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COARSE SPACES BY ALGEBRAIC MULTIGRID: MULTIGRID

CONVERGENCE AND UPSCALED ERROR ESTIMATES

PANAYOT S. VASSILEVSKI

Abstract. We give an overview of a number of algebraic multigrid methods tar-
geting finite element discretization problems. The focus is on the properties of the
constructed hierarchy of coarse spaces that guarantee (two-grid) convergence. In
particular, a necessary condition known as “weak approximation property”, and a
sufficient one, referred to as “strong approximation property” are discussed. Their
role in proving convergence of the TG method (as iterative method) and also on the
approximation properties of the AMG coarse spaces if used as discretization tool is
pointed out. Some preliminary numerical results illustrating the latter aspect are
also reported.

1. Introduction

Consider our problem of main interest

Au = f ,

where A is a sparse n× n symmetric positive definite(or s.p.d.) matrix. Typically, A
comes from a discretized partial differential equation (or PDE) on a very fine mesh
Th. Multigrid methods (or MG) are becoming the method of choice for solving finite
element discretization problems due to their potential for optimal order O(n) of com-
plexity. This is definitely the case for solving elliptic PDEs with various extensions
(e.g., to H(curl) and H(div) problems). Traditionally (or historically) MG is used
when a hierarchy of discretization problems corresponding to a respective sequence of
finite element discretization spaces obtained by some refinement procedure is avail-
able. When this is not the case, in order to apply MG, the needed hierarchy has
to be constructed in some problem dependent “algebraic” way (as opposed to the
traditional “geometric” mesh refinement way). The latter generally leads to a class
of “algebraic” MG (of AMG) method. The AMG concept goes back to the papers
by Brandt, McCormick and Ruge ([BMR82]-[BMR84]). Since then much progress
has been made and a number of AMG methods have developed that may or may
not utilize or assume additional fine-grid information about the problem at hand.
To construct an AMG hierarchy is an “inverse problem”: there are many hierarchies
that can be constructed leading to equally good (or bad) MG performance. One main
area of AMG research is to identify necessary and sufficient conditions for the needed
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hierarchy of spaces that guarantee at least TG (two–grid) convergence with mesh-
independent bounds (when applied to discretization problems). In that respect, two
conditions known in the literature, namely a “weak approximation property” and a
“strong approximation property” play important role in the TG and MG convergence
analysis (see, e.g., [V08]). These conditions are reviewed in more details in § 2. In the
present paper, we also point out their role in proving error estimates when solving the
discretized problem on a coarser level (using the respective AMG coarse space). Note
that the coarse AMG spaces are problem (or operator) dependent and therefore differ
from the traditional piecewise polynomial finite element spaces (when available). We
show, in § 6, that AMG offers a natural tool for solving PDEs on computationally
feasible coarse meshes, commonly referred to as “upscaling”. In practice, we need
high enough accuracy from the upscaled (coarse) solution. We show that this is the
case if the respective coarse spaces exhibit “strong approximation property”. Most
of the more traditional AMG spaces do possess a two-grid weak approximation prop-
erty which also implies two-grid convergence (as an iterative method). We illustrate a
spectral AMGe method and an AMG with constrained energy minimization basis as
upscaling discretization tool. These two methods are in fact a “scale” of methods in
the sense that they can become more and more accurate by enriching the coarse basis.
We show some preliminary examples that illustrate their potential for improving the
quality of the upscaled coarse solution when enriching the respective coarse spaces.

The only known to us AMG method with strong approximation property, the
“window-based” spectral AMG [FVZ05], [V08], has too expensive setup cost if meant
to be used as an iterative method. The spaces with strong approximation property
however are more interesting from upscaling discretization point of view since they
imply energy error estimates between the fine–grid solution and the respective AMG
coarse space solution without assuming any additional regularity of the underlined
PDE. We briefly review the method and suggest some strategies that can be used to
reduce the currently high setup cost of generating the coarse space hierarchies in § 6.
We also outline, in § 7, a new version of the window-based spectral AMG method
that utilizes element matrices. that provides strong approximation properties.

2. Necessary and sufficient conditions for TG convergence

To define a two–grid (TG) method, we need:

• Convergent in A–norm “smoothers” M and MT with O(n) cost of imple-
menting one inverse action of M and MT . Typical examples are forward and
backward Gauss-Seidel.

• “Interpolation” and “restriction” matrices: P and P T with O(n) cost to im-
plement their actions;

• “Coarse–grid” matrix: Ac = P T AP of size nc × nc.

We want:

• P and hence Ac to be sparse so that recursion can be applied.
• It is also desirable that nc

n
< 1, i.e., the problem size reduction be by a factor

greater than one. The latter property ensures, when we apply the method
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recursively, that the cost of one multilevel cycle is of order O(n). In geometric
MG, typical factors are four or eight, in 2- or 3–space dimensions, respectively.

Once having the TG tools a typical TG algorithms takes the following standard
form:

Algorithm 2.1 (TG algorithm). Let x = 0, or any other given initial iterate x for
solving Ax = b.

Given a current iterate x, perform the following steps:

• “pre–smoothing”: solve My = b − Ax and compute the intermediate iterate

x := x + y = x + M−1(b − Ax).

• restrict the residual, i.e., compute

rc = P T (b − Ax).

• solve for a coarse–grid correction,

Acxc = rc.

• interpolate and compute next intermediate iterate x := x + Pxc.
• “post–smoothing”: solve MTz = b−Ax, and compute the next two–grid iterate

xTG = x + z = x + M−T (b − Ax).

The TG algorithm with zero initial iterate provides a mapping (or rather the inverse
mapping)

b 7→ B−1
TGb = xTG.

To have an optimal TG iterative method, we need the spectral equivalence relations

(2.1) vT Av ≤ vT BTGv ≤ KTG vT Av,

to hold for a mesh-independent constant KTG = 1
1−̺TG

where

̺TG = ‖I − B−1
TGA‖A

is the TG convergence factor. The lower bound in (2.1) is one if M and MT are
convergent in A-norm (which we assume).

The following characterization holds (cf., [FVZ05] or [V08]):

KTG = max
v

min
vc

‖v − Pvc‖2
fM

vT Av
,

where

M̃ = MT (M + MT − A)−1M is the symmetrized smoother

(such as symmetric Gauss–Seidel).

Typically M̃ ≃ DA, the diagonal of A. In the case of M being (forward) Gauss–

Seidel, the symmetric Gauss–Seidel matrix M̃ is known to be spectrally equivalent to
DA. More specifically, we have (cf., e.g., Proposition 6.12 in [V08])

1

4
vT DAv ≤ vT M̃v ≤ δ2 vT DAv,
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where δ is bounded by the maximal number of nonzero entries per row of A. In
summary, TG convergence implies the following weak approximation property:

‖v − Pvc‖2
DA

≃ ‖v − Pvc‖2
fM
≤ KTG vT Av.

In the simplest case, we may assume that DA ≃ ‖A‖ I, which leads to the more
familiar form of the weak approximation property stated in a matrix-vector form:

(2.2) ‖A‖ 1

2 ‖v − Pvc‖ ≤ ηw ‖v‖A.

In a finite element setting, when A comes from a bilinear form a(., .) and a fine-grid
f.e. space Sh, using a coarse space SH on a mesh H ≃ h, the above result translates
to the following approximation property of the coarse space

(2.3) inf
vH∈SH

‖vh − vH‖0, ρ ≤ CH
√

a(vh, vh).

The left–hand side is a ρ–weighted L2–norm (the weight ρ comes from the diagonal
of A). This is seen from (2.2), using the equivalence

‖vh‖2
0 ≃ hd‖v‖2

between the integral L2-norm of a finite element function vh and the ℓ2-norm of its
coefficient vector v (corresponding to a nodal basis of Sh) and the well-known fact
that ‖A‖ ≃ hd−2 (cf. e.g., Proposition 1.3. in [V08]). In the case when the coarse
mesh H is not comparable in size with h, a similar result can be shown for smoothers
M coming from overlapping Schwarz methods with subdomains that have diameter
O(H) and similar-size overlap.

In summary, we have the following result.

Proposition 2.1. Consider the coarse space SH corresponding to the range of an
interpolation mapping P , coming from a convergent TG method with smoother M

such that its symmetrized version M̃ = MT (M +MT −A)−1M is spectrally equivalent
to DA (the diagonal of A). Then, SH exhibits the L2–approximation property (2.3).

We comment that generally speaking the coarse-grid interpolant uH ∈ SH , i.e.,
the best approximation defined in (2.3) that corresponds to the solution uh ∈ Sh

of the fine–grid problem Au = f , is not computable (without computing uh having
coefficient vector u at the first place). That is, the coarse space corresponding to a
convergent TG method does have an approximation property in L2, but we do not
generally have access to the best approximation uH . We cannot actually estimate the
error between uh and the coarse-grid solution uH that has coefficient vector Puc and
uc is the solution to the Galerkin coarse–grid problem P T APuc = P T f . Our numer-
ical evidence though does suggest that for the AMG methods we consider next the
Galerkin coarse–grid problems do possess L2–approximation property. Since we are
also interested to use the AMG generated coarse spaces as discretization (upscaling)
tool, which means we want to avoid solving the problem on extremely fine meshes and
solve instead only the upscaled (coarse-grid) problem. We show in what follows that
if the coarse-space possesses a strong–approximation property, the error estimation
in energy norm is possible with the computable Galerkin coarse–grid solution.
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In the MG literature the strong approximation property is referred to one of the
following estimates:

(2.4) ‖A‖ ‖v − Pvc‖ ≤ ηs ‖Av‖,
or

(2.5) ‖A‖‖v − Pvc‖2
A ≤ η2

s‖Av‖2.

Note that the first estimate implies the second one. The strong approximation prop-
erty is known to be only a sufficient condition for (V–cycle) MG convergence (any
number of levels, not only two levels). Moreover, a classical result by Braess and
Hackbusch (1983) ([BH83], see also [V08]) shows that the convergence improves with
the number of smoothing steps m ≥ 1, i.e.,

KMG ≤ 1 +
C

m
.

Here KMG is the counterpart of KTG in the multilevel case. For geometric MG, strong
approximation property is verified under the assumption of full H2–regularity of the
underlined elliptic PDE associated with the given f.e. bilinear form a(., .).

For one class of AMG methods, namely the window-based spectral AMG method it
can be proved (cf., [V08] and earlier in [FVZ05]) that the stronger first estimate (2.4)
holds which is a purely algebraic result (i.e., without any additional assumptions on
regularity of the underlined PDE if applied to discretization problems). We study
this method and corresponding estimates in more detail in a following section.

3. Element agglomeration AMG methods

If we use fine–grid finite element information, a subclass of AMG is the so–called ele-
ment based AMG, or AMGe, proposed in [AMGe]. If we generate coarse counterparts
of elements and element matrices by recursively agglomerating fine-grid elements, we
end up with the element agglomeration AMGe proposed in [JV01].

The agglomerated elements provide a natural partition of the degrees of freedom
(element vertices) into nonoverlapping classes (called intersection sets) that are par-
tially ordered, see Fig. 1. One class precedes another one, if the former belongs to
(or is a subset of) more agglomerated elements. In particular, there are maximal
sets (of single points in Fig. 1) which can naturally be identified as vertices of the
agglomerated elements. The partial ordering of the intersection sets can be used to
define a boundary of a given class; namely, the classes that precedes it. To define an
interpolation mapping associated with a given set of agglomerated elements we have
several choices. One is to select coarse degrees of freedom as subset of the fine degrees
of freedom (i.e., from the fine-grid element vertices). Then the minimal coarse grid
consists of the vertices of the agglomerated elements. However, more coarse degrees
of freedom can be selected (cf., [KV06], [VZ04], and [LV08]). Then a P is constructed
by moving from a boundary of a class F into itself. At the coarse degrees of freedom
P is identity. For any F and its boundary ∂F , we use the local matrix AΩF

assem-
bled from the fine grid element matrices Aτ for all elements τ that touch (or have a
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Figure 1. Classes of intersection sets

common fine-grid vertex with) F ∪ ∂F . Given a vector v∂F , we use minimal energy
extension by solving

vT AΩF
v 7→ min,

subject to v|∂F = v∂F . Then, to define Pvc for a given coarse–grid vector vc, assum-
ing (by induction) that v∂F = (Pvc)|∂F has been already defined, we extend P to F
as (Pvc)|F = v|F where v is the above minimal energy extension of v∂F .

Another alternative in AMGe is to use spectral degrees of freedom.
In Chartier et al. [ρAMGe] and in [Ch07] the following spectral choice of coarse

degrees of freedom was proposed.
From AΩF

(defined previously), compute its Schur complement SF by eliminating
all degrees of freedom outside F . Solve the generalized eigenvalue problem for SF

and DF = diag (A)|F :

SFqk = λk DFqk.

Choose a portion mF < m of {qk}m
k=1 in the lower part of the spectrum as “coarse

degrees of freedom” and form a local interpolation matrix

PF = [q1, . . . , qmF
].

One approach to construct the global P is to use harmonic extension of PF , F ⊂ ∂T
in T s interior for any agglomerated element T . Other options are also possible. For
more details we refer to [LV08].

A new two–level version of a spectral AMGe was proposed recently by J. Galvis
and Y. Efendiev in [GE09]. It uses overlapping sets F for the local eigenproblems. In
[GEV] a version of that method was proposed that allows for multilevel recursion.

In what follows, we show the performance of the spectral AMGe method from
[Ch07] as an upscaling discretization tool.
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Consider the 2D diffusion equation posed in Ω = (0, 1)2

(3.1) −divρ∇u = f,

where u = 0 on ∂Ω and f = −1. Here,

(3.2) ρ =
(2 + 1.8 sin(2Πx))(2 + 1.8 sin(2Πy))

(2 − 1.8 sin(2Πx))(2 − 1.8 sin(2Πy))
,

A piecewise constant approximation of the diffusion coefficient (3.2) is illustrated
in Fig. 2. The hierarchy set of agglomerated elements used in the test is shown in
Fig. 3.
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Figure 2. Piecewise constant approximation of ρ; h = 1/36.

Figure 3. Fine grid and level 3, 4 and 5 coarse grids.

The computed coarse grid upscaled finite element solutions uH are seen in Fig.
4. Finally, the L2–error ‖uh − uH‖0 is listed in Table 1. A clear conclusion from
that table is that the coarse spaces produced by the spectral AMGe offer reasonable
accuracy.
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Figure 4. Fine grid solution and level 3, 4 and 5 coarse–grid solutions.

level # elements # dofs # nnz ‖uh − uH‖0

0 6400 3321 22761
3 128 732 14874 1.303002e-02
4 32 248 5444 1.861606e-02
5 8 92 2180 2.098479e-02

Table 1. L2- error of spectral AMGe upscaled solutions

4. AMG coarse spaces by constrained energy minimization

In this section, we briefly summarize an AMG method proposed recently in [V10].
Our goal is to illustrate its potential as an upscaling discretization tool. Its per-
formance as a MG method was demonstrated in [V10]. For previous work on coarse
spaces by constrained energy minimization we refer, for example, to [Wag96], [WCS00],
[XZ04], [KV06], [VZ04], and [vLSG].

We are given a set of agglomerates {T} (see e.g. Fig. 5). To construct a basis of
locally supported functions for the coarse space associated with the set of agglomer-
ated elements, we proceed as follows. For each T , in the simplest case, we construct
a single basis ϕT locally supported (in ΩT - the union of all neighbors T

′

of T ) by
solving the constrained minimization problem:

(4.1) J(ϕT ) =
1

2
a(ϕT , ϕT ) 7→ min,

subject to the constraints (in this case, prescribed averages):

(4.2)

∫

T
′

ϕT dx = δT,T
′

∫

T

1 dx for all T
′ ⊂ ΩT .
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By construction, the basis provides approximate partition of unity:
∑

T

ϕT ≈ 1

The method allows for fitting arbitrary set of given functions {vk}m
k=1, The above

simple case corresponded to m = 1 and v1 being the constant function 1. In the

multiple function case, we assign to each T and k ≥ 1, a basis function ϕ
(k)
T that

solves the following local problem

J(ϕ
(k)
T ) =

1

2
a(ϕ

(k)
T , ϕ

(k)
T ) 7→ min,

subject to the constraints∫

T
′

vlϕ
(k)
T dx = δT,T

′

∫

T

vlvk dx for all l = 1, . . . , m.

By construction, we have, for 1 ≤ k ≤ m,
∑

T

ϕ
(k)
T ≈ vk.

That is, the coarse space contains approximately the given functions {vk}m
k=1,

If we minimize the global functional

a(
∑

T

ϕ
(k)
T − vk,

∑

T

ϕ
(k)
T − vk) 7→ min,

subject to the same integral moments constraints, then we can ensure that the coarse
space contains as accurately as we want the given functions vk. Since, by solving the
local problems, we already have

∑

T

ϕ
(k)
T ≈ vk,

the above global minimization requires only few “smoothing” overlapping Schwarz
iterations.
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Figure 5. Agglomerated elements T obtained by one level of coarsening.

In Fig. 6 we show typical examples of coarse basis functions corresponding to the
constant function.
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Figure 6. Typical coarse basis functions based on fitting one (con-
stant) function.

The case of multiple functions vk = sin(Πkxx) sin(Πkyy), k = (kx, ky), kx, ky =
1, . . . ,

√
m, (m = 4) is illustrated in Fig. 7 for the Laplace operator.

The influence of the diffusion operator −divρ∇u, with coefficient (3.2) (see Fig. 2)
on the recovery is seen in Fig. 8.

Finally, we demonstrate the upscaling properties of the method applied to the diffu-

sion operator (used previously) −divρ∇u = f, u = 0 on ∂Ω. ρ = (2+1.8 sin(2Πx))(2+1.8 sin(2Πy))
(2−1.8 sin(2Πx))(2−1.8 sin(2Πy))

,

and f = −1.
In Fig. 9 and Fig. 10, the fine–grid solution and respective coarse-grid solutions are

shown, for two cases of coarse spaces (one based on fitting four bilinear functions and
another one based on fitting one sin function). The corresponding errors are plotted
in Fig. 11 and 12, respectively. It is clear that the richer coarse space provide better
approximation.

5. The strong approximation property

In this section, we discuss the strong approximation property mentioned earlier.
We are given a s.p.d. n × n sparse matrix A and let P : R

nc 7→ R
n, nc < n, be a

given (rectangular) interpolation matrix.
We are interested in the following strong approximation property:
For any fine-grid vector u ∈ R

n there is a coarse interpolant Puc such that

(5.1) ‖A‖‖u − Puc‖2
A ≤ CA ‖Au‖2.

If the problem of our main interest

Au = f ,

comes from a finite element discretization of a PDE on a domain Ω ⊂ R
d (d = 2 or

3), then f = (fi) comes from a given r.h.s. function f(x) ∈ L2(Ω), where the entries
fi are computed as the following integral moments

fi = (f, ϕi) ≡
∫

Ω

f(x)ϕi dx.

Above, ϕi runs over a basis of the fine–grid finite element space Vh associated with a
triangulation of Ω with characteristic fine-grid mesh size h. For a nodal (Lagrangian)
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Figure 7.
∑
T

Φ
(k)
T based on fitting four sin functions vk on a 3 × 3

coarse mesh (H = 1/3); h = 1/36.

basis, the index “i” runs over the set of fine degrees of freedom xi ∈ Nh. The unknown
u stands for the coefficient vector of the finite element, Galerkin, approximation uh

to the solution of the underlined PDE posed variationally, i.e., uh ∈ Vh solves the
discretized PDE in a variational form associated with a given bilinear form a(., .),
stated as follows

a(uh, ϕ) = (f, ϕ) for all ϕ ∈ Vh.

As an example, we consider a second order self–adjoint elliptic bilinear form a(u, ϕ) =∫
Ω

k(x) ∇u · ∇ϕ dx for u, ϕ ∈ H1
0 (Ω) and a given positive coefficient function k =

k(x), x ∈ Ω, the given polygonal/polyhedral domain in R
d, d = 2 or 3. Using

a standard piecewise linear conforming finite element space Vh on a quasiuniform
triangulation Th, as it is well-known, the stiffness matrix A = (a(ϕj, ϕi)) computed
from a nodal Lagrangian basis {ϕi}xi∈Nh

of Vh satisfies

(5.2) ‖A‖ ≃ hd−2.
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Figure 8.
∑
T

Φ
(k)
T from diffusion operator and 4 sin functions; 3 × 3

coarse mesh (H = 1/3); h = 1/36.
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Fine–grid solution; h = 1/36 and upscaled solution on 3 × 3 coarse mesh, H = 1/3.

Figure 9. Four bilinear functions vk used in the constraints.
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Figure 10. One sin function used in the constraints.

The equivalence constants above generally depend on the variation
max
x∈Ω

k(x)

min
x∈Ω

k(x)
but are

mesh-independent.
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Figure 11. Pointwise error for function uH obtained using four bilin-
ear functions vk; ‖uh − uH‖0 = 0.0503.
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Figure 12. Pointwise error for function uH obtained using one sin
function vk; ‖uh − uH‖0 = 0.1113.

Assume, that we have come up with a coarse space VH ⊂ Vh such that the coeffi-
cient vectors of functions in VH viewed as elements of Vh can be represented as the
range of an interpolation mapping P . We can define respective coarse basis functions
by forming Peic for each coarse coordinate vector eic ∈ R

nc that has a single nonzero

entry at the icth position. Then, consider the fine–grid function φ
(H)
ic

that has coef-

ficient vector the icth column of P , i.e., equal to Peic . The set of functions {φ(H)
ic

}
forms the coarse basis of interest. The parameter H stands for characteristic size of
the support of the coarse basis functions.

The above matrix–vector strong approximation property (5.1) admits the following
finite element function form:

‖A‖ a(uh − uH , uh − uH) ≤ CA

∑

xi∈Nh

f 2
i = CA

∑

xi∈Nh




∫

Ω

f(x)ϕi dx




2

.

Using Cauchy-Schwarz inequality, we have

∑

xi∈Nh




∫

Ω

f(x)ϕi dx




2

≤
∑

xi∈Nh

∫

support (ϕi)

f 2(x) dx

∫

Ω

ϕ2
i dx.

For a fairly general class of basis functions (including piecewise linears) on a quasiu-
niform mesh, we have

∫

Ω

ϕ2
i dx ≃ |support (ϕi)| ≃ hd.
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Due to the bounded overlap of the supports of the finite element basis functions, we
also have

∑

xi∈Nh

∫

support (ϕi)

f 2(x) dx ≤ κ ‖f‖2
0.

Thus, we arrive at the energy error estimate of our main interest (using (5.2))

a(uh − uH , uh − uH) ≤ CAκ
hd

‖A‖‖f‖
2
0 ≃ CAκ h2 ‖f‖2

0.

In practice, we typically have CA = O(
(

H
h

)2
) with a constant in the O symbol,

independent of the two mesh sizes (h and H); see, e.g., Corollary 7.1 later on. Thus,
we get the following final upscaling energy error estimate:

(5.3) a(uh − uH , uh − uH) ≤ cA H2‖f‖2
0.

In the remaining sections, we summarize a few AMG methods that provide strong
approximation property.

6. AMG with strong approximation property: the “window”-based

spectral AMG

In [FVZ05] (see also [V08]), the following AMG method was proposed that exhibits
strong approximation property. The original version tends to lead to relatively large
coarse spaces so that the resulting two (and multi)–level methods have unaccept-
ably high complexities. In the present section, we propose several approaches in the
attempt to reduce the complexity of the original method.

Given an overlapping partition {w} of the set of indices i = 1, 2, . . . , n, we extract
the rows of a given n × n matrix A with indices from any given set (called window)
w. The respective rectangular matrix is denoted by Aw. By proper reordering, Aw

can be written as follows

Aw = [Aww, Aw, χ] .

Here, Aww is the principal submatrix of A (row and column indices from w) and Aw,χ

is the submatrix of A with columns outside w (and row indices from w).
We are interested, for a proper nonnegative diagonal matrix Dw, in the normal

matrices AT
wDwAw. The diagonal matrices Dw provide a partition of unity, i.e., if Iw

stands for extension by zero outside the set w, then
∑
w

IwDwIT
w = I. This property

ensures that

(6.1)
∑

w

vT AT
wDwAwv =

∑

w

vT AT IwDwIT
wAv = ‖Av‖2, Aw = IT

wA.

The method in question uses the symmetric semi-definite Schur complements Sw

defined as follows:

(6.2) vT
wSwvw = inf

vχ

[
vw

vχ

]T

AT
wDwAw

[
vw

vχ

]
.
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The original method utilizes the eigenvectors of the semidefinite Schur complements
Sw,

(6.3) Swpk = λk pk, k = 1, . . . , nw.

For efficiency reason, for a given tentative interpolation matrix P̃ , we use in (6.3)
instead the modified Schur complements

(6.4) vT
wSwvw = inf

vχ∈IT
χ Range( eP )

[
vw

vχ

]T

AT
wDwAw

[
vw

vχ

]
.

In what follows, we denote the exact window Schur complement with S∗
w.

We first form local interpolation matrices Pw by putting together the first nc
w ≥ 1

eigenvectors (in the lower part of the spectrum of Sw), i.e.,

(6.5) Pw =
[
p1, . . . , pnc

w

]
.

The corresponding eigenvalues (ordered in an increasing order) are such that λk ≤
tol λmax(Sw) for k ≤ nc

w and

(6.6) λk(Sw) > tol ‖Sw‖ = tol λmax(Sw) for k > nc
w.

Here, we have the freedom to choose the pre-selected tolerance “tol” (a number be-
tween zero and one) that may also vary with w.

The eigenvectors {pk}nw

k=1 are orthogonal and assumed normalized.
The global P is computed based on another partition of unity set of nonnegative

nw × nw diagonal matrices {Qw} that satisfy

I =
∑

w

IwQwIT
w .

Then P is defined as follows

(6.7) P =
∑

w

IwQw [0, Pw, 0] =
∑

w

IwQwPw(Ic
w)T .

Here, Ic
w maps the local indices of the eigenvectors coming from the window w to

their global indices expanding the result with zeros elsewhere. Thus we have defined

a process that from a tentative P̃ produces another one P . This can be iterated
several times (by possibly changing the parameters such as {w} and tol). In the next
theorem, we formulate conditions ensuring that P admits a strong approximation
property.

Theorem 6.1. Consider the iterated window spectral AMG interpolation matrix P

constructed on the basis of the modified window Schur complements using a P̃ that
satisfies the following estimate

(6.8)
∑

w

‖D
1

2
wAw, χ(vχ − IT

χ P̃wc)‖2 ≤ µ ‖Av‖2.

That is, P̃ is such that for any v, when restricted to a complementary set χ, there is
a coarse vector wc (depending on v and the set χ) such that for a fixed number µ > 0
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(6.8) holds. Then, if we choose tol = 1
δ
≤ 1 in the two-level spectral decomposition

defining the local Pw so that (see (6.6))

‖Sw‖ ≤ δ λmw+1(Sw),

and if we also assume the quasiuniformity of the windows, i.e., the estimate

(6.9) β ‖A‖2 ≤ ‖S∗
w‖,

then, the following main strong approximation property holds for P

(6.10) ‖A‖2‖v − Pvc‖2 ≤ η ‖Av‖2.

Here, η = δ
β

(1 +
√

µ)2, where µ is from (6.8).

The proof of this theorem falls outside the scope of the present paper and can be
found in a forthcoming report.

7. A new “window”-based spectral AMG method utilizing fine-grid

element matrices

Here, we present a summary of a modified version of the “window”-based spectral
AMG method applied to finite element matrices A. The method is studied and
analyzed in more details in a forthcoming report.

The new ingredient is in the different eigenproblems that we use. Also, it utilizes a
special partition of unity matrices. A main additional assumption is that the window
sets are covered exactly by fine–grid elements and that we have access to the respective
fine–grid element matrices so that we can assemble the semi–definite local matrices
further denoted by Λw. Therefore, we have the identity A =

∑
w

IwΛwIT
w .

We solve eigenproblems associated with the pair of matrices Λw and Sw, where Sw is
the exact window-based Schur complement (as introduced before). The eigenproblems
read (compare with (6.3)):

(7.1) Swpk = λk Λw pk, k = 1, . . . , nw,

where the eigenvalues are numbered in an increasing order and the eigenvectors are
Λw–normalized.

Since, the matrices Λw can also be only semi–definite, to have real eigenvalues the
nullspace of Λw should be contained in the nullspace of Sw, which is the case for finite
elliptic matrices (Laplacian–like as well as elasticity).

It is clear that we can choose the eigenvectors pk be orthogonal to the nullspace of

Λw (and Λw–orthogonal to each other). Let the columns of P
(0)
w span the nullspace

of Λw. Then, we have pT
k P

(0)
w = 0.

Based on a preselected tolerance tol ∈ [0, 1), we choose nc
w such that λk > tol λnw

for k > nc
w. The local interpolation matrices are defined similarly as before (cf.,

(6.5)), now augmented with the nullspace, i.e.,

(7.2) Pw =
[
P (0)

w , p1, . . . , pnc
w

]
.
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To define the global one, we use special diagonal matrices {Qw}w with nonnegative
entries that provide partition of unity, i.e., we have

I =
∑

w

IwQwIT
w .

Each Qw has entries on its diagonal qw, i, i ∈ w, defined as follows:

(7.3) qw, i =
‖Λw‖∑

w
′
: i∈w

′

‖Λw
′‖ .

At the end we formulate our main result (without a proof) just to illustrate the
potential of the method.

Theorem 7.1. Let A be a given finite element s.p.d. matrix. Consider a given
set of windows {w} where each window w is exactly covered by fine–grid elements.
Assume also that the local finite element matrices Λw corresponding to the sets w are
available. The nullspace (if nonempty) of the local matrices Λw is assumed known
(explicitly computed). That is, let the nullspace of Λw be represented by the range

of an explicitly available local matrix P
(0)
w . Assume that this nullspace is contained

in the nullspace of the window Schur complement Sw (defined in (6.2)). The global
interpolation matrix P is defined as in (6.7) based on the local interpolation matrices
(7.2) and the weights qw, i (entries of the diagonal partition of unity matrices Qw) are
defined in (7.3). Then, the following global strong approximation property holds

‖v − Pvc‖2
A ≤ κ max

w
Cond+(Λw) max

w

(
1

tol λmax(Λ+
wSw)

)
‖Av‖2.

Above, κ ≥ 1 depends on the overlap of {w}, tol ∈ (0, 1] (in general depending on
w) is the tolerance used to define the portion of the eigenvectors pk in the lower part

of the spectrum computed in (7.1) used to define Pw, Cond+(Λw) = ‖Λw‖

λ+

min
(Λw)

is the

effective condition number of Λw computed in a subspace orthogonal to the nullspace
of Λw. Finally, λmax(Λ

+
wSw) = maxk λk where λk are from (7.1).

Corollary 7.1. For finite element s.p.d. matrices A coming from second order elliptic
problems, the constructed finite element modification of the window-based spectral
AMG method, the following strong approximation property holds

‖v − Pvc‖2
A ≤ C κ

(
H

h

)2

max
w

1

tol ‖Aw0,w0
‖ ‖Av‖2.

Here, w0 ⊂ w is strictly in the interior of w in the sense that no other windows w
′

intersect it.
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