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ABSTRACT 
 
 A novel electromagnetic solver with mesh refinement capability was implemented 
in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, includes the 
standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical dispersion 
along the principal axes. Warp implementation of the Cole-Karkkainen stencil includes 
an extension to perfectly matched layers (PML) for absorption of waves, and is 
preserving the conservation property of charge conserving current deposition schemes, 
like the Buneman-Villanesor and Esirkepov methods. Warp’s mesh refinement 
framework (originally developed for electrostatic calculations) was augmented to allow 
for electromagnetic capability, following the methodology presented in [1] extended to an 
arbitrary number of refinement levels. Other developments include a generalized particle 
injection method, internal conductors using stair-cased approximation, and subcycling of 
particle pushing. The solver runs in parallel using MPI message passing, with a choice at 
runtime of 1D, 2D and 3D domain decomposition, and is shown to scale linearly on a test 
problem up-to 32,768 CPUs. The novel solver was tested on the modeling of 
filamentation instability, fast ignition, ion beam induced plasma wake, and laser plasma 
acceleration. 

                                                
† This work performed under the auspices of the U.S. Department of Energy by 
Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 and 
by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. 
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I - Electromagnetic Solver Developments 
New 3D and 2-1/2D electromagnetic solvers were implemented in Warp, using the 

standard Yee scheme or a novel stencil with lower numerical dispersion. Boundary 
conditions are reflective, periodic or open (PML [2]). It is parallelized using MPI 
message passing with1, 2 or 3-D domain decomposition.  

The solver is modular by design, making use of FORTRAN derived types, 
simplifying by construction the implementation of adaptive mesh refinement. The main 
component of the structure is a ‘block’ containing 1 ‘core’, 6 ‘sides’, 12 ‘edges’ and 8 
‘corners’. The core, the sides, the edges and the corners are pointers of type ‘field’, which 
encapsulate the field arrays and the field type (at present, field types are standard Yee or 
PML Yee). Using this structure, the implementation of boundary conditions such as 
Perfectly Matched Layers (PML) or periodic, is performed by either allocating each field 
pointer appropriately for open boundaries, or pointing them to the core object for periodic 
boundary conditions.  

I-1 - Implementation of a “low-dispersion” solver 
In [3,4], Cole introduced an implementation of the source-free Maxwell's wave 

equations for narrow-band applications based on non-standard finite-differences (NSFD). 
In [5], Karkkainen et al adapted it for wideband applications. At the Courant limit for the 
time step and for a given set of parameters, the stencil proposed in [5] has no numerical 
dispersion along the principal axes, provided that the cell size is the same along each 
dimension (i.e. cubic cells in 3D). The solver from [5] was modified to be consistent with 
the Particle-In-Cell methodology and implemented in the code Warp. 

 
The "Cole-Karkkainen" (CK) solver [5] uses a non-standard finite difference 

formulation (extended stencil) of the Maxwell-Ampere equation, which reads for the 
electric field component Ex (from [5]): 
 

 
 

where Dz,0, Dz,1 and Dz,2 are the difference operators defined as 
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and Dy,0, Dy,1 and Dy,2 are obtained from Dz,0, Dz,1 and Dz,2 by permuting the indices. The 
numerical dispersion along the principal axis and diagonals for cubic cells, at the Courant 
limit, is shown in Fig. 1 for the Yee and the Cole-Karkkainen solvers. At the Courant 
limit, the Yee and the CK solver offer no numerical dispersion along the 3D diagonal and 
the principal axes respectively. The CK solver offers overall a lower level of numerical 
dispersion. It is expected that this will reduce the amplitude of errors due to mismatch of 
numerical dispersion between grids of different resolutions when using mesh refinement. 
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Fig. 1: numerical dispersion along the principal axis and diagonals for cubic cells at 

the Courant limit for the Yee and the Cole-Karkkainen solver. 
 
For implementation into a Particle-In-Cell code, the formulation must introduce the 

source term into Cole-Karkkainen's source free formulation in a consistent manner. 
However, modifying the NSFD formulation of the Maxwell-Ampere equation so that it 
includes the source term in a way that is consistent with the current deposition scheme is 
challenging. To circumvent this problem, Warp implementation departs from 
Karkkainen's by applying the enlarged stencil on the Maxwell-Faraday equations, which 
does not contain any source term but is formally equivalent to the source-free Maxwell-
Ampere equation.  

 
In most applications, it is essential to prevent accumulations of errors to the 

discretized Gauss' Law. This is accomplished by providing a method for depositing the 
current from the particles to the grid which is compatible with the discretized Gauss' 
Law, or by providing a mechanism for "divergence cleaning" [7-9]. For the former, 
schemes which allow a deposition of the current that is exact when combined with the 
Yee solver is given in [10] for linear form factors and in [11] for higher order form 
factors. Since the discretized Gauss' Law and Maxwell-Faraday equation are the same in 
our implementation as in the Yee solver, charge conservation is readily verified using the 
current deposition procedures from [10] and [11], and this was verified numerically. 

 
The ability is also given to the user of setting the solver adjustable coefficients, 

providing tunability of the numerical properties of the solver to fit the requirements of a 
particular application. A more detailed description of the solver and its properties is given 
in [12]. 

 

I-2 - Implementation of a Perfectly-Matched-Layer 

I-2-a – Split PML 
The split form of Perfectly Matched Layer (PML) [2] formulation applies readily to 

the Cole-Karkkainen form of the Maxwell equations, and was implemented in Warp with 
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the Yee and the CK stencil. The PML using the CK stencil was tested and compared to 
the standard Yee implementation in 2D and 3D. Fig. 2 shows snapshots from 2D 
simulations of the reflected residue from a PML layer of a pulse with amplitude given by 
the Harris pulse H(t)=(10-5cos(2πct/L)+6cos(4πct/L)-cos(6πct/L))/32, where t is time, c 
is the speed of light and L=50δx is the pulse length in cell size units. A grid of 400x400 
cells was used with δx=δy. The absorbing layer was 8 cells deep and the dependency of 
the PML coefficients with the index position i in the layer was σi= σm (i δx/Δ)n with 
σm=4/δx, Δ=5δx and n=2. The alternative prescription for the coefficients given in 
[13,14], which reads σi*=(ξi+1/2-1/ξi)/δx with ξi =exp(-σi δt) and σi= σm (i δx/Δ)n, was 
also tested.  

 
 
          Yee           Cole-Karkkainen 
            σ                               σ*                               σ                                σ*  

 
Fig. 2: Reflected signal (in dB) from a PML layer using the Yee or the Cole-Karkkainen 
solver. Each simulation was run for the time step set at the Courant limit. 

 
For the generic test case that has been considered, the new implementation exhibited 

a very low residue of reflections from the PML layer, which are qualitatively and 
quantitatively very similar to the residue obtained with a standard PML implementation. 
In agreement with results from [13,14], the use of the modified coefficients σ* led to an 
order of magnitude improvement over the use of the standard coefficients. The 3D tests 
gave similar absorption efficiency between the Yee and the new solver implementations 
of the PML. 

I-2-b – Unsplit Cummer’s PML 
 

We have implemented, in the Warp code’s 2-D electromagnetic field solver, an un-
split version of the PML algorithm based on Cummer’s derivation [15,16], as a 
complement to the original split implementation of asymmetric PML (APML) [14]. For 
testing, a Harris pulse was launched at location {X,Y}={200,100} of a 400δx×400δy 
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grid, with L=50 δx and δx=δy. The time step δt was set at 99% of the Courant limit and 
the simulation was stopped when the time, initially set at zero, reached tmax=200δx/c. The 
electric field at tmax is plotted versus x and y in Fig. 3.  

 
The electric field located in the band 0<y<100δy contains a reflected wave due to the 

presence of the PML that is revealed by differencing with the free space electric field 
located in the band 100δy <y<200δy, inverted in y. We used a layer 10 cells thick, with 
numerical conductivity following the progression σ=σmax (jδx/Δ) inside the layer, with 
σmax=4/δx, Δ=5δx, and n=2. The result is plotted in Fig. 4 for the newly implemented un-
split PML, and is contrasted with the result obtained from the split PML. The un-split 
PML and split PML give the same amount of reflection, for all angles of incidence.  

 

 
Fig. 3: Electric field from a pulse generated at {x,y}={200,100} 
 
 



 7 

 
 
Fig. 4: Electric field reflected by (top) split PML; (bottom) unsplit PML. 

I-3 – Mesh refinement 
 

A derived class of the MeshRefinement class (developed for use with the 
electrostatic/magnetostatic solver class) and the EM3D class was introduced in Warp, 
providing 3-D electromagnetic mesh refined capability. The implementation follows the 
scheme based on field substitution (“SG-FS”) described in [1]. In order to extend the 
single level of refinement scheme from [1] to an arbitrary number of refinement levels, 
an additional auxiliary grid was added, as depicted in Fig. 5.  
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Fig. 5: Schematic of the SG-FS mesh refinement scheme implemented in the Warp 3-D 
EM-MR solver. 
 

One refinement block comprises three grids: one (“c”) at the same resolution as the 
parent grid, and two (“f” and “s”) at the refined resolution. The subset of the parent grid 
being refined at a given level is denoted by “r”. The Maxwell equations are solved on c 
and f, while the grid s is used as an auxiliary grid, storing the field of f to which is added 
the interpolated difference between r and c, i.e. s=f+I[r-c], where I is the interpolation 
operator. The purpose of the grid s is to store the substituted field that is to be 
interpolated to the particles, allowing a single lookup per particle for each field 
component. In practice, PIC calculations are dominated by current deposition and field 
lookup operations between the particles and the grids, and the extra cost added by the 
grids s should be minimal in most cases. 

 
The current deposition scheme uses the Esirkepov algorithm [11] with the choice at 

the user-level of linear, quadratic or cubic splines, independently for each particle species 
and each direction (x, y or z). For linear current deposition, as noted in [1] for particles 
present in a given refinement patch, the current deposition is performed at the finest level, 
and subsequently propagated recursively to the parent levels without losing the charge 
conservation property at any level. For higher-order deposition, however, such a property 
is not preserved. Although it may be possible to alter the Esirkepov scheme to account for 
the additional constraint, it goes beyond the scope of the current effort and has not been 
considered. Thus, in order to use high-order deposition, we employ a modified set of 
Maxwell equations, as introduced in [17] (and independently by other authors not cited 
here), which advects residual errors in Gauss Law: 
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Note that solving for the additional term F is optional and controlled at run time.  

I-4 – Generalized particle injection 
A generalized particle injection capability has been implemented in Warp, to enable 

injection of particles from any specified conductors. The algorithm is similar to that 
described in [18]. The number of particles to inject is calculated so as to satisfy Gauss’ 
Law near the surface of the conductors. The integral of the surface-normal E field is 
calculated over the surface of dual cells, the volume extending from (i-1/2,j-1/2,k-1/2) to 
(i+1/2,j+1/2,k+1/2). This gives the total charge that should be in the volume. From this is 
subtracted the charge of the existing particles, that is, the charge deposited at the cell 
(i,j,k). Enough particles are then injected in the cell to account for the remaining charge. 
The particles are initially placed directly on the conductor surface and allowed to 
propagate from there. An illustration of the use of the new injection method is shown in 
Fig.6. 

Currently, the algorithm is implemented using the electrostatic fields, which are 
calculated using a one-point finite difference stencil, modified to take into account the 
presence of the conductors. For the electromagnetic version, the E fields used in the 
integral are coincident with the E fields of the Yee mesh, and so would be a direct drop-in 
replacement for the electrostatic fields, leaving the rest of the code unchanged.  
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Fig.6: An example demonstrating the Gauss' Law injection. This shows a slice from a 
simulation of two concentric spheres. The outer sphere has an additional block attached 
on its inner surface and is at a higher potential relative to the inner sphere. The red dots 
are the particles created on the outer conductor and are flowing toward the inner. Note the 
enhanced emission from the edges of the block. 

I-5 – Internal conductors 
 

A stair-cased representation of internal perfect conductors was implemented into 
Warp’s 2-D electromagnetic solver, as a first step toward implementing space-charg-
limited emission from a shaped surface. The implementation was tested on a hypothetical 
cavity consisting of a circular core extended by six identical “arms” spaced regularly in 
azimuth (see Fig. 7). A point-source emitter located at the center of the cavity 
continuously generated a sinusoidal varying electric field. Interference patterns quickly 
developed. Without errors due to discretization on a Cartesian mesh, the solution should 
follow a perfect 6-fold symmetry in azimuth. The interference pattern (snapshot of 
electric field) shown in Fig. 7 shows that the symmetry is reasonably well respected in 
the case of a 200x200 grid, but not in the case of a 100x100 grid.  
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Fig. 7: (top) stair-cased representation of a 6 “arms” cavity for a 100x100 (left) and a 
200x200 (right) grid. (bottom) Electric field from a point source emitter located at the 
center of the cavity. 

I-6 – Particle subcycling 
 

We have extended Warp’s sub-cycling [19] capabilities, developed originally for 
electrostatic PIC simulations, to simulations using the 2-D electromagnetic solver. Each 
particle species can be advanced using its own time step, which can be different 
altogether from the electromagnetic field time step. Furthermore, following the 
implementation for the electrostatic solver, particles from a single species may be 
advanced with different time steps, dynamically changing time steps based on an 
instantaneous set of constraints, as described in report 3 of phase I, thereby reproducing a 
feature of the algorithm for multi-scale Particle-in-Cell plasma simulations proposed in 
[20].  
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I-7 – Parallel performance 
Warp parallel performance when performing EM-PIC simulations has been 

characterized on Franklin and other platforms, with scaling to 10’s of thousands of 
processors, as shown in Fig. 8. 

 
Fig. 8: Parallel speedup of WARP for a strong scaling test of explicit electromagnetic 

PIC simulations, using a 512x512x512 grid, 8 particles/cell, periodic BC for particles and 
fields, random load for particles. It was performed on Franklin (NERSC) using from 256 
to 32,768 cores. For each run, the timing was averaged over 20 time steps (no large 
fluctuations were noticed on timings for individual time steps). 

2 - Tests and examples of application 

2-1 - Filamentation instability 
The newly implemented low-dispersion solver was tested on a 2-D planar simulation 

of filamentation in collaboration with S.M. Lund. The z-axis is perpendicular to the plane 
of simulation and the boundary conditions are periodic for fields and particles in x and y. 
The grid had a resolution of 256×256. An exactly charge neutral plasma was initialized 
with the following prescription: uniform background of density ni of immobile positively 
charged particles with infinite mass; two populations of electrons (beam electrons “be” 
and plasma electrons “pe”) of total density nbe+ npe = ni and npe= 10×nbe counter-
streaming in the direction perpendicular to the plane of calculation, initialized with small 
random velocities. The initial random velocity load of the electrons creates random 
fluctuations, seeding a coalescence of the beam electrons into small filaments, which 
eventually coalesce further until all the beam electrons gather in a large cluster.  
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Fig. 9: Snapshots of x-y distribution of beam electrons and the electric field after the 
simulation has run for almost 10 plasma periods for: a) standard Yee EM solver with 
Δt=0.98⋅Δx/(√2⋅c), b) low-dispersion EM solver with Δt=Δx/c, and c) low-dispersion EM 
solver with Δt=0.99⋅Δx/c. 
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The x-y distribution of beam electrons and the electric field map are given in Fig. 9 

after the simulation has run for almost 10 plasma periods for three cases: (a) standard Yee 
EM solver with Δt=0.98⋅Δx/(√2⋅c); (b) low-dispersion EM solver with Δt=Δx/c; and (c) 
low-dispersion EM solver with Δt=0.99⋅Δx/c. We observe that runs (a) and (c) gave 
essentially the same level of filamentation at the same physical time while run (b), the 
one where the time-step used was exactly the magic time-step Δt=Δx/c, exhibits no 
filamentation, but exhibits signs of odd-even instability in the y direction for the electric 
field component Ex. The energy plot given in Fig. 10 confirms what seems to be an 
exponential growth of the field energy for run (b), while the energy histories look very 
similar for (a) and (c). 
 

 
 
 

 
 

Fig. 10: Energy history for particles (red), fields (green) and total (black) for : a) standard 
Yee EM solver with Δt=0.98⋅Δx/(√2⋅c), b) low-dispersion EM solver with Δt=Δx/c, and 
c) low-dispersion EM solver with Δt=0.99⋅Δx/c. 
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Fig. 11: Snapshot of electric (black), magnetic (red) and analytical electric (blue) fields 
given from solving the 1-D leapfrog wave equation (a) without source term (the electric 
field is forced to a constant value at x=0); (b) with a source term, for Δt=Δx/(√2⋅c) (first 
column) and Δt=Δx/c (second column). 
 

 
 
Fig. 12: Energy history for particles (red), fields (green) and total (black) for a run with 
the low-dispersion EM solver with Δt=Δx/c, for a grid of (a) 64×64, and (b) 65×65. 
 

The odd-even pattern observed in Fig.9 is reminiscent of the odd-even pattern (i.e. 
signal at the Nyquist limit) obtained when solving the Leapfrog discrete wave equation in 
1-D at the Courant limit (Δt=Δx/c) with a constant source term, as shown in Fig. 11. 
Assuming that the odd-even oscillation of the 1-D case is the source of the instability 
observed in the 2-D run, one would expect that changing the number of grid cells from 
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even to odd would change the way that interferences arising from the use of periodic 
boundary conditions will add constructively or destructively over the course of a run. We 
thus ran a scaled down version of the previous 2-D runs for two griddings: (a) 64×64 and 
(b) 65×65, and report the respective energy histories in Fig. 12. We effectively observe a 
very different pattern between the even (a) and the odd (b) cases, with an exponential 
growth in (a), suggesting continuous constructive addition of the odd-even oscillations, 
while (b) gives periodic oscillations of the field energy, suggesting that the individual 
oscillations go periodically in and out of phase.  

The instability was successfully mitigated by smoothing the deposited current with a 
bilinear digital filter, which totally removes signals at the Nyquist frequency. More 
details are given in [12]. 

Fig. 13 shows snapshots from Warp simulations of the filamentation instability in 3D.  
 
 

 
 

  
 
 
Fig. 13: snapshots of density contours (blue=low density; red=high density) for a Warp 
3D run using a 128x128x8 grid on a filamentations instability. 
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2-2 – Fast ignition  
 

The configuration reported in [1] (see also report 1 of phase I) is considered, of a 
laser impinging a target above the critical density for fast ignition study.  

The parameters are the same as those given in [1], except for the high-density core 
which was omitted. Two runs were performed for testing the particle subcycling 
capability. One used a single time step δt for the field solver and both species, at 0.6 
times the Courant condition for the fields. The second run used the same time step δt for 
the field solver, and four time steps for the particles: δt, 2×δt, 4×δt and 8×δt. The criteria 
for promoting/demoting particles to groups pushed with respectively larger/smaller time-
steps was based on thresholds for particle motion across a cell in any direction. These 
thresholds were set empirically to 1/6 (for promotion) and 1/12 (for demotion) of the cell 
sizes. Fig.14-18 show snapshots of various projections of the ion and electron 
distributions taken at T=200ps. The two runs gave similar results. However, the run with 
adaptive time-steps was faster by about a factor of two (see Fig. 19). The history of the 
number of macro-particles for each of the four time-step groups is shown in Fig. 20. 
 

 
Fig 14: Snapshot of ion distribution in ZX colored according to density, for run with 
single small time steps (left) and run with adaptive time stepping (right). 
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Fig 15: Snapshot of ion distribution in ZVz colored according to density, for run with 
single small time steps (left) and run with adaptive time stepping (right). 
 

 
Fig 16: Snapshot of ion distribution in XVz colored according to density, for run with 
single small time steps (left) and run with adaptive time stepping (right). 
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Fig 17: Snapshot of electron distribution in ZX colored according to density, for run with 
single small time steps (left) and run with adaptive time stepping (right). 
 

 
Fig 18: Snapshot of electron distribution in ZUy colored according to density, for run 
with single small time steps (left) and run with adaptive time stepping (right). 
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Fig. 19: Cumulative time versus number of time steps, for run with single small time 
steps (left) and run with adaptive time stepping (right). 
 
 

 
Fig. 20:  History of the number of macro-particles for each time-step group, for ions (top) 
and electrons (bottom). 
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In [1], it was observed that the mesh refinement technique that we introduced based 

on grid substitution, may suffer from spurious transmission of waves across patches (in 
cases where a high-density plasma fills the patch and normally absorbs the waves in 
consideration). This spurious effect was attributed to inexact cancellation of waves during 
the substitution procedure, resulting from the numerical dispersion errors of the 
electromagnetic solver.  

 
 
a)

 

b)

 
c)

 

d)

 
Fig. 21: Colored plot of magnitude of transverse electric fields from four Warp runs: a) 
600*600 grid/no mesh refinement/Yee stencil; b) 600*600 grid/no mesh refinement/ 
Karkkainen stencil; c) 300*300 grid/one mesh refinement patch/Yee stencil; d) 300*300 
grid/one mesh refinement patch/ Karkkainen stencil. The red line in plots c) and d) 
delimits the boundary of the refinement patch. 
 

To test this hypothesis, four runs were performed using Warp 3-D solver in 2-D1/2 
mode: a) 600*600 grid/no mesh refinement/Yee stencil; b) 600*600 grid/no mesh 
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refinement/Cole-Karkkainen stencil; c) 300*300 grid/one mesh refinement patch/Yee 
stencil; d) 300*300 grid/one mesh refinement patch/Cole-Karkkainen stencil. For the 
cases with refinement patch, the refinement factor was 2 in each direction, and the time 
step of the main grid was twice the one used to push particles and fields in the refinement 
patch (interpolation in time is used to get fields from the main grid at intermediate time 
steps during the substitution procedure). The electric field transverse to the plane of 
calculation is plotted in 2-D (Fig. 21) and in 1-D (cut at x=9.55µm; Fig. 22). The 
spurious wave described in [1] is observed here also, but its amplitude is much reduced 
with the use of the CK solver, supporting the hypothesis that it is a consequence of the 
numerical dispersion errors of the electromagnetic solver.  
 
a)

 

b)

 
c)

 

d)

 
Fig. 22: a) Line plot of magnitude of transverse electric fields (cut at  x=9.55µm) from 
four Warp runs: 600*600 grid/no mesh refinement/Yee stencil; b) 600*600 grid/no mesh 
refinement/ Karkkainen stencil; c) 300*300 grid/one mesh refinement patch/Yee stencil; 
d) 300*300 grid/one mesh refinement patch/Cole-Karkkainen stencil. 

 

2-3 - Modeling of ion beam induced plasma wake  
 

Warp simulations of wave excitations by a beam propagating through plasma, as 
described in [21], were conducted. In these simulations, a hard-edged, elliptical, “frozen” 
(rigid) beam propagates at constant velocity vz = 0.5c through an initially cold neutral 
plasma of initial density n0. The beam has a flat-top density profile of nb = n0/2, and an 
elliptical shape of length l = 15 c/ωp and diameter d = l/10, where ωp is the electron 
plasma frequency. It is shown in [21] that waves with a wavenumber of approximately 
2ωp/vz are generated in the plasma by the beam’s electrostatic field, and have larger 
amplitude inside the beam, due to their interaction with the beam sharp edges.  
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Resolving the beam edge and the small structures developing in the wake inside the 
beam imposes small cell sizes. The resolution that is needed for macroscopic 
convergence was explored in 2-1/2D in a series of four runs where the number of grid 
cells was varied from 64×160 to 512×1280 by incremental factors of 2. Third order spline 
interpolation was used for the beam and plasma macroparticle current deposition and 
force gathering. The results are shown in Fig. 23. The details of the plasma wake are very 
similar between the two highest resolution cases, indicating that macroscopic 
convergence was reached. The results from the highest resolution run serve as the 
reference for subsequent calculations with mesh refinement. 

 
A series of three runs were conducted, where the main grid had 128×320 cells, and 

was complemented by two refinement patches (with successive refinement of 2 in each 
direction), such that the resolution in the central patch matched the resolution of the case 
of reference. Results are plotted in Fig. 24. The runs from Fig. 24-a) and 24-b) differ only 
by the use of mesh refinement in the latter. We observe that the mesh refinement 
algorithm did not introduce any detectable spurious effect. Although there is some 
difference in the electron density outside the area of the highest density patch, the result 
inside the patch is essentially the same as the one from the reference case. The number 
and weight of the injected plasma macroparticles was varied, such that the number of 
macroparticles per cell in each grid at injection was constant (Fig. 24-c). Again, the 
observable differences in the plasma density outside the central refinement patch did not 
lead to visible alteration of the result in the central refined area. Finally, as a proof that 
the plasmas and fields present in the low resolutions regions provide essential boundary 
conditions to the physics in the high resolution central core, a run was conducted where 
no plasma was injected outside the central area (Fig. 24-d).  

 
Lastly, three-dimensional simulations with mesh refinement of the same physical 

setup were conducted. The grid setup and 3-D isosurfaces of the plasma electron density 
as the beam enters the plasma are shown in Fig. 25. As expected, structures similar to the 
ones observed in 2-D are present within the beam envelope. Those calculations were 
possible at a reasonable computational cost only with the use of mesh refinement, with 
the computing resources that were of available to the user at the time of this calculation. 
The speedup achieved by the use of mesh refinement is estimated to be of approximately 
one order of magnitude. 
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a) 

 
b) 

 
c) 

 
d) Fig. 23: Electron density ne (normalized to the density of the injected plasma) from Warp 

PIC simulations using the 3-D electromagnetic solver in 2-D “slab” (x,z) geometry, of a 
rigid beam (thin outline) propagating through a neutral plasma, for grid sizes Nx×Nz of a) 
64×160, b) 128×320, c) 256×640 and d) 512×1280.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 24: Electron density ne (normalized to the density of the injected plasma) from Warp 
PIC simulations using the 3-D electromagnetic solver in 2-D “slab” (x,z) geometry, of a 
rigid beam (thin outline) propagating through a neutral plasma, for grid sizes Nx×Nz of a) 
512×1280 (same as Fig.1-d), b-c-d) 128×320 (main grid, red box) + 128×640 (patch 1, 
orange box) + 128×1280 (patch 2, yellow box), such that the resolution of patch 2 
matched the resolution of the grid used for a). The number and weight of injected plasma 
macroparticles were: a-b) uniform, c) adjusted to keep the number of macroparticles per 
cell constant in each grid at injection, d) same as a-c in patch 2 and null outside. 
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Fig. 25: (top) Electron density ne (normalized to the density of the injected plasma) from 
3-D Warp PIC simulations of a rigid beam propagating through a neutral plasma, for grid 
sizes Nx×Ny×Nz of 64×64×160 (main grid, red box) + 64×64×320 (patch 1, orange box) + 
64×64×640 (patch 2, yellow box); (bottom) same as top zoomed at location surrounding 
the beam. 
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2-4 - Laser plasma acceleration  
Warp’s Yee and Cole-Karkkainen solvers were applied in 2-1/2D and 3D to the 

modeling of a scaled 10GeV stage of a laser wakefield accelerator [22-24], in 
collaboration with E. Cormier-Michel and C. Geddes from the LOASIS group at LBNL.  

 
Laser driven plasma waves offer orders of magnitude increases in accelerating 

gradient over standard accelerating structures (which are limited by electrical 
breakdown), thus holding the promise of much shorter particle accelerators. Yet, 
computer modeling of the wake formation and beam acceleration requires fully kinetic 
methods and large computational resources due to the wide range of space and time 
scales involved [22]. As discussed in [25], the range of scales can be greatly reduced by 
performing the calculation in a Lorentz boosted frame if one adopts the common 
assumption that the backward emitted radiation can be neglected. 

 
Figure 26 shows surface renderings of the longitudinal electric field as the beam 

is in its early stage of acceleration by the plasma wake from the calculation in the 
laboratory frame and in the frame γ=10. The two snapshots offer strikingly different 
views of the same physical processes: in the laboratory frame, the wake is fully formed 
before the beam undergoes any significant acceleration and the imprint of the laser is 
clearly visible, while in the boosted frame calculation, the beam is accelerated as the 
plasma wake develops, and the laser imprint is not visible on the snapshot. 
 

 

 
Fig. 26: Rendering from a 2-1/2D Warp simulation of a laser-plasma wakefield 
accelerator stage in the laboratory frame (top) and a boosted frame at γ=10 (bottom), 
showing a colored surface plot of the longitudinal electric field exhibiting the imprint 
from the driving laser pulse, and the plasma wake. The accelerated electron beam 
(magenta) is loaded in the first period of the wake. 
 

Warp simulations of a 10 GeV class stage of laser wakefield accelerator at plasma 
density ne=1019 cm-3 were performed in 2-1/2D and 3D using reference frames moving 
anywhere between γ=1 (laboratory frame) and 13. These simulations are scaled replicas 
of 10 GeV stages that would operate at actual densities of 1017 cm-3 [23,24] and allow 
short run times to permit effective benchmarking between the algorithms. Agreement 
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within a few percent was observed on the beam peak energy and average energy between 
calculations in all frames, showing that the boosted frame simulations gain speed without 
sacrificing accuracy. Speedups of 200 and 130 were demonstrated in 2-1/2D and 3D 
respectively between the calculation in the frame at γ=13 and the calculation in the 
laboratory frame. For full scale simulations, speedups over 100,000 in 3D and 1 million 
in 2-1/2D were demonstrated for 100 GeV and 1 TeV stages respectively [12]. 

 
The average beam energy as a function of position in the laboratory frame and the 

CPU time recorded as the beam crosses successive stations are plotted in Figures 27 for 
scaled runs in a frame of reference boosted at γ=13. 
 

 
Fig. 27: (left) average beam energy versus longitudinal position in the laboratory frame 
from 2-1/2D Warp simulations in a frame moving at γ=13; (right) CPU time recorded as 
the beam crosses successive stations in the laboratory frame, using the Yee or the Cole-
Karkkainen solver. 
 

Excellent agreement is observed between calculations using the Yee solver and the 
Cole-Karkkainen solver, validating further Warp’s PIC implementation of the CK solver. 
Although the CK solver has a larger stencil and is thus more computationally expensive, 
it allows for a larger time step than the Yee solver, resulting in a slightly shorter run time. 
 

Mesh refinement was applied for reducing the number of mesh cells and 
macroparticles of a 2-1/2D simulation in a boosted frame (γ=10) of a scaled 10 GeV class 
stage. For this first test, up to three levels of mesh refinement were used (see Fig. 28 – 
top), each level refining by a factor of two from the previous level (in the transverse 
direction only). For these intial tests, no adaptation of macroparticles weight and/or 
number was performed, and the same time step verifying the Courant condition (using the 
Yee solver) at the finest lever was used for all levels. The beam transverse emittance is 
plotted in Fig. 28 as a function of distance in the plasma for (i) four runs using a unique 
grid (no mesh refinement) with respectively 100, 200, 400 and 800 cells in the transverse 
direction; (ii) three runs using a main grid with 100 cells transversely and respectively 
one, two and three levels of mesh refinement. The results obtained with a unique grid at a 
given resolution are well recovered by using a coarse main grid and the appropriate 
number of refinement levels to match the resolution of the single grid runs. This shows 
that the mesh refinement algorithm implemented in Warp allows relaxation of the 
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resolution of the main grid transversely while preserving the overall accuracy as 
measured on the evolution of the beam emittance. 

 
Fig. 28: (top) color plot of the longitudinal electric field magnitude from a simulation of a 
scaled 10 GeV LPA stage using a Lorentz boosted frame of reference with γ=10, with 3 
level of refinements delimited by red, green, blue and cyan boxes (rendered from a 8 
processors run with 1D longitudinal domain decomposition, each processor rendering its 
own domain); (bottom) beam transverse emittance as a function of distance in the plasma 
for (i) four runs using a unique grid (no mesh refinement) with respectively 100, 200, 400 
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and 800 cells in the transverse direction; (ii) three runs using a main grid with 100 cells 
transversely and respectively one, two and three levels of mesh refinement  

3 - Conclusion 
 A novel electromagnetic solver with mesh refinement capability was successfully 
implemented in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, 
includes the standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical 
dispersion along the principal axes. 

Warp implementation of the Cole-Karkkainen stencil includes an extension to 
perfectly matched layers (PML) for absorption of waves, and is preserving the 
conservation property of charge conserving current deposition schemes, like the 
Buneman-Villanesor and Esirkepov methods.  

Warp’s mesh refinement framework (originally developed for electrostatic 
calculations) was augmented to allow for electromagnetic capability, following the 
methodology presented in [1] extended to an arbitrary number of refinement levels.  

Other developments include a generalized particle injection method, internal 
conductors using stair-cased approximation, and subcycling of particle pushing. The 
solver runs in parallel using MPI message passing, with a choice at runtime of 1D, 2D 
and 3D domain decomposition, and is shown to scale linearly on a test problem up-to 
32,768 CPUs.  

The novel solver was tested on the modeling of filamentation instability, fast 
ignition, ion beam induced plasma wake, and laser plasma acceleration, on which it was 
shown that Warp’s mesh refinement capability could successfully reproduce calculations 
using a single high resolution grid at a fraction of the cost. 

Further work is needed for fully integrating the various pieces (mesh refinement, 
internal conductors, particle emission, particle subcycling) in a fully coherent framework, 
as well as to explore adaptivity, where refinement patches are created and removed 
dynamically. 
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