

Proof. Let the random variable Ik,i,j be the indicator for the event that (k 6= i) and (hj(k) =
hj(i)) both occur: i.e., that the jth hash function hashes the integer i to the same value as
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k. Since the hash functions are pairwise independent E[Ik,i,j ] = P[hj(k) = hj(i), k 6= i] ≤
1/w ≤ ε/e.

Now define

Xk,j =
m∑
i=1
i6=k

Ik,i,jni

which gives the number of times that other keys have hashed to the same value as k for the
jth hash function. By definition of the data structure, B[j, hj(k)] = nk+Xk,j which implies
that B[j, hj(k)] ≥ nk.

To establish the form of the upper bound, observe that E[Xk,j ] ≤ N/w ≤ εN/e. Then,
by Markov’s inequality and the random choice of the d hash functions

Prob (nk − nk ≤ εN) = Prob
(

min
j
B[j, hj(k)]− nk ≤ εN

)
= Prob (B[j, hj(k)]− nk ≤ εN for some j = 1, . . . ,m)
= 1−Πd

j=1Prob (B[j, hj(k)]− nk > εN)

= 1−Πd
j=1Prob (Xk,j > εN)

≤ 1− e−d = 1− δ.

In addition to estimating the number of times a certain key value has been seen, count-min
sketch can be used to approximate other statistics of interest for an input sequence. These
include range queries (approximately counting all key values in a given range), quantiles of
the key distribution and heavy hitters (most frequent key values). See, e.g., Cormode and
Muthukrishnan (2005) for further discussion of how this can be accomplished.

To illustrate the basic premise, we will create a C++ version of the count-min sketch
structure to work with string data. Rather than deal with actual streaming data, the
test for our data structure will be carried out by opening and reading from a file. The
data that will be used for this purpose derive from a list of about 7700 English words
and their frequencies in the British National Corpus: a 100,000,000 word database taken
from a variety of sources of both spoken and written English (see, e.g., Leech, et al. 2001).
This combination of words and frequencies was used to produce a “stream” of about 900,000
words consisting of these 7700 words appearing in different frequencies via the R commands

> newWords <- rep(words , freq)

> set.seed (123)

> newWords <- sample(newWords)

> length(newWords)

[1] 878717

The 7700 words and their frequencies were read into R and stored in the arrays words
and freq, respectively. The (word, frequency) pairs were then converted back to “raw”
data using the R replication function rep. In terms of the way it is used here, rep takes
two vector arguments and replicates the first according to the frequencies specified in the
second. For example, the first component of the vector words is the word “the” that occurred
61,847 times as specified by the first element of the vector freq. The newWord array that is
returned from rep will therefore contain 61,847 instances of “the”. After all the replication
has taken place, the newWord vector contains 878,717 words. These were shuffled randomly
using the R sample function. The result was output to a file called newWords.txt and this
is what will be used to mimic reading from stream input.

The next listing gives the declaration for our count-min sketch class CMS.
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class CMS

{

int W;

int D;

unsigned long Seed;

vector <vector <int> > B;

vector <int> a;

vector <int> b;

void insertKey(string key);

int fnvHash(int i, string key);

public:

CMS(int w, int d, unsigned long seed);

~CMS() {};

void readData(ifstream& inFile );

unsigned long getFreqEst(string key);

};

The class has six private members including the number of hash functions D, the number
of hashed values W and the vector<vector<int> > array structure B that will hold the
frequencies of the hashed values. The universal hash family that produces the values in B will
be created along the lines of Example 9.4 of Section 9.2.4.4. This requires a random number
generator provided by the ranGen class from Appendix E whose seed corresponds to the Seed
data member. The coefficients produced by the generator will be stored in the vector<int>
class members a and b. There are three public methods: a class constructor, a function
to read data from a stream and the function getFreqEst that computes the estimated
frequencies from the B array. The private methods fnvHash and insertKey evaluate the
hash functions at a given key value and update the B array, respectively.

The CMS class constructor takes the form

CMS::CMS(int w, int d, unsigned long seed): W(w), D(d), Seed(seed){

a = vector <int> (D);

b = vector <int> (D);

B = vector <vector <int> >(W, vector <int >(D, 0));

double* aAndb = new double[2*D];

ranGen rng;

rng.setSeed(Seed); rng.ranUnif (2*D, aAndb);

for(int i = 0; i < D; i++) {

a[i] = floor(W*aAndb [2*i]);

b[i] = floor(W*aAndb [2*i + 1]);

}

delete [] aAndb;

}

The values for the class members D, W and Seed are specified as arguments to the constructor
and then set in an initializer list. The two vector<int> objects that will hold the random
coefficients for the hash functions are initialized next followed by initialization of the fre-
quency array B. In this latter case an alternative, two argument, vector class constructor
is called; the first argument is an integer that determines how many times the second ar-
gument is replicated in the container. Thus, vector<int>(D, 0) creates a D-element array
of all zero entries and the second call to this constructor produces a W component vector
object with this array in every slot. The end result is just a W × D “matrix” of zeros. The
values for the elements of a and b are computed using uniform random deviates generated
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by an object from the ranGen class of Appendix E with seed set to the value of the class
member Seed. The ranUnif method for the ranGen class produces numbers in the interval
[0, 1] that are multiplied by W and then converted to integers between 0 and W - 1.

Flaming (1995) describes a good hash function for strings as

“a magic formula that chops, mixes, slices and dices the input character string, using just a few
statements”.

There are numerous hash functions that can be categorized in this way some of which have
been found to perform quite well in practice. One of these that has received good reviews is
the public domain Fowler/Noll/Vo or FNV hash function that will be used as the base for
our hash function family. The resulting hashing method for the CMS class is defined in the
next listing.

int CMS:: fnvHash(int i, string key){

unsigned long int h = 2166136261 UL;

for (unsigned int j = 0; j < key.length (); j++ )

h = (h*16777619)^ key[j];

return (a[i]*h + b[i]) % W;

}

The method takes two arguments: the string variable key that is the key to be hashed
and an integer that specifies which one of the D hash functions to use for hashing the key.
The body of the method is an implementation of the FNV hash algorithm. It produces a
hash value that is combined with the appropriate coefficients from the a and b arrays (as
determined by the int argument) to create the actual hash value that is returned by the
method. The actions the FNV method performs on a key are straightforward: an initial
hash value (2166136261) is sequentially multiplied by a constant (16777619) with a bit-
wise exclusive OR operation (e.g., Exercise 2.4) being used to combine the result with each
element of the key value. The process of breaking the key into parts (i.e., key[0], . . .,
key[key.length() - 1] in this case) and then combining the values via exclusive OR
operations (or addition, multiplication, etc.) is called folding and is one of the standard
methods that is used in creating hash functions for strings (see, e.g., Chapter 13 of Budd
1994 or Chapter 10 of Drozdek 2005).

When the compiler initially encounters a long (or any other) integer literal like 2166136261
(prior to assigning it to h) in the fnvHash function, it must decide on a storage type. There
are some differences between how compilers (e.g., from different versions of a standard) will
handle this and warning messages may be generated as a result. One way to avoid this is
to give the compiler a hand by stating up front what the storage size should be. This is
accomplished by adding a suffix to the numeric value. For integers the suffixes U and L stand
for unsigned and long, respectively. In combination (as used in the fnvHash function) they
signify that the constant is of type unsigned long.

To insert a data value from the stream into the “hash table”, its hash values are computed
under all the d hash functions while the appropriate elements of B are incremented. This is
accomplished with

void CMS:: insertKey(string key){

for(int i = 0; i < D; i++)

B[i][ fnvHash(i, key )]++;

}

Then, at any point in time the estimated frequency of occurrence of a key value can be
computed using
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unsigned long CMS:: getFreqEst(string key){

unsigned long minSoFar = numeric_limits <unsigned long >:: max ();

unsigned long thisCount = 0;

for(int i = 0; i < D; i++) {

thisCount = B[i][ fnvHash(i, key)];

if(thisCount < minSoFar) minSoFar = thisCount;

}

return minSoFar;

}

The for loop computes the value of (10.1). The only problem is obtaining a value for
the estimator that can initialize the search for the minimizer. This is provided by the
numeric limits template class function max with template parameter unsigned long that
returns the largest unsigned long integer that can be represented on the machine.

We are now ready to take the CMS class for a “trial run”. The function that will facilitate
the test is

void CMS:: readData(ifstream& inFile ){

string key; int theCount= 0, totalCount = 0;

while(!inFile.eof ()) {

getline(inFile , key);

if(key == "the") theCount ++;

insertKey(key);

totalCount ++;

if(!(totalCount %100000))

cout << theCount << " " << getFreqEst("the") << endl;

}

}

This method takes an ifstream object as its argument that corresponds to an input file; for
our specific application the file of interest will be newWords.txt that was created previously
in R from the British National Corpus word data. Data from the file will be read until the
end of the file is encountered: i.e., inFile.eof() evaluates to true. Each word is read in
using the getline function from Section 3.8.5. The resulting key is then “inserted” into the
B array with the insertKey method. To emulate what might transpire while reading from
an actual stream, code has also been included to monitor the frequency of the word “the”
and report on its estimated and actual frequency after every 100,000 words are read from
the “stream”.

The main function for a driver program that was created for our “data-streaming” problem
is shown in the next listing.

int main (){

unsigned long seed = 123;

int w = 307;

int d = 29;

CMS A(w, d, seed);

ifstream words("newWords.txt");

A.readData(words);

words.close ();

string key;

while(1) {

cout << "The word of interest? ";

getline(cin , key);

if(key.length () == 0) break;

cout << "Estimated frequency is " << A.getFreqEst(key)

<< endl;
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}

return 0;

}

A CMS object is created with a seed value of 123 for the random number generator, 29
hash functions and 307 bins/slots for the hashed key values. An ifstream object is then
created for the newWords.txt file and the readData method is called with that object as
its argument. After closing the input stream, the frequency array B will persist and we are
given the option of asking about the frequencies of specific words that may be of interest.

An example of results from running the program are

6866 6996

13972 14240

20955 21384

28023 28587

35004 35720

41981 42846

49053 50075

56189 57365

The word of interest? the

Estimated frequency is 63135

The word of interest? of

Estimated frequency is 30063

The actual frequency of “the” over all 878,717 words in newWords.txt is 61,847 while the
sketch estimate is 63,135. Similarly, the estimated frequency of “of” over all 878,717 words
is found to be 30,063 while its actual frequency is 29,391. Table 10.1 reports the results from
similar queries for the eight most frequent words in newWords.txt. Both the true frequency
and estimated frequencies are listed in the table.

Table 10.1 Actual versus estimated word frequency
Word Actual frequency Estimated frequency

the 61847 63135
of 29391 30063

and 26817 27829
to 25627 28481
a 21626 25916
in 18214 20074
is 9982 10450

was 9236 10098

10.3.2 Flexible data input

Section 3.10 discussed using a template approach to create classes for input of general types
of numeric data. While this is satisfactory in many cases, there are limitations to its utility.
Specifically, it will not work in cases where the structure of the input file is unknown. Thus,
one must know a priori the number of rows and columns in the file and, if there are rows of
uneven length, the code must be altered and tailored to work with whatever pattern may
exist.

With the vector class in hand, we are now in a position to create a general file input
scheme that allows us to read in a file of numeric (or more general types of) data with
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essentially unknown formatting. A class will be designed specifically to acquire data from
such a text file and store it in a suitable array format.

The assumption is that data will be read from a file where the numbers are delimited or
separated in some known fashion. This could be by commas, semicolons or whatever. For
specificity it will be assumed for now that the delimiter is just a blank (or white) space.
The number of rows and columns in the file are not known and it may be that rows are
of unequal length. From this perspective it becomes necessary to treat the content of the
input file as being strings separated by white spaces. The strings can then be manipulated
using string class methods (see Section 3.8) and converted to appropriate types of numeric
(or other) values using functions (e.g., atoi and atof) that are available in C++ for that
purpose.

The process of taking a line of input that contains a group of strings separated by some
delimiter and breaking it into its individual substring components (or tokens) is sometimes
called tokenizing. We will develop a specific tokenizer for use in our setting. The details
involved in producing this function are somewhat irrelevant to our immediate purpose.
Thus, the tokenizer method will be treated as a “black box” that takes a line of input and
returns it to us in a vector container of string variables. The details of how the tokenizer
works will be revealed at the end of the section.

If the form of the tokenizer method is ignored, the essential aspects of the plan for class
fileIn can be seen from the class header file in the listing below.

Listing 10.4 fileIn.h

// fileIn.h

#ifndef FILEIN_H

#define FILEIN_H

#include <vector >

#include <string >

class fileIn{

std::vector <std::vector <double > > v;

void tokenizer(const std:: string& str ,

std::vector <std::string >& tokens );

public:

fileIn(const char* fname);

~fileIn (){};

int getVNRows (){return v.size ();}

int getVLength(int i){return v[i].size ();}

double getV(int i, int j){return v[i][j];}

};

#endif

Here the data to be accessed are assumed to be in the form of rows in a file that will then
be stored in a vector container of vector containers, v, of double variables very similar to
the construction in Listing 10.2. This will allow us to process the data without knowing
a priori the number of rows or columns in the file. The use of double as the data type,
although likely the most typical choice, is still rather arbitrary. Minor tweaks of the basic
idea can be used to address more general types as will be illustrated in the next section.

The constructor function in Listing 10.4 will take the input file name as an argument. In
addition, three accessor functions are given inline: getVNRows that returns the number of
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rows in the data array v, getVLength that gives the number of columns for a given row of
v and getV that returns the value of the specified element of v.

The definitions of the remaining two class methods are in the next listing.

Listing 10.5 fileIn.cpp

1//fileIn.cpp

2#include "fileIn.h"

3#include <fstream >

4#include <iostream >

5

6using std:: string; using std:: vector; using std::cout;

7using std::endl; using std:: ifstream;

8

9fileIn :: fileIn(const char* fname){

10vector <string > words;

11string line;

12

13ifstream in(fname );

14

15if(in.is_open ()){

16while(!in.eof ()){

17getline(in , line);

18if(line.length () != 0){

19tokenizer(line , words);

20if(words.size() != 0){

21v.push_back(vector <double >());

22for(int i = 0;i < words.size (); i++)

23v[v.size() - 1]. push_back(atof(words[i].c_str ()));

24}

25words.clear ();

26}

27}

28}

29else {

30cout << "Unable to open file" << endl;

31exit (1);

32}

33}

34

35void fileIn :: tokenizer(const string& str , vector <string >& tokens ){

36string delimiters=" ";

37//Skip delimiters at beginning

38string ::size_type lastPos = str.find_first_not_of(delimiters , 0);

39//Find the end of the first token

40string ::size_type pos = str.find_first_of(delimiters , lastPos );

41

42//Loop while there are tokens to be found: i.e., one of the

43//searches for a delimiter (pos) or nondelimiter (lastPos)

44//does not fail.

45

46while(string ::npos != pos || string ::npos != lastPos ){

47//Found a token , add it to the vector

48tokens.push_back(str.substr(lastPos , pos - lastPos ));

49//Skip next set of delimiters and go to next token

50lastPos = str.find_first_not_of(delimiters , pos);
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51//Find end of token or start of next delimiter

52pos = str.find_first_of(delimiters , lastPos );

53}

54}

After first creating the ifstream object in on line 13 of the listing, a check is made to see
that the targeted file was successfully opened (on line 15) using the is.open method for the
ifstream class. Assuming that is.open returns true, the function getline for ifstream
objects is then used on line 17 to extract the contents of the file one line at a time. This is
done adaptively through use of a while loop that continues to execute until the end of the
file is reached as indicated by the ifstream eof method that is called by in. Each line of
input brought in by getline is passed to the tokenizer. The tokenizer writes the individual
substrings (or numbers in this case) that make up the line into the string vector container
words. An extra row is appended to the vector of data v with the push back method on
line 21 to hold the contents of words. This new row is then filled with the words.size()
elements of words also using push back. In the process of doing this the atof function is
employed to translate a null-delimited character array to its numerical representation which
first requires that we translate each string to a character array (or C-string) using the c.str
function for the string class. Note that atof will work for both floating point and integers
in that it will translate strings of integers without introducing a decimal point.

To conclude our discussion of data input, let us briefly discuss the “mysterious” tokenizer
function in Listing 10.5. As previously discussed the tokenizer function breaks a string
into the components that differ from the delimiters. In our particular case the value of
delimiters has been chosen to be a white space on line 36 of Listing 10.5. But, this could
be any character value and could even be included as an argument to the function to allow
more flexibility in the file reading process. The most common delimiters are commas, white
spaces and the tab delimiter \t.

Our tokenizer uses the string class iterators find first of and find first not of that
return the position of the character that satisfies their respective search conditions. The
return type from each of these iterators is something called size type which is basically an
unsigned integer except for the addition of the special value string::npos that is returned
to indicate failure. Note that the container vector of string tokens is being passed by
reference. When tokenizer is called from the fileIn constructor the role of tokens is
occupied by the local variable words. Thus, since words is passed by reference, tokenizer
is able to write directly onto the area in memory that holds the content of words and
effectively returns a new value of words to fileIn as its “output”.

10.3.3 Guess5 revisited

In this section we will illustrate the use of the fileIn class of the previous section as well as
using vector containers to hold user-defined data types. The discussion here carries forward
into our treatment of the algorithm library in Section 10.7.

It will be useful to first recall some of the details concerning the fictional Guess5 lottery
game that was introduced in Section 5.6. The game consisted of five balls being selected
from a set of 40 balls without replacement. The drawings occur on Monday and Thursday
using one of the two drawing machines, A or B, and one of the 10 ball sets, numbered 1 to
10. A series of nine test draws are conducted prior to each draw thereby producing a total
of 10 selections of five balls every Monday and Thursday.

A set of data corresponding to 100 Guess5 draws was created in Section 5.6 and stored
in the file guess5.txt. From the discussion in that section we know that the first row of data
for each draw will contain the date of the draw (a string variable), the letter designation of
the machine that was used to conduct the draw (a string variable), the number of the ball
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set that was used in the draw (a variable of type int) and the day of the draw indicated
by M for Monday and T for Thursday (a string variable). The next nine rows consist of
integers that represent the five ball numbers that were drawn for the nine test draws and
the eleventh row contains the outcome of the actual Guess5 drawing for that night. This
pattern continues throughout the file.

Before we can actually analyze the data in guess5.txt, it must be imported into our
program. One approach to this can be based on the developments in Section 3.10. Our path
will be somewhat more general and instead use a slight modification of the class fileIn
from the previous section.

The guess5.txt file contains a mix of values for string and int variables with the con-
sequence that the fileIn class that transforms all the data to type double is not directly
useful. This is easy enough to fix by
• replacing

std::vector <std::vector <double > > v;

and

double getV(int i, int j){return v[i][j];}

in the fileIn class declaration in Listing 10.4 with

std::vector <std::vector <std::string > > v;

and

std:: string getV(int i, int j){return v[i][j];}

• replacing

v.push_back(vector <double >());

and

v[v.size() - 1]. push_back(atof(words[i].c_str ()));

on lines 21 and 23 of of Listing 10.5 with

v.push_back(vector <std::string >());

and

v[v.size() - 1]. push_back(words[i]);

This entails that all the data will be imported as string objects. These objects will then
be converted to numeric values as necessary using the pattern that is known to exist in the
recorded data for each drawing.

Proceeding along the lines of our work in Section 6.4, the information for individual
drawings will be stored in objects from a class called g5. The objects will then be placed
in an appropriate container that will facilitate the analysis of the combined data as well
as subsets corresponding to each of the two machines, each of the 10 ball sets and the 20
machine/ball set combinations. This latter container class will be called g5Array.

The declaration for the g5 class is

class g5{

std:: string Date , Machine;

int SetNo;

std:: string Day;

short** pData;
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int* pFreq;

void getFreq ();

public:

g5() : pData (0), pFreq (0) {}

g5(std:: string Date , std:: string machine , int setNo ,

std:: string day , short** pdata );

g5(const g5& g5Obj);

~g5();

g5& operator=(const g5& g5Obj);

bool operator==(const g5& g5Obj) const;

int getFreq(int i) const {

return pFreq[i];

}

std:: string getDate () const {

return Date;

}

void printG5 () const;

};

The class has six members: string variables Date, Machine and Day for the drawing date,
name of the machine that was used and day of the week for the drawing, an int variable that
will hold the set number used in the drawing, a pointer-to-pointer short integer “array” that
will hold the actual drawing information and a pointer to int that will hold the frequencies
of occurrence for the 40 balls for a particular g5 object. The numbers being drawn are all
between 1 and 40 and the full four bytes of int storage would be wasted here; the two
byte short int type will work just as well. There is a default constructor that sets the two
pointer variables to null pointers. This is needed, for example, to create an empty vector
container of a specified size for holding g5 objects. There is also a constructor that takes
input values for five of the member variables. Accessor methods are given for two of the
class members and a utility print method has been provided. Dynamic memory allocation is
involved and, accordingly, a copy constructor, overloaded assignment operator and explicit
destructor are provided. An overloaded == comparison operator has been included for work
that will arise in Section 10.7. Creation of the code for these methods is addressed in Exercise
10.9.

The nondefault constructor for class g5 looks like

g5::g5(std:: string date , std:: string machine , int setNo ,

std:: string day , short** pdata) : Date(date),

Machine(machine), SetNo(setNo), Day(day) {

pFreq = new int[40];

for(int i = 0; i < 40; i++)

pFreq[i] = 0;

pData = new short*[10];

for(int i = 0; i < 10; i++){

pData[i] = new short[5];

for(int j = 0; j < 5; j++)

pData[i][j] = pdata[i][j];

}

getFreq ();

}

The values of all the member elements, except the two pointers, are set via an initializer
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list. The pFreq pointer is initialized and the current contents of the corresponding memory
locations are overwritten with zeros. For the actual drawing data there will be 10 draws
with five balls selected on each draw. Memory is acquired to hold this information using the
pointer pData and the memory locations are filled with the drawing data.

The role of setting the values corresponding to the pFreq pointer falls to the private
member function getFreq that is called by the constructor. It takes the form

void g5:: getFreq (){

for(int i = 0; i < 10; i++)

for(int j = 0; j < 5; j++)

pFreq[pData[i][j] - 1]++;

}

This method fills the necessary memory locations by moving through the pData array while
augmenting the frequencies of the numbers that are encountered.

We are now ready to create the container for storing objects from the g5 class. The basic
scheme is to use a vector<vector<g5> > object for this purpose. The array will be chosen
to have 20 rows: one for each of the 20 machine/ball set combinations for the game. This
configuration will make analysis of the various data subsets more efficient than performing
a search through the entire collection of data as in Section 6.4.

The declaration for the g5Array class is given in the next listing.

class g5Array{

std::vector <std::vector <g5 > > v;

int nDraws;

public:

struct const_iterator : public

std::iterator <std:: forward_iterator_tag , g5> {

int Index;

const g5Array* const_pA;

std::vector <g5 >::const_iterator const_current;

const_iterator (){}

const_iterator(const g5Array* pa) : const_pA(pa) {}

const g5& operator*() const {return *const_current ;}

const g5* operator ->() const {return &(*const_current );}

const_iterator& operator=(const const_iterator& iter);

bool operator==(const const_iterator& iter) const;

bool operator!=(const const_iterator& iter) const {

return !(*this == iter);

}

const_iterator operator ++();

const_iterator operator++(int){return operator ++();}

int nextIndex ();

};

g5Array(const char* fileName );

bool operator==(const g5Array& gA) const {

if(v == gA.v) return true;

return false;

}

const_iterator begin () const;
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const_iterator end() const;

double chiSquare () const;

std::vector <g5 > g5Sort () const;

const_iterator lookUp(const std:: string s) const;

};

There are two class members: the vector<vector<g5> > array that will hold the drawing
data and an integer variable nDraws that gives the number of g5 objects being held in the
container. An internal iterator class has been provided for exploration of the data structure.
As in Section 9.5.1 iterators from this class are returned by the begin and end methods
that point to the first and one past the last element of the container. The three methods
chiSquare, g5Sort and lookUp will be discussed in Section 10.7.

The definition of the constructor for class g5Array is

g5Array :: g5Array(const char* fileName ){

int s, drawIndex = 0;

//initialize v

v = std::vector <std::vector <g5 > >::vector (20);

//determine the number of draws

fileIn fIn(fileName );

nDraws = fIn.getVNRows ()/11;

//temporary storage for draw data

short** pTemp = new short*[10];

for(int i = 0; i < 10; i++)

pTemp[i] = new short[5];

for(int k = 0; k < nDraws; k++){

//first copy in the draw data

for(int i = 0; i < 10; i++){

for(int j = 0; j < 5; j++){

pTemp[i][j] = atoi(fIn.getV(drawIndex + 1 + i, j).c_str ());

}

}

s = atoi(fIn.getV(drawIndex , 2).c_str ());

if(fIn.getV(drawIndex , 1) == "A")

v[s - 1]. push_back(g5(fIn.getV(drawIndex , 0),

fIn.getV(drawIndex , 1),

atoi(fIn.getV(drawIndex , 2).c_str()),

fIn.getV(drawIndex , 3), pTemp ));

else

v[9 + s].push_back(g5(fIn.getV(drawIndex , 0),

fIn.getV(drawIndex , 1),

atoi(fIn.getV(drawIndex , 2).c_str()),

fIn.getV(drawIndex , 3), pTemp ));

drawIndex += 11;

}

//memory clean -up

for(int i = 0; i < 10; i++)

delete[] pTemp[i];

delete pTemp;

}

The only argument for the constructor is the name of an input file that holds the drawing
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data. A (modified as indicated above) fileIn object that will adaptively determine the
length of the input file is used to import the data. There are 11 rows of data for each
drawing. So, the number of draws is just the size of the vector container v in the fileIn
class (that is returned by its accessor function getVNRows) divided by 11.

After initializing the fileIn object, the g5Array class member v is initialized along with
a pointer-to-pointer pTemp for data of type short that will be used for temporary storage
of the drawing results. Although the number of rows in the array v is fixed at twenty, the
vector<g5> objects that comprise each of these rows can grow as needed. They are initially
of size 0; but, they will grow by (at least) one slot each time a new object is pushed onto
the vector via the push back method.

The process of filling the container involves working our way through the string data
from the fileIn object one drawing at a time. The contents of the first row of data for
a draw are copied into variables of type string or int (after transformation via the atoi
function), as appropriate, and the values from the next 10 rows are transformed from string
to int and copied into the memory allocated to pTemp. All this information is then used to
create a new g5 object that is pushed onto the row of v that corresponds to its machine and
ball set; the first 10 rows of v have been used to store draws produced by a combination of
the 10 ball sets with machine A while the remaining 10 serve the same purpose for drawings
that used machine B.

The first new thing to notice concerning the g5Array iterator class is the inheritance
relation indicated in the class declaration by

public std::iterator <std:: forward_iterator_tag , g5 >

The STL allows for several types of iterators that all derive from a basic template class.
To work effectively in the STL, user-defined iterators need to conform to this class and the
easiest way to accomplish that is by inheritance from the appropriate STL iterator class.
This is accomplished through a statement such as∗

class newIterator : public std::iterator <iteratorType , dataType >

Here dataType is the class for objects that will be pointed to by the iterators. The parameter
iteratorType can take several values: namely,

• output iterator tag,

• input iterator tag,

• forward iterator tag that inherits from input iterator tag,

• bidirectional iterator tag that inherits from input iterator tag and

• random access iterator tag that inherits from bidirectional iterator tag.

The forward, bidirectional and random access parts of the iterator type names are self-
descriptive in terms of the iterator’s properties. Input and output iterators are forward
iterators with, respectively, read-only and write access to elements in the container. In view
of this discussion, we now see that the iterator class for the g5Array class is a child/derived
class of the basic STL forward iterator tag class whose iterators will point to g5 objects.

The g5Array const iterator struct has three members. The pointer const pA to const
g5Array is used to tie an iterator to a specific container as is necessary for the g5Array
methods begin and end. The const current member is just a const iterator (cf. Section
9.5.2) from the STL associated with a vector<g5> object. In particular, const current will
be able to work with the vector<g5> object that will be accessible through const pA. The
const current iterator and the integer variable Index work in tandem to give the current

∗ The STL iterator class has five template parameters. The last three have default values that will suffice
for our purposes.
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iterator location. The object being traversed is of type vector<vector<g5 > > which means
we can think of it as a double array with 20 rows of possibly unequal length; the Index
value tells us the row number and const current then points to the column inside the
row. Some care has been taken to protect against alteration of the actual draw data by a
g5Array object. In this setting, all we need to do is process the data and untoward changes
in the input data could prove problematic (or worse). The use of a const g5Array data
type for the iterator class pointer member and the const iterator for the vector class
iterator give us protection against such possibilities.

Creation of code for the nondefault constructor and the *, ->, =, == and != operators for
the g5Array const iterator class is the subject of Exercise 10.10. Our focus will instead
be directed towards development of the prefix increment operator.

In a general sense, navigation of a g5Array object is straightforward; one proceeds across
the elements in a given row of a container until the end and then moves to the next row and
repeats the process. However, the rows can be empty and some care needs to be taken to
avoid going past the last element in a g5Array object. The formulation of the ++ operator
given below allows for such contingencies.

g5Array ::const_iterator g5Array ::const_iterator ::operator ++(){

const_current ++;

if(const_current == const_pA ->v[19]. end ()){

*this = const_pA ->end();

return *this;

}

if(const_current == const_pA ->v[Index].end ()){

Index = nextIndex ();

if(Index == -1){

*this = const_pA ->end();

return *this;

}

const_current = const_pA->v[Index ].begin ();

}

return *this;

}

Our first action is to increment the vector<g5> iterator. A check is then made to see if we
are already at the end of the container. The next step is to determine if we are at the end
of a row. If that is not so, then no further action is needed. On the other hand, if the end
of a row is encountered, a search is made to find the next nonempty row using

int g5Array ::const_iterator :: nextIndex (){

int temp = Index + 1;

while(temp < 19 && this ->const_pA ->v[temp]. empty ())

temp ++;

if(const_pA ->v[temp]. empty ())

return -1;//all remaining slots are empty

return temp;

}

This function moves from row to row until it finds one that is not empty. It returns the row
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index or −1 if no nonempty rows are found. Depending on the return value from nextIndex
the ++ operator will return either an iterator that points to the begin() iterator for the
vector<g5> object that represents the next row to be explored or the g5Array container’s
end() iterator. We define this latter iterator by

g5Array ::const_iterator g5Array ::end() const {

const_iterator iter;

iter.const_pA = this;

if(v.empty ()){

iter.Index = 0;

iter.const_current = v[0]. end ();

return iter;

}

int i = 19;

while(v[i]. empty ())

i--;

iter.Index = i; iter.const_current = v[i].end ();

return iter;

}

This method returns the natural choice of an iterator that points to one past the last element
of the last nonempty row in a container.

The begin companion method for end is defined in the listing below.

g5Array ::const_iterator g5Array ::begin () const {

const_iterator iter;

iter.const_pA = this;

if(v.empty ()){

iter.Index = 0;

iter.const_current = v[0]. begin ();

return iter;

}

int i = 0;

while(v[i]. empty ())

i++;

iter.Index = i; iter.const_current = v[i]. begin ();

return iter;

}

The iterator returned by this method points to the first object in the first nonempty row of
the container.

A program that tests the g5Array class has the main function

int main (){

g5Array g5A("guess5.txt");

g5Array ::const_iterator iter = g5A.begin ();

iter ->printG5 (); iter ++; iter ->printG5 ();

return 0;

}

The “test” is simple; a g5Array container is created using the guess5.txt data file from
Chapter 5 and an iterator is defined to point to its first element. The iterator is used to
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print the first g5 object in the container after which it is incremented and used to print the
next object it encounters. The output this produces is

Guess5 Drawings for 1952 -06 -12 used Machine A with Ball Set 1

The drawing results are:

20 35 7 23 27

8 23 26 35 12

22 1 15 24 40

33 5 26 8 22

28 21 15 26 18

10 18 4 40 20

1 9 25 27 28

3 4 36 35 34

26 7 35 38 39

3 23 14 18 17

Guess5 Drawings for 1952 -06 -30 used Machine A with Ball Set 1

The drawing results are:

24 7 20 16 30

23 18 8 39 9

13 34 17 38 18

34 1 12 4 30

19 21 16 17 5

2 1 3 14 28

30 4 37 6 18

23 37 32 20 14

22 32 24 4 7

34 19 30 31 11

The first row in the vector<vector<g5> > component of a g5Array object will, by construc-
tion, contain only information about drawings that used machine A and ball set number 1.
So, the output is consistent with what would be expected from that perspective. A manual
check of the guess5.txt file reveals that June 12 and 30 of 1952 were the first, in order, days
where that machine and ball set combination was used in a drawing.

A more thorough test of the g5Array class will be given in Section 10.7. There we will, for
example, add a method that will compute a chi-square statistics for a set of Guess5 drawing
data.

10.4 The C++ list container

The STL list container provides an implementation of a doubly linked list along the lines
of Exercise 9.36. Double linkage can be viewed as meaning that every node has both a
next and previous member that point to the next and previous object in the list. Thus,
movements are possible in both forward and backward directions inside the container.

Use of the list container requires the include directive

#include <list >

Then, an empty list container L holding objects of type className can be created with

list <className > L;

A list with a specified number, size, of (empty) nodes is produced by

list <className > L(size);

The empty nodes are obtained from the default constructor for the className class.
New objects can be appended and existing objects removed from the end of a list object

using the push back and pop back methods that work the same as for the vector container.
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It is also possible to prepended or remove objects from the front of a list object. This is
accomplished with the push front and pop front methods. As an example, consider the
code segment below.

list <int> L(5);

int a = 1;

L.push_front(a);

L.pop_front ();

The first action is creation of a list container that can hold five int objects. The first
node in the container is filled with an int variable having the value 1 that is then removed
thereby emptying the list.

Both pop methods simply remove the node from the list and do not return a value. The
first and last components of a list object L are accessed (but not removed) with L.front()
and L.back().

Like the vector container, the list containers have an assign method that can be used
for copying subsets of one list into another. For example,

L.assign(begin , end);

will destroy the current content of the list L and replace them with elements from a “range”
specified by the iterators begin and end. In particular,

L1.assign(L.begin(), L.end ());

will copy the contents of a list object L into another list object L1.
The assign operation will even work with iterators from other classes as illustrated in the

listing below.

//listEx.cpp

#include <iostream >

#include <vector >

#include <list >

using std::cout; using std::endl; using std:: vector;

using std::list;

int main (){

vector <int> v(3);

v[0] = 12; v[1] = 1; v[2] = 2;

list <int> L;

L.assign(v.begin(), v.end ());

for(list <int >:: iterator iter = L.begin (); iter != L.end(); iter ++){

cout << L.front () << " ";

L.pop_front ();

}

cout << endl;

cout << "Empty? " << std:: boolalpha << L.empty () << endl;

L = list <int >(3, 12);

for(list <int >:: iterator iter = L.begin (); iter != L.end(); iter ++)

cout << L.front () << " ";

cout << endl;

L.clear ();

cout << "Empty? " << std:: boolalpha << L.empty () << endl;

return 0;

}
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Here a vector container v is created and filled with three integers. Then, the begin()
and end() iterators for the vector object are used in the assign function to fill a new
list object L. The contents of L are examined and removed via the front and pop front
methods using a for loop with the list class iterators begin() and end(). A check is
made to see if the list object is empty (see Exercise 3.1 for discussion of the boolalpha
format flag) after which it is refilled using another constructor. This latter constructor takes
two arguments: the container size (3 in this example) and an object (12 in this instance)
that will be copied, repeatedly, to fill all the nodes. The elements of the list object are
examined again and the clear and empty methods are called.

The output from our list example program is

12 1 2

Empty? true

12 12 12

Empty? true

The list was filled as expected first using the contents of the vector object and then with
three copies of the integer 12. It was then successfully emptied by both the for loop and
pop front combination and the clear method.

10.4.1 An example

This section provides an illustration of how one might make use of a list container in a
data analysis context. For specificity, suppose that data is being observed on a daily basis:
e.g., values of a stock index or a portfolio’s worth. Information is acquired each weekday
that needs to be stored in a way that makes at least the most recent results easily available.
Also, in some cases, the information arrives out of sequence and needs to be conveniently
placed into its proper order in the time series. Linked lists are, not surprisingly, a viable
storage option for data of this nature.

To focus the discussion, a “stock index” data set will be created here whose form will
dictate the storage scheme. The data were created in R with

> day <- as.Date("1952 -01 -17")

> day <- day + 0:139

> day <- day[!(weekdays(day) == "Saturday"

+ | weekdays(day) == "Sunday")]

> length(day)

[1] 100

> set.seed (123)

> indexData <- paste(day , 2500 + arima.sim(n = 100,

+ model = list(ar = .6), sd = 5))

> print(noquote(indexData [95:100]))

[1] 1952 -05 -28 2487.8268629974 1952 -05 -29 2490.794985197

[3] 1952 -05 -30 2499.0719741635 1952 -06 -02 2496.56644968506

[5] 1952 -06 -03 2500.97969142216 1952 -06 -04 2492.49840131185

> write.table(indexData [-96], file = "index.txt", quote = FALSE ,

+ row.names = FALSE , col.names = FALSE)

The starting date for the data is 1952-01-17 that is stored in an R Date object. Vectorized
addition of this object with the array of integers from 0 to 139 produces an array day of Date
objects that correspond to 140 successive days beginning at 1952-01-17. As the “market” is
not open on weekends, the elements of day that correspond to a Saturday or Sunday need
to be removed. This is accomplished by applying the R subsetting/indexing operator to day
with a logical array as its argument. The elements of this latter array evaluate as FALSE
for weekend Date objects. The weekdays function from Section 5.6 is used to determine
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the weekday for each Date object. A check of the length of day after weekends have been
removed reveals that the final date array will have 100 elements.

The (simulated) values for the “stock index” variable were generated with R’s arima.sim
function. This function is capable of producing data from autoregressive and moving average
models. Here we have used it for a first order autoregressive model of the form

Xt = φXt−1 + εt, t = 1, . . . , 100,

with φ = .6 and the εi zero mean, uncorrelated normal errors with standard deviation 5.
The output from arima.sim was shifted by adding a factor of 2500 and then combined with
the day vector using the paste function to create a 100 component character array named
indexData. This data is shown in Figure 10.1 that was created with the R ts.plot function
for plotting univariate and multivariate time series.
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Figure 10.1 Simulated “stock index” values

We will use our “stock index” data to illustrate various features of the STL list class.
In particular, we will use it to demonstrate insertion of a new node into a list. To make this
(somewhat) more meaningful, a particular date 1952-05-29 was omitted when the data from
R was written to a text file. This date corresponds to slot 96 of the indexData array and,
hence, indexData[-96] is the same array sans the entry in row 96. For future reference the
last six lines of the complete data set were printed during our R session before writing the
data to its file.

The first step in analyzing the “index” data is to create a class that will hold the objects
that make up the data. There are two aspects to consider: the observation time and the
value of the response, or “stock index”, variable. Seeing as the observation times are in a
year/month/day format, we can store that information in a Date struct of the form

struct Date{

int Year , Month , Day;

Date (){}

Date(int year , int month , int day)
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: Year(year), Month(month), Day(day) {}

bool operator <(const Date& date) const;

bool operator >=( const Date& date) const {

return !(*this < date);

}

bool operator ==( const Date& date) const;

bool operator!=(const Date& date) const {

return !(*this == date);

}

};

The struct has three members that hold the day (Day), month (Month) and year (Year)
for when the observation occurred. The nondefault constructor merely sets the member’s
values using an initializer list. To facilitate printing of Date objects, the output insertion
operator has been overloaded as in Exercise 3.19: viz,

ostream& operator <<(ostream& out , const Date& date){

cout << date.Month << "-" << date.Day << "-" << date.Year;

return out;

}

Elements will be inserted into our list container for the “stock index” data in order of their
temporal arrival. The Date objects will therefore provide the natural sorting and searching
information that will be used for look-up and other purposes. Such operations depend on
the comparison operators with the two key definitions being the ones for < and ==. Other
operators can then be obtained by logical negation or composition of these two.

The < and == operators for Date objects are defined by

bool Date::operator <(const Date& date) const {

if(Year < date.Year)

return true;

if(Year == date.Year && Month < date.Month)

return true;

if(Year == date.Year && Month == date.Month

&& Day < date.Day)

return true;

return false;

}

bool Date::operator==(const Date& date) const {

if(Year == date.Year && Month == date.Month

&& Day == date.Day)

return true;

return false;

}

Observations with smaller Year members occur earlier while observations within the same
year occur earlier if they have smaller Month members, etc. The definition of == is similarly
straightforward.

The data that is recorded each day will be held in the members of the struct IndexData
that has the declaration/definition

struct IndexData{

Date T;

double Value;

IndexData (){}
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IndexData(Date t, double value) : T(t), Value(value) {}

};

This is just a container for an object of type Date and a double and the same utility could
be realized using a pair struct from, e.g., Section 9.2.4.2. An overloaded output insertion
operator was also created for this struct that took the form

std:: ostream& operator <<(ostream& out , const IndexData& d){

cout << d.T << " " << d.Value;

return out;

}

We are now ready to formulate the IndexList class that will be used to manage an
accumulated collection of “index” data such as the data created from R in the index.txt
file. The perspective will be similar to that of the Guess5 data from Chapters 5–6 and Section
10.3.3. That is, the data resides on disk and must be read into our program to instantiate
a list object. The reading will be carried out using the fileIn class from Sections 10.3.2–
10.3.3. Specifically, the version of fileIn from Section 10.3.3 that imported all data as
string objects will be used here and, similar to the developments for the g5Array class in
that section, methods from the string class will be used to reformat the data in a way that
makes it suitable for analysis.

The declaration for the IndexList class is given in the next listing.

struct IndexList{

list <IndexData > L;

IndexList (){}

IndexList(fileIn fIn);

IndexData pop_front ();

list <IndexData >:: iterator lookUp(const Date& date);

list <IndexData >:: iterator insert(const IndexData& d);

};

The struct has a single list member. There is both a default and nondefault constructor
that takes a fileIn object as its only argument. There are also the standard lookUp, insert
and pop front methods that will require a bit of explanation. Before proceeding in that
direction it should be noted that this struct is largely a wrapper for a list class object that
adds on a few additional features that are useful for this particular application.

The nondefault constructor for the IndexList struct is

IndexList :: IndexList(fileIn fIn){

Date tempD;

IndexData tempI;

int idx1 , idx2;

for(int i = 0; i < fIn.getVNRows (); i++){

idx1 = fIn.getV(i, 0). find_first_of("-");

idx2 = fIn.getV(i, 0). find_last_of("-");

tempD.Year = atoi(fIn.getV(i, 0). substr(0, idx1).c_str ());

tempD.Month = atoi(fIn.getV(i, 0). substr(idx1 + 1,

idx2 - idx1 - 1).c_str ());

tempD.Day = atoi(fIn.getV(i, 0). substr(idx2 + 1).c_str ());

tempI.T = tempD;

tempI.Value = atof(fIn.getV(i, 1).c_str ());

L.push_front(tempI);

}

}
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The fileIn methods getVNRows and getV return the number of observations and the el-
ements of the vector<vector<string > > object that holds the data. The question that
remains is how to effectively extract the information about the index from this object. To
illustrate the problem, consider the first line of the index.txt file that looks like

1952 -01 -17 997.19762176724

The first string object returned by getV(0, 0) in this case will be 1952-01-17. We need
to extract the values for Day (i.e., 17), Month (i.e., 1) and Year (1952) from this string
and use them to create a Date object. There are various ways to deal with the individual
elements in a string object. Array type indexing can be used and that will work here (along
with the + operator for concatenation) if it can alway be assured that the month and day
values will be recorded as two-digit integers, possibly with leading zeros. We have opted for
a slightly more robust alternative adapted from the tokenizer method of Section 10.3.2.

An application of the string class find first of method to the string 1952-01-17 with
- as its argument will return the location immediately to the right of the Year value 1952.
A similar use of find last of will give us the location in the string that immediately
precedes the Day value 17. All this is simple enough; but, it does not address the issue of
how to actually obtain the value for Day, Month and Year. The substr method gives us an
option that will work regardless of how many digits are used when recording the dates. As
its mnemonic moniker suggests, this function creates a copy of a subset of the elements in
a string object. It takes two arguments; the first is the location where the copying process
should begin and the second is the number of consecutive elements that are to be copied
starting at that location. If the second argument is not supplied, the end of the string
object is used by default.

By using string class methods, the problem of extracting the Date data in the IndexList
class constructor reduces to some simple bookkeeping. First, we pinpoint the locations of
the two dashes and store them in the int variables idx1 and idx2. Then, these are used
to define the number of elements for substr to copy. The substr method returns a string
object which requires an application of the c str method to convert its output into a C-
style string that can be passed to atoi. After obtaining the date information, it can be used
directly to construct a Date class object.

Once the date information has been processed, the observed value for the response or
“index” variable will be the next object in the vector<vector<string > > container mem-
ber of the fileIn object. This can be converted to type double by combining the c str
method and atof. Then, the result can be used with the corresponding Date object to
create an IndexData object for insertion into the list member of the IndexList class via
the push front method. This process continues until all getVNRows() observation in the
data set have been exhausted.

The list class has both an insert and a push back method that perform interior inser-
tions and add elements to the tail of a list object, respectively. For this particular setting
it is somewhat more convenient to combine these into a single method of the form

list <IndexData >:: iterator IndexList :: insert(const IndexData& d){

list <IndexData >:: iterator iter = L.begin ();

while(iter ->T >= d.T && iter != L.end())

iter ++;

if(iter == L.end())

L.push_back(d);

else

L.insert(iter , d);

return iter;

}



422 DATA STRUCTURES IN C++

The Date member of the object being inserted is used to determine its place in the list. It
is added to the front of the list if its date is later than that of the object returned by the
list.begin() iterator. Otherwise, it is placed immediately in front of the object with the
latest date possible prior to that of the inserted object. If the object occurred earlier than
all the other list elements it is appended to the struct’s list object using the push back
method. In any event, a list class iterator is returned that points to the insertion location
in the list member of the IndexList object.

There is no lookUp method for the list class and, accordingly, one must provide their
own.† A method that serves this purpose is given in the next listing.

list <IndexData >:: iterator IndexList :: lookUp(const Date& date){

list <IndexData >:: iterator iter = L.begin ();

while(iter ->T != date && iter != L.end())

iter ++;

return iter;

}

A list iterator is initialized with the iterator returned from the begin method of the
IndexList member list object. The list is then traversed using this iterator until the
target date is found or the one past the end list iterator is reached.

To both access and remove an object from the front of a list object the front and
pop front methods must be used in tandem. The alternative take on the pop front method
below combines these methods to achieve simultaneous access and removal.

IndexData IndexList ::pop_front (){

IndexData d;

if(!L.empty ()){

d = L.front ();

L.pop_front ();

return d;

}

return IndexData ();

}

The main function below is from a program that uses the IndexList class.

int main (){

IndexList C(fileIn("index.txt"));

Date tempD;

IndexData tempI;

tempD.Year = 1952; tempD.Month = 05; tempD.Day = 29;

tempI.T = tempD; tempI.Value = 2490.794985197;

list <IndexData >:: reverse_iterator riter(C.insert(tempI ));

riter --;

while(riter != C.L.rend ()){

cout << *riter << endl;

riter ++;

}

return 0;

}

First an IndexList object is created from the data we stored in the index.txt file. The goal
is to insert the information for the intentionally omitted date 1952-05-29 into the IndexData
object. The insert method will return a forward list iterator that points to the insertion

† The algorithms library does provide search methods that can be used with list or other STL objects.
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location. To illustrate the success of the insertion operation it is more expedient to to move
backward to the front of the container. This can be accomplished using a reverse iterator
as mentioned in Section 10.2. A reverse iterator riter for the list container is obtained
by using the forward iterator from insert (i.e., C.Insert(tempI)) as the argument to a
reverse iterator class constructor. The action produced by ++ will now be movement of
the iterator toward the front of the container. This path is traversed using a while loop
that terminates when the rbegin function returns the iterator that points to one before the
beginning of the list object. Notice that the information about the first element in the
list will be printed using this approach as part of the loop. An alternative route would have
been to simply use the forward iterator C.Insert(tempI) and move back to the front of
the list via the -- operator. The problem is that termination of the loop would occur when
the iterator C.L.begin() was encountered. Thus, the loop would stop one node short of the
front of the list. Although this behavior is easy enough to work around in this case, reverse
iterators provide the solution for instances where a backward iteration needs to terminate
on, rather than before, the front component of a list object.

The output from running our program was

5-28-1952 2507.13

5-29-1952 2490.79

5-30-1952 2511.7

6-2-1952 2514.68

6-3-1952 2507.63

6-4-1952 2499.45

Referring back to the beginning of the section, reveals that the missing node has been
inserted successfully.

10.4.2 A chaining hash table

Currently the official C++ STL does not include a hash table implementation.‡ Hash tables
are a part of the draft standard described in the C++ TR1 document that is already at
least partly implemented in several compilers, most notably gcc, and is largely safe and
portable. The next standard will include these features and many others, a few of which are
discussed in Appendix C.

Despite the absence of a specific hash table container, the STL still provides all that
is necessary to create effective hash tables as will be demonstrated in this section. The
development here is motivated by Section 12.4 of Ford and Topp (2002).

Conceptually, we know from Section 9.2.4 that a chaining hash table consists of three
components:

• an array structure that represents the buckets for the table,

• linked lists that hold the elements in each bucket and

• elements that are a composed of key and data modules.

Thus, the appropriate containers from the STL can simply be used in combination to create
a composite structure that has these requisite features. In that regard, the pair container
from Section 9.2.4.2 has already been used as the third component and there is no reason to
deviate from that scheme. The vector container can provide the buckets; this comes with
the added benefit of providing a built-in resizing mechanism for the table. Objects from the

‡ Several hash table implementations are available through external libraries and STL extensions, including
the SGI STL, and some versions of Microsoft’s Visual Studio. In most cases, the template type is called
<hash map>. However, not only the implementations but also the interfaces differ among these nonstandard
versions with the consequence that code using <hash map> may be more difficult to port.
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list container class will occupy the slots in the vector object with the overall container
having the type

vector <list <pair <Key , Data > > >

Again, note that the spaces between the > symbols are a syntactic necessity. The declaration
for the chainHash class provides the details on how we have implemented our hash table
construction plan.

template <class Key , class Data >

class chainHash {

int tableSize , Size;

vector <list <pair <Key , Data > > > Table;

int hash(Key a) const;

public:

chainHash(int tablesize) : tableSize(tablesize), Size (0) {

Table.resize(tableSize );

}

struct iterator{

chainHash* pCH;

int Index;

typename list <pair <Key , Data > >::iterator current;

iterator (){}

iterator (chainHash <Key , Data >* pch , int index ,

typename list <pair <Key , Data > >::iterator iter)

: pCH(pch), Index(index), current(iter ){}

pair <Key , Data >& operator*() const;

pair <Key , Data >* operator ->() const;

bool operator==(const iterator& iter) const;

bool operator!=(const iterator& iter) const;

iterator operator ++();

iterator operator++(int){return operator ++();}

void nextBucket ();

};

iterator insert(pair <Key , Data > a);

iterator lookUp(Key a);

iterator begin ();

iterator end();

int getSize () const {return Size;}

int getTableSize () const {return tableSize ;}

};

The chainHash class itself is relatively simple. There are three private members: the number
of buckets, tableSize, the number of objects in the table, Size, and the vector object
that holds the list objects containing the pair objects that will populate the table. There
are the basic insert and lookUp methods to build and find objects in the table as well as
accessor functions to retrieve the values of the Size and tableSize class members. None
of these involve new ideas at this point. Accordingly, most of the subsequent discussion will
be directed toward the more novel aspect of fleshing out the internal iterator class that will
provide the means to navigate inside a chainHash object.

The chainHash iterator class has three members. The current member plays a role
similar to its pointer namesake in the LCC class of Section 9.5. However, current is now
an iterator in its own right that is obtained from the nested iterator class for the list
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container. The formulation is actually quite similar to the one for the g5Array class of
Section 10.3.3. As in that setting, there is an Index class member that gives the bucket
or slot of the vector object Table where an iterator is currently located. In combination,
Index and current uniquely determine where an object is located in the hash table. The
pointer pCH points to the chainHash object on which the iterator is defined.

The operators * and -> for the nested iterator class in the chainhash class take the
expected forms

template <class Key , class Data > pair <Key , Data >&

chainHash <Key , Data >:: iterator ::operator*() const {

return *current;

}

template <class Key , class Data > pair <Key , Data >*

chainHash <Key , Data >:: iterator ::operator ->() const {

return &(*current );

}

They simply return a reference or a pointer to the pair object at the current location. There
is perhaps a bit more here than meets the eye in that, e.g., *current is an application of *
to a list iterator which, in turn, will return the pair object at its current location.

The relational equality operator is formulated as

template <class Key , class Data > bool

chainHash <Key , Data >:: iterator ::operator==(

const iterator& iter) const {

return (current == iter.current && Index == iter.Index

&& pCH == iter.pCH);

}

Thus, two iterator objects are considered the same if they both point to the same object in
a list in the same bucket in the same chainHash object. The != operator is defined as the
negation of ==.

The most difficult task is defining the increment operator for the iterator class. As in
Section 9.5, the postfix increment operator is defined in terms of the prefix operator using
the dummy int variable argument that distinguishes between the two function signatures.
Thus, it suffices to concentrate on the prefix operator.

Our plan is to navigate through a chainHash object sequentially by
• traversing the indices of the vector object Table in numerically ascending order and
• by always moving through a list from head to tail (that is, from begin() to end()).
Two main issues arise here: movement through a list object for a given bucket and move-
ment to a new bucket when the end of a list object is reached. Let us deal with the latter
problem first.

The function nextBucket is an analog of the nextIndex method for the g5Array class
of Section 10.3.3. It provides a way to move an iterator to a new bucket or slot of the
chainHash vector object Table.

template <class Key , class Data > void

chainHash <Key , Data >:: iterator :: nextBucket (){

for(int i = Index + 1; i < pCH ->tableSize; i++)

if(!pCH ->Table[i].empty ()){

Index = i;

current = pCH ->Table[i]. begin ();

return;

}
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//no empty buckets were found

Index = -1; current = pCH ->Table [0]. end();

}

The basic premise here is that the nextBucket method will be called when the end of a
list object has been reached making it necessary to find the next nonempty bucket in the
table. The value of Index is the current slot for the iterator object which means that
the next logical place to look for more table elements is in the next bucket to the right or
Table[Index + 1]. Since this is a list object, it has the associated method empty that can
be used to check if the list contains any elements. The search for a nonempty list continues
until either one is found or there are no further slots left in Table. In this latter instance,
the end of the table has been reached and we need some way to indicate this. The approach
employed here is to return nonoperative values for Index and current. We will say a bit
more about this choice shortly.

An alternative to our implementation of nextBucket is offered in Exercise 10.6. In that
version, the hash table is augmented by a list that links the elements inserted in the table.
This list directly provides iterators for moving between buckets in the order in which they
were populated. The only overhead is space (instead of time) due to the additional data
that must be stored besides the hash table’s own array. This approach has a precedent in,
for example, the Python data structure called ordered dictionary.

The chainHash class provides the standard STL type methods begin and end that return
iterators to the first and one past the end elements in a container. We are now in a position
that allows us to define these two methods. Specifically, the definition for the begin method
appears in the next listing.

template <class Key , class Data >

typename chainHash <Key , Data >:: iterator

chainHash <Key , Data >:: begin (){

iterator iter;

iter.pCH = this;

//start the search in a bucket with index 0

iter.Index = -1;

//now set Index and current

iter.nextBucket ();

return iter;

}

The “beginning” of the hash table should be the first element in the first nonempty bucket
and begin returns an iterator that points to that object if it exists. For this purpose an
iterator object is created with its chainHash object pointer set to point at the chainHash
object that will be the one to call the begin method. Its bucket index is then set to −1
before calling the nextBucket method. The first step in nextBucket is to advance the index
by one, which sets it at the first slot in the Table vector container. The remainder of the
work is carried out by nextBucket which sets a final value for both the Index and current
class members.

The final entry in a chainHash object is the last object in the last (i.e., farthest right-hand)
nonempty bucket. One can enact a scheme similar to the g5Array approach to physically
locate this quantity. An alternative strategy employed by, e.g., Ford and Topp (2002) is
to simply define an object that cannot actually be realized and return this whenever an
attempt is made to go past the end of the container. Our choice here needs to agree with
the object returned from nextBucket when no further empty buckets are found. This last
consideration leads to the choice of the end method given in the next listing.
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template <class Key , class Data >

typename chainHash <Key , Data >:: iterator

chainHash <Key , Data >:: end (){

iterator iter;

iter.pCH = this;

iter.Index = -1;

iter.current = Table [0]. end ();

return iter;

}

All the pieces are now in place that allow us to give the definition for a prefix increment
operator.

template <class Key , class Data >

typename chainHash <Key , Data >:: iterator

chainHash <Key , Data >:: iterator ::operator ++(){

if(*this == pCH ->end ())

return *this;

current ++;

if(current == pCH ->Table[Index].end())

nextBucket ();

return *this;

}

The first step is to check if the end of the table has already been reached. In that case,
an application of ++ will have no effect. Otherwise, the location of the iterator is advanced
inside its current bucket. A check is made to see if the one past the end node of the current
list object has been reached. In that event, the next nonempty bucket or pCH->end() is
found via nextBucket.

The insert and lookUp methods for class chainHash given below involve similar opera-
tions to the ones that were used to define our iterator increment operator.

template <class Key , class Data >

typename chainHash <Key , Data >:: iterator

chainHash <Key , Data >:: insert(pair <Key , Data > a){

int index = hash(a.first);

Table[index].push_front(a);

iterator iter(this , index , Table[index]. begin ());

Size ++;

return iter;

}

template <class Key , class Data >

typename chainHash <Key , Data >:: iterator

chainHash <Key , Data >:: lookUp(Key a) {

int index = hash(a);

typename chainHash <Key , Data >:: iterator

iter(this , index , Table[index]. begin ());

while(iter ->first != a && iter.current != Table[index].end())

iter ++;

return iter;

}

The methods return iterators to the locations of pair objects that have been either inserted
or found. These iterator objects are created using the nondefault constructor that takes a
pointer to chainHash, a bucket index and a list container iterator as its arguments. The
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bucket index is obtained by hashing a key provided in the method’s argument while the
list iterator is the one returned by the begin method of the chosen bucket’s list object.
For insert the new pair object is added to the list object using its push front method
and the number of elements in the table is also incremented. In contrast, lookUp does not
alter the table but merely searches until the pair object with the designated key has been
found. This key is presumed to exist and no mechanism has been provided to handle a
misspecified key value.

The main function shown below is from a program that was written to try out our
chainHash class.

int main (){

chainHash <double , int> cH(3);

cout << "The table size is " << cH.getTableSize () << endl;

for(int i = 0; i < 10; i++)

cH.insert(pair <double , int >(sqrt(i), i*i));

cout << "The number of objects in the container is " <<

cH.getSize () << endl;

chainHash <double , int >:: iterator iter = cH.lookUp(sqrt (5));

cout << iter.Index << " " << iter ->first << " "

<< iter ->second << endl;

iter ++;

cout << iter.Index << " " << iter ->first << " "

<< iter ->second << endl;

for(iter = cH.begin (); iter != cH.end (); iter ++)

cout << iter.Index << " " << iter ->first << endl;

return 0;

}

A table with three buckets is created and then filled with 10 pair objects that have Key
components of type double and int Data members. An iterator object is defined to point
to the pair object with key value

√
5. The increment operator is applied to this iterator

object and it is then used in a for loop to explore the chainHash object.
To make this all work a specific choice is needed for a hash function that can be used

with non-integer keys. The one selected for this purpose is

template <class Key , class Data > int

chainHash <Key , Data >:: hash(Key a) const {

return ((int) floor(a)) % tableSize;

}

The C++ floor function (along with a cast) is used here to transform double precision keys
into integers. Although effective, this is not the best solution to the problem; a generic class
should not really need adjustments to allow for different types of data. A more satisfactory
solution is to overload the modulus operator for the Key class in a way that gives the desired
result in the form of a generic hash function in the chainHash class. This approach will be
examined in Exercise 10.21.

The output from our test program is

The table size is 3

The number of objects in the container is 10

2 2.23607 25

2 2 16
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0 3

0 0

1 1.73205

1 1.41421

1 1

2 2.82843

2 2.64575

2 2.44949

2 2.23607

2 2

Both the table size and number of elements are as expected. The lookUp operation suc-
cessfully returns the pair object whose key value of

√
5 hashed to the second bucket in the

hash table. The increment operator then moves the iterator object one step further in the
corresponding list object to the pair container that had the key 2 =

√
4. The results of

the for loop container traversal show that the keys have all been hashed correctly and that
the begin and end methods have produced the desired results.

10.5 Queues

The queue-type containers in C++ come in two basic varieties: class queue and class
priority queue. Their respective include directives are

#include <queue >

and

#include <priority_queue >

Objects from the two classes are then specified using syntax such as

queue <className > Q;

priority_queue <className > Q;

with className a specified data type.
From the discussions in Section 9.2.3 and Section 9.3, we anticipate that objects in a queue

container will be organized on a first-in first-out basis while those in a priority queue
container will be arranged (in a heap) according to some type of priority. This is indeed the
case for the C++ queue containers with priority being determined by the < operator. Thus,
for user-defined data types, this operator will have to be defined explicitly.

Both queue classes provide the same basic methods: namely,
• push(object) to push an element object onto the end of the queue,

• pop() to remove the top (i.e., first-in or highest priority) object from the queue,

• front() (respectively, top) to examine the top (respectively, highest priority) node of
a queue (respectively, priority queue) object without actually removing it from the
queue,

• empty() that returns a Boolean variable evaluating to true when the queue is empty
and

• size() that returns the number of objects in the container.
The pop method simply removes the queue’s top entry and has no return value. To access
the top element one must instead use either front or top. The behavior of pop is not defined
when the queue object is empty. Thus, it is best to check for that possibility with empty
before using the method.
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The remainder of this section will be focused on illustrating the use of the priority queue
container in the context of a discrete event simulation wherein the activity in some physical
system is modeled through a sequence of events that occur, sequentially, over a specified
period of time. The setting we will use is that of an M/M/n queue: i.e., a queue with n
servers where there are independent Poisson customer arrivals having rate parameter λC
and independent exponential service times with mean λT . The servers and customers are
also assumed to operate independently. A similar development using the queue class will be
explored in Exercise 10.15.

The basic elements of the model are the customers and servers and, accordingly, each will
need to be developed in the form of a class. The customer class will be treated first. Its
declaration is

struct Customer{

int Arrive;

bool Gold;

Customer(int t = 0, bool gold = 0) : Arrive(t), Gold(gold) {}

bool operator <(const Customer& x) const;

};

There are two members: the customer’s arrival time Arrival and a Boolean variable Gold.
The Arrival class member is the time that the Customer object enters the simulation.
To simplify matters, time will evolve in discrete (e.g., one minute) intervals and, hence,
Arrival will take on only integer values. The Gold class member represents the presence
or absence of “gold” status in the sense associated with car rentals, airlines, etc., where
frequent patronage can lead to a customer receiving a preferential “gold” level of service.
The way that Gold is used here is in the definition of the < operator which takes the form

bool Customer ::operator <(const Customer& x) const {

if(Gold == 0 && x.Gold == 0 ||

Gold == 1 && x.Gold == 1){

if(Arrive < x.Arrive)//give earlier arrival higher priority

return false;

else

return true;

}

if(Gold == 0 && x.Gold == 1)

return true;

if(Gold == 1 && x.Gold == 0)

return false;

}

The STL priority queue is a max queue: i.e., elements are partially sorted in descending
order as determined by the < operator. All things being equal, our overloaded version of this
operator has the effect that earlier arrivals get higher priority and, conversely, later arrival
leads to lower priority. On the other hand, a Customer object with a Gold value of true is
always preferred (i.e., is >=) to a customer with Gold equal to false.

Output that allows us to track the progress of the simulation is created with an overloaded
output insertion operator amenable for used with Customer objects. It takes the form

std:: ostream& operator <<(std:: ostream& out , const Customer& x){

out << "Arrival time = " << x.Arrive << " Gold = " <<

std:: boolalpha << x.Gold << std::endl;

return out;

}
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Our definition for the Server class is

struct Server{

bool Busy;

int serviceTime;

Server (){

Busy = 0; serviceTime = 0;

}

};

A particular Server object may be “busy” with a Customer object in which case its Boolean
Busy member will evaluate to true. Otherwise, the Server object will be available for
assignment to the next object from the queue. The other member of the Server struct is
serviceTime. As with arrival time, this will be measured in discrete intervals.

With the Customer and Server classes at our disposal, the simulation class can now be
defined as in Listing 10.6.

Listing 10.6 MMNQueue.h

class MMNQueue{

std:: priority_queue <Customer > Q;

Server* pS;//array of servers

ranGen Rng;//random number generator

void upDate(int t);

int rPoisson ();

double rExp(double lambda );

bool isGold ();

void upDateServers ();

int freeServer ();

//simulation parameters

int runTime , nServers;

double lambdaC , lambdaT , goldProb;

unsigned long Seed;

//statistics

int totalTime , numberCustomers;

public:

MMNQueue(int runtime , int nservers , double lambdac ,

double lambdat , double goldprob , unsigned long seed) :

runTime(runtime), nServers(nservers), lambdaC(lambdac),

lambdaT(lambdat), goldProb(goldprob), Seed(seed){

totalTime = 0; numberCustomers = 0;

pS = new Server[nServers ];

Rng = ranGen ();

Rng.setSeed(Seed);

}

~MMNQueue (){

delete[] pS;

}

double runSimulation ();

};
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The parameters for the simulation are
• runTime: the length of time the simulation will be allowed to run.

• nServers: the number of servers for the system.

• lambdaC and lambdaT: the means for the Poisson customer arrival distribution and the
exponential service time distribution.

• goldProb: the presence or absence of Gold “status” for a Customer object is modeled as
a Bernoulli random variable with goldProb being the probability of Gold evaluating as
true.

• Seed: generation of random numbers from the Poisson, exponential and Bernoulli distri-
butions requires a random number generator of some sort. The one that will be used is
the ranUnif method from the ranGen class in Appendix E. The value of Seed provides
the seed that will initialize the generator.

The class constructor defines these parameters through an initializer list. The construc-
tor also creates an nServer array of Server objects and initializes the ranGen object for
generating uniform random deviates.

There are various measures that could be used to assess the performance of our customer-
server system for a particular set of values for its parameters. Our attention will be directed
toward customer waiting time prior to service. For this purpose the waiting time for all
customers during the simulation totalTime is accumulated as well as the total number of
customers that had to wait numberCustomers. These variables are initialized to 0 in the
constructor. At the end of the simulation they will allow us to determine the average waiting
time. The use of additional performance measures is considered in Exercise 10.14.

The operative, private members of the MMNQueue class are
• the priority queue object Q with template parameter Customer that will hold the
Customer objects that are waiting for service,

• a pointer to Server, pS, that will be used to hold and manage the system’s Server
objects and

• the ranGen object Rng for producing uniform random numbers.
There are also several utility functions that have been designated as private. The rPoisson,
rExp and isGold methods are for generating Poisson, exponential and Bernoulli random
deviates, respectively. The upDate method is used to update the system at each new time
unit. It, in turn, uses upDateServers and freeServer to update the elements in the server
“array” pS and to check for the availability of a server to serve the next customer object in
the queue. These functions will be discussed in more detail shortly.

As the MMNQueue class uses dynamic memory allocation for its Server component, an
explicit destructor as well as a copy constructor and assignment operator should be defined
for uses that would involve manipulation of MMNQueue object. This will not be a feature of
our example and we have chosen to forgo the specification of these methods here.

The method that starts the simulation is runSimulation whose definition is

double MMNQueue :: runSimulation (){

for(int t = 0; t < runTime; t++){

cout << "For time = " << t << endl;

upDate(t);

cout << "queue size " << Q.size() << endl;

cout << endl;

}

while(!Q.empty ()){//may be some people still in the queue

totalTime += runTime - Q.top(). Arrive;
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Q.pop();

}

return ((double)totalTime/(double)numberCustomers );

}

This function serves as the simulation’s “clock” in that it moves the process forward at one
unit time intervals from the beginning time at 0 to its end at time runTime - 1. During
this period its only function is to call the upDate method that handles initialization of
new Customer objects, manages the service times for the Server objects, etc. When the
simulation ends, the runSimulation function will empty the priority queue container
while adding the waiting time for its Customer elements (that waited and were not served)
onto the process waiting time variable totalTime. Its last action is to return the average
waiting time over the entire simulation.

Most of the work for a MMNQueue object will be done by the upDate function given in the
listing below.

void MMNQueue :: upDate(int t){

upDateServers ();

int serverIndex = 0;

//number of new customers that arrived in last minute

int numberNew = rPoisson ();

cout << "number of new customers " << numberNew << endl;

//serve as many as possible right away

while(freeServer () != -1 && Q.empty () && numberNew > 0){

serverIndex = freeServer ();

pS[serverIndex ].Busy = 1;

pS[serverIndex ]. serviceTime = ceil(rExp(lambdaT ));

numberNew --;

}

Customer temp;

if(numberNew > 0){//add to the queue

for(int i = 0; i < numberNew; i++){

temp = Customer(t, isGold ());

cout << "New waiting customer has " << temp;

Q.push(temp);

}

numberCustomers += numberNew;

}

while(freeServer () != -1 && !Q.empty ()){

serverIndex = freeServer ();

pS[serverIndex ].Busy = 1;

pS[serverIndex ]. serviceTime = ceil(rExp(lambdaT ));

totalTime += t - Q.top(). Arrive;

cout << "Customer being served has " << Q.top ();

Q.pop();//remove customer

}

}

The first step in this method is to update the Server objects using

void MMNQueue :: upDateServers (){

for(int i = 0; i < nServers; i++){

if(pS[i]. serviceTime > 0)
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pS[i]. serviceTime --;//reduce remaining service time

if(pS[i]. serviceTime == 0)

pS[i].Busy = 0;//free server for new customer

}

}

which goes through the elements in the Server array decrementing the time remaining to
serve their current Customer object and/or changing their Busy member to false if they
have finished their current assignment.

The next task for upDate is to generate the number of new Customer arrivals. This is
accomplished with the method

int MMNQueue :: rPoisson (){

double sum = rExp (1./lambdaC );

int numberNew = 0;

while(sum < 1){

numberNew ++;

sum += rExp (1./lambdaC );

}

return numberNew;

}

that, in turn, calls

double MMNQueue ::rExp(double lambda ){

double u = 0.;

Rng.ranUnif(1, &u);

return (-lambda*log (1. - u));

}

The latter method uses the ranGen object to generate a stream of random numbers from an
exponential distribution with a given value for its mean lambda. As such it is used both to
generate the service times for the Server objects as well as the number of arrivals from the
Poisson distribution. The latter application stems from Algorithm 4.5 that derives from the
fact that the waiting times for arrivals in a Poisson process with mean λ are independent
and exponentially distributed with mean 1/λ. As a result, by generating values from this
exponential distribution until their sum passes some fixed time point t, we will have realized
a set of arrivals from a Poisson process over the interval [0, t]. The corresponding value for
the Poisson random variable is the penultimate number of terms in the sum.

Once the number of new Customer objects is set, there are two possibilities: either the
queue is empty or it is not. If it is empty (as determined by the empty method for the
priority queue class), the new customer objects will be assigned to Server objects with
Busy values of false as long as they are available. The availability or lack of availability is
determined by

int MMNQueue :: freeServer (){

int serverIndex = 0;

while(pS[serverIndex ].Busy && serverIndex < nServers - 1)

serverIndex ++;

if(pS[serverIndex ].Busy)

return -1;

else

return serverIndex;

}
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This function goes through the Server objects and returns the index of the first available
object. It returns −1 to indicate that all the objects are in use. When an available Server
object is found, its index in the pS pointer is returned. At that point, upDate generates a
value for serviceTime for that Server object and changes its Busy member to true. Service
is immediate with the consequence that there is no reason to generate a specific Customer
object for the chosen Server object.

After all the available Server objects (should any exist) have been assigned a Customer
object, it becomes necessary to push any remaining new Customer objects onto the queue
using the priority queue push method. These customers count in the sense that they will
have to wait and, hence, the numberCustomer member variable must be increased by the
number of objects that have been added to the queue. The actual Customer objects are
therefore initialized with the current time and a value for their Gold member determined
by

bool MMNQueue :: isGold (){

double u = 0.;

Rng.ranUnif(1, &u);

if(u < goldProb)

return true;

return false;

}

This function uses the MMNQueue object’s ranGen member to simulate a Bernoulli random
variable with success probability goldProb.

The final step in upDate is to see if any Server objects have become available that can
be assigned to the elements in the queue with the highest priority. The freeServer method
is used to search for an available Server object and, if one is found, its Busy value is set to
true and a value for its serviceTime member is generated from an exponential distribution
with parameter lambdaS using rExp. For each available Server object, a Customer object
is removed from the queue in two steps. First, the priority queue top method is used
to find the arrival time for the member at the top of the queue. The difference between
this value and the current time is the length of time the Customer object waited and this
value is added to the total waiting time variable totalTime. Next, the same highest priority
element is removed from the queue with the pop method.

A program that tries out our MMNQueue class is given below.

int main (){

MMNQueue bSim(10, 4, 3, 3, .1, 123);

cout << bSim.runSimulation () << endl;

return 0;

}

An MMNQueue object is created and used to start the simulation with its runSimulation
method. The particular choices that have been made for the simulation parameters entail
that it will run for 10 time units with four Server objects. The average number of arrivals
for the Poisson process is three per time unit and the average service time is three units.
The proportion of Customer objects with a true value for their Gold member is chosen to
be .1 and the Seed for the ranGen object is set at 123.

Some enhanced output that was produced by our simulation program is given below.
For time = 0
number of new customers 3
queue size 0

For time = 1
number of new customers 2
New waiting customer has Arrival time = 1 Gold = false
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queue size 1

For time = 2
number of new customers 3
New waiting customer has Arrival time = 2 Gold = false
New waiting customer has Arrival time = 2 Gold = false
New waiting customer has Arrival time = 2 Gold = false
queue size 4

For time = 3
number of new customers 4
New waiting customer has Arrival time = 3 Gold = false
New waiting customer has Arrival time = 3 Gold = false
New waiting customer has Arrival time = 3 Gold = false
New waiting customer has Arrival time = 3 Gold = false
Customer being served has Arrival time = 1 Gold = false
Customer being served has Arrival time = 2 Gold = false
queue size 6

For time = 4
number of new customers 2
New waiting customer has Arrival time = 4 Gold = false
New waiting customer has Arrival time = 4 Gold = false
Customer being served has Arrival time = 2 Gold = false
queue size 7

For time = 5
number of new customers 3
New waiting customer has Arrival time = 5 Gold = false
New waiting customer has Arrival time = 5 Gold = false
New waiting customer has Arrival time = 5 Gold = false
Customer being served has Arrival time = 2 Gold = false
Customer being served has Arrival time = 3 Gold = false
Customer being served has Arrival time = 3 Gold = false
queue size 7

For time = 6
number of new customers 2
New waiting customer has Arrival time = 6 Gold = false
New waiting customer has Arrival time = 6 Gold = false
queue size 9

For time = 7
number of new customers 4
New waiting customer has Arrival time = 7 Gold = true
New waiting customer has Arrival time = 7 Gold = false
New waiting customer has Arrival time = 7 Gold = false
New waiting customer has Arrival time = 7 Gold = false
Customer being served has Arrival time = 7 Gold = true
queue size 12

For time = 8
number of new customers 2
New waiting customer has Arrival time = 8 Gold = false
New waiting customer has Arrival time = 8 Gold = false
queue size 14

For time = 9
number of new customers 4
New waiting customer has Arrival time = 9 Gold = false
New waiting customer has Arrival time = 9 Gold = true
New waiting customer has Arrival time = 9 Gold = false
New waiting customer has Arrival time = 9 Gold = false
Customer being served has Arrival time = 9 Gold = true
Customer being served has Arrival time = 3 Gold = false
queue size 16

3.04
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Four of the five Customer objects that arrive during the first two time periods of the
simulation are assigned to Server objects. Apparently, no servers are free to handle the
fifth arrival and it must be pushed onto the queue. The first Customer object with a Gold
status of true arrives at time period 7 and is served immediately bypassing other objects
that have arrived earlier and been waiting in the queue. At the end of the simulation, the
queue contains sixteen Customer objects and the objects that have had to wait have done
so for an average of 3.04 time units.

10.6 The map and set containers

The STL provides four different varieties of the ordered set data structure from Section
9.4: map, multimap, set and multiset. The map container is the most direct analog of the
Section 9.4 discussion. The multimap container is the same as map apart from allowing
for repeated keys. The set containers and multiset containers are similarly related and
provide simplifications of maps that contain only key values. All four container types are
implemented using red-black binary search trees.

The four container types provide the same basic set of operations so that it suffices to
pick one for exposition purposes. Accordingly, our discussion will focus only on the map
container class.

Access to the map container class is achieved through the include directive

#include <map >

Then, an empty map object is created with the syntax

map <Key , Data > m;

with Key and Data the names of the data types that will provide the key and data com-
ponents of the nodes stored in the container. Objects of type Key are assumed to possess
an inherent ordering that is quantified via a definition of the < operator for the class. It is
also possible to provide a user-supplied function to be used in making comparisons through
an argument to one of the alternative class constructors. That option will not be explored
here.

As was true of the Tree class in Section 9.4, map containers can be filled using their
insert method. The basic objects that are used in insertion are from the pair class that
was described in Section 9.2.4.2. If m is a map<Key, Data> object,

m.insert(pair <Key , Data >(key , data ));

will add a node to the tree with Key value key and data as its Data module and return an
iterator that points to the position of insertion.

The look-up operation for a map container is carried out by the find method. This function
takes an object of type Key as its argument and returns an iterator to either the position of
the located object or end() if no object with that key value is found. An indexing operator
[] is also provided that can be used as an alternative to find. For a map object m, m[key]
will return a reference to the Data member of the pair object in the tree that has Key value
key if it exists. Unlike find, if the specified Key value does not exist, a new node is inserted
into the map object with the given Key value and its Data component determined from the
default constructor for the Data class. Because it returns a reference to the Data member,
[] provides a means to both modify an existing node or insert a completely specified new
node into the tree. Specifically, the command

m[key] = data;

will produce one of two outcomes. If the map object m contains a node with Key value key,
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its Data member will be overwritten with the value data. Otherwise, a new node will be
inserted with the Key value key and Data component data.

Removal of elements from a map is accomplished by the erase method. The method takes
two forms. One version of erase takes an iterator that points to the position of the node
that is to be erased. In this instance the node is removed and the function returns nothing.
The other option is to use a key value for the erase function argument. In that latter
instance, erase removes the object with the specified key and returns the integer 1 for a
map object and, more generally, the number of erased objects for a multimap that allows
duplicate keys.

The listing below illustrates the use of a map container.

//mapEx.cpp

#include <iostream >

#include <utility >

#include <map >

using std::cout; using std::endl; using std::map; using std::pair;

int main (){

map <int, int> m;

m.insert(pair <int, int> (4, 4)); m.insert(pair <int, int> (0, 2));

cout << m[0] << endl;

m[0] = 1;

cout << m[0] << endl;

m[1] = 2;

cout << m[1] << endl;

m[3] = 1; m[2] = 11; m[6] = 5; m[7] = 4; m[5] = 5; m[21] = -3;

m[-15] = 99; m[-16] = 5; m[-3] = 3; m[-1] = 9; m[-2] = 14;

map <int, int >:: iterator iter;

for(iter = m.begin (); iter != m.end(); iter ++)

cout << iter ->first << " ";

cout << endl;

iter = m.find (-2);

cout << iter ->second << endl;

m.erase(iter); m.erase ( -16); m.erase ( -15); m.erase (-1);

map <int, int >:: reverse_iterator riter;

for(riter = m.rbegin (); riter != m.rend (); riter ++)

cout << riter ->first << " ";

cout << endl;

return 0;

}

Here we revisit the binary search tree from Figure 9.9. The tree is constructed using both the
insert method and the [] operator. After inserting a node with key 0 and data member 2,
the value of the data member is both accessed and changed using the index method. Output
is produced to see the effect of these two procedures as well as that of an insertion using
[]. An iterator is created next and used to explore the container while printing out the key
values for each node in the process. The find method is then employed to locate the node
with a key of −2. The iterator returned from find is used in the erase method to remove
that particular node from the tree. Finally, several nodes are removed with erase using
their key values and the container is explored again using an iterator to assess the changes
that have been made. In this latter instance we have carried out the exploration with a
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reverse iterator. The starting point for a reverse iteration through a container is obtained
from rbegin with rend providing the corresponding stopping point. The ++ operator will
move the iterator backward from the current node. Of course, there is the question of how
forward or backward movement will actually take place. This question is resolved by running
the program.

The output from our program is

2

1

2

-16 -15 -3 -2 -1 0 1 2 3 4 5 6 7 21

14

21 7 6 5 4 3 2 1 0 -3

The insertion and indexing operations have produced the expected output. The “mystery”
concerning the behavior induced by ++ is also solved; the internal map forward iterator class
has been implemented so that the movement is from smaller to larger key values. Reverse
iterators move from the larger to the smaller keys. The last line of output produced with the
reverse iterator based for loop verifies that both forms of the erase method (i.e., the one
with the iterator argument and the one that takes a key arguments) have worked correctly.

10.7 Algorithm basics

As noted in the introduction, the STL consists of three basic components: data structures,
iterators and algorithms. In this final section, we describe various aspects of the latter of
these three resources. A complete exposition is beyond the scope of the present text. An
overview of the entire algorithm collection is provided, for example, in Malik (2007) with
Josuttis (1999) also giving a detailed and thorough treatment. Our goal here is to merely
demonstrate some of the features and power of the algorithm package that can pave the
way for a more in depth study.

The STL algorithm library is composed of a group of data processing methods that
perform various basic operation on data structures. These include searching, sorting and
transforming as well as a few numeric calculations. Rather than being tied to specific con-
tainer classes, the algorithm functions have an independent identity. This is achieved by
having them work with iterators rather than container class objects. In this sense, their
utility is not restricted to the STL and they can also be utilized with user-created ADTs.
We will illustrate this last feature subsequently.

The algorithm library becomes available with the include directive

#include <algorithm >

This provides access to groups of functions whose purposes can be categorized as (e.g., Jo-
suttis 1999) nonmodifying or modifying, removing and mutating. Nonmodifying algorithms
do not alter the elements in the container. Searching methods fall into this group. Modifying
algorithm include methods that transform and replace container elements while mutating
algorithms change the element order but not their values. A small set of numeric meth-
ods are available that include summation, inner products and partial sums. These latter
methods require the inclusion of a different header file via

#include <numeric >

In general, the invocation of an algorithm, algorithmName, from the algorithm library
can take one of several forms. The simplest is

algorithmName(begin , end)
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where begin and end are STL “compliant” iterators that provide the beginning and end of
a range of elements that are to be processed. In some instances two ranges may be involved
with the second range providing a destination for the results of the algorithm’s application.
In such a case, the syntax will look like

algorithmName(beginSource , endSource , beginDestination)

with beginSource and endSource iterators for the data that will be processed by the
algorithm and beginDestination an output iterator that points to the beginning of the
range where the processed data is to be placed. A second “end” iterator is not necessary as
that position is determined by the length of the range from beginSource to endSource. A
third type of argument structure for an algorithm is

algorithmName(begin , end , functionObject)

or

algorithmName(beginSource , endSource , beginDestination ,

functionObject)

These latter forms differ from the previous two only in terms of the addition of a function
object or functor (see, e.g., Section 8.2) that provides the tool to be used in processing the
elements of the source container. Not any function object will do and, as was the case for
iterators, function objects need to inherit from an STL class. The two possibilities in this
case are unary function and binary function.

To illustrate some of the basic ideas, let us work with the g5Array class of Section 10.3.3.
Our goal will be to create three new methods for the class that are all implemented using
methodology from the algorithm library. The methods that will be created are ones that
will look up drawing results for a specified date, order the g5 objects in the container by
the date of their drawings and compute a chi-square statistic.

The most straightforward method to implement is that for sorting. It takes the form

std::vector <g5 > g5Array :: g5Sort () const {

std::vector <g5 > vSort(nDraws );

std::copy(this ->begin(), this ->end(), vSort.begin ());

g5Less f;

std::sort(vSort.begin(), vSort.end(), f);

return vSort;

}

This method uses two algorithms: copy and sort. There are three main sorting methods
in the algorithm library: sort, partial sort and stable sort. The sort method is akin
to quicksort while partial sort and stable sort are relatives of heapsort and mergesort.
All three of these algorithms require random access iterators which means that we must
first transfer the elements from the g5Array object to, e.g., a vector object. This object
will need to have nDraw slots. Once it is created, the begin() and end() iterators from the
g5Array object provide the source of the data to be copied and the begin() iterator for
the vector object gives the beginning of the range where the data is to be replicated.

Once all the g5 objects from the g5Array object are in the vector format, they are ready
for sorting. But, sorting requires specifying a method for comparison. This can be done
by overloading the comparison operator < (as in Section 10.5) or by providing an explicit
function object to be used in making comparisons. We will take the latter route.

The functor that will be used for comparison of g5 objects is
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struct g5Less : public std:: binary_function <g5, g5 , bool > {

g5Less (){}
bool operator ()(const g5& g1, const g5& g2){

std:: string temp1 , temp2;
temp1 = g1.getDate (); temp2 = g2.getDate ();
if(atoi(temp1.substr(0, 3).c_str ()) < atoi(temp2.substr(0, 3).c_str ()))

return true;
if(atoi(temp1.substr(0, 3).c_str ()) == atoi(temp2.substr(0, 3).c_str ())

&& atoi(temp1.substr(5, 6).c_str ()) < atoi(temp2.substr(5, 6).c_str ()))
return true;

if(atoi(temp1.substr(0, 3).c_str ()) == atoi(temp2.substr(0, 3).c_str ())
&& atoi(temp1.substr(5, 6).c_str ()) == atoi(temp2.substr(5, 6).c_str ())
&& atoi(temp1.substr(8, 9).c_str ()) < atoi(temp2.substr(8, 9).c_str ()))

return true;
return false;

}
};

The sorting is to be done by draw date and, accordingly, we need to supply a function
object that provides an analog of <. Thus, it should be a binary function that returns true
when the draw date of one g5 object is earlier than that of another. The dates that are
used to make the comparisons are extracted from the Date members of the two g5 class
arguments using string class methods in a similar manner to the developments in Section
10.4.1. The novel aspect is the use of inheritance from the STL binary function template
class. There are three template parameters that represent the type of the first and second
function argument and the return type, in that order. Thus, the parameters are specified as
g5 for both function arguments and bool. It now suffices to apply the algorithm sort with
the vector object’s begin() and end() iterators.

The main function of a program that will apply our sort method to the data in guess5.txt
is shown in the next listing.

int main (){

g5Array g5A("guess5.txt");

std::vector <g5 > vSort = g5A.g5Sort ();

std::cout << "Sorting results" << std::endl;

for(int i = 0; i < 3; i++)

vSort[i]. printG5 ();

std::cout << std::endl;

return 0;

}

It produces the output

Sorting results

Guess5 Drawings for 1952 -01 -17 used Machine A with Ball Set 6

The drawing results are:

10 38 23 20 15

36 15 11 7 37

20 10 9 25 2

29 14 16 31 34

12 38 28 26 2

16 19 22 26 33

25 17 21 3 10

16 8 32 6 29

22 26 7 24 12

29 16 37 36 27

Guess5 Drawings for 1952 -01 -21 used Machine B with Ball Set 4
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The drawing results are:

11 9 23 10 20

32 7 16 18 40

38 35 26 36 19

24 14 39 1 19

35 1 3 7 28

30 38 18 3 24

31 6 16 9 3

16 3 9 39 25

12 4 3 33 28

33 39 4 38 29

Guess5 Drawings for 1952 -01 -24 used Machine A with Ball Set 5

The drawing results are:

32 1 30 27 23

20 7 1 17 18

16 19 28 3 13

33 40 10 14 31

35 12 6 27 4

2 39 40 13 33

25 12 29 31 39

20 28 25 24 36

17 5 20 9 18

15 39 40 9 23

Only the first three g5 objects from the sorted array are printed and their dates are seen to
be correct. Note that sorting here is not immediate. Although the data in guess5.txt is in
chronological order, the g5Array structure stores it according to the machine and ball set
that were used in the drawing and this is where the sorting algorithm was applied.

Next up is the method for looking up a g5 object that corresponds to a specified draw
date. The code created for this purpose looks like

g5Array ::const_iterator g5Array :: lookUp(const std:: string s) const {

g5Equal f;

const_iterator iter = std::find_if(begin(), end(),

std:: bind2nd(f, s));

return iter;

}

It returns an iterator that points to the location of the target object in the g5Array con-
tainer.

The find if function from the algorithm library is used to carry out the search in lookUp.
The functor object supplied to find if needs to be a unary operator that plays the role of
the == operator. In this case we want comparisons to be carried out in terms of draw dates
which suggests using a functor such as

struct g5Equal : public std:: binary_function <g5 , std::string , bool >{

g5Equal (){}

bool operator() (const g5& g, const std:: string s) const {

if(g.getDate () == s)

return true;

return false;

}

};
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Again, the function will inherit from the STL binary function class with its first template
parameter being type g5, a second parameter of type string and a bool return type. The
problem is that the function is a binary function and a unary function is what find if
requires.

The STL provides the function adapter bind2nd that sets the second argument for a
binary function at some specified value thereby converting a binary function into a unary
function. There is also a bind1st adapter that serves the same purpose for the first argument
of a binary function. In terms of the way it is used in the lookUp method, bind2nd will call
the overloaded () operator for the g5Equal class with its second argument set at the value
of the string argument supplied to lookUp.

Finally, the g5Array chiSquare method is given by

double g5Array :: chiSquare () const {

int* freq = new int[40];

for(int i = 0; i < 40; i++)

freq[i] = 0;

sumFreq f;

freq = std:: accumulate(begin(), end(), freq , f);

double e = 10*nDraws*5/40;

double chiStat = 0;

double* temp = new double[40];

std:: transform(&freq[0], &freq [40], &temp[0],

std:: bind2nd(std::minus <double >(), e));

std:: transform(&temp[0], &temp [40], &temp[0],

std:: bind2nd(std::divides <double >(), sqrt(e)));

chiStat = std:: inner_product(&temp[0], &temp [40], &temp[0], 0.);

return (39./35.)*chiStat;

}

All that is being computed here is the “global” chi-square statistic for the entire data set.
The creation of a more selective method that allows targeting of particular machine/ball
set combinations is left as an exercise (Exercise 10.11).

The first step in the chiSquare method is to calculate the frequency of occurrence of the
different balls. This is accomplished by first creating a pointer to int that will be used to
collect the data from the pFreq pointers that are members of each of the g5 objects in the
container. The actual accumulation of frequencies will employ the accumulate algorithm
from the STL numeric library.

The basic idea for accumulate derives from the now (hopefully) familiar summing recur-
sion

double sum = b;

for(int i = 0; i < n; i++)

sum += a[i];

that will sum the entries of an n-element array a given a starting sum of b. The accumulate
algorithm provides a way to create an abstract analog of this recursion.

A prototype for accumulate is

accumulate(iterator begin , iterator end , dataType initialValue ,

binaryFunction f)

Here begin and end are iterators for a container object that point to the begin and end
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of a region where the “accumulation” is to be performed. The initialValue object is an
instance of the class dataType whose objects are to be accumulated. It plays a role similar
to b in our simple sum recursion example. In that sense, it can be viewed as a starting
value for the recursive process that will be directed by accumulate. The function f is a
binary function object that determines the operations that will be used to perform the
“accumulation”: e.g., abstract versions of +, -, * or any other procedure that is amenable
to an accumulation process.

For the g5 setting, our choice for the binary functor is

struct sumFreq : public std:: binary_function <int*, g5 , int*> {

sumFreq (){}

int* operator()(int* freq , const g5& g){

for(int i = 0; i < 40; i++)

freq[i] += g.getFreq(i);

return freq;

}

};

For any given g5 object argument, the sumFreq functor will access the frequency of occur-
rence for each of the 40 balls using the g5 class accessor method getFreq and then add them
to the appropriate elements of the array represented by its first pointer to int argument.
The recursion is begun by giving accumulate the initial value of a pointer whose memory
locations have all been set to 0. The range is specified by the begin() and end() iterators
from the g5Array class which results in the collection of frequencies for every object in the
container.

For a bit of variety, the actual chi-square statistic was evaluated using the transform and
inner product algorithms with the latter coming from the numeric library. The requisite
calculations can be broken into three steps: i) subtract the expected frequency from each
observed frequency, ii) divide this difference by the square root of the expected frequency and
then iii) square and sum the results from steps i) and ii). The transform algorithm is used
to carry out the first two steps. This function simply transforms every element in a specified
range (given by its first two arguments) using a user-supplied functor object (given as its
third argument). In this instance the code writing labor can be reduced by using some of the
predefined functors that are available from the STL. Most of the standard arithmetic (e.g.,
addition, subtraction, division and multiplication as plus, minus, divides and multiplies,
respectively) and logical operations (e.g., logical equal, logical AND, logical OR and logical
NOT as equal to, logical and, logical or and logical not, respectively) are available
in prepackaged forms.

The transform algorithm is used in the chiSquare method first to subtract off the ex-
pected value from all the frequencies. The subtraction is carried out using the minus functor
with template parameter set to double. Since minus encapsulates a bivariate function, its
second argument is set as the expected value using the bind2nd function adapter. This basic
process is repeated on the output from transform except with minus replaced by divides
and the expected value replaced by its square root. Note that the use of double as the
template parameter for minus casts the integer frequencies to double precision.

The output of the second application of transform is used in the inner product algorithm
to get the nonadjusted chi-square statistic. A prototype for inner product is

inner_product(iterator begin , iterator end , iterator beginA ,

initialValue)

The elements in the range designated by begin to end are multiplied by those in a range
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starting at beginA and the results are summed with initialValue being the starting value
for the sum. For our case, we want to square the elements which is accomplished by choosing
the begin and beginA iterators to be the same. The initial value that is given for the sum
is 0.

A program that tests the new method is given below.

int main (){

g5Array g5A("guess5.txt");

std::cout << "Chi -square results" << std::endl;

std::cout << g5A.chiSquare () << std::endl;

std::cout << std::endl;

std::cout << "Lookup results" << std::endl;

g5Array ::const_iterator iter

= g5A.lookUp(std:: string("1952 -01 -17"));

iter ->printG5 ();

return 0;

}

The output from the program is

Chi -square results

27.7769

Lookup results

Guess5 Drawings for 1952 -01 -17 used Machine A with Ball Set 6

The drawing results are:

10 38 23 20 15

36 15 11 7 37

20 10 9 25 2

29 14 16 31 34

12 38 28 26 2

16 19 22 26 33

25 17 21 3 10

16 8 32 6 29

22 26 7 24 12

29 16 37 36 27

Among other things, comparison with results from Section 5.6 shows that the chi-square
statistic has been evaluated correctly.

10.8 Exercises

10.1. Build a large vector object by repeatedly adding elements of type pair<double,
int> to it. First, allocate only a single entry. Then, insert many elements into this vector
(say, a million). Do this in a loop so that in each iteration you insert one more element. Let
each pair consist of a double returned by (double)clock() and the integer computed as
the difference in the capacity of the vector now and in the previous iteration (this may be
found by invoking the capacity method). After the loop is over, print only the iterations
in which the capacity of the vector changed. When does this happen? How much time does
an automatic resize take? Try the same idea but with a vector whose entries are objects
with a representation more complex than simple integers or pairs.
10.2. Compare the performance of the insert method for vector containers in two cases:
when the elements are inserted at the beginning and when they are inserted at the end.
10.3. If elements must be inserted at both the beginning and end of a dynamic array, the
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deque container is more efficient than the vector class. This container is optimized for
amortized constant-time cost of both push back and push front, as well as for use of the
subscripting operator []. Compare the running time of a long sequence of front and back
insertions for a vector and deque object.
10.4. Generate a large file of random numbers from some probability distribution: e.g.,
10,000,000 pseudo-random numbers from the standard normal distribution. Now use a ver-
sion of the count-min sketch ADT to process the data in the file as if it were a stream of
numbers similar to the approach taken in Section 10.3.1 for the newWords.txt file. Exper-
iment with both the number and form of the hash functions as well as the size parameter
w for the hash tables. Use grouped means and variances to obtain estimators for the true
(sample) mean and variance of the entire data set as well as during several points while
reading from the input file.
10.5. Use the vector class to develop a template analog of the hashTable class of Section
9.2.4.2 that used linear probing.
10.6. Modify the chainHash class in Section 10.4.2 to provide a guaranteed constant-time
iteration by augmenting it with a linked list that connects the buckets of the hash table in
the order in which they were established. [Hint: Each time a new bucket is opened in the
table, add it to the head or the tail of the list; then re-implement nextBucket to use the
list iterators instead of manually traversing the table.]
10.7. Provide a C++ implementation of the cuckoo hashing concept from Exercise 9.28.
10.8. Write a program that reads a sequence of integers from an input stream and stores
them in a map. As each integer is read from the stream, the map is checked and if the integer
has not been seen before, it is inserted with a count of 1. If the integer is already an element
of the map, only its count should be incremented.

After the map-based code is working correctly, rewrite it but use a hash table instead (e.g.,
the one from Section 10.4.2 or the TR1 hash table described in Appendix C). Compare
the running times when they are used to process a large file. The idea is that hash table
look-up and insertion operations are expected to take (near) constant time, while a map is
implemented using a binary search tree for which the same operations require up to O(log n)
computations. This should be seen in your run-time comparisons.
10.9. Write the code for the copy constructor, destructor, overloaded assignment operator
=, comparison operator == and print utility for the g5 class of Section 10.3.3.
10.10. Write the code for the nondefault constructor and overloaded *, ->, =, ==, != oper-
ators for the const iterator class of Section 10.3.3.
10.11. Modify the chiSquare method from the g5Array class of Section 10.7 to where it
will calculate the chi-square statistic for any specified range of ball set numbers and either
or both of the two machines.
10.12. Modify the g5 class so that information is available from a class member on the
actual game drawings (i.e., sans test draws). Modify your chiSquare method from Exercise
10.11 to produce results for the game drawings alone.
10.13. Consider the data on the G5 bonus ball game from Exercise 5.17.

a) Create a g5 class that will hold the information from a drawing for this game.

b) Use the fileIn class from Section 10.3.3 to read the data in from a file and place it in
a g5 objects.

c) Store the g5 objects as they are created in a vector<vector<g5> > dynamic array object.

d) Modify your work from Exercise 10.11–10.12 to obtain similar results for your g5 dynamic
array class.
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10.14. Modify the simulation code from Section 10.4 to also monitor the variables service
time, waiting time and total time in the system (i.e., the waiting time plus service time) for
the subsets of Customer objects that have Gold values of true or of false.
10.15. Rework the simulation example from Section 10.4 using the queue container adapter
with service rendered on a first-in first-out basis according to arrival time.
10.16. Use the deque container class to modify your code from Exercise 10.15 to allow the
last person in the queue to leave at random.
10.17. A company has a total of n machines that it uses to produce its product; a machines
are required for daily production while n− a machines are held in reserve. The failure time
for a machine has an exponential distribution with mean λF and the times to failure of
the n machines are independent. When a machine fails, it is replaced by a reserve machine,
assuming that one is available, and sent out for repair. Repair times are also exponentially
distributed with mean λR. Use the discrete event simulation technique of Section 10.5 to
approximate the expected time before production comes to a halt in that an active machine
fails with no machines left in reserve for various values of the system parameters n, a, λF
and λR.
10.18. Add a remove method to the chainHash class of Section 10.4.2.
10.19. Implement the -- operator for the iterator class in the chainHash class.
10.20. Add a method for resizing an object from the chainHash class.
10.21. Rework the example in Section 10.4.2. First, use

template <class Key , class Data > int

chainHash <Key , Data >:: hash(Key a) {

return a % tableSize;

}

as the definition for the hash function in class chainHash. Then, create a class/struct Key
that has a single member of type double. Equip your class/struct with the overloaded
modulus operator

int operator%(double a, int m) {

return ((int) floor(a)) % m;

}

A number of other operators will need to be defined before this new class/struct will work
effectively with the chainHash class.
10.22. Take the stock index example of Section 10.4.1 and create a database that stores the
list in order by value of the index rather than time. Write a C++ program that manages
the database by accessing/adjusting it for new entries.
10.23. There are cases where it is necessary to alter a heap entry in a way that will change
its priority. For example, if the heap is storing personnel records arranged by salary, there
will (hopefully) be raises that would change the order of individuals in the heap. To change
the priority of an item, we need to be able to access it somehow by name or value and the
basic heap does not provide this functionality. One way to resolve this problem is to use a
hash table to keep track of the indices of the elements in the heap’s array; that is, every
object in the heap has two components: a key and a data member by which it is ordered.
An object’s key value is then paired with its array index to create a table that tells us how
to locate and, e.g., alter a specific element in the heap. Use the chaining hash table from
Section 10.4.2 in conjunction with the vector class to create a priority queue that allows
for changes in the key values. Is this development necessary for the STL priority queue
class?
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10.24. Create a custom matrix container. The data is to be stored in a vector<vector<>
> construct and a nested iterator class should be provided for exploring the container.
10.25. Use a priority queue container to manage minimization of the function f(θ) =
θ sin

(
4πθ2

)
, θ ∈ [0, 1] using a blind random search over the interval (0, 1). To accomplish

this use a pair data type with the first and second member elements being the value
for the variable and the function, respectively. The comparison operators then need to be
defined to work only with the second member of the struct.
10.26. Create a class that will store sparse matrices in a list structure. The storage format
consists of a linked list with a “head” node for each row that has nonzero entries. Associated
with each “head” node is another linked lists of nodes that contain the column indices and
values for any nonzero element in the row. Provide your class with
a) a constructor that will take an object from class Matrix of Section 3.9 and Appendix D

and converts it to compressed storage mode,
b) a copy constructor and assignment operator,
c) matrix addition methods (both + and +=),
d) matrix multiplication methods (both * and *=) and
e) a method that will insert a new element into a specified row and column of the matrix.
10.27. Create a class that will store polynomials in a list structure. The nodes in the list rep-
resent the terms in the polynomials with member elements being the power and coefficient.
The power provides the key for each node. Your class should include
a) a copy constructor and assignment operator,
b) methods for polynomial addition (both + and +=),
c) methods for polynomial multiplication (both * and *=) and
d) a method that will insert a new term into a polynomial.
10.28. The STL includes a vector<bool> specialization of the vector class that is opti-
mized to use only one bit of memory for each element. In addition to other vector class
methods, it includes a flip method that will toggle a specified bit to the complement of its
current value. Thus, if v is a vector<bool> object, v.flip() will replace all bit values by
their complements while v[i].flip() performs the same operation on the bit at the ith
slot in the container.

Now, consider the problem where a random number generating device is supposed to
generate pairs of integers over a grid {1, . . . , n} × {1, . . . ,m}. Your task is to verify that
the coding has been done correctly and, in particular, that every grid point can be selected.
While you may generate arbitrarily many pairs with the device, you are not allowed to
actually look at the underlying code. Use a vector<vector<bool> > container to create an
algorithm with average O(mn) running time for checking that every number can appear.



Chapter 11

Parallel computing in C++ and R

11.1 Introduction

The developments thus far have focused on running serial code: i.e., programs where there is
only one task being executed at any point in time. For some situations the computation time
associated with this approach may be prohibitive. One obvious way to resolve difficulties
of this nature is by splitting the problem into smaller subtasks and then solving each of
these tasks on different computers or processors. Parallel computing techniques provide one
avenue for realizing the benefits of this divide-and-conquer strategy.

For our purposes we will focus on parallel computing in environments where there are
multiple processors that will work simultaneously or concurrently on their assigned subtask.
A measure of performance improvement is then provided by the level of speedup as defined
by

speedup(k) =
serial execution time

parallel execution time for k processors
,

where the serial execution time is the amount of time required to perform the computations
using one processor and parallel execution time is the time required when multiple processors
are used. The best possible result is linear speedup where speedup(k) is a linear function of
the number of processors k with a slope of 1. In practice, linear speedup is not realized due
to time that is required for, e.g., inter-processor communication.

Parallel processing “languages” provide ways of managing the work performed by different
processors in a multi-processor environment. Their function is primarily to oversee and
facilitate communication between the different CPUs. In this respect they are better referred
to as APIs rather than languages. In particular, the MPI and OpenMP parallel programming
APIs considered in this chapter can be viewed as a collection of procedures or directives
that are specifically designed for their respective parallel computing environments.

Parallel computing APIs can be broken into a dichotomy corresponding to whether they
deal with memory (i.e., RAM) that is shared or distributed. In both situations there will be
a number of separate processors; but, for shared memory there is a common block of RAM
that can be accessed by a group of processors. This is now the typical scenario for desktop
and laptop machines with the advent of multiple-core processors. Communication between
the different processors is relatively simple in this case because “messages” that need to be
passed from one processor to another can simply be left in the shared memory region. The
standard API for use in shared memory parallel computing is OpenMP.

Distributed memory is now the dominant architecture for clusters and super-computers.
Here processors are grouped into nodes containing a few CPUs (that share memory). There
are many nodes and jobs are farmed out across the nodes to solve the overall computing
problem. The nodes exist in different physical locations and do not share memory. As a
result, special equipment and software is required to allow them to communicate in a way
that will facilitate whatever data sharing is needed to complete their appointed tasks. The
resulting hardware involves high-speed serial links between nodes. The API that is generally
employed for inter-node communication is MPI.

We will introduce some of the basic features of OpenMP in the next section. Then, in
Section 11.3 a few essential MPI commands will be examined. Section 11.4 illustrates how

449
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parallel processing can be accomplished in R through the Rmpi and multicore packages.
Finally, in Section 11.5 the problem of random number generation in multiple-processor
settings is addressed. There are some issues that arise in this context concerning the creation
of independent random number streams for the different processors.

There are numerous books that have been devoted to parallel computing in general and
OpenMP and MPI in particular. Thus, it is unrealistic to attempt a full treatment of these
topics here. Instead, the goal of this chapter is to provide an introductory treatment that
will leave the reader with the ability to write simple, yet functional, programs that employ
a minimal number of the essential functions for the different parallel APIs. In this sense the
intent is to provide an entry point for additional study using the many excellent learning
resources that exist for parallel programming such as the texts of Quinn (2003) and Chandra,
et al. (2001).

11.2 OpenMP

The OpenMP API provides a collection of compiler directives that produce a type of add-on
paralellization to serial code. These directive, called pragmas (for “pragmatic information”),
furnish a means for encapsulating a region that is designated for parallel treatment.

The different parts of a program that run in parallel are called threads. This term is
indicative of how parallelization is actually implemented. At the beginning and end as well
as possibly at many other points throughout an OpenMP program, execution will occur in
serial mode: i.e., a single master thread of execution will be all that is being handled by the
processing units. However, at certain stages of the program a pragma will be encountered
at which juncture the single thread branches or forks into multiple threads or processes
that execute simultaneously. At the end of the parallel region the threads rejoin or collapse
back into the master thread and the program executes in serial mode until another pragma
is encountered. The number of threads and the number of processors need not coincide
although that will be assumed to be the case.

The general pragma syntax is

#pragma omp directiveName [clauses ]

{

statements and expressions

}

where directiveName designates one of the OpenMP directives and clauses are optional
components that further specify the behavior/actions associated with the directive. Note
that a new line must be entered after the clauses. So, the curly braces after the clauses must
appear on a new line in the program’s file. Our discussion will be restricted to two OpenMP
directives: namely,

• parallel that informs the compiler to treat the subsequent code block using multiple
threads and

• parallel for which produces parallel treatment of a standard for loop.

Since OpenMP is for shared memory computing one of the main issues that arises is
protection of variables and objects that need to be the property of only a single thread. The
default behavior is that memory is shared. Memory protection is achieved through the use
of appropriate clauses. In this regard our interest will focus on the clauses

• private that forces allocation of separate, nonshared, memory for the objects and vari-
ables that are named in the list accompanying the clause. These private regions cannot
be accessed by other processors which protects the data being stored in these areas from
outside corruption.
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• firstprivate which has a similar function to private except that the objects/variables
are initialized in the parallel section using initial values from a serial code segment.
The code listing below provides an example of using a pragma to parallelize a block of

code.

Listing 11.1 ompEx.cpp

//ompEx.cpp

#include <omp.h>

#include <iostream >

int main () {

int nP = omp_get_num_procs ();

omp_set_num_threads(nP);

int myNumber;

#pragma omp parallel private(myNumber)

{

myNumber = omp_get_thread_num ();

std::cout << "Hi ya’ll from thread " <<

myNumber << "!" << std::endl;

}

return 0;

}

The first thing to observe in Listing 11.1 is the inclusion of the OpenMP header file omp.h.
Then, two OpenMP functions

omp_get_num_procs

and

omp_set_num_threads

are used that return the number of processors and set the number of threads, respectively.
In this case the number of threads to be used in each parallel section has been specified as
being the same as the number of processors.

The parallel block of code in Listing 11.1 is created using a parallel directive with the
variable myNumber being given a unique memory location for each of the nP threads through
use of a private clause. When the master thread forks at the beginning of a pragma
every thread is given a unique ID number starting with 0. The value of a particular thread’s
identifier is obtained using omp get thread num which is written into the variable myNumber
in the program. Had myNumber not been designated as private it would have been treated
as shared and its value would be stored in a single memory location that was accessible by
all threads. The resulting behavior of the program would be unpredictable with one thread
being able to write its value for myNumber into memory in the space of time prior to another
accessing the value and using it to write its message to standard output.

Compilation of OpenMP programs requires the fopenmp compiler option. The command
line input for a program programName.cpp would look like

g++ -fopenmp programName.cpp -o executableName

This has the effect of creating executableName as the executable version of the program.
For example, Listing 11.1 was compiled and executed with

$ g++ -fopenmp ompEx.cpp -o ompEx

$ ./ompEx

Hi ya’ll from thread Hi ya’ll from thread Hi ya’ll from thread

Hi ya ’ll from thread 1!302!!!
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This is certainly not the output we expected. But, it is not difficult to see what has tran-
spired. The object cout is shared by all four threads that have been created to execute the
parallel block of code. The result is a so-called race condition where all four threads attempt
to access the shared object simultaneously. This problem can be resolved through use of a
critical directive which has the form

#pragma omp critical

This pragma forces the execution of the corresponding block of code to take place one
processor at a time. Thus, if the previous output statement is replaced with

#pragma omp critical

{

std::cout << "Hi ya’ll from thread " <<

myNumber << "!" << std::endl;

}

the result is

Hi ya’ll from thread 1!

Hi ya’ll from thread 2!

Hi ya’ll from thread 0!

Hi ya’ll from thread 3!

Notice from this that the threads do not necessarily execute the program in sequence with
their thread number.

Although using critical solved our output problem, it had the side effect of making the
program execute in a serial, rather than parallel, mode when it reached the point of writing
to the shell. From that perspective there was nothing gained by using the parallel con-
struct. This observation holds more generally with the implication that the use of critical
directives will have adverse performance consequences.

An alternative parallel for implementation of our greeting program might include code
such as

#pragma omp parallel for private(myNumber)

for(int i = 0; i < n; i++){

myNumber = omp_get_thread_num ();

#pragma omp critical

std::cout << "Hi ya’ll from thread " <<

myNumber << "!" << std::endl;

}

with n a value obtained from user input. In particular, the choice of n = 7 produced

Hi ya’ll from thread 0!

Hi ya’ll from thread 1!

Hi ya’ll from thread 2!

Hi ya’ll from thread 3!

Hi ya’ll from thread 0!

Hi ya’ll from thread 1!

Hi ya’ll from thread 2!

on a particular four processor machine.
To conclude this section we will consider a simple optimization problem involving the

function in Figure 8.1 from Chapter 8. As before the aim is to find the global minimum of
this function and the golden section algorithm from a non-template version of the Optim class
in Chapter 8 will be employed to accomplish that goal. What will make the present approach
different from our previous development is that it will be carried out in parallel. The idea
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is quite simple in that the domain of the function, or [0, 1] in this case, will be partitioned
into nP contiguous intervals of equal size with nP being the number of processors/threads.
The threads are then assigned different intervals from the partition and find their respective
local minima simultaneously using the golden section method. The code that was used to
accomplish this is collected in Listing 11.2.

Listing 11.2 ompOptDriver.cpp

//ompOptDriver.cpp

#include <iostream >

#include <cmath >

#include <omp.h>

#include "functor.h"

#include "optim.h"

using std::cin; using std::cout; using std::endl;

double pi = 2.*acos (0.);

double f(double theta){

return theta*sin(4*pi*theta*theta);

}

int main(int argc , char** argv){

Functor func(&f);

int nEvals;

cin >> nEvals;

int nP = omp_get_num_procs ();

omp_set_num_threads(nP);

double myMin;

double* pMin = new double[nP];

double myLow , myUp;

int myRank;

Optim Opt(nEvals );

#pragma omp parallel private(myRank , myMin , myLow , myUp)

#pragma omp firstprivate(Opt , func)

{

myRank = omp_get_thread_num ();

myLow = (double)myRank/(double)(nP);

myUp = (double)( myRank + 1)/(double)(nP);

myMin = Opt.golden(func , myLow , myUp);

pMin[myRank] = myMin;

}

double min = pMin [0];

cout << min << endl;

for(int i = 1; i < nP; i++){

if(func(pMin[i]) < func(min)) min = pMin[i];

cout << pMin[i] << endl;

}

cout << "The minimizer is " << min << endl;

return 0;

}
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There are a number of subtle aspects about this program that merit comment. First note
that for an object or variable to be referenced in the private clause it must first have been
declared or initialized. That is the reason that Opt, myRank, myMin, myLow and myUp were all
declared in the serial portion of Listing 11.2 before the parallel construct. Once a parallel
block is encountered each thread receives its own versions of all the private variables and
objects. In the case of objects, these thread-specific versions are created using the default
class constructor. As a result, an object must come from a class having a default constructor
for it to be used in a private clause. On the other hand, the default destructor is called
at the end of a parallel block. This means that objects for individual threads have scope
restricted to a parallel block and do not persist throughout the program or carry over to
other parallel regions.

The pMin pointer in Listing 11.2 provides access to as many memory locations in shared
memory as there are threads. The individual threads then perform their respective optimiza-
tion tasks and write the outcomes into distinct locations dictated by their thread number.
Because the scope of pMin is all of main it continues to exist after the end of the parallel
block thereby allowing its minimum element to be determined as a global minimizer.

For minimization purposes each thread should have its own Optim and Functor class
object and all objects should be initialized with the same values. However, problems arise
if we try to assign a pre-initialized object as private rather than one that has merely been
declared. The objects for threads other than the master (or thread number 0) are created
using the default constructor which means they will not be initialized correctly. On the other
hand, if an object of type Optim and Functor were simply declared prior to the parallel
region there would be no way to initialize it inside the region. The firstprivate clause
that was used here furnishes the solution to such difficulties. In general, a statement of the
form

#pragma omp firstprivate(variableName)

will cause each thread to receive their own copy of the variable varName with the value
that it had prior to the beginning of the parallel block. For Listing 11.2 the use of the
firstprivate clause with the Optim class object ensures that every thread receives an
independent object with the number of iterations set at nEvals for each thread (cf. Listing
8.7). Similarly, each thread will have its own Functor object initialized with the address of
f.

To compile our optimization code we use

$ g++ -c -fopenmp ompOptDriver.cpp

$ g++ -c -fopenmp optim.cpp

$ g++ -c -fopenmp ranGen.cpp

$ g++ -fopenmp ompOptDriver.o optim.o ranGen.o -o ompOpt

This could, of course, have been placed in a make file to provide more automation in the
compilation process. Execution of our program on a four processor machine then produces

$ ./ompOpt

100

1.95069e-22

0.25

0.619058

0.937337

The minimizer is 0.937337
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11.3 Basic MPI commands for C++

The dominant API for distributed memory computing environments such as clusters is
MPI. The MPI acronym stands for Message Passing Interface and that is precisely what
MPI functions are created to accomplish. Messages are passed between processors through
the creation of communicators which represent groupings of processors that are capable
of communicating with each other. In C++ the communicator concept is implemented
through the COMM class. In particular, the COMM WORLD communicator object that connects
all the processors being used by a program will always exist. This is the only communicator
object that will be discussed here.

To use MPI functions in C++ programs we need to include the header file mpi.h that
provides all the MPI-specific prototypes. The MPI classes and functions then reside in the
MPI namespace and can be accessed via the scope resolution operator. The MPI part of
our code must be placed between the two commands

• MPI::Init()

• MPI::Finalize()

The Init here stands for “initialize” while Finalize terminates inter-processor communi-
cation. Accordingly, MPI calls are illegal before Init or after Finalize.

Associated with the COMM WORLD object are a number of methods for communication and
related purposes. Of particular interest are

• MPI::COMM WORLD.Get rank()

• MPI::COMM WORLD.Get size()

that give the MPI versions of the omp get thread num and omp get num procs functions
that are used with OpenMP. The two functions return integers representing the unique
integer rank that has been assigned to each processor and the number of processors being
managed by the COMM WORLD communicator object.

The code listing below provides a more formal version of our standard "Hello world!"
application using just the four functions we have learned thus far.

//mpiEx1.cpp

#include <iostream >

#include <mpi.h>

int main (){

MPI::Init ();

int myRank = MPI::COMM_WORLD.Get_rank ();

int nP = MPI::COMM_WORLD.Get_size ();

std::cout << "Hello ya’ll from processor " << myRank;

std::cout << " of " << nP << std::endl;

MPI:: Finalize ();

return 0;

}

To execute this code a command is issued to the operating system that will result in the
placement of an executable version of the program in RAM on each processor. At that point
the individual processors work autonomously to carry out their tasks of printing out the
greeting. The processor’s rank can be used to specialize the computation on each processor
as we see here and in later examples.
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The specifics of compilation for our program are system-dependent. An illustration of
how this might be accomplished in an interactive mode is

$ mpicxx mpiEx1.cpp -o mpiEx1

$ mpiexec -np 5 mpiEx1

Hello ya ’ll from processor 4 of 5

Hello ya ’ll from processor 2 of 5

Hello ya ’ll from processor 0 of 5

Hello ya ’ll from processor 1 of 5

Hello ya ’ll from processor 3 of 5

The syntax mpicxx (on the cluster where this code was compiled) invokes a C++ compiler
for MPI programs. This produces the executable mpiEx1 that is run using the mpiexec
command with the –np 5 option requesting that five processors be used to perform the
computations. Notice that the processors do not finish in order which is not surprising as
they are working independently.

In practice the set of commands that were used here to compile and run mpiEx1.cpp may
or may not be appropriate for a given system using MPI. In some cases a single node can be
obtained on a cluster that will allow for an interactive session and it is not terribly difficult
to install one of the MPI implementations such as Open MPI on a desktop machine for
interactive use. In such cases something similar to our approach can be expected to work.
But, both of these options entail using MPI in shared memory environments which is not
really its purpose. The power and utility of MPI is best realized in distributed-memory, high-
performance computing systems. In such settings job submission will generally take place
in batch mode using job scripts that can take various forms depending on the software that
is being used to manage job scheduling. The details involved can usually be obtained from
the computing center that administers the cluster of interest.

Our mpiEx1.cpp program is not particularly interesting for several reasons. From a paral-
lel perspective it falls short in that there is no interaction between processors. Inter-processor
communication is useful for carrying out the “boss/worker” or “master/slave” paradigm
frequently employed for parallel programming. The simplest way to communicate between
processors is through the Send and Recv (an abbreviation for receive) methods. The forms
of these functions are

void MPI::COMM_WORLD.Send(void* buf , int count , MPI_Datatype datatype ,

int dest , int tag , MPI_Comm comm)

void MPI::COMM_WORLD.Recv(void* buf , int count , MPI_Datatype datatype ,

int source , int tag , MPI_Comm comm)

The first argument for both of these functions is a pointer to void. This is just a way of
passing generic data into and out of the functions. The quantity buf appears in both the
Send and Recv functions. This is the data that is being sent by Send and received by Recv.
The (third) datatype argument is used to describe the contents of buf as some specific
data type that is recognized by MPI. Such data types include all the common ones in C++
as well as those that are user defined. The latter option will not be explored here. For
our purposes it is enough to know that, for example, MPI::CHAR, MPI::INT, MPI::LONG,
MPI::UNSIGNED LONG, MPI::FLOAT, MPI::DOUBLE, MPI::LONG DOUBLE and MPI::BOOL cor-
respond to the C++ primitive data types char, int, long, unsigned long, float, double,
long double and bool, respectively.

The (second) count argument to the Send and Recv functions specifies how many of the
datatype values are being sent or received. The count arguments do not need to match for
a send and receive. But, the receive count must be at least as large as what has been sent in
order to avoid an error. The comm argument is the communicator object that is managing
the inter-node communication and will always be COMM WORLD for our applications.
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The dest and source arguments in Send and Recv represent the rank of the node for
which the message is intended and the rank of the node from which a message is to be re-
ceived, respectively. The remaining tag argument is a parameter that provides some sorting
facility for incoming and outgoing messages. It comes in handy if one is sending, for exam-
ple, two different doubles to another processor. Using a different tag for each one will make
certain they are identified correctly and then stored in a suitable variable by the receiving
processor.

With the above as preliminaries we are now ready to write our second MPI program. It
uses inter-node communication to create the “Hello world!” application.

//mpiEx2.cpp

#include <iostream >

#include "mpi.h"

int main (){

MPI::Init ();

int myRank = MPI::COMM_WORLD.Get_rank ();

int nP = MPI::COMM_WORLD.Get_size ();

char msg [20];

if(myRank == 0){

strcpy(msg , "Hello ya’ll");

for(int i = 1; i < nP; i++)

MPI::COMM_WORLD.Send(msg , 20, MPI::CHAR , i, 0);

}

else{

MPI::COMM_WORLD.Recv(msg , 20, MPI::CHAR , 0, 0);

std::cout << msg << " from processor " << myRank << std::endl;

}

MPI:: Finalize ();

return 0;

}

The idea behind mpiEx2.cpp is that a portion of our greeting message will now be relayed
from the “master” or rank 0 processor to the other processors using the Send and Recv
functions. This illustrates how branching statements can be used to determine the action of
each of the processors; in this case, the 0 processor is told to send while all the others are
told to receive via use of an if/else block.

The message segment “Hello ya’ll” will be stored in the char array msg which has been
chosen to have length 20. The choice of 20 is arbitrary. It could be any value large enough to
provide storage for the portion of the greeting it must hold. To actually place “Hello ya’ll”
in msg the 0 rank processor uses the strcopy function whose purpose is copying C strings
into character vectors. An array of (at most) 20 elements of type MPI::CHAR is then sent
and received. Processor 0 sends the array to each of the other processors using the Send
function in a for loop with the dest argument being the receiving processor’s rank and the
value of tag set arbitrarily to 0. The other processors receive the message by using 0 as the
source argument for the Recv function. In this latter instance the value of tag must agree
with the value used in the Send function. The results obtained from running the program
with seven processors is

$ mpicxx mpiEx2.cpp -o mpiEx2

$ mpiexec -np 7 mpiEx2

Hello ya ’ll from processor 4
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Hello ya ’ll from processor 6

Hello ya ’ll from processor 1

Hello ya ’ll from processor 2

Hello ya ’ll from processor 3

Hello ya ’ll from processor 5

As a somewhat more complicated application let us develop code for performing a bal-
anced simple one-way analysis of variance (AOV) in parallel. The premise is that (very
large) samples have been taken from each of nP populations and the necessary AOV statis-
tics for each sample will be computed using separate processors. Listing 11.3 provides one
possible implementation of this idea.

Listing 11.3 anovaMPI.cpp

//anovaMPI.cpp

#include <iostream >

#include <fstream >

#include <cstdlib >

#include "mpi.h"

#include "summary.h"

using std::cout; using std::endl;

using std:: ifstream;

int main(int argc , char** argv){

double** pData;

double* pMyData;

MPI::Init(argc , argv);

int myRank = MPI::COMM_WORLD.Get_rank ();

int nP = MPI::COMM_WORLD.Get_size ();

int n = atoi(argv [1]);

if(myRank == 0){

pData = new double*[nP];

ifstream fIn;

fIn.open(argv [2]);

for(int j = 0; j < nP; j++){

pData[j] = new double[n];

for(int i = 0; i < n; i++){

fIn >> pData[j][i];

}

}

fIn.close ();

for(int i = 1; i < nP; i++)

MPI::COMM_WORLD.Send(pData[i], n, MPI::DOUBLE , i, 0);

Summary mySummary(n, pData [0]);

double* stat = new double[2];

mySummary.west(stat);

cout << "For processor " << myRank

<< " the mean and variance are "

<< stat [0] << " and " << stat [1] << endl;
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double num = 0;

double xBar = stat [0];

double den = ((double)(n - 1))*stat [1];

for(int i = 1; i < nP; i++){

MPI::COMM_WORLD.Recv(stat , 2, MPI::DOUBLE , i, 1);

num += ((double)(i)/(double)(i + 1))*(stat [0] - xBar)*

(stat [0] - xBar);

xBar = ((double)(i)/(double)(i + 1))*xBar +

stat [0]/((double)(i + 1));

den += ((double)(n - 1))*stat [1];

}

num *=(double)n/((double)(nP -1));

den /= (double)(nP*n - nP);

cout << "The grand average is " << xBar << endl;

cout << "The numerator mean square is " << num << " on "

<< (nP - 1) << " degrees -of-freedom" << endl;

cout << "The denominator mean square is " << den << " on "

<< (n*nP - nP) << " degrees -of-freedom" << endl;

if(den != 0)

cout << "The F-ratio is " << (num/den) << endl;

}

else{

double* mypData = new double[n];

MPI::COMM_WORLD.Recv(mypData , n, MPI::DOUBLE , 0, 0);

Summary mySummary(n, mypData );

double* stat = new double[2];

mySummary.west(stat);

cout << "For processor " << myRank

<< " the mean and variance are "

<< stat [0] << " and " << stat [1] << endl;

MPI::COMM_WORLD.Send(stat , 2, MPI::DOUBLE , 0, 1);

}

MPI:: Finalize ();

return 0;

}

The first new feature encountered in Listing 11.3 is the presence of argc and argv in the
Init function. This alternative form allows the command line input obtained at execution
to become available to all the processors being managed by the COMM WORLD communicator.
This is used explicitly here by having argv[1] contain the sample size of the data sets that
the processors will be given to analyze.

The input/output of data becomes complicated when more than one processor is involved
and the ability of different processors to establish file connections is system-dependent. For
this program we have made the minimal assumption that the master or 0 rank processor
is capable of reading from a file. Thus, the first step in the analysis is for the master
processor to read the data from a file whose name is contained in argv[2]. This data
is stored in the double-precision pointer-to-pointer format with row indices corresponding
to populations/treatments and column indices representing the observation number. The
result is an nP × n “array” pData. The storage layout for pData runs counter to the usual
statistical format that would have columns representing the treatments. This is necessary
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(or at least convenient) due to the row-major storage order employed by C/C++. As the
goal is to ultimately pass the data sampled from each population to the different processors,
the nP elements of pData need to point to the initial locations of the n storage blocks that
are allocated for each of the nP samples.

Once the master processor has read in the data it uses a for loop to pass out the samples
by sending each processor an element of pData that is determined by the receiving proces-
sor’s rank. All the processors, including the master, then analyze their respective samples
using an object from a class Summary. This class is structured along the lines of Exercise
3.34. In particular, it contains an implementation (in the method called west) of Algorithm
2.3 for computing a sample mean and variance. These two statistics are stored in locations
accessed through pointers that are sent back to the master processor once a processor’s
work is completed. Finally, the master processor combines the results (also via Algorithm
2.3) from the other processors to obtain the F-statistic for testing the hypothesis that all
nP populations have the same mean.

To try out our parallel ANOVA code data were generated in R with

> set.seed (123)

> A <- replicate (4, rnorm (1000000))

> apply(A, 2, mean)

[1] -5.214370e-04 -1.555513e-03 1.541233e-06 1.775802e-04

> apply(A, 2, var)

[1] 0.9998541 0.9995122 1.0001920 1.0012544

> write.table(t(A), file = "aov.txt", quote = FALSE ,

+ row.names = FALSE , col.names = FALSE)

Here we have used the replicate function in a similar manner to Section 5.6 for the purpose
of random number generation. Specifically, 1,000,000 samples were produced from each of
four “treatments”. Some summary statistics were also generated that will provide a check
for certain aspects of our C++ results. The parallel ANOVA program was then compiled
using the commands

$ mpicxx -c summary.cpp

$ mpicxx -c anovaMPI.cpp

$ mpicxx anovaMPI.o summary.o -o anovaMPI

Upon execution it returns the output

$ mpiexec -np 4 anovaMPI 1000000 aov.txt

For processor 1 the mean and variance are -0.00155551 and 0.999512

For processor 2 the mean and variance are 1.54123e-06 and 1.00019

For processor 0 the mean and variance are -0.000521437 and 0.999854

For processor 3 the mean and variance are 0.00017758 and 1.00125

The grand average is -0.000474457

The numerator mean square is 0.607539 on 3 degrees -of -freedom

The denominator mean square is 1.0002 on 3999996 degrees -of -freedom

The F-ratio is 0.607415

Comparison with the results from R suggests that the output is correct. As expected, the
F-statistic is not significant with a p-value of about .6.

11.4 Parallel processing in R

It remains to consider how parallel processing can be carried out in R. There are several
packages that endow R with multithreading capabilities. These include R/Parallel, nws,
snow and Rmpi. The CRAN website has a task view for high-performance computing that
provides an indication of future developments and the current state of parallel computing
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using R. The review article by Schmidberger, et al. (2009) contains a thorough treatment
of parallel computing in R covering sixteen different packages that can be used for code
parallelization. A companion article by Euster, et al. (2011) provides a tutorial on using
four of these packages.

Our focus in this section will initially be on the Rmpi package that provides an interface
to MPI. This can be used to produce an interactive parallel processing environment via the
“master/slave” form of command structure.

To begin Rmpi we load the Rmpi package using

> library(Rmpi)

To create n slave processors the function mpi.spawn.Rslaves can be used with argument
nslaves = n. For example, the choice of n = 3 produces

> library(Rmpi)

> mpi.spawn.Rslaves(nslaves = 3)

3 slaves are spawned successfully. 0 failed.

master (rank 0, comm 1) of size 4 is running on: eubank -2

slave1 (rank 1, comm 1) of size 4 is running on: eubank -2

slave2 (rank 2, comm 1) of size 4 is running on: eubank -2

slave3 (rank 3, comm 1) of size 4 is running on: eubank -2

All slaves are closed via the command mpi.close.Rslaves(). To quit R one should now
use mpi.quit() rather than quit() since the former command will make certain that
mpi.finalize() is called.

As was true for threads with OpenMP, it is possible to have more slaves than the physical
number of processors on a machine. This will not generally improve program performance in
terms of running time. Thus, to simplify discussion we will treat each slave as corresponding
to a different processor.

The Rmpi versions of the MPI functions Get rank and Get size are

mpi.comm.rank()

and

mpi.comm.size()

These functions return the rank of the calling slave processors and the total number of
processors: i.e., the number of slaves plus one for the master processor.

Objects are sent from the master to a slave using an analog of the MPI broadcast function
Bcast discussed in Exercise 11.4. This function sends an R object to all the slaves. The
syntax is

mpi.bcast.Robj2slave(object)

with object any type of R object including a function.
The slaves are instructed to run a specific set of R code, rCode, through the command

mpi.remote.exec(rCode)

Upon executing this command on the master processor the slaves will carry out the tasks
specified in rCode and return control to the master processor once they have completed
their assignments.

Our first example of using Rmpi involves the obligatory greeting message with a minor
twist. The R function hello is created first in the form
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hello <- function(index){

if(is.element(mpi.comm.rank(), index))

print(paste("Hello ya ’ll from processor ", mpi.comm.rank(),

"!", sep=""))

else

print(paste("Processor", mpi.comm.rank(), "has nothing to say!"))

}

The hello function is distributed and executed on each of our three slave processors with

> mpi.bcast.Robj2slave(hello)

> mpi.remote.exec(hello (1:2))

$slave1

[1] "Hello ya ’ll from processor 1!"

$slave2

[1] "Hello ya ’ll from processor 2!"

$slave3

[1] "Processor 3 has nothing to say!"

This illustrates that mpi.remote.exec returns a list consisting of the objects returned from
each slave.

As a more complicated example let us consider a regression variable selection problem.
The artificial data set that will be used for this purpose is generated with

> set.seed (123)

> n <- 1000

> p <- 10

> nDelete <- sample(1:p, size = 1)

> indicesToDelete <- sample(1:p, nDelete)

> beta <- rnorm(p, sd = 2)

> beta[indicesToDelete] <- 0

> beta

[1] 3.1174166 0.1410168 0.2585755 0.0000000 0.9218324 -2.5301225

[7] -1.3737057 0.0000000 2.4481636 0.0000000

> X <- matrix(rnorm(p*n), n, p)

> y <- X%*%beta + rnorm(n)

The data consist of 1000 observations on a response (stored in the vector y) and 10 “predictor
variables” (stored in the matrix object X). The response and predictor variables are related
through a linear model with standard normal random errors. The coefficient vector for the
predictors is constructed in two step. First, an integer between 1 and 10 is chosen at random
to determine the number of variables that will have 0 coefficients and then the indices for
these variables are randomly selected. Next, the coefficient vector is generated from a zero
mean normal distribution with standard deviation two and the selected coefficients are set
to zero. From the output we saw that in this particular instance the fourth, eighth and tenth
“predictors” will be independent of the response variable.

We will now treat our simulated data as if its properties are unknown to us and attempt
to determine which variables should be used in a fit of a linear model involving the 10
predictors. To accomplish this all 210 = 1024 possible variable subsets (including just a
constant term) will be fit to the data. The criterion that will be used to rank the fitted
models is the Bayesian Information Criterion (see, e.g., Chapter 2 of Eubank 1999)

BIC(i) = n log(RSS(bi)) + log(n)#(i),

where RSS(bi) is the residual sum-of-squares for fitting the ith model and #(i) is the number
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of variables in that model. A “best” fitting model is one that provides a minimum value for
the criterion.

The R function that can be used to evaluate BIC is extractAIC with (simplified) proto-
type

extractAIC(fit , k)

The fit argument can be an lm object returned from the R lm function (discussed, for
example, in Section 3 of Appendix B). The extractAIC function returns a two-component
numeric vector consisting of the number of variables in the fitted model and (apart from an
additive constant) the value of

n log(RSS(bi)) + k#(i),

for a constant k that defaults to 2. For our purpose we will use extractAIC in the form

extractAIC(fit , k = log(n))

to produce values that are equivalent to BIC.
Our plan is a simple divide-and-conquer scheme; a group of the possible model subsets

will be assigned to each processor. The individual processors will then evaluate the BIC
criterion over their model subsets and report the best-fitting model back to the master
processor. For this purpose we will use the Rmpi send and receive commands. They have
the basic form

mpi.send.Robj(object , destination , tag)

and

mpi.recv.Robj(mpi.any.source(), mpi.any.tag())

In the mpi.send.Robj function object, destination and tag represent the R object to be
sent, the rank of the slave that should receive the object and, analogous to the MPI case, an
integer tag that can be used to differentiate between messages when more than one object
is being sent. A simplified version of the receive function is employed here where the “wild
cards” mpi.any.source() and mpi.any.tag() are used to allow a processor to receive an
object from any source with any tag. This will suffice because only the master processor
will send and it will send only one object.

The variable subsets are constructed and sent to the processors using

> nSubSets <- 2^{p - 2}

> subSets <- expand.grid(rep(list(0:1), p))

> indexList <- lapply(1:4, FUN = function(i)

+ subSets [((i - 1)*nSubSets + 1):(i *nSubSets), ])

> for(i in 1:3) mpi.send.Robj(indexList [[i + 1]], i, 0)

> mpi.bcast.cmd(mySubSets <- mpi.recv.Robj(mpi.any.source(),

+ mpi.any.tag ()))

Four processors will be used in the analysis. Thus, each processor will receive 2p/4 = 210/4 =
256 variable subsets to analyze. The entire collection of subsets are enumerated in the data
frame subSets using the rep and expand.grid function. The latter function creates a data
frame using all combinations of the supplied vectors/factors: i.e., a data frame with 210 rows
having 10 elements that are all zeros and ones. The code excerpt below illustrates the idea
for p = 3.

> expand.grid(rep(list(0:1) , 3))

Var1 Var2 Var3

1 0 0 0

2 1 0 0
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3 0 1 0

4 1 1 0

5 0 0 1

6 1 0 1

7 0 1 1

8 1 1 1

The zeros and ones in the array indicate which variable subsets should be in the fitted
model: 0 signifies that the variable should be excluded and 1 means it should be included
in the fit. The first row consists of all zeros. It has the effect of producing a fit with only
the constant term: i.e., the fit is just the average of the response values.

The lapply function is used to create a list whose components are comprised of con-
secutive blocks of 256 rows from the subSets data frame. These are then distributed to
the processors via a for loop. The processors are told to call mpi.recv.Robj to receive
their respective data using the mpi.bcast.cmd function. This latter function is a version of
mpi.remote.exec that produces no output.

The function that will be used to fit the variable subsets is

myRegTask <- function(mySubSets ){

n <- length(y)

aicVec <- apply(mySubSets , MARGIN = 1, function(a){

ind <- as.vector(a, mode = "logical")

if(sum(a) == 0)

extractAIC(lm(y ~ 1), k = log(n))

else

extractAIC(lm(y ~ X[, ind]), k = log(n))})

location <- which.min(aicVec[2, ])

list(mySubSets[location , ], aicVec[, location ])

}

The input argument mySubSets will contain a subset of the subSets data frame held by
the master processor. There is a minor problem of determining how to translate the rows of
this object into something that can be used with the indexing operator when it is applied to
the X matrix to select the variable subset that will be used in the regression. The solution
is to translate each row into a logical vector using the vector class constructor with mode
argument set to logical. An if statement is also needed to make certain that the case
of fitting the constant is handled correctly; the sum of the elements of the ind vector will
evaluate to 0 only when all the predictor variables are excluded from the fit and this is
the condition that is checked to determine if that is the case. The second component of the
vector returned from extractAIC is the value of the criterion function. Thus, the best fit for
a given processor will be the one whose row index corresponds to the column of aicVec that
contains the smallest BIC value. This index is found by applying the which.min function∗

to the second row of aicVec. The processor then returns its optimal subset along with the
corresponding value of BIC to the master processor.

Finally, the data and the myRegTask function are sent to the processors which are ordered
to carry out their calculations by

> mpi.bcast.Robj2slave(y)

> mpi.bcast.Robj2slave(X)

> mpi.bcast.Robj2slave(myRegTask)

> mpi.remote.exec(myRegTask(mySubSets ))

The resulting output from the slaves and the master processor is

∗ As might be expected, there is also a which.max function for finding the location of the largest value.
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$slave1

$slave1 [[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

376 1 1 1 0 1 1 1 0 1 0

$slave1 [[2]]

[1] 8.00000 54.56251

$slave2

$slave2 [[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

630 1 0 1 0 1 1 1 0 0 1

$slave2 [[2]]

[1] 7.000 2088.777

$slave3

$slave3 [[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

888 1 1 1 0 1 1 1 0 1 1

$slave3 [[2]]

[1] 9.00000 58.72511

> myRegTask(indexList [[1]])

[[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

120 1 1 1 0 1 1 1 0 0 0

[[2]]

[1] 7.000 2082.128

The best-fitting model is therefore the one that generated the data; i.e., the one with the
fourth, eighth and tenth variables deleted.

The R leaps package contains a function regsubsets that will also carry out all-subsets
(as well as other options) variable selection. An application of it to our simulated data set
produced

> library(leaps)
> summary(regsubsets(x = X, y = y, nbest = 1, nvmax = 10))[c(1, 6)]
$which

(Intercept) a b c d e f g h i j
1 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
3 TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
4 TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
5 TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
6 TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
7 TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
8 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
9 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
10 TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

$bic
[1] -457.0253 -953.7679 -1879.9000 -2558.5660 -3136.6823 -3210.0709
[7] -3236.5377 -3232.6831 -3228.3021 -3221.8135

First the leaps library is loaded into the workspace. The regsubsets function is then applied
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to the data with the maximum number of variables to include (nvmax) set to 10 and with only
the single best subset of each size (nbest = 1) being returned. The output from regsubsets
is not directly usable but must instead be wrapped inside a call to its corresponding summary
method function. A variety of information can be obtained in this fashion including the
variables in the (best) subsets and the values of the BIC criterion as have been extracted
here. The BIC values differ due to the use of different but equivalent formulas. The ordering
remains the same; the best model contains seven variables and excludes the fourth, eighth
and tenth variable.

As is the case for MPI, Rmpi is designed for use in distributed memory settings. At
present, there is no direct extension of OpenMP for use in R. An effective way to use R in a
shared memory context is available through the multicore package that provides a parallel
version of the basic R lapply function called mclapply. It allows different elements of an
input list to be handled by different processors. The basic syntax for mclapply is

mclapply(X, FUN)

with X the list to which the function FUN is to be applied. The default behavior is to portion
the entire job sequentially across the processors/cores that are available in the system. If
there are nP processors, the first one will apply FUN to the first component of the list X while
the second processor applies FUN to the second, etc. If X has more elements than there are
cores, multiple elements will be assigned to some (or all) of the processors.

The mclapply function can be used, for example, to carry out the variable selection
calculations that were featured in the Rmpi example. The first step is to load the library
and determine how many processors are available on the system.

> library(multicore)

> multicore ::: detectCores ()

[1] 4

The ::: syntax that appears here is another form of namespace/scope resolution operator
similar to the one discussed in Section 5.3. This one allows access to the internal variables
in a namespace while :: accesses only those variables in a package that have been exported
or made public. Here we are using ::: to obtain access to the function detectCores in the
multicore package. The output illustrates that the machine used for this example has four
cores. Similar to our Rmpi formulation, each of these cores will be used to analyze different
collections of variable subsets from the indexList list object. The myRegTask function can
again be used to compute the BIC values with the result

> mclapply(indexList , myRegTask)

[[1]]

[[1]][[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

120 1 1 1 0 1 1 1 0 0 0

[[1]][[2]]

[1] 7.000 2082.128

[[2]]

[[2]][[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

376 1 1 1 0 1 1 1 0 1 0

[[2]][[2]]

[1] 8.00000 54.56251

[[3]]
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[[3]][[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

630 1 0 1 0 1 1 1 0 0 1

[[3]][[2]]

[1] 7.000 2088.777

[[4]]

[[4]][[1]]

Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8 Var9 Var10

888 1 1 1 0 1 1 1 0 1 1

[[4]][[2]]

[1] 9.00000 58.72511

This agrees with what we previously obtained from Rmpi.
Of course the real question is whether or not the multicore approach reduces the compu-

tation time. The system.time function discussed in Section 5.4 provides a means to address
this issue. In the case of our variable selection example this leads to

> timeVec <- vector(length = 2, mode = "numeric")

> for(i in 1:100){

+ timeVec [1] <- timeVec [1] +

+ system.time(mclapply(indexList , myRegTask ))[[3]]

+ timeVec [2] <- timeVec [2] +

+ system.time(myRegTask(subSets ))[[3]]

+ }

> timeVec [2]/timeVec [1]

[1] 2.43891

The system.time function returns a five-element list with the third component being
elapsed time. This function is used to evaluate the elapsed computation times for mclapply
and serial execution of myRegTask across all 210 subsets. The calculations are repeated
100 times with the total elapsed time being accumulated for each approach. The outcome
suggests that the speedup produced by mclapply exceeds 2 in this instance.

11.5 Parallel random number generation

Simulation studies are in many respects the ideal application for parallel processing. They
are “embarrassingly parallel” in the sense that computations may generally be conducted
without the need for inter-processor communication. Thus, the potential exists for near lin-
ear speedup in cases that can occur in practice. However, there are fundamental problems
that arise from the fact that the random number streams produced and used by each proces-
sor must behave as if they are independent in a probabilistic sense for the division of labor
between processors to be productive. An overview of issues that arise in parallel random
number generation and methods for producing effective parallel generators is provided by
Coddington (1996) who concludes that good parallel random number generators should a)
produce intra-processor streams of high quality in the usual statistical sense while exhibiting
minimal inter-processor dependence, b) be scalable (i.e., adaptable for use in systems that
have many processors) and c) require no data movement between processors.

Two noteworthy sources for generator packages that meet Coddington’s criteria are the
SPRNG package of Mascagni and Srinivasan (2000) and the RngStreams package discussed
in L’Ecuyer, et al. (2001, 2002). The SPRNG package produces different random number
sequences for the processors via parameterization while RngStreams employs a sequence
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splitting approach wherein a long random number stream is partitioned across the different
processors. While there has been some debate as to the relative merits of the two approaches,
in practice it appears that both packages can be effective and provide viable solutions to
the problem of obtaining something that can be viewed as independent streams. Practical
difficulties that arise in using SPRNG stem from its ties to MPI and a rather complex
implementation that necessitates the creation and linking of a compiled library. In contrast,
the source code for the RngStreams package is compact and quite easy to incorporate
into C/C++ programs using either OpenMP or MPI through simple include directives.
This property extends its applications from clusters down to desktop environments and,
accordingly, it is the parallel pseudo-random number generator option that will be pursued
here.

The “backbone” generator for RngStreams is the combined multiple recursive generator
Mrg32k3a defined in (4.11)–(4.12). The period of the generator exceeds 2191. For use in a
parallel context this long cycle is divided into 264 nonoverlapping streams each of length
2127.

The key to accessing different streams produced by (4.11)–(4.12) is the technique de-
scribed in L’Ecuyer (1990) that allows movement between streams through linear transfor-
mations of the initial seeds using known matrices. Specifically, if x̃1,0, x̃2,0 are the initial
seeds/states for the two generators, at the nth step of the recursion the state for gener-
ator i is x̃i,n = (Ani mod mi)xi,0 mod mi, i = 1, 2, for known 3 × 3 matrices A1 and A2

with m1 = 4294967087 and m2 = 4294944443. The powers of the matrices A1 and A2 can
be computed explicitly and, in particular the matrices A127

1 and A127
2 that are needed for

movement between the different streams of the generator are found to be

A127
1 =

 2427906178 3580155704 949770784
226153695 1230515664 3580155704
1988835001 986791581 123051564

 (11.1)

and

A127
2 =

 1464411153 277697599 1610723613
32183930 1464411153 1022607788

2824425944 32183930 2093834863

 . (11.2)

Section 4.5 demonstrated how to use the SetPackageSeed function to set the initial state
for RngStream objects. This process requires the user to supply six initial integers to serve
as the beginning seed for the generator. The first RngStream object that is created will
use this initial seed. Subsequent objects will then be started on the next stream; i.e., they
will have initial “seeds” that are 2127 states removed from the initial state of the previous
object’s generator.

Our first objective is to perform some simple experiments that will illustrate how the
seeds are changed (and how to guarantee that they are changed) for different processors.
For this purpose the GetState function will be needed. It has prototype

void GetState (unsigned long seed [6]) const

This function provides a means to return the current state of an RngStream object at
any point during random number production. In particular, it allows us to determine an
object’s initial seed and that is how it will be used in our examination of the behavior of
the RngStream class constructor.

The listing below illustrates the use of RngStreams in an OpenMP program.
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Listing 11.4 ranOpenMP.cpp

//ranOpenMP.cpp

#include <omp.h>

#include "RngStream.h"

#include <iostream >

using std::cout; using std::endl; using std::cin;

int main (){

int nP = omp_get_num_procs ();

omp_set_num_threads(nP);//set number of threads

unsigned long seed [6] ={1,2,3,4,5,6};

RngStream :: SetPackageSeed (seed);

RngStream RngArray[nP];//array of RngStream objects

int myRank;

#pragma omp parallel private(myRank)

{

myRank = omp_get_thread_num ();

#pragma omp critical

{

cout << "For thread " << myRank << endl;

RngArray[myRank ]. WriteState ();

cout << "The random number is "

<< RngArray[myRank ]. RandU01 () << endl;

}

}

return 0;

}

The first step is to include the RngStream class header file RngStream.h via an include
directive. The SetPackageSeed function is then used to set the six integer seeds, of type
unsigned long, as the integers from 1 to 6. An array of nP RngStream objects is created
next with nP being the number of processors. The default behavior is for the seed of each
array element to be 2121 states removed from the initial state of its predecessor and their
states are written to standard output to allow for comparison with our other parallel treat-
ments. Independent streams will now be produced if each thread uses a different entry from
RngArray when generating random numbers. To accomplish this we simply use the number
assigned to each thread by the OpenMP API as the index it employs for accessing the array
of RngStream objects. To avoid garbled output the output segment from the parallel region
is wrapped in a critical region.

Listing 11.4 was compiled and executed on a four processor machine via

$ g++ -fopenmp ranOpenMP1.cpp RngStream.cpp -o ranOpenMP
$ ./ranOpenMP
For thread 1
The current state of the Rngstream:
Cg = {3847595764 , 542750874 , 3358998068 , 4025640956 , 701604884 , 2546910389}

The random number is 0.701702
For thread 0
The current state of the Rngstream:
Cg = {1, 2, 3, 4, 5, 6}
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The random number is 0.0010095
For thread 2
The current state of the Rngstream:
Cg = {311773008 , 2901318700 , 433058656 , 3749492613 , 2059732357 , 994549473}

The random number is 0.476142
For thread 3
The current state of the Rngstream:
Cg = {3522494900 , 2524210175 , 3812848698 , 4095818817 , 2057726304 , 1219287084}

The random number is 0.0469012

These numbers will recur in our other examples.
The basic premise of the previous example is readily extended to produce something

useful. For example, suppose that the goal is to fill an n-element array held in a pointer pU
to double with independent pseudo-random uniforms. A code segment that accomplishes
this is

#pragma omp parallel private(myRank)

{

myRank = omp_get_thread_num ();

#pragma omp for

for(int i = 0; i < n; i++)

pU[i] = RngArray[myRank ]. RandU01 ();

}

The computing effort is distributed across nP threads with each thread producing values
from a different RngStream object.

The basic idea behind the previous listing was used to do some performance comparisons
that are shown in Table 11.1. The values in the table are the (machine dependent) times
that were needed to generate approximately a billion random numbers using one, two, four,
eight and sixteen processors in OpenMP.

Table 11.1 Time required to generate 1 billion random uniforms

Number of Processors Time (in seconds) speedup

1 130.74750 1
2 111.25400 1.175216
4 62.95395 2.076875
8 37.61315 3.476111
16 22.05340 5.928678

The use of four processors cuts the computation time in half while sixteen processors carry
out the work in a sixth of the serial time.

Let us now consider how to construct an analog of our OpenMP program that can be used
with MPI. There are various ways to accomplish this. Perhaps the simplest is to have all
processors create an array of RngStream objects and then use the object that corresponds
to their rank. This approach is left as an exercise (Exercise 11.10). Our particular solution
is somewhat more involved and requires the use of some of the features that are implicitly
provided in the RngStreams package.

As noted at the beginning of this section, the seeds/states of RngStream objects are
advanced by multiplication involving the matrices (11.1)–(11.2). A function that can be used
to carry out these multiplications mod(232−209) and mod(232−22853) is contained in an
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anonymous namespace in the RngStream.cpp file that is downloaded with the RngStreams
package. An anonymous namespace is created using syntax such as

namespace

{

functions , constants , etc.

}

This creates a namespace that is available only to functions that inhabit the same file.
In this respect, it provides an alternative to the creation of global static functions and
variables. Appendix E provides another illustration of when an anonymous namespace can
prove useful.

The anonymous namespace in the RngStream.cpp file holds the matrices in (11.1)–(11.2)
in the 3× 3 arrays A1p127 and A2p127 and the moduli 232− 209 and 232− 22853 are stored
in the unsigned long integers m1 and m2. It also includes the function matVecModM with
prototype

void MatVecModM (const double A[3][3] , const double s[3], double v[3],

double m)

This function will perform multiplication of a 3 × 3 array A times a three-element array s
modulo m and return the result in the three-element array v. Thus, by taking A to be A1p127
or A2p127 and m to be m1 or m2, a given seed array can be advanced 2127 states to obtain a
seed for the next random number stream. With this in mind we added

static void AdvanceSeed (unsigned long seedIn [6],

unsigned long seedOut [6]);

to the header file RngStream.h and then appended

void RngStream :: AdvanceSeed (unsigned long seedIn [6],

unsigned long seedOut [6]){

double tempIn [6]; double tempOut [6];

for(int i = 0; i < 6; i++)

tempIn[i] = seedIn[i];

MatVecModM (A1p127 , tempIn , tempOut , m1);

MatVecModM (A2p127 , &tempIn [3], &tempOut [3], m2);

for(int i = 0; i < 6; i++)

seedOut[i] = tempOut[i];

}

to the RngStream.cpp file. By declaring AdvanceSeed as static it can be used directly
without an RngStream object which is precisely what is needed for the application that we
have in mind.

Our MPI implementation of the RngStreams methodology now takes the form

Listing 11.5 ranMPI.cpp

//ranMPI.cpp

#include <iostream >

#include <fstream >

#include "mpi.h"

#include "RngStream.h"

using std::cout; using std::endl;

int main (){

unsigned long seed [6] = {1,2,3,4,5,6};
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MPI::Init ();

int myRank = MPI::COMM_WORLD.Get_rank ();

int nP = MPI::COMM_WORLD.Get_size ();

if(myRank == 0){

unsigned long tempSeed [6];

double ranValue = 0;

//start with the 0 processor

RngStream :: SetPackageSeed(seed);

RngStream Rng;

double myNumber = Rng.RandU01 ();

cout << "For processor 0 the state is" << endl;

for(int j = 0; j < 6; j++)

cout << seed[j] << endl;

cout << endl;

//create and send the seeds to the other processors

for(int i = 1; i < nP; i++){

RngStream :: AdvanceSeed(seed , tempSeed );

MPI::COMM_WORLD.Send(tempSeed , 6, MPI:: UNSIGNED_LONG , i, 0);

cout << "For processor " << i << " the state is" << endl;

for(int j = 0; j < 6; j++){

cout << tempSeed[j] << endl;

}

cout << endl;

for(int j = 0; j < 6; j++)

seed[j] = tempSeed[j];

}

//now collect the results

for(int i = 1; i < nP; i++){

MPI::COMM_WORLD.Recv(&ranValue , 1, MPI::DOUBLE , i, 0);

cout << "The random number for processor " << i

<< " is "<< ranValue << endl;

}

cout << "The random number for process 0 is " << myNumber

<< endl;

}

else{

unsigned long mySeed [6];

//get my seed

MPI::COMM_WORLD.Recv(mySeed , 6, MPI:: UNSIGNED_LONG , 0, 0);

//create the rngstream object

RngStream :: SetPackageSeed(mySeed );

RngStream Rng;

//generate my number and send it back to the 0 processor

double myNumber = Rng.RandU01 ();

MPI::COMM_WORLD.Send(&myNumber , 1, MPI::DOUBLE , 0, 0);

}

MPI:: Finalize ();
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return 0;

}

The idea behind Listing 11.5 is straightforward. The master (or rank 0) processor uses our
AdvanceSeed function along with an initial seed to determine seeds that will produce “inde-
pendent” random number streams for the other processors. These seeds are communicated
to the processors using the Send and Recv functions. The processors then use these seeds
to initialize their individual RngStream objects. After finishing their tasks, the processors
report the random uniform value they generated to the master processor for output.

To check that our scheme for using RngStream objects produces the desired results both
the seeds that are sent to each processor and the random numbers they generate are printed
out by the master processor. With four processors the results are

$ mpicxx -c RngStream.cpp

$ mpicxx -c ranMPI.cpp

$ mpicxx RngStream.o ranMPI.o -o ranMPI

$ mpiexec -np 4 ranMPI

For processor 0 the state is

1

2

3

4

5

6

For processor 1 the state is

3847595764

542750874

3358998068

4025640956

701604884

2546910389

For processor 2 the state is

311773008

2901318700

433058656

3749492613

2059732357

994549473

For processor 3 the state is

3522494900

2524210175

3812848698

4095818817

2057726304

1219287084

The random number for processor 1 is 0.701702

The random number for processor 2 is 0.476142

The random number for processor 3 is 0.0469012

The random number for process 0 is 0.0010095

This output agrees with our prior results from our OpenMP program as it should.
It remains to describe how “independent” random number streams can be obtained for
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simulations conducted using Rmpi or multicore. In keeping with previous developments this
will be accomplished using an R interface to RngStreams.

There are two packages that provide an RngStreams interface: rlecuyer and rstream. The
former is actually a built in feature for Rmpi and readily accessed as in

> library(Rmpi)

> mpi.spawn.Rslaves(nslaves = 4)

4 slaves are spawned successfully. 0 failed.

master (rank 0, comm 1) of size 5 is running on: cos

slave1 (rank 1, comm 1) of size 5 is running on: cos

slave2 (rank 2, comm 1) of size 5 is running on: cos

slave3 (rank 3, comm 1) of size 5 is running on: cos

slave4 (rank 4, comm 1) of size 5 is running on: cos

> mpi.setup.rngstream(seed = 1:6)

Loading required package: rlecuyer

> mpi.remote.exec(runif(1))

X1 X2 X3 X4

1 0.001009498 0.7017015 0.476142 0.04690119

Note that the rlecuyer package needs to be installed before this approach will work. If that
is the case, the effect of mpi.setup.rngstream is to replace R’s default Mersenne twister
generator with the backbone generator from RngStreams. It appears that the rlecuyer im-
plementation of RngStreams is slower than that for the rstream package. As our result,
our discussions will focus on rstream from this point forward. Further discussion of both
packages and their use with nws and snow can be found in Karl, et al. (2011).

The first step is to load the rstream package with

> library(rstream)

This has the effect of introducing the S4 virtual class rstream into the current R workspace.
Instances of the rstream class may be created from the derived class rstream.mrg32k3a
that provides access to the now familiar RngStreams backbone generator. A new rstream
object, newRstreamObj, is created using syntax of the form

newRstreamObj <- new("rstream.mrg32k3a", seed = Seed)

with Seed a six-component vector of integers. Subsequent rstream.mrg32k3a objects cre-
ated with new will automatically have initial seeds that are 2127 states removed from the
most recently created object. The rstream.sample function returns a sample of n uniform
random numbers from the rstream object newRstreamObj via the command

rstream.sample(newRstreamObj , n)

Because rstream objects are stored as pointers in the underlying foreign language code,
it is necessary to “pack” them before they can be sent to another node in Rmpi. The same
process is also needed to save an rstream object so that it will be available in a future R
session. Packing is accomplished with

rstream.packed(newRstreamObj) <- TRUE

Before they can be used packed objects must be unpacked by

rstream.packed(newRstreamObj) <- FALSE

Beyond this, the process of actually using rstream with Rmpi is relatively straightforward.
For the case of p processors, one carries out the following sequence of steps:
1. create p instances of the rstream.mrg32k3a class,

2. pack each object using rstream.packed,
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3. load the rstream package on each processor,
4. send the rstream objects to the p processors using mpi.send.Robj,
5. receive the objects on each processor with mpi.recv.Robj and
6. unpack the rstream objects on each processor with the rstream.packed function.
At this point the random numbers on each node will correspond to “independent” streams
and can be used in whatever other tasks the processors may be assigned.

An illustration of the scheme we have laid out for using rstream with Rmpi is given in
the excerpt from an R session shown below.

> library(rstream)

> library(Rmpi)

> mpi.spawn.Rslaves(nslaves = 3)

3 slaves are spawned successfully. 0 failed.

master (rank 0, comm 1) of size 4 is running on: localhost

slave1 (rank 1, comm 1) of size 4 is running on: localhost

slave2 (rank 2, comm 1) of size 4 is running on: localhost

slave3 (rank 3, comm 1) of size 4 is running on: localhost

> #create a list of rstream.mrg32k3a objects

> rngList <- vector(length = 4, mode = "list")

> rngList <- c(new("rstream.mrg32k3a", seed = c(1, 2, 3, 4, 5, 6)),

+ replicate(3, new("rstream.mrg32k3a")))

> #pack the objects that will be sent to the processors

> for(i in 2:4) rstream.packed(rngList [[i]]) <- TRUE

> #load the package and send the packed rstream objects

> mpi.bcast.cmd(library(rstream ))

> for(i in 1:3) mpi.send.Robj(rngList [[i + 1]], i, 0)

> mpi.bcast.cmd(myRng

+ <- mpi.recv.Robj(mpi.any.source(), mpi.any.tag ()))

> #unpack the objects on the processors

> mpi.bcast.cmd(rstream.packed(myRng) <- FALSE)

> #now generate the random numbers

> mpi.remote.exec(rstream.sample(myRng , 1))

X1 X2 X3

1 0.7017015 0.476142 0.04690119

> rstream.sample(rngList [[1]] , 1)

[1] 0.001009498

The initial steps are to import the rstream and rmpi packages into the workspace. Three
slaves are then spawned and a vector of lists rngList is created to hold the rstream ob-
jects that will be sent to the processors. The first rstream object is created using the new
function with the seed vector (1, 2, 3, 4, 5, 6) and placed in the first component of rngList.
The remaining three rstream objects are created similarly via replicate and used to fill
the remaining rngList entries. This packaging allows us to automate (via a for loop) the
packing of the list elements. Note that rngList[[1]] belongs to the master processor and
does not have to be packed. The next step is to load the rstream package on each of
the slaves. This is accomplished with the mpi.bcast.cmd function. A for loop is used in
conjunction with the mpi.send.Robj function to send the packed rstream objects to the
slaves after which the processors receive them with mpi.recv.Robj. The mpi.bcast.cmd
function is employed to tell each slave to unpack its rstream object followed by an applica-
tion of mpi.remote.exec with the rstream.sample functions to produce the first random
uniform of each random number stream. A comparison of these values with those obtained
in our MPI and OpenMP examples shows that we have reproduced the streams that were
previously obtained in those settings.

The use of rstream is even simpler with the multicore package. The same random numbers
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that were produced with Rmpi can be obtained by using mclapply as in the code sequence
below.

> library(rstream)

> library(multicore)

> rngList <- vector(length = 4, mode = "list")

> rngList <- c(new("rstream.mrg32k3a", seed = c(1, 2, 3, 4, 5, 6)),

+ replicate(3, new("rstream.mrg32k3a")))

> mclapply(rngList , function(a) rstream.sample(a, 1))

[[1]]

[1] 0.001009498

[[2]]

[1] 0.7017015

[[3]]

[1] 0.476142

[[4]]

[1] 0.04690119

Thus, we have now produced the same random number streams with OpenMP, MPI, Rmpi
and multicore.

11.6 Exercises

11.1. Create an alternative version of Listing 11.2 that uses Newton’s method.
11.2. Develop an analog of the parallel ANOVA program for MPI in Listing 11.3 that can
be used in OpenMP.
11.3. In Exercise 11.2 suppose that the data is generated in R with

> set.seed (123)

> a <- rnorm (4000000)

> write(a, "aovVector.txt", ncolumns = 1)

The data in aovVector.txt is then read into the OpenMP program and reshaped to conduct
the analysis. Code that was written to carry out the reshaping is shown below

int j;

#pragma omp parallel for

for(int i = 0; i < 4; i++)

for(j = 0; j < 1000000; j++)

pA[i][j] = pa[i + 4*j];

with pa and pA, respectively, the pointers that hold the initial array created from R and a
4× 1000000 array for the reshaped data with rows representing the different “treatments”.
Demonstrate that this approach fails, explain why it fails and fix the problem.
11.4. The MPI “broadcast” function has prototype

void MPI::COMM_WORLD.Bcast(void* buf , int count ,

MPI_Datatype datatype , int root)

This function provides more immediate communication between processors that allows us
to avoid the loops that were used with Send and Recv. The arguments are the same as
those for Send until the root argument is reached in the prototype. This latter parameter
represents the rank of the processor whose data in buf is to be distributed to all the other
processors. All processors must call Bcast with the same arguments.
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Write an MPI program that issues a greeting message from each processor. The main
text of the message should be sent from the processor with rank 0 using the Bcast function.
Then each processor should provide its own customization by, for example, including its
particular rank in the message it prints to standard output.
11.5. The opposite effect of Bcast can be obtained from the MPI function Gather. It collects
information from all of the processors onto a single processor that is usually taken to be
processor 0. The syntax for this latter case is

void MPI::COMM_WORLD.Gather(void* sendbuf , int count ,

MPI_Datatype datatype , void* recvbuf , int count ,

MPI_Datatype datatype , 0)

The quantity sendbuf is a pointer to count memory locations that is sent from each pro-
cessor to processor 0. This is then gathered into the pointer recvbuf which needs to be
defined only on processor 0 and have size equal to the product of count and the number of
processors (including processor 0). As was the case with Bcast, the function Gather must be
called by all processors. Use Bcast and Gather to provide an alternative version of Listing
11.3 that does not require send/receive loops.
11.6. Refer to problem 3.10. Write programs that split the computations across four (or,
more generally, some power of 2) processors using OpenMP and/or MPI. Compare the
running time of your parallel implementation to that of your serial code from Exercise 3.10.
11.7. Write an R function that will carry out ANOVA in parallel using Rmpi and return
summary statistics, including an F-statistic, as output.
11.8. Extend the parallel analysis of variance programs from Listing 11.3 and Exercises 11.2
and 11.7 to allow for unbalanced designs.
11.9. Use RngStreams and the rstream package to create programs to perform random
searches in parallel to find the minimizer of the function in Figure 8.1. Develop the programs
in OpenMP, Rmpi and the multicore package.
11.10. Create an MPI program that uses RngStream objects to generate independent ran-
dom number streams and requires no communication between the processors.
11.11. Rework the all-subsets regression example from Section 11.4 to allow for an odd
number of processors.
11.12. Develop a vectorized function for packing and unpacking rstream objects.





APPENDIX A

An introduction to Unix

In this appendix we will give a brief overview of some of the basic Unix commands. More
detailed treatments are provided in a myriad of on-line tutorials and texts such as Kochan
and Wood (2003).

The focal setting in this appendix is the command line of a Unix shell; although, much
of the work in this text can be accomplished using various graphical user interfaces, the
command line is always available even in remote logins. So, it is worthwhile to know how
to work in that environment.

The interface between a user and the Linux operating system is provided by a command
line interpreter generally referred to as the shell. There are a number of shell options that
include Bourne (sh, bash and zsh) type, C (csh and tsch) type and Korn (krn) shells.
They each represent programming languages whose purpose is the interpretation of Unix
commands that are entered on the shell’s command line located at the shell prompt. The
prompt often takes the form of a $ or %. We will employ the bash shell exclusively in our
work. It may be started by entering

$ /bin/bash

on the command line.
Unix commands make it possible to transfer and copy files, compile code, start applica-

tions, etc. In general these commands have the form

commandName -option arguments

with commandName being a single, case-sensitive, “word” consisting of a few letters that
often abbreviate the command’s purpose. A command may or may not involve additional
options. The details behind such additional specifications can be obtained by referring to
the command’s associated manual page obtain by entering

man commandName

on the command line. A related, but sometimes different, set of information can be accessed
by info commandName. If you can remember a command’s name but do not recall what it
does, that information is returned by entering whatis commandName. If you only remember
part of a command name commandNamePart, then apropos commandNamePart will search
the whatis database for occurrences of the string commandNamePart.

Disk memory is organized in Unix as a tree structure. It begins with the root directory
or / that represents the top of the tree and then subdirectories branch from the root. These
subdirectories have further subdirectories, etc. When you first log in, the shell will open at
your personal home directory which has a name something like

/home/yourUserName

or

/Users/yourUserName

with yourUserName the user name you have been given on the system. Your current location
in the directory tree can always be obtained by entering pwd (for present working directory)
on the command line.
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Starting from our original login location we would like to go various places and accomplish
various things. Commands for such purposes will be discussed in subsequent sections. The
presentation is organized by groupings of commands with similar or related purposes.

A.1 Getting around and finding things

The main tool for moving from point A to point B in Unix is the change directory command
cd. For example, by entering

cd pathToDirectory/directoryName

you will move from your current location along the path specified by pathToDirectory and
end up at directoryName on the Unix directory tree. There are various shortcut ways to
specify a path. But, what always works is a list, separated by /’s that starts at the root
directory and details every stop along the way from the root to the location of interest.
In general, this is what we will refer to as a path throughout the text. For example, the
command cd /usr/local/share will take you from your current location in the directory tree
to the share subdirectory by going from the root / to the subdirectory usr and then to its
subdirectory local.

A very useful shortcut is provided by the ∼ symbol which can always be used in place
of the name for your home directory. Some related shortcut commands that come in handy
are:

cd .. which moves you one level closer to the root and
cd without an argument, which always returns you to your home directory.

A.2 Seeing what’s there

So, now you have arrived at a particular location (or know of some location of interest) and
would like to find out what is there. The list command, ls, can be used for this purpose.
Specifically,

ls pathToDirectory/directoryName

will provide a list of all the files in the directory directoryName reached by pathToDirectory.
More generally,

ls -l pathToDirectory/directoryName

gives a complete listing that details, from left to right, the following information for each
file in the directory:
• read, write and execute permissions (that will be discussed in more detail below),
• the number of hard links (i.e., the number of directory entries that reference the file or

directory),
• the owning user,
• the owning group,
• the size of the file or directory in bytes,
• creation date and
• the file or directory name.
It turns out that neither ls nor ls -l tell the whole story. Many times there are files in
your directory that begin with a . such as .bashrc and .emacs. To see these you have to use
ls -a. Using ls without a path specification returns the result of applying it to the current
directory.
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The ls command gives us what we need to determine the contents of a directory. For big
directories (as well as for other reasons), it is sometimes preferable to automate the search
for things of interest inside a directory. This can be accomplished with the find command.
For example,

find pathToDirectory/directoryName -name filename

will locate any file with the name filename in directoryName. Often, instead of seeking a
particular file, what is really needed is a list of all the files with certain name similarities
such as those having the same file extension. This can be accomplished by combining find
with wildcards. These are special symbols that provide placeholders or file name expansions
thereby allowing find (as well as other commands) to just match some portion of a file’s
name. Perhaps the most common wildcards are * that matches all characters in any quantity
and ? that will match any single character. Using wildcards one can create commands like

find pathToDirectory/directoryName -name *.cpp

which will produce a listing of every file in directoryName with a .cpp file extension. Simi-
larly,

find pathToDirectory/directoryName -name ex?.cpp

would give a listing of files with names such as ex1.cpp, ex2.cpp, exE.cpp, etc., but not,
e.g., ex.cpp or ex12.cpp. The latter two would both be returned if ex∗.cpp was used as the
search argument.

To see the actual contents of a text file you can edit it as will be discussed below. But,
if you just want a quick peek at a few lines of a file fileName, either the head or tail
commands can be used as in

head -n fileName

to list the first n lines of the file and

tail -n fileName

to see its last n lines. The entire contents of fileName will be written to the screen with

cat fileName

The commands more and less will allow you to scroll through a file. The space bar will
advance the file one “page” while q returns you to the shell prompt. You can obtain infor-
mation about a file without looking at it using the wc command. Entering

wc fileName

will return the number of lines, words and bytes in fileName.

A.3 Creating and destroying things

So far our interaction with Unix has been relatively static. But, things become much more
interesting once you can create and populate directories of your own. There are a multitude
of ways to go about doing this and we will consider just a few of the standard ones here.

The simplest way to create a file is through the touch command which creates an empty
text file fileName upon entering

touch fileName

To delete fileName, employ the remove command, rm, like

rm fileName
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One of the most important things to create is a directory and the make directory com-
mand, mkdir, can be used to accomplish this. For example,

mkdir directoryName

adds a new directory, directoryName, to the current directory. This directory may be re-
moved using the remove directory command rmdir with

rmdir directoryName

provided directoryName is empty. If this is not the case, it must be emptied using a recursive
application (i.e., the -r option) of rm. Specifically,

rm -r directoryName

removes directoryName as well as all of its contents.
Life would be quite complicated if all our files and directories had to be created from

scratch. The copy command cp keeps us from having to do this by allowing us to copy files
from one directory to another. To copy a file fileName in pathToSourceDirectory to a new
file newName in pathToTargetDirectory use

cp pathToSourceDirectory/fileName pathToTargetDirectory/newName

To move, rather than copy, the file one uses the move command mv in the form

mv pathToSourceDirectory/fileName pathToTargetDirectory/newName

Output redirection is useful for a variety of purposes. One of these is creation of files with
the output from a program. Output redirection is achieved with the > symbol using syntax
such as

command options arguments > fileName

For instance,

man pwd > temp.txt

will write the contents of the man file for the pwd command into the text file temp.txt.
The real purpose of the cat command is concatenation of files. When used in conjunction

with output redirection a command sequence such as

cat temp1.txt temp2txt > temp.txt

would create a new file temp.txt consisting of the file temp1.txt with temp2.txt appended
to its end.

In order to copy and move files around you must have permission to use them in such
operations. Information about the permissions associated with a particular file or files in a
directory can be obtained through the ls -l version of the ls command. As noted above,
this produces a variety of output which includes the file permissions as the first, 10 character,
component of the line associated with any particular file.

Permission information provides the details concerning who can and cannot access a file
or directory in question. The first character in the permission string indicates the type
of file it is with d indicating a directory, l meaning a symbolic link and – representing a
common file. Characters 2–4 determine what the owner can do with the file. In particular,
if characters 2–4 are rwx this means the owner can read (i.e., r), write (i.e., w) and execute
(i.e., x) the particular file. A – in any of the slots means that permission is denied for that
particular activity. The next three slots, characters 5–7, convey exactly the same information
concerning permissions for the owning group with slots 8–10 giving the permissions allotted
to all other users. Thus, a 10-character string corresponding to a file fileName of the form

-rwxr -xr--
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would say that the owner of fileName can read, write and execute it, members of the group
that own the file can read and execute it while it is read-only for all other users.

If you own a file you can change any or all of the permissions using the chmod command.
Here the letters u, g and o indicate the user (owner), group owner and other users, respec-
tively. To change permissions you then enter one of the letters u, g or o followed by a + or
– before one of r, w or x to either add (with a +) or remove (with a –) the permission in
question. A command such as

chmod g-x fileName

would convert the previous permissions for fileName to

-rwxr --r--

thereby removing the permission to execute fileName from the owning group members.
The creation of new files from scratch will often be accomplished via some type of text

editor. There are several editors available for this purpose in Unix that include pico, vi and
emacs. The pico editor is simple to use but primitive in terms of its functionality. The texts
Robbins, et al. (2008) and Cameron, et al. (2004) provide extensive information about using
the more advanced editors vi and emacs, respectively.

A.4 Things that are running and how to stop them

At any time on your system there may be several jobs or tasks that are being managed by
your shell. A list of the processes that are running is returned by the ps command. Results
from using ps might appear like

$ ps

PID TTY TIME CMD

29837 ttys000 0:00.08 -bash

29891 ttys000 0:00.07 emacs

29895 ttys000 0:06.69 ./ack

This says there are currently three processes that are active: the shell (bash), emacs and an
executable with the name ack. The first column of the output is the process ID (a unique
number that the shell has assigned to each of the processes), the next column is the “name”
of the controlling terminal, the third column is the CPU time that has been used by each
process and the final column is the name of the command. More information about activity
can be obtained from jobs. For this same example, jobs produced

$ jobs

[1]- Stopped emacs

[2]+ Stopped ./ack

The emacs and ack programs have been given job numbers 1 and 2, respectively, and both
have been stopped or suspended. This suspension was accomplished by the Ctrl z combi-
nation. A suspended job may be restarted by entering fg (for foreground) prior to its job
number.

To kill a job that is running in the foreground use Ctrl c. This is, unfortunately, quite
useful as a way of stopping runaway output from a program that produced unexpected
results due to coding or other errors. Such programs can also be suspended with Ctrl z and
then killed using kill processID or kill %jobNumber with processID and jobNumber
representing the process ID and job number, respectively, for the job to be terminated. In
our example, kill 29895 or kill %2 will terminate the ack job after which ps produces

$ ps

PID TTY TIME CMD
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29837 ttys000 0:00.10 -bash

29891 ttys000 0:00.20 emacs

verifying that ack is no longer being managed by the shell. To terminate the shell itself
either exit or Ctrl d can be used.
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An introduction to R

In this appendix we give a brief introduction to the use of R in a Unix environment. More
detailed discussions can be found in the manual An Introduction to R available from the
CRAN website (http://cran.r-project.org), Gentleman (2009) and various introduc-
tory texts such as Verzani (2005). The R package comes with an extensive collection of
manual pages that can be accessed using the help or ? functions with the command or ob-
ject of interest supplied as the argument. For instance, the manual page for the R function
t that transposes a matrix is obtained via either

help(t)

or

?t

There are also examples corresponding to the help pages that can be accessed using the
example function with, e.g., example(t) producing illustrations of using the transpose
function. Some functions such as those that involve symbols must be quoted when using
help, ? and example; e.g.,

> example("%%")

%%> x <- -1:12

%%> x + 1

[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13

%%> 2 * x + 3

[1] 1 3 5 7 9 11 13 15 17 19 21 23 25 27

%%> x %% 2 #-- is periodic

[1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0

%%> x %/% 5

[1] -1 0 0 0 0 0 1 1 1 1 1 2 2 2

is obtained by applying example to the R modulus operator %%. The output includes results
from applying the modulus operator and the integer division operator %/% to the integers
from −1 to 12.

To begin using R, the first step is to obtain the most recent version of R from CRAN.
Here one can obtain a precompiled binary distribution of the basic R system. The location
of the R installation can be determined by issuing the command R.home() from within an
R session. It is also possible to build R directly from source code. We discuss this option
briefly in Section 4.9. Graphical user interfaces that can be used with R include ESS and R
Commander. The simplest interface is through a Unix shell and that is the approach that
will be used here.

To start an R session, enter R on the shell command line followed by a carriage return.
After some copyright information and other messages, a new prompt > appears at which
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point you may begin entering commands. To suppress the copyright information, you can
use a silent option as in

$ R --silent

>

Like Unix, R is case-sensitive.
To exit R use q() followed by a carriage return. After entering the q() command, R will

ask if you want to save the workspace image. This is because R accumulates all the functions
and data sets that have been created in a given session and will erase them unless the save
option is chosen. By saving a workspace you can return to it at a future time and all the
functions, etc., that were created during the corresponding session will still be available for
use. In this respect, it is recommended that one create and save workspaces that store each
new R project of substance. The command save.image("workspaceName") will save the
current image of the active workspace to the file workspaceName. If no name is specified
(i.e., the command is save.image()), the workspace is saved under the name .RData.∗ To
reload this image in an R session the command is load("workspaceName"). Note that R
uses quotes to designate an object as a character string.

In order to access a previously saved workspace workspaceName, one must either supply
a full path to load or initialize R from the directory where the saved image resides. If R has
been started in a different directory, by entering setwd("pathToDirectory") the current
working directory can be changed to the one specified by pathToDirectory. The current
working directory can be determined via the command getwd(). Somewhat more generally,
commands to the underlying Unix system can be executed while in R using the system
command. For instance, entering system("pwd") at the R command prompt will produce
the same information as getwd.

Once an R session has begun it may be of interest to load various R packages or libraries.
This is accomplished through the library function with, e.g., library(lattice) having
the effect of making the objects in the R lattice graphics package accessible from the current
R session. The command search() will return a list of all the packages that are currently
loaded.

To see a list of all the help topics that are available for the installed packages use
help.start(). This produces an html file for which the packages link will allow access
to information about a specific package of interest. Some packages also have “vignettes”
which are pdf files containing discussions (including code) of topics related to the package.
The command vignette(package = "packageName") will return a list of the available
vignettes for the package packageName.

There are many R packages that are not part of the standard installation but can be
downloaded separately. To install a package one uses install.packages("packageName")
that will install an R package packageName (if it exists). The user will be asked to select
a package repository (or CRAN mirror) from a list after which installation should proceed
automatically.

R has analogs of the basic Unix commands for listing the contents and removing objects
from a workspace. The command ls() will provide a list of the objects in the current
workspace. To remove objects from the current session use rm(o1, o2, . . .) with o1, o2,
. . . a comma separated list of the names of the objects that are to be deleted. In particular,
rm(list = ls()) will remove all objects from the workspace.

The three most common data structures in R are data frame, matrix and list. The matrix
and list structures possess the expected properties; e.g., matrix(pi, 2, 3) creates a 2×3
matrix with every entry equal to pi the R approximation to the value of π. The command

∗ As noted in Appendix A, the . prepended to the file name will render it invisible to the ls command
unless its –a option is used.
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list(o1, o2, . . .) returns a list object that contains the R objects o1, o2, . . . that were
supplied as its arguments. Data frames are hybrid data structures that possess aspects of
both matrices and lists. They are constructed using the data.frame function.

There are a number of data sets that come as part of the standard R package. A list of
all the ones that are available can be obtained by entering the command data(). To obtain
a particular data set dataSetName from the list one enters data(dataSetName) at the R
command prompt. This returns a data frame object that holds the contents of the specified
data set.

R provides two assignment operators: = and <-. For our purposes they can (and will) be
used interchangeably. We will tend to use <- in most programming applications as it clearly
conveys the direction of assignment. For example, the sequence of commands

> data(mtcars)

> carData <- mtcars

> mtcars -> carData

loads an R data set named mtcars into the workspace and assigns it (twice) to the data
frame carData.

There are certain system names that should be avoided when naming variables or con-
stants. These include c, q, t, T and F. The q function terminates an R session, t transposes
a matrix and T and F are abbreviated versions of the R logical constants TRUE and FALSE
that provide the values for a Boolean variable. The c function is of particular importance
and occupies a workhorse role in the R language. The c stands for “concatenate” which is
what the function does. It takes a comma separated list of arguments and combines them
into a vector. For example,

> a <- c(1, 3, pi)

> a

[1] 1.000000 3.000000 3.141593

> class(a)

[1] "numeric"

produces a vector object of the R class or data type “numeric”. Note that all that was
necessary for R to print out the object was simply to enter its name on the command line.
This approach works quite generally for matrices and other R objects and produces the
same results as would be obtained using the R show function: i.e., show(a) is equivalent to
just entering a on the command line. The unix-like functions head and tail are available for
matrices and have the effect of showing the first or last few rows of the matrix, respectively.

There is a point that is worth mentioning concerning the R logical constants. The T and
F options corresponds to global variables whose initial values are set to TRUE and FALSE.
However, T and F can be assigned other values (either intentionally or otherwise) that can
cause errors and confusion. In contrast, TRUE and FALSE are reserved words whose values
cannot be changed. Thus, it is safest to use the latter two choices when writing R code.

Another basic function that recurs frequently is the colon operator : that is a special case
of the function seq() which has several possible arguments. For example, the commands
1:n and seq(1,n) will have the same effect of producing the vector of integers from 1
to n. More generally, seq allows for expressions such as seq(1, n, by = r) which selects
every rth integer between 1 and n or seq(1, n, length = r) which would list the r
partition points that are needed to break the interval 1 to n into r - 1 subintervals of equal
length. There is nothing special about the use of integers here and, for example, a command
such as seq(pi/2, -10*pi, length = 7) will have the intended effect of creating a seven
component partition for the interval [−10π, π/2] that breaks it into six subintervals.
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B.1 R as a calculator

R is typically used in an interactive mode through command line input. When employed
in this manner it is possible realize an effect much like an advanced scientific calculator
through creation and execution of expressions involving the operators and functions that
are available in the language. In this section we will examine R from this “calculator”
perspective.

First, R can process algebraic command line input involving the operators

- for binary minus,

+ for binary plus,

* for binary multiplication,

/ for binary division,

^ for exponentiation,

%% for modulus,

%/% for binary integer division,

abs for absolute value,

floor for the next smallest integer and

ceiling for the next largest integer.

Expressions can also employ standard mathematical function such as

sqrt for the square root function,

cos for the cosine function,

sin for the sine function,

tan for the tangent function,

exp for the exponential function,

log, log10 and log2 for the logarithm for base e, base 10 and base 2 and

gamma for the gamma function.

This makes it easy to perform insightful calculations such as

> a <- 2*pi

> (log(exp(cos(a))) + sin(log10(10^{pi})))/cos(0)

[1] 1

Most of the basic mathematical operations and functions have been vectorized in the
sense of working with matrix and vector arguments. In such cases, the function is applied
to an array on an element-wise basis. The code snippet below demonstrates this by creating
a vector of four integers and computing their values mod 7.

> x <- vector(mode = "integer", length = 4)

> x[1] <- 17

> x[2] <- -43

> x[3] <- 11

> x[4] <- 107

> x%%7

[1] 3 6 4 2

The example illustrates one of the most powerful features of R: its facility for subscripting
arrays and lists. Subscripting is accomplished with [] for arrays while both [] and [[]]
work with lists. The difference between the two in this latter instance is that [] will return
a sublist while [[]] returns the actual object being held in the list. As seen from the
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example, when used with a one-dimensional array an integer argument to [] returns the
array’s element whose index agrees with the argument.

A vector in R can be converted to a matrix (or, more generally, to a multi-dimensional
array) by specifying its dim attribute. In the case of our previous integer vector this produces

> dim(x) <- c(2, 2)

> x*x

[,1] [,2]

[1,] 289 121

[2,] 1849 11449

> (x*x)[1, 1]%%7

[1] 2

> (x*x)[, 2]%%7

[1] 2 4

First, the vector is converted to a 2 × 2 matrix by setting both the row and column argu-
ments for dim(x) to two. The vectorization feature of the multiplication operator * is then
illustrated with this matrix. Next, subsetting operations are used on the matrix in con-
junction with the modulus and multiplication operators. In general, [] takes two comma
separated arguments for working with a matrix that correspond to a row and column index,
respectively. The (x*x)[1, 1] syntax, for example, gave us the top left-hand element of
the x*x matrix. Either the column or row arguments for [] may be left unspecified in which
case all the row or column entries will be returned for the subscript that is specified. The
last expression using (x*x)[, 2] illustrated this feature.

Subsetting operations are not restricted to positive integers for arguments. Negative inte-
gers can be used to delete rows or columns while logical values can be used to pick out array
elements that meet some specified criteria. To demonstrate this feature we again employ
the matrix

> x

[,1] [,2]

[1,] 17 11

[2,] -43 107

to produce the results

> x[-1,]

[1] -43 107

> (x > 0)

[,1] [,2]

[1,] TRUE TRUE

[2,] FALSE TRUE

> x[(x > 0)]

[1] 17 11 107

> x[(x[, 1] > 0), 2]

[1] 11

The use of −1 indicates that the row with index 1 is to be deleted. The result is a “matrix”
consisting of only the second row of x. The next command reveals that a logical expression
applied to a matrix returns a matrix of the same dimension with entries that are either TRUE
or FALSE depending on whether or not they satisfy the specified condition. In this particular
case, the condition is that an element be positive and the resulting matrix of logical values
has a FALSE for the (2, 1) element with the value −43. The utility of this result is realized
when we use the logical array as an index argument for the original matrix to produce a
subset of the matrix elements corresponding to those entries that evaluate to TRUE. Similar
operations can be performed with specific rows or columns of a matrix. In the example, (x[,
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1] > 0) evaluates as TRUE for the positive entry in the first column with the consequence
that the first row is selected. The specification of 2 for the column index therefore returns
the (1, 2) matrix element. A thorough discussion of R subscripting is provided by Spector
(2008).

The + and - operators applied to matrices give matrix addition and subtraction assuming
the matrices involved have the same row and column dimensions. Matrix transposition
is accomplished with the t function while matrix multiplication is obtained through the
operator %*%. To illustrate the idea we first create two matrix objects using

> set.seed (123)

> A <- matrix(runif(15), 3, 5)

> B <- matrix(runif(15), 3, 5)

> A

[,1] [,2] [,3] [,4] [,5]

[1,] 0.2875775 0.8830174 0.5281055 0.4566147 0.6775706

[2,] 0.7883051 0.9404673 0.8924190 0.9568333 0.5726334

[3,] 0.4089769 0.0455565 0.5514350 0.4533342 0.1029247

> B

[,1] [,2] [,3] [,4] [,5]

[1,] 0.89982497 0.3279207 0.6928034 0.6557058 0.5941420

[2,] 0.24608773 0.9545036 0.6405068 0.7085305 0.2891597

[3,] 0.04205953 0.8895393 0.9942698 0.5440660 0.1471136

Here the R uniform random number generator runif was used to create two 3× 5 matrices
A and B. At the outset the seed for the random number generator has been set to 123 using
the set.seed function so that our calculations can be repeated from any incarnation of R
provided the same seed and default random number generator (i.e., Mersenne twister) are
used. Now R can be used to evaluate a matrix expression such as

> (cos(A) + B)%*%t(3*(B^2) - 2*A)

[,1] [,2] [,3]

[1,] 2.83191033 -4.496181 3.364332

[2,] 0.17064156 -2.247529 4.930415

[3,] -0.03323455 -2.361368 6.782212

When applied to an array the max and min functions will return the largest and smallest
array element. In the case of our two matrices this produces

> max(A); max(B)

[1] 0.9568333

[1] 0.9942698

> min(A); min(B)

[1] 0.0455565

[1] 0.04205953

Note the use of semicolon separation here to allow more than one command to be entered
from a single prompt.

Both the seq and c functions can be used to specify array row or column indices. As
demonstrated above with the > operator, logical operators can also be used in this capacity.
The R logical operators include

! for unary not,
<, <= and >= for logical binary less than, etc.,
== for logical binary equal to,
& for logical binary AND and
| for logical binary OR.
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The rbind and cbind functions are particularly useful for working with arrays. These
functions combine the rows or columns, respectively, of the arrays that are provided as their
arguments. This allows us to accomplish manipulations such as

> cbind(A[,1], B[,1], A[,c(2, 4)])

[,1] [,2] [,3] [,4]

[1,] 0.2875775 0.89982497 0.8830174 0.4566147

[2,] 0.7883051 0.24608773 0.9404673 0.9568333

[3,] 0.4089769 0.04205953 0.0455565 0.4533342

> C <- rbind(A[1:2,], B[3,])

> C

[,1] [,2] [,3] [,4] [,5]

[1,] 0.28757752 0.8830174 0.5281055 0.4566147 0.6775706

[2,] 0.78830514 0.9404673 0.8924190 0.9568333 0.5726334

[3,] 0.04205953 0.8895393 0.9942698 0.5440660 0.1471136

Like any good scientific calculator, R has a sum function for adding up a group of numbers.
But, it is somewhat more powerful than its hand-held relative in that it can carry out
calculations like

> sum(seq(-pi, pi, by = .5))

[1] -1.840704

> sum(A)

[1] 8.545771

When used in conjunction with the apply function sum can produce marginal row or
column sums for an array. In general the apply function has the form

apply(X, MARGIN , FUN)

where X is an array, FUN is the function to be used and MARGIN is 1 or 2 depending on
whether the function should be applied to the rows or the columns of the array. Using this
idea with our previous matrices produces results like

> apply(A, 1, sum)

[1] 2.832886 4.150658 1.562227

> apply(B, 2, sum)

[1] 1.187972 2.171964 2.327580 1.908302 1.030415

There is nothing special about sum in this example in that other choices for the FUN argument
to apply will work equally well. For example,

> apply(A, 1, min)

[1] 0.2875775 0.5726334 0.0455565

> apply(B, 2, max)

[1] 0.8998250 0.9545036 0.9942698 0.7085305 0.5941420

Other calculator-like features of R are the choose and factorial functions that calculate
the binomial coefficients and factorials. The choose function has two arguments for the
number of trials and number of successes in a binomial experiment while factorial takes
one integer argument. An illustration of a typical calculation is

> choose(10 ,3); factorial (5)

[1] 120

[1] 120

Finally, R includes functions that compute the values of probability density/mass func-
tions, cumulative probabilities, quantiles and random numbers for a rich collection of prob-
ability distributions. These functions all have names of the form dDist, pDist, qDist and
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rDist with Dist the name for the distribution and d, p, q and r indicating the densi-
ty/mass function, cumulative distribution function, quantile function and random number
generation. The choices for Dist include

beta for the beta distribution,
binom for the binomial distribution,
chisq for the chi-square distribution,
exp for the exponential distribution,
f for the F distribution,
hypergeometric for the hypergeometric distribution,
nbinom for the negative binomial distribution,
norm for the normal distribution,
pois for the Poisson distribution,
t for the Student’s t distribution and
unif for the uniform distribution.
The random number generator for the uniform distribution was used earlier to create the

matrices A and B that were used in the examples. The commands below illustrate the use
of functions for some of the other distributions.

> qchisq(.95, df = 9)

[1] 16.91898

> pchisq(qchisq(.95, df = 9), df = 9)

[1] 0.95

> set.seed (123)

> rpois(3, lambda = 5)

[1] 4 7 4

> dbinom(4, size = 4, p = .25)

[1] 0.00390625

> qnorm(.9, mean = 0., sd = 1.); qnorm(.9); qnorm(.95); qnorm(.975)

[1] 1.281552

[1] 1.281552

[1] 1.644854

[1] 1.959964

Notice from this that if a choice is not specified for the mean and standard deviation of the
normal distribution the dnorm, pnorm, qnorm and rnorm functions will all provide values for
the standard normal distribution.

B.2 R as a graphics engine

Undoubtedly one of the most useful features of the R package is the collection of functions
it provides for generating graphics. The plot function is a key component of the available
graphic utilities. It has the prototype

plot(x, y, ... )

with x and y the variables for the x and y axes and the ellipsis . . . indicating further possible
arguments that can be used to add enhancements to a figure. When used in its simplest
form commands like

set.seed (123)

x <- 1:100/101

y <- x + runif(100, -.25, .25)

plot(x, y)
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produce a plot such as Figure B.1. Here random numbers have been generated from a
uniform distribution on [−.25, .25] then added to the value of a line with unit slope that
was evaluated at uniformly spaced points over the unit interval. The plot is satisfactory but
lacks standard features such as a title.
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Figure B.1 Uniform random numbers added to a line with unit slope

The ellipsis argument for plot is an R standard that indicates there are other arguments
that may be supplied depending on the classes for the objects x and y. For our purposes x
and y can be assumed to be numeric arrays in which case the additional arguments of most
interest are

type for the type of plot with l and p producing lines and points (with points being the
default option),

lty, lwd for values that specify the line type and width,

pch for an integer or specified symbol for plots using points,

main for a quoted phrase to be used for the plot title and

xlab, ylab for text, in quotes, to be placed on the horizontal and vertical axes.

There are six line types specified by the integers from 1 to 6. A solid line corresponding to
lty = 1 is the default. It is also possible to create custom line types as described in Murrell
(2006). There are twenty-six symbol options with the selection of a specific symbol being
accomplished by setting pch to one of the integers between 0 and 25. Open circles, for which
pch = 1, are the default symbol. Any character can also be set as the symbol; for example
pch = "A" will produces a plot with points that are represented by A.

Once a plot has been drawn, additional points or lines can be added using the points
and lines functions. A legend can also be added to the plot using the legend function.

Figure B.2 was produced by Listing B.1 below. It illustrates a number of R’s graphical
capabilities that will be the focus of our discussion in the remainder of this section.
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Listing B.1 figEx.r

parOld <- par()

#pdf(" graphEx.pdf")

set.seed (123)

x <- ( -100):100/101

y <- x + rnorm(201, sd = .25)

parOld <- par()

par(mfrow = c(2, 2))

hist(y, main = "Histogram of y data", xlab = "y",

ylab = "frequency")

boxplot(y, main = "Boxplot of y data", xlab = "", ylab = "y")

plot(x, y, main = "Scatter plot", xlab = "x", ylab = "y", pch = 4)

lines(x, x, lty = 6, lwd = 2)

legend(.15, -.5, legend=c("y data", "mean"),

pch = c(4, -1), lty = c(-1, 6), lwd = 2)

qqnorm(rstandard(lm(y ~ x)), xlab = expression(Q[N](u)),

ylab = expression(tilde(Q)(u)))

lines((x = seq(-3, 3, by = .1)), x)

#dev.off()

par(parOld)

First, Listing B.1 creates a multiple figure plot using the graphics parameter mfrow.
Specifically, the command par(mfrow = c(2, 2)) states that we want a 2 × 2 array of
figures and that the rows of the array are to be filled in first as new graphs are inserted. A
similar parameter mfcol fills in the array by columns. A list of the R graphical parameters
can be obtained by entering par() on the command line. By using par in the way it was
employed in Listing B.1, the mfrow parameter is set globally and will remain that way
unless it is explicitly changed again. In particular, par(mfrow = c(1, 1)) has the effect of
changing mfrow back to its original value.

In general several global parameter changes may be made in creating a figure. A simple
way to return to the original settings is to save the current parameter values (e.g., as parOld)
and then reset them using the par function (e.g., with par(parOld)) after a plotting task
has been completed. That is what was done in Listing B.1.

The data that is used in Figure B.2 is created by generating a response vector y from
a regression model with unit slope and zero intercept. The random error part of the data
is generated from a normal distribution with mean zero and standard deviation .25. The
independent variable (or x) values are uniformly spaced over the unit interval. The upper
left-hand plot in Figure B.2 is a histogram of the y vector values that was created using the
R function hist. The second plot on the first row is a boxplot for the same data created
using the function boxplot. Appropriate titles and axis labels have been added to both
figures using the main, xlab and ylab arguments.

The first figure on the second row is a scatter plot of the x and y vectors where the
selected plotting symbol (via pch = 4) is x rather than the default open circle. The lines
function has been used to overlay a dashed line with twice the default width on the scatter
plot to indicate the true mean for the responses. A legend has been placed on the plot
using the legend function with its first two arguments specifying the location of the upper
left-hand corner of the legend box. The legend argument for the legend function gives
the text to be used to provide information about the symbols and lines that appear in
the graph. There is a bit of a problem here since the line ordinates were not plotted with
symbols and the responses were not connected by lines. Nonetheless, R expects both a plot
symbol and line type to be specified for each component of the value that is assigned to the
legend argument. The problem is easily resolved by providing values (e.g., −1) that do not
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Figure B.2 A figure array

correspond to valid symbols or line types. Note that the line width must also be given if
that is to be a feature of the legend.

The final figure is a normal distribution Q-Q plot of the standardized residuals obtained
from fitting a linear model to our simulated data using the R lm function that will be
described more fully in the next section. A line with unit slope is overlaid on the Q-Q plot
using the lines function. The labels for both axes (QN for normal quantiles and Q̃ for the
sample quantiles) are created using a LATEX type feature of R that allows mathematical
symbols and nomenclature to be included in axis labels, legends and titles. The R help page
for plotmath describes this feature.

Listing B.1 contains two statements that have been rendered inactive by prefacing them
by the R comment symbol #. If the comment markers are removed the result would be that
all the graphics output would be written to a pdf file (called graphEx.pdf in this case). In
this instance, the connection to this graphics “device” will remain open and all graphics
output will be funneled to the pdf file until the device is closed using dev.off().

It is possible to have multiple graphics devices available for use. The list of active devices
is returned from dev.list() and switching between devices is accomplished with dev.set.
To illustrate the idea consider the following commands from an R session.

> system("ls *.pdf")

ls: *.pdf: No such file or directory

> x <- 1:100

> plot(x, x)

> dev.list()

quartz

2
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> pdf("some.pdf")

> dev.list()

quartz pdf

2 3

> plot(x, x^2)

> dev.set(which = 2)

quartz

2

> plot(x, x^2)

> dev.off(3)

quartz

2

> system("ls *.pdf")

some.pdf

An initial check of the working directory shows that no pdf files are present. A plot is then
created which initializes the X11 terminal. The output from dev.list() indicates that
only this device (called quartz in this instance and assigned the number 2) is available for
plotting. A new device is opened for creating a pdf file at which point there are two devices
and the output from plot is sent to the new graphics device numbered 3 that writes it to
the file some.pdf. A switch is made back to the X11 device and the same graphics output is
sent to the X11 terminal where it now becomes visible. The pdf device is then closed and
we are informed that the X11 device is the only one that remains active. A check reveals
that the file some.pdf file has been created in the current working directory.

B.3 R for statistical analysis

As the previous two sections have hopefully demonstrated, R is much more than just a
statistics software package. Of course, it does come equipped with a number of functions
for carrying out many of the standard statistical calculations that arise in the analysis of
data. Many, many more are available through packages that can be downloaded from the
CRAN website.

There is a generic R function summary that produces some of the standard summary
statistics when it is applied to an array or a data frame. The ensuing output was produced
using one of the data sets that comes with R.

> data(mtcars)

> A <- as.matrix(mtcars[, c(1, 3, 6)])

> summary(A)

mpg disp wt

Min. :10.40 Min. : 71.1 Min. :1.513

1st Qu .:15.43 1st Qu .:120.8 1st Qu .:2.581

Median :19.20 Median :196.3 Median :3.325

Mean :20.09 Mean :230.7 Mean :3.217

3rd Qu .:22.80 3rd Qu .:326.0 3rd Qu .:3.610

Max. :33.90 Max. :472.0 Max. :5.424

> apply(A, 2, sd)

mpg disp wt

6.0269481 123.9386938 0.9784574

> apply(A, 2, IQR)

mpg disp wt

7.37500 205.17500 1.02875

The data set mtcars in this example contains information on several variables related to 32
cars that was reported in a 1974 issue of Motor Trend magazine. We have elected to work
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with three of the variables: miles per gallon (mpg), displacement (disp) and weight (wt) and
have coerced them into the form of a matrix with the as.matrix function. An application
of the summary function to the resulting array produces typical summary statistics corre-
sponding to each column in the array. The standard deviations and inter-quartile ranges
were also computed for each column using the sd and IQR functions in combination with
the apply function. The sample variances could have been obtained similarly by using var
instead of sd.

The values for the mean, median and quartiles can be obtained directly using the mean,
median and quantile functions as illustrated by

> mean(A[, 1])

[1] 20.09062

> median(A[, 1])

[1] 19.2

> quantile(A[, 1], prob = c(.25, .75))

25% 75%

15.425 22.800

> min(A[, 1]); max(A[, 1])

[1] 10.4

[1] 33.9

The probs argument for quantile designates the percentile or percentiles that are to be
computed. The choice of probs = c(.25, .75) indicates that the 25th and 75th percentiles
or, equivalently, the two quartiles are to be calculated. The max and min functions were also
used to obtain the smallest and largest values of the mpg variable.

It is not uncommon for data to have missing values which appear in R as the logical
constant NA. The default behavior of most R data analysis functions when they encounter
an NA is to either return NA as output, report an error or omit the missing value and perform
the requested analysis. The default behavior can often be overridden by specifying a value
for a function argument with a name such as na.rm or na.action. In particular, the na.rm
(for “NA remove”) argument is what appears in the mean function as illustrated by the code
snippet

> dat <- c(pi, NA, exp(pi), 1:5)

> mean(dat)

[1] NA

> mean(dat , na.rm = TRUE)

[1] 5.897469

By setting na.rm to TRUE a mean value for the nonmissing values in the dat array is returned
by the mean function.

The order() function can be used for sorting elements in an array. This function takes a
vector as input and returns a vector of integers representing the ranks of the corresponding
input vector elements. More precisely, the ith component of the vector r returned from r
<- order(x) is the rank of x[i] among the values x[1],. . ., x[length(x)] with length
the function that returns the number of elements in an array. Consequently, x[order(x)]
is the vector x with elements rearranged in numerically ascending order. In this case the
same effect could be accomplished with R’s sorting function sort: i.e., x[order(x)] is the
same as sort(x). The order function works more generally in the sense that for a matrix
A the expression A[order(A[,i]),] produces a matrix with rows rearranged so that the
elements in its ith column are ordered.

R contains functions for performing most of the basic types of analyses that arise in
statistics. For example, the lm function that was used in the previous section is available
for fitting linear models. The primary argument for lm is a formula object that defines
a relationship between dependent and independent variables. The variables are separated
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by the ~ operator with the dependent variables on the left-hand side and the independent
variables on the right-hand side separated by +s. Suppose there are three arrays y, x1,
x2 of equal length and the formula log(y) ~ x1 + x1^2 + x1*x2 - 1 is used in the lm
function. This would specify that a linear model was to be fitted with data in a vector
y providing the independent variable values in the form of the natural logarithm of its
elements. The model is then to be fitted with terms involving x1 as well as its square and
product with the values in the x2 array. The presence of a −1 in the formula results in a fit
with no intercept term. Otherwise, an intercept would be included by default.

The lm function returns an object of class lm that has member elements that include
coefficients, residuals and fitted. These can be accessed using the $ operator. In the
case of the mtcar example this produces

> mtLm <- lm(A[, 1] ~ A[, 2] + A[, "wt"])

> mtLm$coefficients

(Intercept) A[, 2] A[, "wt"]

34.96055404 -0.01772474 -3.35082533

Note that both a column index and a column name have been used to access a specific
column of the array A that contains the data. An application of the summary function to
our lm object returns an analysis of variance table as well as other relevant information.

> summary(mtLm)

Call:

lm(formula = A[, 1] ~ A[, 2] + A[, "wt"])

Residuals:

Min 1Q Median 3Q Max

-3.4087 -2.3243 -0.7683 1.7721 6.3484

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.96055 2.16454 16.151 4.91e-16 ***

A[, 2] -0.01773 0.00919 -1.929 0.06362 .

A[, "wt"] -3.35082 1.16413 -2.878 0.00743 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.917 on 29 degrees of freedom

Multiple R-squared: 0.7809 , Adjusted R-squared: 0.7658

F-statistic: 51.69 on 2 and 29 DF , p-value: 2.744e-10

There are functions such as coefficients, fitted and residuals that extract the infor-
mation suggested by their names from lm objects. Along similar lines the function rstandard
(discussed on the R help page for influence.measures) was used to compute the standard-
ized residuals that appeared in the Q-Q plot portion of Figure B.2. As another example the
information below was obtained about the residuals from our fit to the data set created
using the mtcars data frame.

> summary(residuals(mtLm))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.409e+00 -2.324e+00 -7.683e-01 5.204e-17 1.772e+00 6.348e+00

Finally, it is good to know that R comes equipped with a function sample that can be
used for drawing random samples from an array that is specified as its first argument. The
prototype for sample appears as
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sample(x, size , replace = FALSE , prob = NULL)

The x argument is the array to be sampled while size is the number of elements to select. If
replace is set to TRUE, sampling will be done with replacement and is carried out without
replacement otherwise. The prob argument can be a vector of probabilities for selecting
the elements of the x array. The default value for prob is the R reserved word NULL that
represents the null or empty object. If no value is specified for prob the selection is made
with uniform probability. To demonstrate the idea consider

> set.seed (123)

> sample(letters , 4)

[1] "h" "t" "j" "u"

> sample(LETTERS , 10, replace = TRUE)

[1] "Y" "B" "N" "X" "O" "L" "Y" "L" "R" "O"

> sample(c(1, 2, 3), 10, replace = TRUE)

[1] 1 3 1 1 1 3 3 3 2 3

> sample(c(1, 2, 3), 10, replace = TRUE , prob = c(.1, .3, .6))

[1] 2 2 3 3 3 3 1 1 2 2

This example used the built-in R arrays letters and LETTERS that contain the lower- and
upper-case letters of the alphabet.
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C++ library extensions (TR1)

The C++ Technical Report 1 (Austern 2005), commonly referred to as TR1, is a draft
document officially titled ISO/IEC TR 19768, C++ Library Extensions. While it has as
yet to be adopted as the standard, it is likely that most of its features will be included in
the next standard version of C++. Despite its unofficial status, several compilers, including
gcc, currently implement most or all of the TR1 components. To distinguish the proposed
components from the standard library, they have been placed in the namespace std::tr1
that will appear in the programs in this appendix.

The text by Becker (2006) provides an accessible treatment of all the features of TR1. In
this appendix we merely focus on those aspects that are most relevant to the material in
Chapters 4, 9 and 10.

C.1 Pseudo-random numbers

One of the proposed extensions to the C++ standard library is the implementation of several
template classes for the generation of pseudo-random numbers. At a high level, there are
two kinds of classes: engines and distributions. An engine basically describes a random
number generator (see Chapter 4) that produces pseudo-random integers that are intended
to be uniformly distributed over the length of its period. They come in two varieties: a basic
engine provides an implementation of a specific generator, while a compound engine either
modifies a basic engine, or combines two of them into a single generator. A distribution
transforms a sequence (or stream) of (uniformly distributed) integers into floating-point
values that obey a particular distribution. It is also possible to explicitly combine an engine
and a distribution in an object of type variate generator. An example of syntax for this
latter purpose looks like

variate_generator <engineName , distributionName <> >

rngName(engineName(seed), distributionName <>( parameterValues ))

Here engineName specifies the choice for the engine/generator while distributionName is
the distribution to be simulated. The simplest approach is to use one of the predefined
engines that include the “minimal standard” congruential generator of Park and Miller
(1988) (minstd rand0), the Mersenne twister (mt19937) and several subtract-with-carry
generators (e.g., ranlux3). More generally, there are engine template classes that provide
ways to specify custom congruential and subtract-with-carry generators as well as variants of
the Mersenne twister. The distributions are also template classes as indicated by the <> after
the class name. The default values for the template parameters are generally satisfactory
which allows us to bypass their explicit specification.

Some of the options that are available for the distributions are described below.

• An object dist from the class uniform real of uniform distributions on the interval a
to b (with a and b both of type double) is constructed with

uniform_real <> dist(a, b);

The values of a and b default to 0 and 1, respectively.
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• An object dist from the normal distribution class with mean mu and standard devi-
ation sigma (both parameters being of type double) is created with

normal_distribution <> dist normal(mu, sigma)

The default is the standard normal distribution.
• The binomial distribution class has parameters n and p with n of type int and p of

type double. The syntax

binomial_distribution <> dist(n, p);

will create an instance dist of the class. The parameters n and p default to 1 and .5,
respectively.

• The gamma distribution class (e.g., Section 4.6) is parameterized with a single shape
parameter alpha of type double that defaults to 1. An instance of the class is obtained
via

gamma_distribution <> dist(alpha );

To produce values for a gamma distribution with mean alpha*beta, multiply values from
this generator by beta.

• An instance of the poisson distribution class with double precision mean lambda is
produced with

poisson_distribution dist(lambda );

The following program illustrates the use of variate generator in combination with
several of the distributions mentioned above.

//tr1RNG.cpp

#include <tr1/random >

#include <iostream >

using namespace std::tr1;

int main() {

variate_generator <mt19937 , uniform_real <> >

rngU(mt19937 (123), uniform_real <>());

variate_generator <mt19937 , normal_distribution <> >

rngN(mt19937 (123), normal_distribution <>(2, .5));

variate_generator <mt19937 , binomial_distribution <> >

rngB(mt19937 (123), binomial_distribution <>(3, .7));

variate_generator <mt19937 , poisson_distribution <> >

rngP(mt19937 (123), poisson_distribution < >(20));

variate_generator <mt19937 , gamma_distribution <> >

rngG(mt19937 (123), gamma_distribution < >(3));

for(int i = 0; i < 5; ++i)

std::cout << rngU() << " " << rngN() << " " <<

rngB() << " " << rngP() << " " << 2*rngG() << std::endl;

return 0;

}

First, we need to include the header file tr1/random that allows us to access the distributions
and generators. Objects are then created to produce random numbers from the uniform (on
[0, 1]), normal (with mean two and standard deviation .5), binomial (with 3 trials and success
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probability .7), Poisson (with mean 20) and gamma (with shape parameter 3) distributions
all using the seed 123 and the Mersenne twister engine. Each object is used to produce a
sequence of five random deviates. The resulting output is

0.696469 2.5429 1 24 9.01262

0.712955 2.50087 2 22 5.27469

0.286139 1.71696 2 23 8.59719

0.428471 1.15374 1 27 9.13627

0.226851 2.36488 2 10 5.90542

Note that the multiplication of numbers produced by the gamma generator by 2 has the
effect of producing random deviates from the chi-square distribution with six degrees-of-
freedom.

C.2 Hash tables

TR1 adds four new container classes:
• unordered set,
• unordered multiset,
• unordered map and
• unordered multimap.
These containers are direct analogs of the set, multiset, map and multimap containers
from Section 10.6 that are implemented using hash tables rather than binary search trees.

The listing below gives a simple example of using unordered map.

//tr1hashEx1.cpp

#include <utility >

#include <iostream >

#include <tr1/unordered_map >

using namespace std::tr1; using std::pair;

int main() {

unordered_map <int, int> ht;

ht.insert(pair <int,int> (254 ,10));

ht.insert(pair <int,int> (54 ,11));

ht.insert(pair <int,int> (54 ,22));

for(unordered_map <int, int >:: iterator iter = ht.begin ();

iter != ht.end (); iter ++)

std::cout << "(" << (*iter). first << "," << (*iter). second << ")"

<< " has count " << ht.count ((*iter).first)

<< std::endl;

std::cout << "Data value for key 54 = " << (ht.find (54))-> second

<< std::endl;

return 0;

}

The unordered map container becomes available through the tr1/unordered map header
file. All four hash table variants require at least two template parameters and up to as many
as five, unless default values are used. The two parameters that are always required are the
types for the key and data components of each object. Additional parameters may be used
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to specify the hash function itself (if the default is not appropriate or does not work with
the key type) and a comparison function for keys (to allow checking if a key is already in
the table). Thus, in this case, we have created an unordered map container ht that uses
integers as both key and data components. The insert method is used to attempt to add
three pair objects to the table. The last insert involves a key that has already been used
in the table. Then, an iterator is employed to explore the container while printing out the
key and data values for its stored elements. Finally, the find method is used to locate the
table entry with the key of 54. This method returns an iterator pointing to the table entry
which explains the use of -> to access the second member of the associated pair object.

The output produced by our program is

(254 ,10) has count 1

(54 ,11) has count 1

Data value for key 54 = 11

In addition to the key and data components, we have also printed the number of times each
of the keys appear in the table. For the simple unordered map, the only possible return
values are 0 (if the key does not exist in the table) and 1 (if the key does exist in the table).
In the next example we will see that the unordered multimap container allows multiple
elements with the same key to be inserted so that the count method may return arbitrary
nonnegative integers. In contrast, the output from this example demonstrates that attempts
to insert an entry with a duplicate key in a unordered map structure are ignored and the
first object entered with a given key is the one that is retained.

The result from the previous example can be contrasted with the output from the listing
below where the hash table is an unordered multimap object.

//tr1hashEx2.cpp

#include <utility >

#include <iostream >

#include <tr1/unordered_map >

using namespace std::tr1; using std::pair;

int main() {

unordered_multimap <int, int> ht;

ht.insert(pair <int,int> (254 ,10)); ht.insert(pair <int,int> (54 ,11));

ht.insert(pair <int,int> (54 ,22));

for(unordered_multimap <int, int >:: iterator iter = ht.begin ();

iter != ht.end (); iter ++)

std::cout << "(" << (*iter). first << "," << (*iter). second

<< ")" << " has count " << ht.count ((*iter).first)

<< std::endl;

pair <unordered_multimap <int, int >:: iterator ,

unordered_multimap <int, int >:: iterator >

this_range = ht.equal_range (54);

for(unordered_multimap <int, int >:: iterator iter = this_range.first;

iter != this_range.second; iter ++) {

std::cout << iter ->second << " ";

}

std::cout << std::endl;

return 0;

}
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The program’s output is

(254 ,10) has count 1

(54 ,11) has count 2

(54 ,22) has count 2

11 22

Both elements with key values of 54 have been inserted into the table since each has a count
value of 2. To access them, the method equal range can be used to get a pair of iterators
pointing to the beginning and the end, respectively, of the part of the container that stores
all the elements with the given key value.

Let us now consider a slightly more complicated example that demonstrates the usage of
a hash table keyed on strings.

//tr1hashEx3.cpp

#include <utility >

#include <iostream >

#include <string >

#include <tr1/unordered_map >

using namespace std::tr1;

int main() {

unordered_map <std::string , int> ht;

std::cout << "Empty? " << std:: boolalpha << ht.empty() << std::endl;

ht.insert(std::pair <std::string , int> ("example" ,10));

ht.insert(std::pair <std::string , int> ("missing" ,9));

ht.insert(std::pair <std::string , int> ("guess" ,15));

ht["value"]=16;

std::cout << "Empty? " << ht.empty() << std::endl;

std::cout << "Size: " << ht.size() << std::endl;

for(unordered_map <std::string , int >:: iterator iter = ht.begin ();

iter != ht.end (); iter ++)

std::cout << iter ->first << " " << ht[iter ->first] << " "

<< ht.count(iter ->first) << std::endl;

ht.erase("value");

std::cout << "value: " << ht.count("value") << std::endl;

return 0;

}

First there is an initial query to test the emptiness of the hash table after which three
(string, int) pair objects are inserted into the table. This is followed by an illustration
of a simpler way to insert an element via the magic of C++ operator overloading. In this
case, the subscripting operator [] has been overloaded in the TR1 implementation to act
as an application of the insert method and thereby provide us with an intuitive way of
initializing a new entry. This feature is also used in the for loop in a slightly different
context to access the data component for a given key value. Other features demonstrated
in this example are the use of the size method that returns the number of entries in an
associative array and the erase method that will delete an entry with a specified key.

The program produces the output
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Empty? true

Empty? false

Size: 4

example 10 1

value 16 1

missing 9 1

guess 15 1

value: 0

Initially the container is empty and then evaluates as not empty with four elements after the
four insertions. The iteration through the container using the key values as indices produces
the expected results and the application of the erase method has removed the entry with
the targeted key.

To this point, we have worked only with fairly simple cases and been satisfied with what-
ever the hash table containers give us in terms of the number of buckets. More customization
is possible by using the nondefault class constructors and by setting the hash table load
factor (see Section 9.2.4) that represents the average number of objects per bucket.

A simplified prototype for the unordered map class constructor looks like

unordered_map(size_type nBuckets , const Hash& hashFunctor ())

Here nBuckets is the desired initial number of buckets and Hash is a template functor
struct. The size type and size t designation that appear in this listing and the one below
correspond to unsigned integers. The Hash functor struct has the generic framework

namespace std {

namespace tr1 {

template <>

struct hash <keyType > : public unary_function <keyType , size_t>

{

std::size_t operator ()(const keyType& key) const

{

//hash function specification

}

};

}

}

with keyType the class for the keys. A specific hash function must be supplied in the body of
the () method. This can be constructed directly or by using specializations of the template
such as hash<bool>, hash<char>, hash<int>, hash<double> and hash<std::string>. The
hash<int> and hash<std::string> functors were used automatically in the previous ex-
amples when we specified int and string as the key classes for our unordered map and
unordered multimap objects.

Merely specifying the number of buckets in the constructor will not insure that only
that many buckets are used. The hash table containers grow dynamically in a way that is
determined by the specified (or default) values for the number of buckets and the table’s
load factor. A value for the load factor can be set by the max load factor method as will
be demonstrated below.

To illustrate some of the additional features of the TR1 hash table classes, let us consider
a case where objects are stored according to keys from the struct

struct Key : public pair <std::string , int> {

Key(std:: string str , int id) : pair <std::string , int >(str , id) {}

bool operator == (const Key&a){
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return this ->first == a.first && this ->second == a.second;

}

};

std:: ostream& operator <<(std:: ostream& out , const Key& key) {

out << "(" << key.first << "," << key.second <<")";

return out;

}

This Key class is a simple extension of the pair class that provides an overloaded comparison
operator. The == operator is needed for comparisons of objects during look-up operations in
a table. An overloaded output insertion operator has also been constructed that will work
on Key objects.

A key class such as Key requires an explicit specification of the Hash functor. In this
regard, we have opted to use

namespace std {

namespace tr1 {

template <>

struct hash <Key > : public unary_function <Key , size_t>

{

std::size_t operator ()(const Key& key) const

{

//functors for the string and int hash functions

hash <std::string > stringHash; hash <int> intHash;

size_t hashValue = (stringHash(key.first)

+ intHash(key.second ));

return hashValue;

}

};

}

}

Apart from the specific code for the hash function, this struct is obtained by merely plugging
in the proper value for the keyType in the Hash functor template given above. The hash
function itself is a simple combination of two of the Hash class specializations: the one for
string objects and the one for integers.

The main function from a program that makes use of the Key struct in an unordered map
container is given in the next listing.

int main() {

//3 buckets and hash <key > as the hash function

unordered_map <Key , double > ht(3, hash <Key >());

ht.max_load_factor (5);//average of 5 objects per bucket

Key key1("s1", 2); Key key2("s2", 3); Key key3("s3", 4);

Key key4("s4", 5); Key key5("s5", 6); Key key6("s6", 7);

Key key7("s7", 8); Key key8("s8", 9); Key key9("s9", 10);

ht[key1] = 1; ht[key2] = 2*ht[key1]; ht[key3] = 3*ht[key2];

ht[key4] = ht[key3]/4; ht[key5] = ht[key4]/5; ht[key6] = ht[key5]/6;

ht[key7] = 7*ht[key6]; ht[key8] = 8*ht[key7]; ht[key9] = 9*ht[key8];

std::cout << "Size: " << ht.size() << ", Number of Buckets: " <<

ht.bucket_count () << std::endl;

for(int i = 0; i < ht.bucket_count (); i++)
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std::cout << "Bucket " << i << " has " << ht.bucket_size(i) <<

" elements" << std::endl;

std::cout << "Hash values" << std::endl;

for(unordered_map <Key , double >::const_iterator iter = ht.begin ();

iter != ht.end (); iter ++)

std::cout << iter ->first << " was placed in bucket "

<< ht.bucket(iter ->first) << std::endl;

std::cout << "The elements in bucket 0 are" << std::endl;

for(unordered_map <Key , double >:: local_iterator iter = ht.begin (0);

iter != ht.end (0); iter ++)

std::cout << iter ->first << " ";

std::cout << std::endl;

return 0;

}

A container with three (initial) buckets that uses our hash<Key> functor is created with the
nondefault constructor for the unordered map<Key, double> class. The maximum load
factor is then set to 5. A group of nine Key objects are created next and inserted into
the table using the overloaded indexing operator. After insertion we check the number of
elements and number of buckets in the table and then determine the number of (Key,
double) pair objects that have been placed in each of the buckets.

An iterator is used in conjunction with a for loop to travel through the table. The
Key component of each element in the table is accessed by the iterator and printed along
with its bucket number to standard output. Finally, the first bucket is examined. This
is accomplished using a quantity called a local iterator (or, for const containers, a
const local iterator is available) that can be defined for a specific bucket. In partic-
ular, each bucket has a local version of the global begin and end methods that return
local iterator objects: namely, begin(bucketIndex) and end(bucketIndex) give itera-
tors that are specific to the bucket with index bucketIndex.

The output produced by our program is

Size: 9, Number of Buckets: 3

Bucket 0 has 4 elements

Bucket 1 has 2 elements

Bucket 2 has 3 elements

Hash values

(s6 ,7) was placed in bucket 0

(s4 ,5) was placed in bucket 0

(s3 ,4) was placed in bucket 0

(s1 ,2) was placed in bucket 0

(s9 ,10) was placed in bucket 1

(s2 ,3) was placed in bucket 1

(s8 ,9) was placed in bucket 2

(s7 ,8) was placed in bucket 2

(s5 ,6) was placed in bucket 2

The elements in bucket 0 are

(s6 ,7) (s4 ,5) (s3 ,4) (s1 ,2)

By setting the maximum load factor sufficiently high, we have made sure that the table
would not be expanded beyond the three buckets requested from the constructor. The first
(index 0) bucket is the one with the most elements and these are examined in both the
global and local exploration of the container.
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C.3 Tuples

In Section 9.2.4.2 we introduced the C++ pair struct. This is a useful data structure that
is particularly well suited for ADT settings as indicated by our work in the previous section.
The TR1 extension contains a tuple template class that serves a similar purpose except
that it can hold more than two objects all of which can be from different classes. In this
latter respect the tuple class provides a C++ analog of the list class from R.

The tuple class becomes available through the include statement

#include <tr1/tuple >

There are then several ways to construct tuple objects. For ease of presentation, suppose
we have four classes T1, T2, T3 and T4. The same approach will, of course, work for any
finite number of classes. If all our classes have default constructors,

tuple <T1, T2, T3, T4> tupleObj1;

creates a tuple object with four slots all of which are filled via the corresponding default
constructors of their respective classes. If t1, t2, t3, t4 are instances of our four classes

tuple <T1, T2, T3, T4> tupleObj2(t1, t2, t3, t4);

will give us a tuple that contains these specific object. Finally,

tuple <T1, T2, T3, T4> tupleObj3(tupleObj2 );

produces a copy tupleObj3 of the object tupleObj2. Assignment operations are also sup-
ported and one can even assign the elements of a tuple object through assignment to a
pair object. Of course, satisfactory assignment and copying will require the presence of
assignment operators and copy constructors for the classes used in the tuple and the tuple
objects that are involved must have the same number of slots.

Access to the slots of a tuple object is obtained with the get template function. The slot
index is passed as the template parameter. Syntax such as

get <n>( tupleObj)

will return a reference to the (n - 1)st slot of the object tupleObj with 0-offset indexing.
The code below tests some of the features of the tuple class.

//tupleEx.cpp

#include <tr1/tuple >

#include <iostream >

#include <utility >

#include "matrix.h"

#include "vector.h"

using std::tr1:: tuple; using std::pair; using std::cout;

using std::endl; using std::tr1::get;

int main() {

double** pMat = new double*[2];

double* pVec = new double[3];

for(int i = 0; i < 2; i++){

pMat[i] = new double[3];

for(int j = 0; j < 3; j++){

pMat[i][j] = (double)((i + 1)*(j + 1) + j);

pVec[j] = (double)(j + 1);

}

}
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Matrix matrixObj (2, 3, pMat);

Vector vectorObj (3, pVec);

pair <Matrix , Vector > pairObj(matrixObj , vectorObj );

tuple <Matrix , pair <Matrix , Vector >, Vector >

tupleObj1(matrixObj , pairObj , vectorObj );

get <0>( tupleObj1 ). printMatrix ();

get <1>( tupleObj1 ). second.printVec ();

Matrix newMat(2, 2, 1.);

get <0>( tupleObj1) = newMat;

get <0>( tupleObj1 ). printMatrix ();

tuple <Matrix , pair <Matrix , Vector >, Vector > tupleObj2(tupleObj1 );

get <0>( tupleObj2 ). printMatrix ();

return 0;

}

Objects from three classes are created at the beginning of the program: class Matrix,
Vector and pair<Matrix, Vector>. A tuple object is then created with slots correspond-
ing to the three classes using these objects. The get function is used next to print out the
contents of the first Matrix slot and the Vector slot of the pair<Matrix, Vector> object.
It is used again to overwrite the Matrix slot with an identity matrix. Finally, a copy of the
first tuple object is made and its Matrix slot is printed to standard output. The results
from running the program are shown below.

1 3 5

2 5 8

1

2

3

1 0

0 1

1 0

0 1
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The Matrix and Vector classes

The “complete” versions of the classes Matrix and Vector that were used, e.g., in Chapters
3 and 7 are given in this appendix. We begin with the class Matrix header file.

Listing D.1 matrix.h
//matrix.h
#ifndef MATRIX_H
#define MATRIX_H
#include "vector.h"

class Matrix{
//class members
int nRows , nCols;
void pointerCheck () const;
void pointerCheck(int i) const;

protected:
double** pA;

public:
//constructors and destructor
Matrix(int nrows = 0, int ncols = 0, double a = 0.);
Matrix(int nrows , int ncols , const double* const* pa);
Matrix(const Matrix& A);
virtual ~Matrix ();

//overloaded operators
Matrix& operator=(const Matrix& B);
Matrix operator+(const Matrix& B) const;
Matrix& operator+=(const Matrix& B);
Matrix operator -(const Matrix& B) const;
Matrix& operator -=(const Matrix& B);
Matrix operator*(const Matrix& B) const;
Matrix operator*(double b) const;
Vector operator*(const Vector& v) const;
const double* operator[](int i) const {return pA[i];}

//matrix operations
Matrix trans () const;

//solution of a linear system
virtual Vector backward(const Vector& RHS) const;
virtual Vector forward(const Vector& RHS) const;
Vector gauss(const Vector& RHS) const;
virtual Vector cholesky(const Vector& RHS) const;
//banded systems
Vector bandBack(const Vector& RHS , int bWidth) const;
Vector bandFor(const Vector& RHS , int bWidth) const;
Vector bandChol(const Vector& RHS , Matrix& G, int bWidth) const;
void QR(Matrix& Q, Matrix& R) const;

//computation of spectra
Vector eigen(int Nvals , Vector& v, Matrix& U, int itMax = 38,

double delta = .00000001) const;
Vector SVD(int Nvals , Vector& v, Matrix& U, Matrix& V,

int itMax = 38, double delta = .00000001) const;
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//utilities and accessors
void printMatrix () const;
Vector matToVec(int j) const;//jth column to a vector
void vecToMat(int j, const Vector& v);//vector into jth column
int getnRows () const {return nRows;}
int getnCols () const {return nCols;}

friend Matrix operator*(const Vector& v1, const Vector& v2);
};

class pdBand : public Matrix{
//derived class member
int bW;

public:

pdBand(int nrows = 0, int bw = -1, double a = 0.);
pdBand(int nrows , int bw, const double* const* pa);
pdBand(const pdBand& A);

virtual ~pdBand (){};

pdBand& operator=(const pdBand& B);
pdBand operator+(const pdBand& B) const;
Matrix operator+(const Matrix& B) const;

pdBand trans () const {return pdBand(*this);}

virtual Vector backward(const Vector& RHS) const;
virtual Vector forward(const Vector& RHS) const;
virtual Vector cholesky(const Vector& RHS) const;

int getBW() const {return bW;}
Matrix bandToFull () const;

};

Matrix operator*(const Vector& v1, const Vector& v2);

Matrix operator*(double , const Matrix& A);

#endif

The method definitions are then provided by

Listing D.2 matrix.cpp
//matrix.cpp
#include <algorithm >
#include <iostream >
#include <cmath >
#include <cstdlib >
#include <limits >
#include <new>
#include "matrix.h"

using std::cout; using std::endl;

Matrix :: Matrix(int nrows , int ncols , double a){
nRows = nrows;
nCols = ncols;
//set pA to null pointer in default case
if(nRows == 0 || nCols == 0){

pA = 0;
return;

}
pA = new(std:: nothrow) double*[nRows];
pointerCheck ();
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for(int i = 0; i < nRows; i++){
pA[i] = new(std:: nothrow) double[nCols];
pointerCheck(i);
for(int j = 0; j < nCols; j++){

if(i == j)
pA[i][j] = a;

else
pA[i][j] = 0.;

}
}

}

Matrix :: Matrix(int nrows , int ncols , const double* const* pa){
nRows = nrows;
nCols = ncols;
pA = new(std:: nothrow) double*[nRows];

pointerCheck ();
for(int i = 0; i < nRows; i++){

pA[i] = new(std:: nothrow) double[nCols];
pointerCheck(i);

}

for(int i = 0; i < nRows; i++)
for(int j = 0; j < nCols; j++)

pA[i][j] = pa[i][j];
}

Matrix :: Matrix(const Matrix& A){
nRows = A.nRows;
nCols = A.nCols;
pA = new(std:: nothrow) double*[nRows];
pointerCheck ();

for(int i = 0; i < nRows; i++){
pA[i] = new(std:: nothrow) double[nCols];
pointerCheck(i);

}

for(int i = 0; i < nRows; i++)
for(int j = 0; j < nCols; j++)

pA[i][j] = A.pA[i][j];
}

Matrix ::~Matrix (){
if(pA != 0){

for(int i = 0; i < nRows; i++)
delete[] pA[i];

delete[] pA;
}

}

//Overloaded operators:

Matrix& Matrix ::operator=(const Matrix& A){

if(this == &A) //avoid self assignment
return *this;

//if dimensions match we can just overwrite; otherwise ....
if(nRows != A.nRows||nCols != A.nCols){

if(pA != 0)//check first before releasing memory
this ->~Matrix ();

//define/redefine object ’s members
nRows = A.nRows;
nCols = A.nCols;
pA = new(std:: nothrow) double*[nRows];



514 THE MATRIX AND VECTOR CLASSES

pointerCheck ();

for(int i = 0; i < nRows; i++){
pA[i] = new(std:: nothrow) double[nCols];
pointerCheck(i);

}
}
for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)
pA[i][j] = A.pA[i][j];

return *this;
}

Matrix Matrix :: operator +(const Matrix& B) const {
if(nRows != B.nRows || nCols != B.nCols){

cout << "Bad row and/or column dimensions in +!" << endl;
exit (1);

}
Matrix temp(nRows , nCols );
for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)
temp.pA[i][j] = this ->pA[i][j] + B.pA[i][j];

return temp;
}

Matrix& Matrix :: operator +=( const Matrix& B){
if(nRows != B.nRows || nCols != B.nCols){

cout << "Bad row and/or column dimensions in +=!" << endl;
exit (1);

}
for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)
pA[i][j] += B.pA[i][j];

return *this;
}

Matrix Matrix ::operator -(const Matrix& B) const {
if(nRows != B.nRows || nCols != B.nCols){

cout << "Bad row and/or column dimensions in -!" << endl;
exit (1);

}
Matrix temp(nRows , nCols );
for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)
temp.pA[i][j] = this ->pA[i][j] - B.pA[i][j];

return temp;
}

Matrix& Matrix ::operator -=( const Matrix& B){
if(nRows != B.nRows || nCols != B.nCols){

cout << "Bad row and/or column dimensions in -=!" << endl;
exit (1);

}
for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)
pA[i][j] -= B.pA[i][j];

return *this;
}

Matrix Matrix :: operator*(const Matrix& B) const {
if(nCols != B.nRows){

cout << "Bad row and column dimensions in *!" << endl;
exit (1);



THE MATRIX AND VECTOR CLASSES 515

}
Matrix C(nRows , B.nCols);//matrix of all 0s
for(int i = 0; i < nRows; i++)

for(int j = 0; j < B.nCols; j++)
for(int k = 0; k < B.nRows; k++)

C.pA[i][j] += pA[i][k]*B.pA[k][j];

return C;
}

Matrix Matrix :: operator*(double b) const {

Matrix C(nRows , nCols);//matrix of all 0s
for(int i = 0; i < nRows; i++)

for(int j = 0; j < nCols; j++)
C.pA[i][j] = b*pA[i][j];

return C;
}

Vector Matrix :: operator*(const Vector& v) const {
double temp;
Vector c(nRows);//matrix of all 0s
for(int i = 0; i < nRows; i++){

temp = 0;
for(int j = 0; j < nCols; j++)

temp += pA[i][j]*v[j];

c.pA[i]=temp;
}

return c;
}

//matrix operations

Matrix Matrix ::trans() const {
Matrix B(nCols , nRows , 0.);
for(int i = 0; i < nCols; i++)

for(int j = 0; j < nRows; j++)
B.pA[i][j] = pA[j][i];

return B;
}

//solution of a linear system

Vector Matrix :: backward(const Vector& RHS) const {
double temp;//temporary storage

Vector b(nRows , 0.);//solution vector

//initialize the recursion
if(pA[nRows - 1][ nRows - 1] != 0)

b.pA[nRows - 1] = RHS.pA[nRows - 1]/pA[nRows - 1][ nRows - 1];
else{

cout << "Singular system!" << endl;
exit (1);

}

//now work through the remaining rows
for(int i = (nRows - 2); i >= 0; i--){

if(pA[i][i] != 0){
temp = RHS.pA[i];
for(int k = (i + 1); k < nRows; k++)

temp -= b.pA[k]*pA[i][k];
b.pA[i] = temp/pA[i][i];

}
else{
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cout << "Singular system!" << endl;
exit (1);

}
}
return b;

}

Vector Matrix :: forward(const Vector& RHS) const {
double temp;//temporary storage

Vector b(nRows , 0.);//solution matrix

//initialize the recursion
if(pA [0][0] != 0)

b.pA[0] = RHS.pA[0]/pA [0][0];
else{

cout << "Singular system!" << endl;
exit (1);
}

//now work through the remaining rows
for(int i = 1; i < nRows; i++){

if(pA[i][i] != 0){
temp = RHS.pA[i];
for(int k = 0; k < i; k++)

temp -= b.pA[k]*pA[i][k];
b.pA[i] = temp/pA[i][i];

}
else{

cout << "Singular system!" << endl;
exit (1);

}
}
return b;

}

Vector Matrix ::gauss(const Vector& RHS) const {
double multiplier = 0;
Matrix G(nRows , nRows , pA);
Vector h(nRows , RHS.pA);

for(int j = 0; j < nCols; j++){//column to be swept

for(int jj = j + 1; jj < nCols; jj++){//current operation column

if(G[j][j] == 0){
cout << "Oops! Division by 0!" << endl;
exit (1);

}

for(int i = j + 1; i < nRows; i++){//work down rows
multiplier = G[i][j]/G[j][j];
G.pA[i][jj] = G.pA[i][jj] - multiplier*G.pA[j][jj];

}
}

for(int i = j + 1; i < nRows; i++){//do the same to the RHS
multiplier = G[i][j]/G[j][j];
h.pA[i] = h.pA[i] - multiplier*h.pA[j];

}
}
//now backsolve
Vector b = G.backward(h);
return b;

}

Vector Matrix :: cholesky(const Vector& RHS) const {
double temp = 0;
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Matrix G(nRows , nCols , 0.);
for(int j = 0; j < nCols; j++){//proceed by columns

if(pA[j][j] == 0){
cout << "Singular system!" << endl;
exit (1);

}
temp = pA[j][j];//starting value for diagonal element recursion

if(j > 0)
for(int k = 0; k < j; k++)

temp -= G[j][k]*G[j][k];

G.pA[j][j] = sqrt(temp);

for(int i = (j + 1); i < nRows; i++){//now do the rest
temp = pA[j][i];
for(int k = 0; k < j; k++)

temp -= G[i][k]*G[j][k];
G.pA[i][j] = temp/G[j][j];

}
}
cout << "Cholesky factor :" << endl;
G.printMatrix ();
Vector h = G.forward(RHS);
Vector b = G.trans (). backward(h);
return b;

}

Vector Matrix :: bandBack(const Vector& RHS , int bWidth) const {
double temp;//temporary storage
int up;

Vector b(nRows , 0.);//solution vector

//initialize the recursion
if(pA[nRows - 1][ nRows - 1] != 0)

b.pA[nRows - 1] = RHS.pA[nRows - 1]/pA[nRows - 1][ nRows - 1];
else{

cout << "Singular system!" << endl;
exit (1);

}

//now work through the remaining rows
for(int i = (nRows - 2); i >= 0; i--){

if(pA[i][i] != 0){
temp = RHS.pA[i];
up = std::min(nCols , i + bWidth + 1);
for(int k = (i + 1); k < up; k++)

temp -= b.pA[k]*pA[i][k];
b.pA[i] = temp/pA[i][i];

}
else{

cout << "Singular system!" << endl;
exit (1);

}
}
return b;

}

Vector Matrix :: bandFor(const Vector& RHS , int bWidth) const {
double temp;//temporary storage
int low;

Vector b(nRows , 0.);//solution vector

//initialize the recursion
if(pA [0][0] != 0){

b.pA[0] = RHS.pA[0]/pA [0][0];
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}
else{

cout << "Singular system!" << endl;
exit (1);

}

//now work through the remaining rows
for(int i = 1; i < nRows; i++){

if(pA[i][i] != 0){
temp = RHS.pA[i];
low = std::max(0, i - bWidth );
for(int k = low; k < i; k++)

temp -= b.pA[k]*pA[i][k];
b.pA[i] = temp/pA[i][i];

}
else{

cout << "Singular system!" << endl;
exit (1);

}
}
return b;

}

Vector Matrix :: bandChol(const Vector& RHS , Matrix& G,
int bWidth) const {

double temp = 0;
int low , up;

for(int j = 0; j < nCols; j++){
if(pA[j][j] == 0){

cout << "Singular system!" << endl;
exit (1);

}
temp = pA[j][j];

low = std::max(0, j - bWidth );

for(int k = low; k < j; k++)
temp -= G[j][k]*G[j][k];

G.pA[j][j] = sqrt(temp);

up = std::min(j + bWidth , nRows - 1);

for(int i = (j + 1); i <= up; i++){
temp = pA[j][i];
for(int k = low; k < j; k++)

temp -= G[j][k]*G[i][k];
G.pA[i][j] = temp/G[j][j];

}
}
Vector h = G.bandFor(RHS , bWidth );
Vector b = G.trans (). bandBack(h, bWidth );
return b;

}

void Matrix ::QR(Matrix& Q, Matrix&R) const {
if(nRows < nCols){

cout << "The number of rows is less than the number of columns!" << endl;
exit (1);

}

//make work matrix copy of *this
Matrix Work = Matrix(nRows , nCols , this ->pA);
Vector temp;
Vector q;
for(int i = 0; i < nCols; i++){

q = Work.matToVec(i);
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R.pA[i][i] = sqrt(q.dotProd(q));
q = q*(1/R.pA[i][i]);
Q.vecToMat(i, q);
temp = Work.trans()*q;
for(int j = (i + 1); j < nCols; j++)

R.pA[i][j] = temp[j];
Work -= q*temp;//outer product update

}
cout << "The Q matrix" << endl;
Q.printMatrix ();
cout << "The R matrix" << endl;
R.printMatrix ();
cout << "The product QR" << endl;
(Q*R). printMatrix ();

}

//eigenvalues , eigenvectors and SVD

Vector Matrix ::eigen(int Nvals , Vector& v, Matrix& U, int itMax ,
double delta) const {

double change , temp;
int niter;

Matrix ACopy(nRows , nCols , pA);//work copy of A
Vector vCopy;//work copy of v

Vector lambda(Nvals , 0.);
for(int i = 0; i < Nvals; i++){

change = std:: numeric_limits <double >:: infinity ();
niter = 0;
vCopy = v;
lambda.pA[i] = 0;

while(change > delta && niter < itMax ){
vCopy = ACopy*vCopy;
vCopy = (1./sqrt(vCopy.dotProd(vCopy )))*vCopy;
lambda.pA[i] = vCopy.dotProd(ACopy*vCopy);
if(niter == 0)

temp = lambda.pA[i];
else if(temp != 0.){

change = fabs (1. - lambda.pA[i]/temp);
temp = lambda.pA[i];

}
niter ++;

}
U.vecToMat(i, vCopy);
v -= (vCopy.dotProd(vCopy ))*vCopy;
ACopy -= lambda.pA[i]*(vCopy*vCopy);

}
return lambda;

}

Vector Matrix ::SVD(int Nvals , Vector& v, Matrix& U, Matrix& V,
int itMax , double delta) const {

Vector temp;
Matrix ACopy(nRows , nCols , pA);

if(nRows > nCols){//work with A^TA
temp = (ACopy.trans ()*ACopy).eigen(Nvals , v, V, itMax , delta );
Matrix Temp(Nvals , Nvals , 0.);
for(int i = 0; i < Nvals; i++)

Temp.pA[i][i] = 1./sqrt(temp[i]);
U = ACopy*V*Temp;

}
else{//work with AA^T

temp = (ACopy*ACopy.trans ()). eigen(Nvals , v, U, itMax , delta);
Matrix Temp(Nvals , Nvals , 0.);
for(int i = 0; i < Nvals; i++)
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Temp.pA[i][i] = 1./sqrt(temp[i]);
V = ACopy.trans ()*U*Temp;

}
Vector lambda(Nvals , 0.);
for(int i = 0; i < Nvals; i++)

lambda.pA[i] = sqrt(temp[i]);
return lambda;

}

// Utilities:

void Matrix :: printMatrix () const {
for(int i = 0; i < nRows; i++){

for(int j = 0; j < nCols; j++)
cout << " " << pA[i][j] << " ";

cout << endl;
}

}

Vector Matrix :: matToVec(int j) const {
Vector v(nRows , 0.);
for(int i = 0; i < nRows; i++)

v.pA[i] = pA[i][j];
return v;

}

void Matrix :: vecToMat(int j, const Vector& v){
for(int i = 0; i < nRows; i++)

pA[i][j] = v.pA[i];
}

void Matrix :: pointerCheck () const {
if(pA == 0){

cout << "Memory allocation for pA failed" << endl;
exit (1);

}
}

void Matrix :: pointerCheck(int i) const {
if(pA[i] == 0){

cout << "Memory allocation for pA[" << i << "] failed" << endl;
exit (1);

}
}

//Overloaded multiplication operators
Matrix operator*(const Vector& v1, const Vector& v2){

Matrix B(v1.getnRows(), v2.getnRows ());
for(int i = 0; i < v1.getnRows (); i++)

for(int j = 0; j < v2.getnRows (); j++)
B.pA[i][j] = v1[i]*v2[j];

return B;
}

Matrix operator*(double b, const Matrix& A){
return A*b;

}

//pdBand methods

pdBand :: pdBand(int nrows , int bw, double a)
: Matrix(nrows , bw + 1, a)

{
bW = bw;

}

pdBand :: pdBand(int nrows , int bw, const double* const* pa)
: Matrix(nrows , bw + 1, pa)
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{
bW = bw;

}

pdBand :: pdBand(const pdBand& A)
: Matrix(A)

{
bW = A.bW;

}

pdBand& pdBand :: operator =(const pdBand& A){

if(this == &A)//avoid self assignment
return *this;

this ->Matrix :: operator =(A);
bW = A.bW;

return *this;
}

Matrix pdBand :: operator +(const Matrix& B) const {
Matrix A = this ->bandToFull ();
return (A + B);

}

pdBand pdBand :: operator +(const pdBand& B) const {
pdBand temp(getnRows(), B.bW);
temp.Matrix :: operator =(this ->Matrix :: operator +(B));

return temp;
}

Vector pdBand :: backward(const Vector& RHS) const {
double temp;//temporary storage
int up;
int nrows = this ->getnRows ();
Vector b(nrows , 0.);//solution vector

//initialize the recursion
if(pA[nrows - 1][0] != 0)

b.pA[nrows - 1] = RHS.pA[nrows - 1]/pA[nrows - 1][0];
else{

cout << "Singular system!" << endl;
exit (1);

}

//now work through the remaining rows
for(int i = (nrows - 2); i >= 0; i--){

if(pA[i][0] != 0){
temp = RHS.pA[i];
up = std::min(nrows , bW + 1);
for(int k = 1; k < up; k++)

temp -= b.pA[i + k]*pA[i][k];
b.pA[i] = temp/pA[i][0];

}
else{

cout << "Singular system!" << endl;
exit (1);

}
}
return b;

}

Vector pdBand :: forward(const Vector& RHS) const {
double temp;//temporary storage
int low;
int nrows = this ->getnRows ();
Vector b(nrows , 0.);//solution vector
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//initialize the recursion
if(pA [0][0] != 0){

b.pA[0] = RHS.pA[0]/pA [0][0];
}
else{

cout << "Singular system!" << endl;
exit (1);

}

//now work through the remaining rows
for(int i = 1; i < nrows; i++){

if(pA[i][0] != 0){
temp = RHS.pA[i];
low = std::max(0, i - bW);
for(int k = low; k < i; k++)

temp -= b.pA[k]*pA[k][i - k];
b.pA[i] = temp/pA[i][0];

}
else{

cout << "Singular system!" << endl;
exit (1);

}
}
return b;

}

Vector pdBand :: cholesky(const Vector& RHS) const {
double temp = 0;
int low , up;
int nrows = this ->getnRows ();
pdBand G(nrows , bW);

for(int i = 0; i < nrows; i++){
if(pA[i][0] == 0){

cout << "Singular system!" << endl;
exit (1);

}
temp = pA[i][0];
low = std::max(0, i - bW);

for(int k = low; k < i; k++)
temp -= G[k][i - k]*G[k][i - k];

G.pA[i][0] = sqrt(temp);

up = std::min(i + bW , nrows - 1);

for(int j = (i + 1); j <= up; j++){
temp = pA[i][j - i];
low = std::max(0, j - bW);
for(int k = low; k < i; k++)

temp -= G[k][i - k]*G[k][j - k];
G.pA[i][j - i] = temp/G[i][0];

}
}
cout << "Cholesky factor in band storage" << endl;
G.printMatrix ();
Vector h = G.forward(RHS);
Vector b = G.backward(h);
std::cout << "Solution vector" << endl;
return b;

}

Matrix pdBand :: bandToFull () const {
double** pTemp = new(std:: nothrow) double*[getnRows ()];
if(pTemp == 0){

cout << "Memory allocation for pTemp failed" << endl;
exit (1);
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}
for(int i = 0; i < getnRows (); i++){

pTemp[i] = new(std:: nothrow) double[getnRows ()];
if(pTemp[i] == 0){

cout << "Memory allocation for pTemp [" << i << "] failed" << endl;
exit (1);

}
for(int j = i; j < getnRows (); j++){

if(j <= std::min(getnRows(), i + bW))
pTemp[i][j] = pA[i][j - i];

else pTemp[i][j] = 0.;
}

}
for(int i = 1; i < getnRows (); i ++)

for(int j = 0; j < i; j++)
pTemp[i][j] = pTemp[j][i];

Matrix A(getnRows(), getnRows(), pTemp);
for(int i = 0; i < getnRows (); i++)

delete [] pTemp[i];
delete [] pTemp;
return A;

}

The class Vector header file is as follows.

Listing D.3 vector.h
//vector.h
#ifndef VECTOR_H
#define VECTOR_H

class Vector{
// class members
double* pA;
int nRows;
void pointerCheck () const;

public:

//constructors and destructor
Vector(int nrows , double const* pa);//constructor
Vector(int nrows = 0, double b = 0.);//default constructor
Vector(const Vector& v);
~Vector ();

//overloaded operators
Vector& operator=(const Vector& v);
Vector operator+(const Vector& v) const;
Vector& operator+=(const Vector& v);
Vector operator -(const Vector& v) const;
Vector& operator -=(const Vector& v);
Vector operator*(double b) const;
double operator[](int i) const {return pA[i];}

//utilities and accessors
double dotProd(const Vector& v) const;
void printVec () const;
int getnRows () const {return nRows;}

//friends
friend class Matrix;
friend class pdBand;

};

Vector operator*(double b, const Vector& v);
#endif
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The method definitions are then provided in the listing below.

Listing D.4 vector.cpp
//vector.cpp
#include <iostream >
#include <cstdlib >
#include <new>
#include "vector.h"

using std::cout; using std::endl;

Vector :: Vector(int nrows , double const* pa){
nRows = nrows;
pA = new(std:: nothrow) double[nRows];
pointerCheck ();

for(int i = 0; i < nRows; i++)
pA[i] = pa[i];

}

Vector :: Vector(int nrows , double b){
nRows = nrows;
if(nRows == 0){

pA = 0;
return;

}
pA = new(std:: nothrow) double[nRows];
pointerCheck ();

for(int i = 0; i < nRows; i++)
pA[i] = b;

}

Vector :: Vector(const Vector& v){
nRows = v.nRows;
pA = new(std:: nothrow) double[nRows];
pointerCheck ();

for(int i = 0; i < nRows; i++)
pA[i] = v.pA[i];

}

Vector ::~Vector (){
delete[] pA;

}

double Vector :: dotProd(const Vector& v) const {
double dot = 0;
for(int i = 0; i < nRows; i++)

dot += v.pA[i]*pA[i];
return dot;

}

Vector& Vector ::operator=(const Vector& v){

if(this == &v)//avoid self assignment
return *this;

//define/redefine object ’s members
if(nRows != v.nRows){

if(pA != 0)
delete [] pA;

nRows = v.nRows;
pA = new(std:: nothrow) double[nRows];
pointerCheck ();
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}
for(int i = 0; i < nRows; i++)

pA[i] = v.pA[i];

return *this;
}

Vector Vector :: operator +(const Vector& v) const {
if(nRows != v.nRows){

cout << "Bad row dimensions in +!" << endl;
exit (1);

}
Vector temp(nRows );
for(int i = 0; i < nRows; i++)

temp.pA[i]=this ->pA[i] + v.pA[i];

return temp;
}

Vector& Vector :: operator +=( const Vector& v){
if(nRows != v.nRows){

cout << "Bad row dimensions in +=!" << endl;
exit (1);
}

for(int i = 0; i < nRows; i++)
pA[i] += v.pA[i];

return *this;
}

Vector Vector ::operator -(const Vector& v) const {
if(nRows != v.nRows){

cout << "Bad row dimensions in -!" << endl;
exit (1);
}

Vector temp(nRows );
for(int i = 0; i < nRows; i++)

temp.pA[i] = this ->pA[i] - v.pA[i];

return temp;
}

Vector& Vector ::operator -=( const Vector& v){
if(nRows != v.nRows){

cout << "Bad row dimensions in -=!" << endl;
exit (1);

}
for(int i = 0; i < nRows; i++)

pA[i] -= v.pA[i];

return *this;
}

Vector Vector :: operator*(double b) const {
Vector temp(nRows );
for(int i = 0; i < nRows; i++)

temp.pA[i] = b*pA[i];

return temp;
}

void Vector :: pointerCheck () const {
if(pA == 0){

cout << "Memory allocation for pA failed" << endl;
exit (1);

}
}
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void Vector :: printVec () const {
for(int i = 0; i < nRows; i++)

cout << pA[i] << " " << endl;
}

Vector operator*(double b, const Vector& v){
Vector B = v;
return B*b;

}



APPENDIX E

The ranGen class

The “complete” version of the class ranGen that was used in Chapter 8 and elsewhere is
given in this appendix. We begin with the header file below.

Listing E.1 ranGen.h
//ranGen.h
#ifndef RANGEN_H
#define RANGEN_H

enum unifType {FM2 , WH};
enum normType {BM, C};

class ranGen{

unifType T;
normType NT;
unsigned long seed1 , seed2 , seed3;

double gCauchy(double x) const;
double GinvCauchy(double u) const;
double fNorm(double x) const;

public:

ranGen(unifType t = WH , normType nt = BM) : T(t), NT(nt) {}
~ranGen (){};

void ranUnif(int n, double* pu);
void ranNorm(int n, double* pNorm , double mu = 0,

double sig = 1);

void setSeed(unsigned long s1);
};
#endif

There are two types of uniform random number generators: the Fishman-Moore II (FM2) gen-
erator and the Wichmann-Hill (WH) generator. These are packaged together in the method
ranUnif. Both the Cauchy accept-reject (C) and the Box-Muller (BM) methods are provided
as options for generating random normals in the method ranNorm. Selection between the
different generation algorithms is accomplished by specification of one of the symbolic con-
stants FM2, WH, C and BM that are defined using an enum statement. The default choices
of WH and BM for the uniform and normal generator types are set in the class constructor.
The ranNorm method allows for specification of the mean and standard deviation of the
distribution with default values that produce standard normals.

The other class members are three unsigned long seeds for the generators. These values
are set by the user with the public setSeed method that takes only one unsigned long
argument. It then uses an integer form of the FM2 generator to set the two additional seeds
for the WH generator.
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The method definitions are given in the next listing.

Listing E.2 ranGen.cpp
//ranGen.cpp
#include "ranGen.h"
#include <iostream >
#include <cmath >

//anonymous namespace
namespace {

double pi = 2.*acos (0.);
double sqrtwopi = sqrt (2.*pi);
unsigned long a1 = 171, m1 = 30269 , a2 = 172, m2 = 30307,

a3 = 170, m3 = 30323 , m4 = 2147483647 , a4 = 630360016;
}

void ranGen :: ranUnif(int n, double* pu) {
if(T == WH){

double temp = 0;
for(int i=0; i< n; i++){

seed1=(a1*seed1)%m1;
seed2=(a2*seed2)%m2;
seed3=(a3*seed3)%m3;
temp = (((double)seed1)/((double)m1) + ((double)seed2)/((double)m2)

+ ((double)seed3)/((double)m3));
if(temp > 2.) temp -= 2.;
if(temp > 1.) temp -= 1.;
pu[i] = temp;

}
}
else{

for(int i=0; i< n; i++){
seed1=(a4*seed1)%m4;
pu[i]=((double)seed1)/((double)m4);

}
}

}

void ranGen :: ranNorm(int n, double* pNorm , double mu,
double sig) {

double* pu = new double (2);
int nFill = 0, iAccept = 0, nReject = 0;

if(NT == BM){
double spare = 0, mult = 0, Rsqr = 0;

while(nFill < n){
if(iAccept == 1){//if we have one left , use it now

pNorm[nFill] = spare;
iAccept = 0;//next time we need to generate another pair

nFill += 1;
}
else{

while(iAccept == 0){

//generate two uniforms on [-1, 1]
ranUnif(2,pu);
pu[0] = 2*pu[0]- 1;
pu[1] = 2*pu[1] - 1;

Rsqr = pu[0]*pu[0] + pu[1]*pu[1];
if(Rsqr < 1 && Rsqr != 0){//accept the result

mult = sqrt(-2.*log(Rsqr)/Rsqr);
pNorm[nFill] = mu + sig*pu[0]*mult;
spare = mu + sig*pu[1]*mult;//save this one for next time
nFill += 1;
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iAccept = 1;//now we have one left over
}
else nReject += 2;

}
}

}
}

else{
double y;
double c = sqrt(2*pi/exp (1.));

while(nFill < n){
iAccept = 0;
while(iAccept == 0){

ranUnif(2, pu);
y = GinvCauchy(pu [1]);
if(c*gCauchy(y)*pu[0] <= fNorm(y)){//accept the result

pNorm[nFill] = mu + sig*y;
nFill += 1;//augment the number of samples
iAccept = 1;//end the interior while loop

}
else nReject += 1;

}
}

}
}

void ranGen :: setSeed(unsigned long s1){
if(T == WH){

seed1 = s1;
seed2=(a4*seed1)%m4;
seed3=(a4*seed2)%m4;

}
else

seed1 = s1;
}

double ranGen :: gCauchy(double x) const {
return 1./((1. + x*x)*pi);

}

double ranGen :: GinvCauchy(double u) const {
return tan(pi*(u - .5));

}

double ranGen ::fNorm(double x) const {
return exp(-.5*x*x)/sqrtwopi;

}

There are several global constants that are needed in various functions in the class. These
could simply have been defined at the outset outside of any function allowing them to have
global scope. However, name clashes can occur when the class is used in other programs.
This is particularly true for the constant pi. To avoid this the constants can be wrapped
in an anonymous namespace which is what has been done here. Then, the constants exist
only inside this particular file (i.e., ranGen.cpp) and can only be accessed by the functions
in that file.
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− > and < − assignment operators in R, 487
<< or >>, see I/O
.C function, 188
.Machine in R, 30
: sequence operator in R, 487
::, see scope resolution operator
:=, 25
?: conditional operator in C++, 41
[[]] list indexing operator in R, 488
[] indexing operator in R, 488
$ extraction operator in R, 166
& address operator in C++, 42
0-offset indexing, 42

a.out, 12
abstract data type, 327

associative array, 353
binary search tree, 368
container, 328
count-min sketch, 399
hash table

bucket, 347
chaining, 347
cuckoo hashing, 388
double hashing, 387
hash function, 348
in R using environments, 353
in R using the filehash package, 355
in R using the hash package, 354
load factor, 347, 506
open addressing, 347

queue in R with the filehash package, 345
red-black tree, 373
skip list, 389
stack in R with the filehash package, 345

accessor function
in C++, 81
in R, 211

anonymous namespace, 471, 529
antithetic variable, 150
any function in R, 215
API, 8

MPI, 455
OpenMP, 450
R, 190

apply function in R, 491

argc and argv in C++, 25
args function in R, 210
arima.sim function in R, 418
arithmetic operators

in C++, 38
in R, 488

arrays in C++, 42
as function in R, 159, 204
assert macro in C++, 74
atof and atoi in C++, 26
atomic vector in R, 30

binary expansion, 10
bisection algorithm, 325
bit, 10
bit-wise operators, 14, 15, 32, 100
boolalpha, see I/O
Box-Muller method, 138
boxplot function in R, 494
break

in C++, 41
in R, 167

bubblesort, 109
byte, 10

C-style string, see string
callback function, 283
cast, 19
cat

in R, see I/O
in Unix, 482

cbind and rbind functions in R, 491
cd command in Unix, 480
chi-square statistic, 185
chmod command in Unix, 483
choose function in R, 491
cin, see I/O
class

in C++, 54
− > and . member access operators, 56
− > ∗ and .∗ member dereferencing

operators, 288
constructor, 55
copy constructor, 85
destructor, 81
friend, 92
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nested, 379
prototype, 55
static member function, 130
this pointer, 60

in R
.hasSlot function, 211
constructor, 202
getClass, 200
new operator, 200
removeClass, 200
representation, 200
setClass, 200
setValidity, 203
signature function, 207
slot access, 202
slots, 200

cmath, 11
coefficients function in R, 498
coercion in R, 159
comment statement

in C++, 11
in R, 156

compiler options
c, 59
o, 12
Wall, 12

complexity, 228, 327
concatenate or c function in R, 487
condition number for a standard deviation, 27
connection, see I/O
const, 45

address, 62
class member, 64
member function, 66
pointer, 45, 62

and this, 62
pointer to const, 45
static const class member, 65

continue statement, 76
cout, see I/O
cp command in Unix, 482
cstdlib, 25
ctime, 79
cumsum function in R, 181
cumulative distribution function, 112

data frame in R, 487
data function in R, 487
Date class in R, 181
delete operator in C++, 45
diag function in R, 230
dimnames in R, 166
discrete event simulation, 430
drop function in R, 202, 261
dyn.load in R, 188

dyn.unload in R, 190

eigen function in R, 260
endl, see I/O
engines in TR1, 501
environment in R, 353
exceptions

in C++, 75
in R

tryCatch function, 170
exit function in C++, 74
expand.grid function in R, 463
exponentiation algorithm, 148
extractAIC function in R, 463

factorial function in R, 491
Fibonacci search, 290
file, see I/O
find command in Unix, 481
fitted function in R, 498
floating-point representation, 17
flops, 228
formatting

in C++, 25
in R, 170

forward declaration, 69
free, 85
free-store, 44
fstream, see I/O
function

in C++
declaration, 14
default arguments, 80
friend, 106
main, 12
overloading, 53
prototype, 14, 49

in R, 167
functor, 284

g++, 12
generic functions in R, 167

group generic, 211
isGeneric and isS4, 205

getline, see I/O
getwd function in R, 486
graphic devices in R, 495
greatest common divisor, 124
grid search, 247

head and tail
in R, 487
in Unix, 481

header file, 57
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help
in R, 485, 486
in Unix, 479

hist function R, 494

I/O
in C++

boolalpha format flag, 103
cin, 12, 14
cout, 12
endl, 12
getline, 71
ifstream, 95
input insertion operator >>, 12
iostream, 11
ofstream, 95
output insertion operator <<, 12, 106, 370

in R
cat, 160, 161
connection, 163
file, 163
load, 162
paste, 155
print, 161
read.table, 154
readLines, 158
Rprintf, 187
save, 162
save.image, 162, 486
scan, 157
sink, 162
source, 162
write.table, 160

if/else block
in C++, 39
in R, 168

ifelse function in R, 168
include guard, 57
inheritance

in C++
base and derived class, 247
virtual function, 249

in R, 204
initializer list, 64, 249
inline function, 57
install.packages function in R, 486
integer representation

signed magnitude, 15
two’s complement, 15

invisible function in R, 173
iostream, see I/O
IQR function in R, 497
iterator, 379

begin, 381, 392
bidirectional, 412

const iterator, 384
end, 381, 392
local, 508
rbegin and rend, 392

JAMA, 275
jobs command in Unix, 483

key, 329
kill command in Unix, 483

lapply function in R, 174
leaps package, 465
library function in R, 486
limits header file and numeric limits class, 264
linear equations

Cholesky decomposition
chol and chol2inv in R, 236
sparse matrices, 240

Gauss sweep algorithm, 229
Gauss transform matrix, 229
Gauss-Seidel, 279
Gaussian elimination with partial pivoting,

278
Gram-Schmidt algorithm, 271

modified, 282
QR decomposition, 270
qr function in R, 272
solve in R, 231

linear smoothing spline
boundary corrected, 280
generalized cross validation, 242
smoothing parameter, 240

list in R, 487
lm in R, 498
load in R, see I/O
logical operators

in C++, 38
in R, 490

loop
for loop

in C++, 39
in R, 167

while loop
in C++, 40
in R, 167

ls
in R, 486
in Unix, 480

machine epsilon, 22
make utility, 59
malloc, 85
mapply function in R, 178
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mathematical functions
in C++, 11
in R, 488

max and min
in C++, 238
in R, 490

mean and median functions in R, 497
memory leak, 45
Mersenne prime, 115
method dispatch in R, 199
method functions in R, 206
mkdir command in Unix, 482
modulus operator, 113

in C++, 38
in R, 488

Moore-Penrose generalized inverse, 269
more and less commands in Unix, 481
multicore package, 466
mv command in Unix, 482

names function in R, 166
new operator

in C++, 44
nothrow, 78

in R, see class
Newton-Raphson method, 303

object-oriented language, 2
ofstream, see I/O
operator overloading in C++, 68
options function in R, 161
order function in R, 497
outer function in R, 176

pair struct, 349
parabolic interpolation, 323
parse function in R, 193
paste function in R, see I/O
path, 480
pi constant in R, 486
pointer, 42

arithmetic, 378
dereferencing with *, 43
dereferencing with [], 45
null pointer, 44
one-past-the-end memory location, 49
pointer-to-pointer memory release, 49
pointer-to-pointer storage, 47

polymorphism, 3
pow in C++, 299
power method, 259
preprocessor include directive, 11, 123
prime/relatively prime numbers, 114
primitive data type

in C++, 9
in R, 30

print in R, see I/O
probability distributions in R, 492
probability integral transform, 112
prototype, see function
ps command in Unix, 483
pwd command in Unix, 479

q
in R, 486
in Unix, 481

Q-Q plot, 495
qr function in R, see linear equations
quantile function, 112

in R, 497

race condition, 452
random number generation

accept-reject algorithm, 132
binomial, 148
chi-square, 137
exponential, 130
Fishman-Moore, 116
gamma, 138, 149
in TR1, 501
increment, 113
inversion method, 112
linear congruential generator, 113
linear feedback shift register, 123

generalized, 125
twisted, 127

Mersenne twister, 127
in R, 142
in TR1, 501

middle-square method, 112
modulus, 113
multiplier, 113
normal, 134
period, 114
Poisson, 149
seed, 111
set.seed in R, 142, 490
testing, 115
Wichmann-Hill generator, 128

random sample, 111
rapply function in R, 175
read.table, see I/O
readLines, see I/O
recursion, 104
reference, 51
rep function in R, 158
replacement function in R, 171
replicate function in R, 182
reserved words in R
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NULL, 165, 499
TRUE and FALSE, 164, 487

residuals function in R, 498
return

in C++, 12
in R, 167

return type, 14
rm

in R, 486
in Unix, 481

rmdir command in Unix, 482
RngStream, 129, 468
rounding, 21
Rprintf, see I/O
rstream package, 474

sample function in R, 498
sample.int, 182

sapply function in R, 174
save, see I/O
save.image, see I/O
scan, see I/O
scientific notation, 16
scope resolution operator

in C++, 73
in R, 167

sd function in R, 497
search function in R, 486
selection sort, 222
seq function in R, 487
set.seed, see random number generation
SHLIB for shared libraries, 188
show function in R, 205, 487
significant digits, 16
simulated annealing

cooling schedule, 319
SANN option for optim in R, 321

sink, see I/O
solve in R, see linear equations
sort function in R, 497
source, see I/O
SparseM package, 238
speedup, 449
Standard Template Library (STL), 391

algorithm library, 439
binary function template, 441
copy, 440
find if, 442
sort, 440
transform, 444

containers
deque, 398
list, 415
map, 437
priority queue, 429

vector, 393
function adapter

arithmetic operators, 444
bind2nd, 443
logical operators, 444

iterator, 392
numeric library, 439

accumulate, 443
inner product, 444

string
c str, 73
C-style, 70
find, 73
manipulation in R, 159
string literal, 71
substr, 421

sum function in R, 491
summary function in R, 215, 496
svd function in R, 267
switch

in C++, 41
in R, 168

system function in R, 486
system.time in R, 172

t.test function in R, 178
template

class, 97
default parameters, 100
function, 102

textConnection function in R, 184
this, see class
tokenizer, 407
touch command in Unix, 481
two-pass algorithm for the sample variance, 27
typename in C++, 382

using directive, 73
utility library in C++, 349

var function in R, 497
variate generator in TR1, 501
Vectorize function in R, 178
void type in C++, 14

weekdays function in R, 417
West algorithm for the sample variance, 30
which.max and which.min functions in R, 464
wildcards in Unix, 481
workspace in R, 486
write.table, see I/O

Youngs and Cramer algorithm for the sample
variance, 33




