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ABSTRACT: Application codes in a variety of areas are being updated for performance
on the latest architectures. We describe current bottlenecks and performance improvement
areas for applications including plasma physics, chemistry related to carbon capture and
sequestration, and material science. We include a variety of methods including advanced
hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto-
parallelization compilers.
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I. INTRODUCTION and associated transport in magnetically confined fusion plas-

In this paper we examine three different applications atgas of tokamak toroidal devices. Microturbulence is a very

means for improving their performance, with a particular enﬁ:_omplex, nonlingar phenqmenon that_ i_S generally_ belie\_/g_d to
phasis on methods that are applicable for many/multicore afigy & key role in determining the efficiency and instabilities
magnetic confinement of fusion-grade plasmas [9]. GTS

future architectural designs. The first application comes fro , ! .
from magnetic fusion. Here we take an important magnett&s been developed in Fortran 90 (with a small fraction coded

fusion particle code that already includes several levels i (_:)_and pa_rallehzed using MP_I and_ OpenMP_ with hlghly
parallelism including hybrid MPI combined with OpenMP. Inoptlmlzed serial and para_llel sectl_ons; i.e., SSE instructions or
this case we study how to include advanced hybrid models tpdper fp rms of vectorization prowded by modern processors.
use multi-threaded MPI support to overlap communication aﬁcﬁ)r th|§ paper GTS smula‘uon runs have been gonduqted
computation. In the second example, we consider a portion%ﬁnu'at'ng a Iab'oratory-§|ze tokamak of 0.932m major r_a@us
a large computational chemistry code suite. In this case, \%d_ 0-334”_‘ minor rao!lus confmmg_ a total of 21 b|II|o_n
consider what parts of the computation are good candidates %\lrtlcles using a domain decomposition of two million grid

GPU acceleration, which is one likely architectural componeHPintS on Cray’s .XT4 anq XTS supercomputers.
on future Cray platforms. Here we show performance imple- In plasma physics applications, the PIC approach amounts to

mentation and improvement on a current GPU cluster. Final ,IIO\t/vmg the t:ajefptlc()jrlesTﬁf chargedt ptgrtlclefzsﬂ:n sehlf-conzlster_ltt
we consider an application from fluids/material science that -éec romagnetic fields. The computation of the charge density

currently parallelized by a standard MPI-only model. We usaé each grid point ari§ing from neighbor.ing particles is called
tools on the XT platform to identify bottlenecks, and show hoW'€ Scatter phase. Prior to the calculation of the forces on

significant performance improvement can be obtained throu ﬁCh Ipa::t,lc'le fro’m the t'ela:trlc potet.ntlajiﬁ([h?rlzhaste) t'_l
optimizing library utilization. Finally, since this code is MPI- € solveraisson's equatiofior computing the Tield potential,

only, we consider if this code is amenable to hybrid paralleliz&fhiCh only needs to be solved on a 2D poloidal plarhis

tion and discuss potential means for including hybrid code Vliraformqtion is then us_ed for mov_ing the particles _in t.ime
automatic hybridization tools. according to the equations of motiopush phase), which is

the fourth step of the algorithm.
Il. FUSION APPLICATION B. The Parallel Model
A. GTS — A massively parallel magnetic fusion application The parallel model of GTS has three independent lev@ls

The fusion application chosen for this study is the Gyrok@TS uses a one-dimensional (1D) domain decomposition in

netic TOI_(amak Simulation (GTS) code [27], Wh_iCh is a global 1Fast particle motion along the magnetic field lines in the toroidal direction
3D Particle-In-Cell (PIC) code to study the microturbulencigads to a quasi-2D structure in the electrostatic potential.



the toroidal direction (the long way around the torus). Th
is the original scheme of expressing parallelism using t
Message Passing Interface (MPI) to perform communicati
between the toroidal domains. Particles can move from o
domain to another while they travel around the torus — whig

adds another, a fifth, step to our PIC algorithm, shét phase. e,

This phase is of major interest in the upcoming sections. O e —
nearest-neighbor communication in a circular fashion (usi =
MPI_Sendrecv functionality) is used to move the particl
between the toroidal domains. It is worth mentioning thj
the toroidal decomposition is limited to 64 or 128 planes
which is due to the long-wavelength physics that we are S ) - ) R
studying. More toroidal domains would introduce waves C?egris:iltly ﬂ(j(‘zl;iattizl;]o;dal domain decomposition with magnetic field lines and
shorter wavelengths in the system, which would be dampened

by a physical collisionless damping process known as Landau

damping; i.e. leaving the results unchanged [9]. Using highgTGDT) [17], which is supposed to cause the experimentally
toroidal resolution only introduces more communication Witbbserved anomalous loss of partic]es and heat at the core
no added benefi(2) Within each toroidal domain, we divide of magnetic fusion devices such as tokamaks. Blue and red
the particles between several MPI processes, and each proggess in the cross sections denote lower (negative) and higher
keeps a copy of the local gfidrequiring the processes within positive) fluctuation densities, respectively. These fluctuations
a domain to sum their contribution to the total charge densigtach to the magnetic field lines — a typical characteristic of
on the grid at the end of the charge depositionsoatter plasma turbulence in tokamak reactors.

step (using MPIAllreduce functionality). The grid work (for  |n the following, we focus on one particular step of GTS
the most part, the field solve) is performed redundantly an the shifting of particles between toroidal domairs and
each of these MPI processes in the domain and only thRcuss how to exploit new OpenMP functionality, which will

particle-related work is fully divided between the processege substantiated with performance results on our Cray XT
Consequently, GTS uses two different MPlI communicatorgiachines at NERSC at the end.

i.e., anintradomain communicatowhich links the processes
within a common toroidal domain of the 1D domain deC The GTS Particle Shifter & how to flght Amdahl’'s Law
composition and atoroidal communicatorcomprising all The shift phase is an important step in the PIC simulation.
the MPI processes with the same intradomain rank in Adter the push phase, i.e., once the equations of motion for
ringlike fashion.(3) Adding OpenMP compiler directives tothe charged particles are computed, a significant portion of the
heavily used (nested) loop regions in the code exploits theoved particles are likely to end up in neighboring toroidal
shared memory capabilities of many of today’s HPC systerdsmains. (lons and electrons have a separate pusher and shift
equipped with multicore CPUs. Although of limited scalabilityoutines in GTS.) This shift of particles can happen to the
due to the single-threaded sections between OpenMP paradigéjacent or even to further toroidal domains of the tokamak
loops and also due to NUMA effects arising from the shareahd is implemented with MPBendrecv functions operating
memory regions, this method allows GTS to run in a hybrigh a ring-like fashion. The amount of shifted particles as well
MPI1/OpenMP mode. Addressing the challenges and benefis the number of traversed toroidal domains depends on the
involved with hybrid MPI/OpenMP computing — i.e., takingtoroidal domain decomposition coarseningize€tama) the
advantage of shared memory inside shared memory nodésge step resolutiontgtep, and the number of particles per
while using message passing across nodes — and applicatiogls (micell); all of which can be modified in the input file
of new OpenMP functionality (OpenMP tasking in OpenMProcessed by the GTS loader.
3.0 [3]), is described in the next sections. These advancedlhe pseudo-code excerpt in Listing 1 highlights thajor
aspects of parallel computing should be applicable to mastepsin the original shifter routine. The most important steps
massively parallel codes intended to run on HPC systems withthe shifter are iteratively applied and correspond to the
multicore designs. following: (1) checking if particles have to be shifted, which
Figure 1 shows the grid of GTS following the magnetiés communicated by the allreduce call — Lines 3 to 10 in
field lines as they are twisting around the torus as well &ssting 1; (2) reordering the particles that keep staying on
the toroidal domain decomposition of the torus. The twthe domain — Line 23 in Listing 1; (3) packing and sending
cross sections demonstrate contour plots of density fluctymrticles to left and right by MPBendrecv calls — Lines 13
tions driven by lon Temperature Gradient-Driven Turbulende 20 and Lines 26 to 32 in Listing 1; and (4) incorporating
shifted particles to the destination toroidal domain (the two

2Recently, research has been carried out to investigate different formS|@bpS at the end of the shifter) — Lines 35 to 43 in Listing 1.
grid decomposition schemes — ranging from the pure MPI implementation

to the purest shared memory implementation using only one copy of the grid,The shifter routine involves _heav@ommunicationdu? tO_
and all threads must contend for exclusive access [20]. the MPI Allreduce and especially because of the ring-like



do iterations=1,N I$omp parallel

lcompute particles to be shifted 2 I$omp master 2
I1$omp parallel do do i=1,N
shift_p=particles to_shift(p_array); 4 MPI_Allreduce (inl,outl,length ,MPINT, 4
MPI_SUM, MP| COMM_WORLD, ierror);
Ilcommunicate amount of shifted 6 1$omp task 6
I particles and return if equal to O MPI_Allreduce (in2 ,out2 ,length ,MPINT,
shift_p=x+y 8 MPI_SUM,MPI COMM_WORLD, ierror); 8
MPI_ALLREDUCE ( shift_p , sum_shift_p); I$omp end task
if (sum_shift_p==0) { return; } 10 enddo 10
I$omp end master
Ipack particle to move right and left 12 I$omp end parallel 12
c!igomgl ’pxarallel do 14 Listing 2. Overlap MPIlAllreduce with MP| Allreduce
sendright(m)=parray (f(m));
enddo 16
|
dﬁ"?ﬁg 1 pyarallel do 18 hybrid approach with its serial and parallel work sections at
sendieft (n)=parray(f(n)); each MPI process implemented in GTS. Hence, the expected
enddo 20 parallel speed-up for the shift routine — as well as of any

o ) _ other parallel program following this hybrid approach — is
! refﬂrldehro lrsr("a':r'pg )p_a”'c'es o fill holes 22 gyictly limited by the time needed for the sequential fraction
- P y ) 24 of this section the MPI task; a fact that is widely known as

Isend number of particles to move right Amdahl’s law
MPLSENDRECV(x, length =2 ,..); 26 The goal is to reduce the overhead of the sequential parts
'send to right and receive from left as much possible bypverlapping MPI communication with
MPLSENDRECV(sendright , length=g(x) ,..)28  computatiorusing the new OpenMP tasking functionafityn
Isend number of particles to move left . .
MPI_SENDRECV(y, length =2 ,..): 30 order t.o'detect over]appable code regions and for preserving
Isend to left and receive from right the original semantic of the code, we (manually) look for

MPI_SENDRECV (sendleft ,length=g(y) ,..); 32 data dependencies on MPI statements and surrounding com-
putational statements before code transformations are applied.

!ald;'”g Sh'ftﬁdl pda”'c'es from right 34 Figure 2(b) gives an overview of the new hybrid approach
aoomgl F)Xara el do 36  Where MPI communication is executed while independent
p_array (h(m))=sendright(m); computation is performed using OpenMP tasks. It can be
enddo 38 easily seen from Figure 2 that the runtime of our application
ladding shifted particles from left following the new approach is reduced approximately (add
égor:gl pyara”e' do 40 OpenMP tasking overhead) by the costs of the MPI communi-
p_a”’ay (h(n))=sendleft(n); 42 cation repre;emed by the dashed arrow. Below we will present
enddo three optimizations to the GTS shifter:
} 44 (1) We overlap the MPIAllreduce call at Line 9 from
Listing 1. Original GTS shift routine Listing 1 with the two loops from Lines 14 and 18. We

preserve the original semantics of the program since the

packing of particles is independent on the output parameter

of the MP| Allreduce call. The transformed code segments
MPI_Sendrecv at every iteration step in each shift phassre shown in Listing 3, where we used OpenMP tasks
where several iterations per shift phase are likely to occte overlap the MPI function call. Note, that shifting the
In addition, intensecomputationis involved mostly because MPI_Allreduce call below the two loops does not add extra
of the particle reordering that occurs after particles have beeverhead. Note, the program leaves that function in case of
shifted and incorporated into the new toroidal domain respegzm_shift_p == 0 and so, the packing statements right
tively. Note, that billions of charged particles are simulated iafter the MP1 Allreduce call in the original code could be
the tokamak causing approximately to the order of millionsointlessly executed. However, unnecessary computation is not
particles to be shifted at each shifter phase. the case because af== y == 0 for each MPI process in

While most of the work on the particle arrays can be straigh@ise ofsum_shift_p == 0.

forward parallelized with OpenMP worksharing constructs on The master thread encounters (due to statement at Line
the loop level, a substantial amount of time is still spent in nod from Listing 3 only the thread with id executes the
parallelizable (single-threaded) particle array work (sorting)

and in the MP1 communication which is processed sequentiall 30penMP version 3.0 introduces the task directive, which allows the
ogrammer to specify a unit of parallel work called explicit taskwhich

by the master .thread_ in our hyk_)rid parallgl _mOdel' Figure 2( presaunstructured parallelisnand definedynamically generated work units
demonstrates in a high-level view the original MPI/OpenMBmat will be processed by the team [3].
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| I I MPI _Init
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Start
& MPI process MPI process
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MPI_Finalize MPI_Finalize
(a) Original MP1/OpenMP hybrid model (b) MP1/OpenMP hybrid model using OpenMP tasks to overlap MPI

Fig. 2. Two different hybrid models in GTS using standard OpenMP worksharing (a) or the newly introduced OpenMP tasks to execute MPl communication
while performing computation (b).

shift_p=x+y integer stride=1000
I$omp parallel 2 I$omp parallel 2
I$omp master I$omp master
I1$omp task 4 Ipack particle to move right 4
do m=1,x do m=1,xstride , stride
sendright (m)=parray (f(m)); 6 I$omp task 6
enddo do mm=0, stride—1,1
I$omp end task 8 sendright (mtmm)=parray (f(mtmm)); 8
I1$omp task enddo
do n=1,y 10 I$omp end task 10
sendleft(n)=parray(f(n)); enddo
enddo 12 1$omp task 12
1$omp end task do m=m, x
14 sendright (m)=parray (f(m)); 14
MPI_ALLREDUCE ( shift_p ,sum_shift_p); enddo
I$omp end master 16 1$omp end task 16
I$omp end parallel Ipack particle to move left
if (sum_shift_p==0) { return; } 18 do n=1,y-stride , stride 18
Listing 3. (1) Overlap MPIAllreduce in the GTS shifter éiorr?r?:(t)a,lzlt(ridefl,l 20
sendleft(n+nn)=parray (f(n+nn));
enddo 22
highlighted regions) the tasking statements and creates wor ! $omp end task
. enddo 24
for the thread team for deferred execution; whereas the I$omp task
MPI_Allreduce call will be immediately executed, which gives  do n=n,y 26
us the overlap. Note, that the underlying MPI implementation sendleft(n)=parray(f(n));
has to support at leaMPI_THREAD FUNNELEDas thread- enddo 28

1$omp end task
MPIALLREDUCE (shift_p , sum shift_p); 30
I$omp end master

ing level in order to allow the master thread in the OpenMP
model performing MPI calfs

However, the presented solution in Listing 3 is heavily 1gomp end parallel 32
unbalanced (because of # y; and the costs for the if (sum_shift_p==0) { return; }
MPI_Allreduce call is usually lower than the time needed for Listing 4. (2) Overlap MPIAlireduce in the GTS shifter

the loop computation) and does not provide any work for more
than three threads per MPI process. For this we subdivided
the tasks into smaller chunks to allow better load balancing
and scalability among the threads. This is shown in Listingthe extent ofstride. Listing 4 has now four loops because of
where the master thread generates multiple tasks with 100psHi@ remaining computation in the two additional loops to the

4To determine the level of thread support from the current MPI library on%Xterlt of (E MOD stmde) and @ MOD strzde) reSpeCtlveW'

can execute MPInit_thread instead of MPInit. (2) Applying similar tasking techniques enables us to over-



I$omp parallel potentially more time consuming than the particle reordering

I$omp master 2 (because of the middle MP$endrecv of Line 8 in Listing 5
!Somp task _ sending a large array), we can overlap the fourth original
!f;gloln;; oelr?d( F;-airl:ay)’ 4 MPI_Sendrecv of Line 32 in Listing 1 with the data inde-
6 pendent part of the remaining computation of the shifter, i.e.,

MPI_SENDRECV (x, length =2 ,..); the loop from Line 36 in Listing 1 by using, again, the newly
MPI_SENDRECV(sendright ,length=g(x) ,..)8 introduced OpenMP tasking functionality. This results into the
l$g/|n|:|_ssr’:|c?RnE1§\;§gr’ length=2,..); o code excerpt from Listing 6, where the second last loop from
i$omg end parallel Line 36 in Listing 1 has been overlapped with the fourth

} 12 MPI_Sendrecv of Line 32 in Listing 1. Similar to the previous

code optimization from Listing 4 the master threads creates
multiple tasks for the loop from Line 36 in Listing 1 in order

to keep all the threads in the team busy while the master thread
is responsible for sending and receiving data from neighboring

Listing 5. Overlap particle reordering in the GTS shifter

I$omp parallel

I $omp master 2 MPI processes.
ladding shifted particles from right
do m=1,x-stride , stride 4
I $omp task To sum up, by applying those three code transformations
do mm=0, stride—1,1 6 we are able to overlap all (iteratively called) MPI functions
engag”a}’(h(m)F sendright(m); o from the original shifter routine of GTS from Listing 1. We

are aware of the fact that for different parts of GTS or other

1$omp end task L o
zrelkdls 10 MPI parallel applications such optimizations cannot always
I $omp task be applied due to complicated data dependencies. However,
do m=m, x 12 the aim of these code examples starting from Listing 4 to
engag”ay(h(m)FSendright(m): " Listing 6 is to discuss these new optimization possibilities

provided by OpenMP tasks. The presented techniques, i.e.,

|
SR B sl 16 overlapping (collective) MPI communication with computa-

MPI_SENDRECV(sendleft , length=g(y) ,..); tion, has not been the design incentive in the first place of the
I$omp end master 18 new tasking model, but we believe that it can play an important
t$omp end parallel 20 role in many of future HPC systems based on the hybrid

sadeling shiiied periicles fom @i MPI/OpenMP programming models. Forthg sake of cpmplete-
ness we want to mention that nonblocking collective MPI

I$omp parallel do 22 e ) > VI
do n=1,y communication, e.g., non blocking allreduce communication
p_array (h(n))=sendleft(n); 24 (MPI_lallreduce) are in the process of being standardized in
enddo the upcoming MPI 3.0 standard [21]. Nonblocking collective
Listing 6. Overlap MPISendrecv in the GTS shifter operations are already provided by libNBC [12], a portable

implementation of nonblocking collective communication on

top of MPI-1 which acts as the reference implementation for

. . . . e proposed MPI 3.0 functionality currently under consider-

lap the computation intense particle reordering from Line z?tion by the MPI Forum. However, libNBC is restricted to a

of the original code in Listing 1 with communication intens? L

. . few HPC platforms and also exhibits some overhead as seen
MP1_Sendrecv statements from Lines 26, 28 and 30 of L'S|tﬁ reviously performed research. In addition, we also see a
ing 1. Since the patrticle ordering of remaining particles and the P y P ' '

: T . . . enefit in using OpenMP tasking to overlap collective MPI
sending or receving of shifted paTt'C'?S.'S independently ex?:émmunicationgregzrding code pgrtability sinpce the optimized
cuted, the optimized code shown in Listing 5 does not changce)de will run on any system with MPI even if OpenMP support
the semantics of the original GTS shifter. In the new code from . ) o .

|§9/ not given, whereas libNBC is likely to be having made

Listing 5 any thread in the team does the reordering (alone!? ailable on a new svstem which miaht be difficult in a lot
while the master thread takes care of the MPI statemergtffsCases Einally. it s):wuld be remar?(ed that also OpenMP
(again, at leasMPI_THREAD FUNNELED has to be sup- ' °25€s- Y ; P
. o asking involves some extra overhead. Which approach —

ported by the MPI library); which does not keep all the threa(%sSin OpenMP tasking or new MPI nonblocking collectives
per MPI process busy (in caseM P_NUM_THREADS g op 9 9

T . — performs best remains to be seen once the new MPI 3.0
> 3), but still significantly speeds up the sequential code as .~ . :

. . version is available.
we will demonstrate at the end of the section.
(3) The careful reader might have noticed that the code

excerpt from Listing 1 only shows three MBendrecv while  In the next section we will present performance results of
the original shift routine in Listing 1 depicts four of themthe above mentioned code transformations and compare them

Since the three MPBendrecv statements from Listing 5 ar@o the results gathered when executing the original code.



2500 system. In addition, Figure 3 shows the impact of the shift

B Walltime routine to the overall runtime which denotes in this experiment
2000 B pusher to an average of 47% — therefore, a step in the PIC method
B shift that is worth optimizing.
1500 M charge 2) Performance Evaluation of OpenMP tasking to overlap
1000 B poisson cgmmunication with computation?l_’he _diagram_s shoyvn in
B smooth Figure 4 present four GTS runs with different input files and
500 B field domain decomposition executed on the Franklin Cray XT 4
Bload machine. Figure 4(a) gives the breakdown of the runtime for
0
192 384 768

Time in Seconds

the GTS shift routine with the torus divided up into 128
domains, where each toroidal section is further partitioned into
2 poloidal sections. The first two bars compare the overall
Fig. 3. Evaluation of MPI/OpenMP hybrid model with GTC on Hopper. runtlme of the .Shlfter ”5'_“9 the optlmlzed version (shown
in dark gray) with the original one (light gray). The other
three groups compare the runtime of the three previously
D. Performance Results introduced code pie_ce_s using OpenMP tasks with th_eir_ original
counterparts from Listing 1: "Allreduce” reflects the timing for
The following experiments have been carried out ahe code shown Listing 4, "FillingHole” corresponds to the
NERSC'’s Franklin — a Cray XT4 system having 9572 contode from Listing 5 and "SendRecv” is the measurement for
pute nodes with each node consists @#aGHz single socket Listing 6. Those three parts together with other computation
quad-core AMD Opteron processor (Budapest) — and Hopps the particle arrays (as indicated at Line 4 in the original
— a Cray XT5, which in the current phase | has 664 compug®de shown in Listing 1) add up to the numbers presented
nodes each containing twp.4 GHz AMD Opteron quad- in the "Shifter” group. Besides that different input settings
core processors — machines. The second phase of Hoppe., varying the number of particles per cell) have been used
arriving in Fall 2010, will be combined with an upgradedo generate Figures 4(a) to Figures 4(d), the main difference
phase 1 to create NERSC's first peta-flop system with ovier that the number of poloidal domainsiartdom) goes
150000 compute cores. On Franklin we use the Cray Compitesm 2 to 16. As indicated in the introduction of the parallel
Environment (CCE) versiofi.2.1 and the Cray supported MPImodel of GTS in section II-B, all the MPI communication in
library version4.0.3 based MPICH2. On Hopper CCE versiornhe shift phase uses taroidal MPI communicatarwhich is
7.1.4.111 and Cray MPICH2 versios.5.0 is used. constant of size 128 in the four presented figures. However, as
1) Benefits & Limitations of hybrid Computind@efore we it can be seen from Figure 4, it clearly makes a difference if
present runtime numbers of the OpenMP tasking optimizparticles are shifted in the 128-MPI-processes-toroidal-domain
tions, we want to address the benefits and limitations of tloé a GTS run with an overall usage of 256 MPI processes
hybrid approach on the Gyrokinetic Toroidal Code (GTC) [8]Figure 4(a)) than in a 128-MPI-processes-toroidal-domain of
another global gyrokinetic PIC code, which shares the similarGTS run with a total of 2048 MPI processes (Figure 4(d)).
architecture to the GTS code discussed in this paper, afiis is mainly because the MPI processes part of the toroidal
uses the same parallel model. Therefore, the following stut§Pl communicator in larger MPI runs of GTS are physically
for GTC also applies to GTS. Figure 3 illustrates runtiméurther away from each other than in a GTS run with fewer
numbers of four GTC runs using the same input parametdi®l poloidal domains; hence, causing more burden on the
but varying the MPI/OpenMP ratio. All four runs are usingCray Seastar interconnect to sending messages. The speed
the same number of compute cores on Hopper. Hence, the firgt or to put it in other words, the difference between the
group represents the runtime of GTC using a total of 192 MBhrk gray bar and the light gray bar, for each phase in the
processes where each MPI process creates 8 OpenMP thregltifter is the time consumed by the MPI communication which
Each group has eight columns reflecting the overall walltimis, overlapped in the newly introduced shifter steps (to sim-
which is the aggregation of the remaining seven columns, i.plify matters, neglecting the overhead involved with OpenMP
the PIC steps in GTC. The second group depicts experimetasking and assuming that the costs of loops workshared
with a total of 384 MPI processes with 4 OpenMP threadsith traditional "omp parallel do” statements is the same
per MPI process and so forth. Figure 3 clearly demonstrat@s processing those loops workshared with OpenMP tasks.).
that the hybrid approach outperforms the pure MPI approabtoreover, we can observe that the benefit of the "SendRecv”
(the fourth group in Figure 3) because of the less MRiptimization (Listing 6) also depends on the number of MPI
communication overhead involved and better usability of thdomains. While Figures 4(a) to Figures 4(c) show no or
shared memory cores on the Hopper compute node. Howewaily marginal performance benefits, the speed-up due to the
this picture also points out the limitations (using 8 OpenMPSendRecv” optimization is about 18% in Figure 4(d) which
threads per MPI process performs similar to the pure MiRépresents a 2048 MPI processes run. The tremendous speed
approach) to a certain number of OpenMP threads per M due to the "Allreduce” optimization from Listing 5 (more
process due to NUMA and cache effects on the AMD Opterdhan 100%) in the 1024 MPI processes run is pleasant, but

1536
MPI Processes, {8,4,2,1} openMP threads per process
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Fig. 4. Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI process with varying domain decomposition and patrticles per cell
on Franklin showing that MPI communication can be successfully overlapped with independent computation using OpenMP tasks.

I$omp parallel
I $omp master
do i=1,N
MPI_Allreduce (inl1 ,outl ,length , MPINT,
MPI_SUM, MP| COMM_WORLD, ierror);
1$omp task
MPI_Allreduce (in2 ,out2 ,length ,MPINT,
MPI_SUM, MP| COMM _WORLD, ierror);
I$omp end task
enddo
I$omp end master
I$omp end parallel

Listing 7. Overlap MPIlAllreduce with MP| Allreduce

10

12

3) Overlap communication with communicatiorGoing
one step further in reducing the time spent in sequentially
executed MPI communication, we want to show early results
of experiments with overlapping of MPI communication with
other MPI communication succeeding in the control flow of
the parallel program that is data independent on the preced-
ing one. Examples in GTS are the consecutive independent
MPI_Sendrecv statements in the shifter from above and four
consecutive independent MRAllreduce calls in the ion pusher
phase.

Figure 5 presents runtime comparisons of succeeding and
independent MPIAllreduce calls with varying messages sizes.
Figure 5(a) and Figure 5(b) show the time it takes with 1024
MPI process (2 OpenMP threads per MPI process), 512 MPI
processes (4 OpenMP threads per MPI process) and 256 MPI

is likely to be just a positive outlier and requires furtheprocesses (8 OpenMP threads per MPI process) to execute the

investigation.

code shown in Listing 7, which is highlighted in dark gray

Next, we want to conclude our experiments with a gidars and compare it with the costs of processing the code
cussion about the overlapping of MPI communication with

consecutive, independent MPI communication.

5In the hybrid MPI/OpenMP programming model the remaining cores are

idle when one core executes an MPl command.
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Fig. 5. Performance evaluation for overlapping execution of two consecutiveAlRiduce calls on Hopper.

from Listing 7 without OpenMP compiler support, i.e., withoutially for massively parallel applications such as GTS scaling
the overlap. Consequently, the number of used CPU coreaujs to several thousands of compute cores. Consequently we
constant (==2048) in these experiments. Figure 5(a) refletislieve that similar strategies can be applied to other massively
a run with MP] Allreduce calls of just one integer variableparallel codes running on cluster equipped with multicore
whereas Figure 5(b) shows results for MRIreduce calls processors. As collective and/or point-to-point time increas-
of an integer array of size 100. While no performance gaingly becomes a bottleneck on future HPC clusters comprising
can be observed in the experiment with allreduces of sizetHousands of multicore processors, using threading to keep
(Figure 5(a)), we can see a slight overlap in Figure 5(b) féhe number of MPI processes per node to a minimum and to
the 4- and 8-OpenMP-threads run. The run with 4 OpenM®erlap — if possible — those MPI calls with independent
threads is of major interest since it reflects the recommendagatrounding statements is a promising strategy. Furthermore,
MPI1/OpenMP ratio for production runs on Hopper, whichwe showed early experimental data of overlapping MPI com-
can been verified when looking at GTS performance resuttaunication with independent MPI communication, which we
on Hopper in Figure 3. However, we also see that no fullelieve to be another valuable feature for future multicore HPC
overlap could be achieved, but expect better threading suppeyrstems. Finally, we point out the presented code transfor-
from upcoming MPI libraries. We are aware of the fact thahations and data dependence analysis have been manually
100% overlap is impossible to achieve due to the sequentialried out and could be performed by automated source-
nature of communication in a single network, but these eatly-source translating compilers such as the ROSE compiler
experimental data has already demonstrated that some (tofthenework [22] using static analysis techniques to guide subse-
programmer invisible) steps of the MRllreduce call can quent code optimizations. The ROSE compiler framework will
be successfully overlapped. Moreover, with optimal suppdse introduced in more detail in section IV-E of the material
of the MPI. THREAD_MULTIPLE threading level in MPlI modeling application.

libraries such as already implemented in MPICH2 — where

any thread can call MPI functions at any time — we expect I1l. CHEMISTRY APPLICATION

a significant performance gain in (partially) overlapping mora. Introduction

consecutive independent collective MPI function calls (e'g"Q-Chem is a computational chemistry software that spe-
the four consecutive independent MRllreduce calls occur- cializes in quantum chemistry calculations, which includes

rlngdlnl th.e |onfpusher phase of ('jIjITr?) in ihydb”d prograrnm'p-qartree—Fock (HF), density functional theory (DFT), coupled
mol e | since future systems witt aveh ar \INare supgortz fuster (CC), configuration interaction, ands\Nér-Plesset per-
multiple, concurrent communication channels per node [23},;,, theory. Many of these calculation methods provides

S|m(|jlar eﬁperlm: nts to thghone showr_1 n Hgin% 7 have lFe‘?Qsearchers with the ability to accurately predict molecular
conducted on Hopper with consecutive MBendrecv calls equilibrium structures, which entails minimizing energy with

achieving similar same speed-ups. respect to atomic positions. Due to the extreme reliability of
these theoretical predictions, they can be considered suitable
alternatives to experimental structure determination. In this
Summing up, we have demonstrated that overlapping Mpéper, we focus on the second-ordeplldr-Plesset perturba-
communication with independent computation by the newljon theory (MP2), which initially starts off with the mean-
introduced OpenMP tasking model has a large potential, esfield HF approximation [1] and treats the correlation energy

E. Conclusion



via Rayleigh-Schiidinger perturbation theory to the second Figure 6 provides proportional wall times for each one of
order [19]. More specifically, we focus on a MP2 method thahe aforementioned steps for different glycine-n molecules for
utilizes the resolution-of-the-identity (RI) approximation [18]n = 1, 2, 4, 8, and 16 with cc-pVDZ correlation-consistent
in which the incorporation of the Rl-approximation into théasis sets. All of these initial simulations were conducted on
MP2 theory (RI-MP2) results in usage of auxiliary basis séihe Greta cluster, which consists of AMD quad-core Opteron
to approximate charge distributions, subsequently reducing fir®cessors. From the figure, we can see that as the system size
computational cost of the MP2 method. increases, time spent in step 4 becomes proportionally larger.
Compared to DFT, which is a popular alternative methdgor example, for glycine-16 (115 atoms) input,%8®f the
used to conduct electronic structure calculations, RI-MP2 daegal RI-MP2 routine wall time is spent in step 4. Subsequently,
not suffer from the self-interaction problem [15] and cawe focus our effort to reduce the step 4 computation time.
account for 80-9% of the correlation energy [14]. Moreover,For large size molecules, step 7, which finalizes the gradient
geometry optimizations using MP2 methods have generatedhluation occupies the next largest step time and we list the
equilibrium structures more reliable than HF, popular DFT atetal times in Table | for various glycine molecules.
ternatives and in some cases even CCSD. Unfortunately, ther&lext, we further analyze what is actually happening in the
exists a fifth-order computational dependence on the systetap 4 portion of the code. Step 4 consists of assembl“)ﬁof
size when the MP2 and RI-MP2 theory is formulated in a basj%cf), and P]SQ,) matrices, which are obtained from BLAS 3
of orthonormal set of eigenfunctions that diagonalize the Foekatrix matrix multiplications and entail quintic computational
matrix. Comparatively, DFT methods can demonstrate neadfforts due to iterations over all and j. In addition, there
linear scaling for reasonably extended molecular systengsists three quartic I/O steps, which are needed to construct
which is a major reason why DFT remains more popular. Thuge core quantities described above as unfortunately for large
in order to obtain RI-MP2 geometry optimizations for largénolecules, we cannot fit all the necessary data into CPU
molecular systems in a reasonable time, we need to expl@iemory all at once and thus need to read and write into
ways to cut down on the computational cost. In this workemporary files stored in the hard drive as the code progresses.
we utilize graphics processor units (GPU) to speed up tkrere is a more detailed look at the algorithm involved in this
RI-MP2 energy gradient calculations. Similar work has beeftep [5], which is also included in the CPU RI-MP2 paper.
conducted on the RI-MP2 energy calculation and a speeduppe have converted this step 4 CPU routine to CPU+GPU
of 4.3x has been observed in single point energy calculatiog8)DA C routine. For our numerical simulations, we have
of linear alkanes [26]. Compared to the CPU, more transistajsed the Tesla/Turing GPU cluster at NERSC, which is a
in GPUs are devoted to data processing as opposed to caglkbed consisting of two shared-memory nodes named Tesla
memory and flow control. As such, there exists potential feind Turing. Each are Sun SunFire x4600-M2 servers with
massive parallelism within the GPUs and applications that c8nAMD quad-core processors, 256 GB shared memory with
be easily formatted into the SIMD (single instruction, multipléhe two nodes sharing an NVidia QuadroPlex 2200-S4, which
data) instructions can benefit greatly from using GPUs.  contains four NVidia FX-5800 Quadro GPUs, with each GPU
B. GPU RI-MP2 gradient algorithm having 4GB of memory and 240 CUDA parallel processor

cores.
In this section, we first explain the CPU algorithm used

in Q-Chem, analyze the computational cost associated with
the different steps of the current program, and finally provic

an alternative GPU algorithm. In Q-Chem, the CPU RI-MP 90

gradient code works under following constraints: quadrat 80

memory, cubic disk storage, quartic I/O requirements, ar = 70

quintic computational cost with respect to system size. W é 60 u glycine-1
adhered to these constraints while optimizing for the con GEJ 50

putational cost. The initial RI-MP2 gradient algorithm (while .2 40 K glycine-2
omitting the self-consistent field (SCF) procedure) consists =

seven major steps: (1) RI-overhead: formation of tRéQ) ! g 30 glycine-4
matrix, (2) construction and storage of the three-center 20 )
integrals in the mixed canonical MO basis/auxiliary basi 10 N y “ glycine-8
(ia|P) (3) construction of theij matrix, (4) assembly of 0 | il ni Ivcine-16
the Fg (i.,e. RI-MP2 correction to the two particle density gl
matrix), Pc(g) (i.e. virtual-virtual correction to the one-particle Q'\/ Q'\' é’? QV é’ Q<° 6\

density matrix), andP,g) (i.e. active-active correction to the c;@ éq’ 8,& c’}q’ 8}?’ c;@ é&

one-particle density matrix), (5) construction of*° (i.e.
the RI-MP2 specific two-particle density matrix), (6)2%

trans.position, and (7) assembly of tﬁ,_eP, andW matrices.; Fig. 6. Percentage RI-MP2 wall time for glycine-n molecules with n = 1,
solution of theZ-vector equation and final gradient evaluatiorg, 4, 8, and 16.



Loop over active occupied orbitals,
Load (ia|P) V a, P, giveni from disk

Loop over batches of active occupied orbitals,

Loop overj € ob
Load Cf; ¥ b, given j from disk
Make (ia|jb) = Xp(ia|P)Cf, ¥ a, b
Make tf}’ = (iaHjb)/Afjb Va,b
Accumulatet(} ¥ a, b, j € ob, giveni
IncrementE g, pa+ = 5157 (ial|jb)
IncrementP.,+ = Syt{lte V a, ¢, givenij
Incrementl'? + = Syt C’ﬁ Y a, P, givenij
End Loop overj € ob

Loop over batches of active virtual orbitatsh
Extractt;? V a € vb, b, j € ob, giveni
Write t¢ V a € vb, b, j € ob, giveni to disk
End Loop over batches of active virtual orbitais,

End Loop over batches of active occupied orbitals,
Write 'Y ¥V a, P, giveni to disk

Loop over batches of active virtual orbitals)
Load t{? V a € b, b, j € ob, giveni

Loop overa € vb

Extractt}? V' b, j, given (ia)

IncrementP,;+ = Sytite? vV j, k, given (ia)
End Loop overa € vb

End Loop over batches of active virtual orbital$,
End Loop over active occupied orbitals,

Fig. 7. Detailed look at the algorithm behind step 4

For all simulations, we have used CUDA Toolkit and SD
v2.3. For matrix matrix multiplications, we initially used.
the CUBLAS 2.0 library but later on switched to Vasily
\Volkov's GEMM kernel given that CUBLAS cannot be called
with the asynchronous API. This is a big downside of the
current CUBLAS library and accordingly it disallows us t
concurrently copy data from CPU to the GPU (and vice versa
while using any of the CUBLAS matrix matrix multiplications.
In our code, we are only interested in the double precisi
matrix matrix multiplications given that extra precision i

TABLE |
STEPR4, STEP/, AND TOTAL WALL TIME IN SECONDS

n=1 n=2 n=4 n=2~8 n =16
step4 2.1 215 485.3 4993.8 80913.1
step7 | 21.6 112.1 455.6 17379 115325
total 66.0 264.7 1289.1 7102.4 96901|9

(0]

S

important in most quantum chemistry calculations. Double-
precision general matrix multiply subroutines (DGEMM) are
considerably slower than the single-precision general matrix
multiply subroutines (SGEMM) (at least for non-Fermi archi-
tecture GPUs) as we obtain a maximum value of around 75
GFLOPS using the GPU as opposed to reports of around 350
GFLOPS for SGEMM. For the CUBLAS DGEMM routine,
performance numbers varied greatly depending on whether the
dimensions of the input matrices were multiplesiéfor not.

For example, upon multiplying 4340 x 915 matrix A with

915 x 915 matrix B, we found the performance number to be
53.04 GFLOPS. On the other hand, upon multiplyingta52

X 928 matrix A with 928 x 928 matrix B, we obtainedr4.36
GFLOPS. In comparison, using Volkov's DGEMM kernel
gave us smaller variatioriv§.50 and 74.77 GFLOPS for the
aforementioned cases). It's unclear why the numbers vary so
greatly in the CUBLAS DGEMM routine but we suspect it
might be related to the fact that global memory loads and
stores by threads of a half warp (16 threads) and accordingly,
these transactions are not being properly coalesced in the
CUBLAS DGEMM routine for matrices whose dimensions
are not multiples ofi6.

The step 4 algorithm can be seen in figure 7. Given that the
number of active occupied orbitals is greater than the number
of active virtual orbitals, the most computationally intensive
part of the step 4 routine occurs during the loop oyer ob.
Most of this paper will concentrate on the algorithm inside this
loop. Within thej € ob loop, the CPU code was transformed
into a CPU + GPU code in a following way in our initial
implementation. First, the matriX’ﬁ, was read from hard drive
for a givenj. Afterwards, the matrix, which is stored as a
one-dimensional vector, was transferred from the CPU to the
GPU memory via the PCI Express using the cudaMemcpy
CUDA kernel call. Because Tesla/Turing has a PCI Express
1.1 with only 8 lanes, the data transfer bandwidth peaked only
at around!.4 GB/sec. A new NERSC GPU cluster called Dirac
is equipped with PCI Express 2.0 with 16 lanes so we expect
he data transfer bandwidth to be much higher in this cluster
5 — 6 GB/sec). Unfortunately, Dirac is still undergoing its
initial configurations and unavailable to users at this moment.
Once the data is in the GPU, we call the DGEMM kernel
and obtain(ia|jb) with the matrix matrix multiplications. For
subsequent operations inside the loop, we need not transfer the
dzta stored in the GPU memory back to the CPU given that we
can conduct all of our operations inside the GPU. In general,
transferring data back and forth over the PCI Express lane is

on

costly and should be avoided as much as possible. Fortunately
In our program, we only need to transfer the GPU data back to
the CPU at the end of the loop when our work is finished. At
the end of our first implementation, the total computation cost
inside this loop for a given iteration is as follows;,; = T}cqq

+ Ttrunsfer + Tmm1 + Tmmg + Tmmg + TTCSt! WhereTread is

the time it takes to read the matrix from the hard drive to the
CPU memoryITi qnsfer is the time it takes to transfer matrix
data from the CPU to the GPU memof,,,, is the time it
takes to conduct th&" matrix matrix multiplication routine,



andT,..; is the time it takes to conduct other operations within
the GPU. For almost all input size$,..,, becomes trivial as
it consists of less thah% of T}.;.

From this initial implementation, we have made further
optimizations in the CPU + GPU step 4 routine. First,
we move thej = 0 CJ; file read routine and thg = 0
cudaMemcpy routine outside of its initial loop. Accordingly
inside the loop, we can concurrently execute the first matrix
matrix multiplication (i.e. Makeg(ia|jb)) in the GPU with the
loading of the secondg = 1 Cf; from the hard drive. This
is possible because in CUDA, control is returned to the host
(i.e. CPU) thread before the device (i.e. GPU) has completed

Loop over batches of active occupied orbitalg,

Load Cf; ¥ b, for j=0 from disk
move Cf; ¥ b, for j=0 from CPU to GPU

Loop overj € ob

Make (ia|jb) = Ep(ia|P)Cﬁ Y a, b (GPU)
Load C{;H)b v b, givenj + 1 from disk (CPU)
Make t§ = (ial[jb)/AY} ¥ a, b (GPU)
Accumulatety) ¥ a, b, j € ob, giveni (GPU)
IncrementEg;_ prpot+ = +t%(ial|jb) (GPU)

471
Incrementl’/, + = ¥t/ C1; V a, P, givenij (GPU)

its task, which allows programmers to overlap CPU work
with GPU work. This feature comes in extremely handy
especially when the GPU work is sufficiently long enough.
Next, we switch the order in evaluation &f, andT', for a
reason that will be explained subsequently. Because these two
guantities are not dependent on one another, we can safely
switch the order. Finally, we overlap evaluatidg, with a
copy routine that transfers the =1 Cﬁ from the CPU to

the GPU, keeping in mind that this data was read from the o ) )
file read routine that overlapped the first GPU matrix matrigUCh that the quintic computation does not dominate the wall

multiplication. In order to conduct asynchronous copies, wine over the quartic I/O processes, the latter remains to be

have to use the CUDA driver API called cudaMemcpyAsyn@ Problem on Tesla/Turing. One solution to combat for poor
We switched the order of the matrix matrix multiplicationd/© Performance is to conduct two different reads inside the

(P., and T2 in order to avoid a data race condition thaloop with each of these reads loading one half of the matrix
would havel aresulted from using the GPU délﬁ as both an respectively. The second read can be overlapped with other the
input to a matrix matrix multiplication as well as a copiec?”d GPl_J routine inside the loop suc_:h that we can further hide
data from the CPU. It's important to note that in order t§1€ costincurred by the CPU. Effectively, ma(., , Tread) +
utilize cudaMemcpyAsync, we need to use page-locked hdstm. Will become max(Gy,, Tread,) + MaXUrnnsy, Treads).
memory, which is a memory allocated on the host side V}I;.Jhere are some improvements in the pgrformance numbers as
CUDA routine (e.g. cudaMallocHost). This memory shoulal_e read is separated as such. We surmlse_tha_t these problems
be conserved as too much usage results in overall degradatifh 90 away on the new Dirac cluster with improved 1/0

in performance. Figure 8 is a flowchart of the new CPu Rerformance.

GPU routine that summarizes the important algorithm. The We can obtain a rough estimate and determine whep,

portion of the pseudo-code only relevant to aforemention®dll be comparable tdl};,.,, in a following way. The matrix
discussion is shown here. Cﬁ) has a dimension (NVirtbra, X), where NVirtbra = number

of virtual orbitals and X = number of auxiliary basis functions.
If we assignB to be the I/O bandwidth for a read operation in

At the end of our second implementation, the total wafB/sec,Trcaq = 10°B / (8:NVirtbra-X). Furthermore, matrix
time inside the loop for a given iteration is as follovig;, ~ (ia|P) has dimension (NVirtbra, NVirtora) and accordingly,
mMaxX(Crm, » Tread) + Trnms + MAXCrmss Tirans fer) + Trest- the total number of FLOP in the matrix matrix multiplication is
We need not worry about the cost of initiBl.,q andT} ... €0ual to 2(NVirtbra)(NVirtbra)(X). If we designatéy;,, to be
for j = O case given that the total number of iteration insidée matrix matrix multiplication GFLOPS,,,,.,, = 10° By, |
the loop is large enough that this cost becomes negligible. A&NVirtbra-NVirtbra-X). As a result, wherl.cqq = Tim, , We
system size increases, the quintic matrix matrix multiplicatidiave the following equalityB = -z~ For mid to large
calculations should dominate over the quartic I/O reads afge molecules such as glycine-8 and glycine-16 (58 and 115
transfers and accordingly, these costs will go away in principlatoms altogether), NVirtbra = 467 and 915 respectively. Given
Unfortunately in Tesla/Turing, the lack of local scratch result§at our peak DGEMM numbers are around 75GFLOPS, we
in poor /O performancel()0 — 150 MB/sec in worst case) would need for input read bandwidth to be greater than
and subsequentl{l;,...q becomes greater thdh,,,,, for many 642MB/sec in glycine-8 and 327MB/sec in glycine-16 to avoid
of our input molecules. For relatively smaller molecules, thiéO being the bottleneck. For the new NVidia Fermi chips, the
cache memory size is large enough that most of the data tR&EMM performance expects to be larger and accordingly,
has been read in th&" (outermost loop) iteration is kept insidewe will need better I/O performance as well so that the I/0
the cache, resulting in better /O performance &hngl,, > Cost remains hidden.

T,.qaq- But for a system in which the size is not large enough Provided that we have excellent I/O available to us, there

IncrementP.,+ = Syt{Vt V a, ¢, givenij (GPU)
moveC(},,, ¥V b, for j + 1 from CPU to GPU

End Loop overj € ob

Fig. 8. Step 4 CPU - GPU algorithm



is as good in TnT as in Franklin, the CPU+GPU wall time

T 500 would drop down to around 850 seconds, which would indicate
22000 - around 5.8x improvement from the Franklin cluster and 7.7x
g 1500 | = Franklin (CPU) improvement from the current TnT cluster.
- In summary, we have accelerated the Q-Chem RI-MP2 code
= 1000 N . ETT(CPY) by utilizing both the GPU and the CPU. We identified step
3500 1 1 1 4 as being the main bottleneck in the program and used
o Ll M N . TT (CPU + GPU) concurrent file reads with GPU matrix matrix multiplications.
We have also overlapped data transfer from the CPU memory
C  (ialjb) P Gamma to the GPU memory with additional GPU matrix matrix

multiplications by using pinned memory. Overall in the TnT
cluster, 1/O file read times far exceed the matrix multiplication
Fig. 9. Four main routines wall times in step 4 for glycine-8 molecule routines for mid to Iarge size molecules. As seen from the
results obtained from simulating glycine-8 on the Franklin

cluster, which has local scratch, we expect the I/O read time to

exists another additional room for improvement. The tergfy, ¢\t to zero (due to the overlap with the GPU calculations)
(ia|jb) represents the two-electron integral where mqugr clusters with better 1/0.

represent virtual and active molecular orbitals. As sgk];jb)

is just a matrix transpose dfja|ib) and we can reduce the IV. FLUID/MATERIALS APPLICATION

number of computation of these terms by half by storing th® The ALE-AMR fluid/solid mechanics application for mate-
(ia|jb) terms. Since these terms cannot be kept in memarigl modeling

due to their large size, we can overlap GPU routines with o| £ AMR is a new fluid/solid mechanics code that is used
CPU routines that transfer data from the GPU to the CPi; nqdeling materials at a wide range of temperatures and
memory and fmglly to _the hard drive to k_eep th_e CP_U COSfRnsities [16]. This code solves the fluid equations with an
hidden. In practice, this can be done without incurring t0gnisqtropic stress tensor on a structured adaptive mesh using an
much additional computational cost and would resulliify,, A £ (Arbitrary Lagrangian Eulerian) method combined with
reducing 10 0.5T;,, . Unfortunately, our algorithm would 5 ¢ ctured dynamic adaptive mesh interface. Its basic method
require addltl.onal quartic !/O stgps and exceed the cubic dlﬁh, combining ALE with AMR is based on an algorithm first
storage requirements, which might be problematic. suggested by Anderson and Pember [2]. Here, AMR stands
C. Results for Adaptive Mesh Refinement. The structured adaptive mesh
' library provides much of the parallelism in ALE-AMR by
For our results, we focus on the step 4 simulation time falividing the work into patches that can be farmed out to
glycine-8 molecule. We compare the results obtained from tharious processors that communicate using MPI. Additional
Tesla and Turing (TnT) cluster with the ones obtained froparallelism is provided by implicit solver libraries. How to
the Franklin (Cray XT4) cluster, which consists of 2.3GHbest exploit the parallelism in these libraries is the major focus
single socket quad-core AMD Opterons. Specifically, we loalf this section.
at the four most time-consuming routines in step 4: loading The current version of ALE-AMR supports a variety of
Cﬁ), making (ia|jb), making P.,, and makingl'%’ . physics models that are introduced via operator splitting,
From figure 9, we see that the 1/0O performance in Franklemd a new sophisticated algorithm for material failure and
is much better than in TnT (over 7 times faster) mostlfragmentation. The code can model a variety of materials
due to existence of local scratch on Franklin. In the GPldcluding plasmas, vapors, fluids, brittle and ductile solids, and
routine, the load irCf; is overlapped with the GPU makingthe effective viscosity of most materials can be represented.
(ia|7b) routine as mentioned in the previous section arflans are underway to include surface tension effects. Most
thus, the bottleneck becomes the I/O CPU read in the caseently a new diffusion based model for heat conduction and
of glycine-8. Specifically, maf(-cad, Trmm,) = Max(912.4, radiation transport has been added to the code. The code is
357.8) = 912.4 seconds. Just by looking at the matrix matrzurrently being used as a major component in the design of
multiplication routines, there exists about 6 times improvemetatrgets for the National Ignition Facility (NIF), which is the
in the DGEMM performance going from CPU to GPU. Thavorld largest laser. The code is also being applied to model
total step 4 wall time for simulations conducted on Frankliexperiments at the National Drift Compression Experiment
(CPU), TnT (CPU), and TnT (CPU + GPU) are 4945, 654ZNDCX) in Berkeley and other high-energy facilities in France
and 1405 seconds respectively. The discrepancy in wall tirmed Germany. Unlike the GTS code described earlier, this code
between Franklin (CPU) and TnT (CPU) comes not ony fromhoes not already have OpenMP mixed into the MPI code. So
Cfl’) load but from other I/O routines not seen from 9. As ithe question for it is bifold: what ways are possible to speed up
stands, there exists about 4.7x performance improvementtlie code without changing the MPI parallel model and would
moving from CPU to the CPU + GPU routine on TnT. Irthe code benefit from a hybrid programming model such as
the hypothetical situation where /0 bandwidth performanddPl with OpenMP.



B. Diffusion Solver Speed-up Applying the standard Galerkin approach yields the following

: . . linear system approximation
1) Introduction: Recent work on this code includes the de- 4 PP

velopment of heat conduction and radiation transport physics Au+b=f
modules. These effects are important to many of the NIF A= M, - K;s
target configurations that produce large temperature gradients (Ma)ij = Jo agid;d @
in the target materials. Both of these physical effects are (Ka)ij = JoaV; - V;dQ
modeled using the diffusion equation which is discretized by a b =20

newly developed AMR capable Finite Element Method (FEMyhere M is the mass matrix,K is the stiffness matrix,
solver [10]. The use of a FEM diffusion solver to model heaind an insulating boundary yields = 0. The integrals
conduction and radiation transport is well studied [23] as is thge approximated over the elements with a family of mass
integration of these physics modules into a hydrodynamic coflgnping quadrature rules and the global mass and stiffness
[24]. However, the extension of these methods to AMR gridfatrices are assembled using connectivity data obtained from
is novel, as such there are some interesting issues encountgfigdcomposite mesh mapping. We solve the resulting system
in the parallel behavior of this approach. of equations using the HYPRE [4] BiCG solver and the Euclid
In the following section we will give an introduction to[13] preconditioner.
the methods employed by the AMR capable diffusion solver Both heat conduction and radiation transport can be mod-
recently introduced into ALE-AMR. This will be followed by eled with relative ease using this diffusion solver. For heat
a description of some parallel computation issues that we haxgnduction the equation can be time evolved implicitly by
recently experienced and an explanation of the approachging the solver at each time step yielding
we used to debug these issues and improve the worst case 1 _pn e "
performance drastically. Co At =V % VnT i O‘gy +71L
2) AMR Capable Diffusion SolverTo work with ALE- 0=D"%0=—a-gI" [f=—§T
AMR a solver must be capable of operating on the multiwhereC, is the specific heaf]" is temperature represented at
level, multi-processor, block structured, patch-based SAMRAE nodesD is the heat conductivity, and is the absorptivity.
data representing the ALE-AMR field variables. The FEMIhe variables, o, andf are the diffusion equation parameters
however, requires data in a single level composite mesh formfa@m (1). Similarly the diffusion approximation to radiation
It is possible to use the SAMRAI data to form a fullytransport can be implicitly time evolved yielding
connected composite mesh, however, this is not necessary. g»+1_g» . " ~om n
The hierarchicalpblock structured nature of the SAMRAI datay fa =V )‘(TT)VERH +Rp(B" — cER")

®3)

n+l_ mn - n n
makes it possible to form a relatively simple mapping between Cv% 1: —Fp(B . CEjRH) )
the SAMRAI indices and the indices of a flattened composite 0 = A(55), 0 = —Fpc — x5, [ = —2; — FpB"

mesh. This mapping can be formed without the need @here £, is the radiation energy represented at the nodes,
creating and storing the composite mesh. The connectivity fis 3 function used to impose flux limiting on the diffusion
most nodes in this mesh can be found trivially. The nodes aﬂﬁproximation,c is the speed of lightx, is the Rosseland
cells at coarse-fine interfaces, however, are significantly MQBacity, 7 » is a modification to Planck opacity which is used
complicated. Extra connectivity data about these special noqgSinearize the equation as in [23], ad8l is the blackbody
and cells is stored to complete the composite mesh mappifigensity.

At the beginning of an ALE-AMR simulation, the composite 3) Parallel Issues:This diffusion solver and accompanying
mesh mapping is formed on the initial grid. Whenever the grigshysics modules have been put through a variety of unit tests,
changes through Lagrangian motion or AMR, the composit&curacy checks, validation studies, and performance analyses
mesh mapping is updated to reflect the changed grid. Usisgme of which can be found in [10]. The solver performs well
this mesh mapping it is possible to obtain the global igh all of these tests, however, when employed to solve larger
numbers for all of the nodes in a given cell. However, thgarallel problems in 3D, the solver performance often degrades
cells at the coarse-fine interfaces have extra nodes duetdothe point that it is unusable. To illustrate this problem
the refinement. Those extra nodes require basis functiang report some timing data we gathered while attempting to
to represent the solution within the cell and basis functionmderstand this problem on3D point explosion simulation
that maintain continuity across the coarse-fine interface aggh a uniform2-level AMR mesh.
advantageous. We build on the transition element work foundAs this table shows, the solver performance can be reason-
in [11] to create a family of elements suitable for our purposesble in some situations as with tRFz27227 mesh, and be

Using the composite mesh mapping and this family dérrible in other situations as with th&lx81281 mesh. The
transition elements it is now possible to apply the FEM withiperformance also seems to be reasonable with enGPU
the framework of ALE-AMR. We now turn our attention toallocated to the problem, but becomes rapidly worse as more
the solution of the following diffusion equation. CPUs are added.

In order to better understand this problem, we use
V.- oVu+ou=f (1) Open—SpeedShop, a performance analysis tool developed
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main (/usricasc/aleamr/afisherfaleamr/aleamr.zeus-mpiice-debug. 3d.ex: /usrica

i . . @ 288 in HeatConduction::postHierarchyAdvanceHook(SAMRAI::tbox::Pointe
by the Kre” Institute and recently InSta”ed at the NERSC @ 600 in FEMDiffusion::solve(int, int) (/usr/casc/aleamr/afisher/aleamrialeamr.
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Oﬁen a program iS exeCUting diﬁerent areas Of the COde HYPRE_BICGSTABSetup (/usr/casc/aleamr/afisher/aleamr/aleamr.zeus-mpiic
as We” as CO”eCting data on CharaCteriStiCS “ke tlme Spen hypre_BiCGSTABSetup (/usricasc/aleamr/afisher/aleamr/aleamr.zeus-mpiicc-c
in para”el communication. USing this data it is pOSSibIe to HYPRE_EuclidSetup (/usricasc/aleamr/afisher/aleamr/aleamr.zeus-mpiicc-del
gain |nS|ght into Where a program iS spending the most Wa-l Euclid_dhSetup (/usricasc/aleamr/afisher/aleamr/aleamr.zeus-mpiicc-debug.3c
clock time and the resources that each part of the prograi @ 0in factor_private (/usricasc/aleamr/afisher/aleamr/aleamr.zeus-mpiicc-deb
consumes. Specifically, we ran 'usertime’ experiments ir iluk_mpi_pilu {{usr/cascialeamr/afisher/aleamr/aleamr.zeus-mpiicc-debug. 3d.e;
Open—SpeedShop and viewed the ’hot called path’ of the @ 0iniluk_numeric_row_private (/usricasc/aleamr/afisher/aleamr/aleamr.zeus
ALE-AMR both for normal and degraded performance. The || 11SortedList_dhFind (/usr/casc/aleamr/afisher/aleamr/aleamr.zeus-mplicc-debug.
hot call path is the call stack of the program that is mosi
often encountered, and a good indicator of the code bottlenec
Below we provide hot call path data that we obtained fro
these experiments Figure 10. This data turns out to be qui
illuminating, as it seems that in the degraded case the program
is spending most of the wall clock time in HYPRE during theig. 10. Hot call path obtained by the Open—SpeedShop tool. This represents
preconditioner formation. The normal case spends most of thease where the program is running with the degraded performance issue.
time constructing and evaluating Jacobians which we expect
to have a high computational cost in any FEM, and may be a
future target for optimization in the ALE-AMR code. in the degraded case. One method for the solution of a linear
These results suggest that we need to understand whasystem with a matrix4 is to decompose the matrix into lower
happening inside of HYPRE that is causing such performanggd upper triangular parfsandU so thatA = LU. Using this
degradation. Fortunately, HYPRE has some options that c@@composition it is efficient to solveUz = b with a simple
give us a glimpse into how it is operating. We began enablirigont and back solve technique. 3 simulations thed matrix
debug messages to get a better sense of what HYPREC@§ be quite large with a sizable diagonal bandwidth, which
doing. This quickly told us that the solver iteration count wagakes computing and using this decomposition prohibitively
not changing significantly between the normal and degradeypensive. This is due to the fact that in computing the
simulation cases. This implies that the time spent per HYPRE/ decomposition, all of the zero values from the farthest
iteration is drastically different in the two cases. This leads @éagonal band to the main diagonal will be filled with non-
to consider the possibility that the systems being formed in t@eros, yieldingL. andU matrices with little sparsity.
degraded case are in some way far more expensive to solve. Iithe Euclid approach to this problem is to form Incomplete
order to better understand this possibility we modified ALEE andU (ILU) approximations that maintain some degree of
AMR to output the systemd matrix and plot the sparsity sparsity. The simple front and back solve technique is then
pattern. We also set up Euclid to print out the matrix it isised to as the inversion operation of a preconditioner4or
generating for the preconditioner. These sparsity plots shdWis improves the conditioning of the matrix system thereby
that the preconditioner matrix has a large amount of non-zesiocelerating convergence to the solution. The trade-offs in this
fill. This can be a manageable problem in serial since thespproach are between the computation cost of computing and
is no communication to worry about. However, in paralledpplying the incomplete matrices and the rate of convergence
this large amount of non-zero fill can be devastating as maty the solution. Generally, wheh and U are closer to the
of the new non-zeros will require communication during thactual L and U thus having less sparsity, the convergence is
preconditioner formation. faster, but the cost of computing and applyihgand U is

At this point, we must better understand how the Eucligigher.
preconditioner works in order to illuminate what is occurring It is now possible to consider remedies to the degraded
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Fig. 12. Looking at a fixed nhumber of MPI tasks on a varying number of
processors shows the potential of running OpenMP on the idle cores.

Fig. 11. Sparsity plots of the A matrix and the corresponding matrix created
by Euclid for preconditioning. Notice the large amounts of additional non-ze@ Hybrid Parallelisation
entries in the preconditioner. ’

Adding an effective hybrid code model is not an easy
task, and in this case consider what the benefits of such a
odel would be to ALE-AMR and how one would begin its
nplementation. One of the possible benefits, along with speed

from a hybrid model is memory consumption. A recent
ﬁdy, [7] in this proceedings shows that the memory reduction

performance issue using this understanding of the ILU
gorithm that is used by Euclid. The problem is caused
excessive non-zero fill in the degraded case, so altering

at this problem, we simply set Euclid to disallow any nong
zero fill by using the ’level 0" option, forcing the sparsityd
of the LU matrix to be the same as in th& matrix. This

his is likely to be more important for future architectural

esigns that have more memory limited cores. However, it is
. ; . .~ also known that sometimes adding a hybrid model to a code
optlon may not be optimal in _aII cases as the precond|t|on&5n actually slow the code down rather than improving the
will be a more crude approximation td and the HYPRE erformance [6]. As part of choosing where to start adding

solver may need more iterations to converge. However, t brid code and to gauge its usefulness, we have performed

approach should at least alleviate the excessive zero lf% following simple experiments. We take some standard

prqblem. lTo.test Fhisl upderstandri]ng, we re-raln tr;eATv'egesc%\ses of running the ALE-AMR code with a fixed number
point explosion simulations on thelz81x81 2-leve of MPI tasks. We then look at how the code performs with

mesh that previously led to degraded performance. the same number of MPI tasks, yet with more and more
cores (or nodes). The idea is that if the code slows down
as more cores are added, the OpenMP implementation would

[ num. CPU [ wall clock time (s) |

; % have to be extremely efficient to overcome the degradation.

. 28 However, if the code actually speeds up when more nodes or

8 23 cores (unused cores) are available, then this code is a good
TABLE 11l candidate for hybrid speedup. The hybrid benefit would then

WALL CLOCK TIMINGS OF THE ALE-AMR CODE SOLVING THE POINT be a combination of the speedup attained by simply adding

L LSy EL AR et 2™ more cores (fixed number of MP tasks) and the new Openiip
CONSIDERABLY (10x - 40X) BY SETTING THEEUCLID PRECONDITIONER  Parallelisation.

TO AVOID ANY NON-ZERO FILL. Adding the OpenMP hybrid model to an existing code can
be a daunting task. Thus, we are exploring ways in which to
make this process easier.

This timing data shows that the degraded performanceln considering utilizing shared memory parallelism in ALE-
has been significantly improved and the problem now scaldMR, we first consider optimizing the SAMRAI (Structured
reasonably with the number of CPUs. Another run throughdaptive Mesh Refinement Infrastructure) software library.
Open—SpeedShop shows that the bottleneck in this case MbbE-AMR utilizes SAMRAI for underlying functions of re-
resides in the Jacobian computation as was the case with nfimement/coarsening, load balancing, and MPI communication
degraded performance. These are both indicators that the tifisnesh patch elements. While the overlying ALE-AMR code-
particular performance issue has been addressed, and bariage defines computationally intensive physics algorithms, it
any other issues, the diffusion solver is ready to run I&De relies completely on SAMRAI for the interprocess tier, and
parallel simulations. its parallelization can yield considerable benefits to overall



application performance.
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D. The ROSE Compiler Framework

The ROSE tool kit [22] is a sophisticated and comprehe
sive infrastructure to create custom source-to-source tra. jsoopef [
lators developed at LLNL by Daniel J. Quinlan et al.. I3 131125
provides mechanisms to translate input source code into & 10000 [
intermediate representation, called the Abstract Syntax Tt
(AST), libraries to traverse and manipulate the informatic sooo0 [ ]
stored in the AST, as well as mechanisms to transform t 24561 o 2000% 2150
altered AST information back into valid source code. Th 0 e - %ers
AST representation and the supporting data structures mi

exploiting knowledge of the architecture, parallel commu- _ _
13. Breakdown of the programming languages used in the ALE-AMR

o e - Fig.
nication _C_har‘?‘Cte”St'Cs' and CE_‘Che layout s_tra|gh_tf(_)rward &t%e and those used in the SAMRAI library for particular releases of the
the specification of transformations. Due to its efficient corodes.

struction and (static) analysis capabilities of the intermediate

representation, ROSE is especially well suited for analyzing

large scale applications, which has been a central design gégusand lines of C++ code while ALE-AMR is 130, it is
for this compiler framework. In addition, ROSE is particularlyvorth investigating the possibility of using autoPar on ALE-
well suited for building custom tools for program optimizaAMR itself.

tion, arbitrary program transformation, domain-specific opti-

mizations, complex loop optimizations, performance analysis, V. CONCLUSIONS

software testing, OpenMP automatic parallelization and loop |, this paper we show how significant performance improve-
transformations, and (cyber-)security analysis. Further, alargRnt is possible on three different large application codes
number of program analyses and transformations have bggna variety of techniques. We emphasize that these are real
developed for ROSE. They are designed to be utilized Ry application codes, and not reduced synthetic or otherwise
users via simple function calls to interfaces. The progragyjysted benchmark codes. For the magnetic fusion code, GTS,
analyses available include call graph analysis, control floye show that overlapping communication and computation is
analysis, data flow analysis (live variables, data dependerg:e\\,ery promising approach for a hybrid (MPI + OpenMP)
chain, reaching definition, alias analysis, etc.), class hierarchyde that is already optimized. For the quantum chemistry
analysis, data d(_ependencg a_nd system depen(_jence analysife, Q-Chem, we show the benefit of using GPU’s for
ROSE'’s automatic parallelization tool, autoPar, is capable Rfairix matrix multiplications and overlapping data transfers
multithreading sequential C and C++ code by analyzing fofrom CPU memory to GPU memory with GPU computations.
loops and amending them with OpenMP pragmas. autoRgy; the fluids/material science code, ALE-AMR, we show
operates on the source code build tree in place of the compilgl importance of profiling matrix-solver libraries and studied
generating translated source files, and compiling and ”nk"ﬂﬁbtions in adding threading (OpenMP) to this MPI-only code
the executable. including issues associated with using an automated source-
to-source translating compiler.

200000 |- - (S

E. First Autotuning attempts

Our initial attempts at automatically multithreading SAM- VI. ACKNOWLEDGMENTS

RAI have been unsuccessful, and have uncovered several L ) )
limitations in the current version of autoPar. The autoPar” Majority of the work in this paper was supported by
tool incorrectly translats class name and namespace sc Petascale Initiative in Computational Science at NERSC.

resolution in SAMRAI's C++ code. This is not a complet ome additional research on this paper was supported by the

surprise, especially considering that SAMRAI's more than 2dgray Center of Excellence at NERSC. Additionally, we are

thousand lines of C++ code exploits many modern softwagéaterI for interactions with John Shalf, Mike Aamodt, and

design and implementation techniques. Since autoPar is 'WGK Wright, and other members of the COE. Work by LLNL
s performed under the auspices of the U.S. Department

evolving part of ROSE, the ROSE development team h%& \ :
gladly accepted test cases resulting from these initial attemfts EN€rdy by Lawrence Livermore National Laboratory under
to further improve autoPar. Figure 13 shows the lines of coftPntract DE-AC52-07NA27344.

and languages in ALE-AMR and the SAMRAI library.

Using autoPar on SAMRAI is a reasonable starting point
due to the fact that SAMRAI is a third-party software library[1] N.S. Ostlund A. SzaboModern Quantum Chemistry: An Introduction
to be used by client parallel applications. Designed to bg {© Advanced Electronic Structure Theopover, 1989.

. . . . é%] R. W._ Anderson, N._ S. Elllott_, and R. B. Eember. An arbitrary I_agrange—
general use code, it promises to be more easily paralleliz eulerian method with adaptive mesh refinement for the solution of the

than ALE-AMR. However, considering that SAMRAI is 230 euler equationsJ. Comput. Phys199(2):598-617, 2004.
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