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Abstract 

Multi-spectral images of skin contain information on the spatial distribution of biological 

chromophores, such as blood and melanin. From this, parameters such as blood volume 

and blood oxygenation can be retrieved using reconstruction algorithms. Most such 

approaches use some form of pixel-wise or volumetric reconstruction code. In this work 

we explore the use of Principal Component Analysis (PCA) of multi spectral images to 

access blood volume and blood oxygenation in near real time. We present data from 

healthy volunteers under arterial occlusion of the forearm, experiencing ischemia and 

reactive hyperemia. Using a two layered analytical skin model, we show reconstruction 

results of blood volume and oxygenation and compare it with the results obtained from 

our new spectral analysis based on Principal Component Analysis. We demonstrate that 

PCA applied to multi-spectral images gives near equivalent results for skin chromophore 

mapping and quantification with the advantage of being three orders of magnitude faster 

than the reconstruction algorithm. 



3

Introduction 

Assessing spatial distributions of skin chromophores such as blood and melanin can be 

achieved by diffuse multi-spectral imaging. Acquiring several wavelength images in the 

near infrared spectrum together with an analytical skin model, allows fitting the data to 

the model, thus extracting and mapping the spatial distribution of those parameters.     

Diffuse multi spectral imaging of the skin and image reconstruction of skin 

chromophores has found its application in the clinic, successfully assessing parameters 

for healthy and diseased skin (1-7). Assessment of the metabolic state of skin surface 

lesions is often desired in clinical routines as a measure for treatment outcome. Near 

infrared diffuse multi-spectral imaging of the skin combined with an analytical, 

numerical, or stochastic skin model can provide this information by producing spatial 

maps of skin chromophore concentrations (5, 8, 9).  The main parameters of interest are 

blood, melanin, lipids, and water, which exhibit separable absorption coefficients in the 

near infrared wavelengths range. The disadvantage of finding these parameters by fitting 

the data to an analytical skin model lies in the computationally expensive data post 

processing. This makes immediate conclusions difficult or even impossible if the image 

size is large, whereas in clinical routines it is often desired to assess the metabolic state of 

a  tumor in real  t ime.  We are not aware of any current imaging protocol and 

reconstruction algorithm which can assess quantitative blood concentrations in real time. 

Principal Component Analysis (PCA), first introduced in 1901 (10), is a statistical tool, 

which linearly transforms data into an orthogonal coordinate system, where the axes 

correspond to the inherent information within the data set. The idea is to reveal the data 

components (in a decreasing order) that best explain the variance in the data. PCA has 
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found applications in fields such as face recognition (11, 12), and image compression 

(13), and is a common technique for finding patterns in high dimensional data (14). It is 

further used for analyzing and visualizing gene expression data (15-17), for dimension 

reduction in hyperspectral imaging (18), as well as image enhancement (19). The main 

advantage of PCA is the speed of computation, which is in the order of seconds per 

image. For the biomedical optical imaging field, PCA found its place in various 

applications. The usage ranges from noise reduction and image enhancement (19) in 

multi spectral data for biological cell analysis (20) to pattern analysis for skin lesion 

classification (21). Applied to RGB images, PCA was used on relative color features for 

unsupervised lesion classification (22-24). 

When imaging the skin in the visible light range, the dominant absorbing materials are 

blood and melanin and should therefore explain most of the variance in multi spectral 

data. Previous work by Tsumura et al. (25) showed that skin color in digital RGB images 

can be described by attributing melanin and blood to the first two principal components. 

Fadzil et al. (26, 27) used the same idea and applied PCA and Independent Component 

Analysis (ICA) to RGB data for blood and melanin extraction of vitiligo lesions to 

qualitatively evaluate the skin repigmentation progression.            

In this work we evaluate the use of Principal Component Analysis (PCA) for retrieving 

quantitative near real time blood volume and blood oxygenation maps of skin areas of 

several square centimeters from a selected set of spectral images in the near infrared 

range (700 – 1000nm). Our experimental protocol involves imaging of healthy 

volunteers’ lower forearm before, during, and after arterial occlusion. Occlusion 
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experiments were chosen, as the behavior of blood oxygenation is well known which is 

ischemia during and reactive hyperemia after release of pressure. 

In the first part of the paper we describe the two layered analytical skin model used and 

show reconstruction results of blood volume and blood oxygenation over time. In the 

second part we apply PCA to the same data set and show that the first eigenvector 

correlates with blood volume and the second eigenvector with blood oxygenation. Finally 

we compare reconstruction results with the eigenvectors found by PCA and demonstrate 

the relationship between blood volume and the first eigenvector, as well as the 

relationship between blood oxygenation and the second eigenvector. 



6

Materials

Instrumentation 

The non-invasive, non-contact diffuse reflectance multi-spectral imaging system used in 

this work has been described in detail elsewhere (5) and shall only be described briefly 

here. Polarized light from a white light source (halogen 150W) is used for illumination of 

the sample. A second polarizer is placed before the detection unit, with its polarization 

orientation perpendicular to the incident beam polarization, thus guaranteeing diffuse 

reflectance measurements and removal of specular reflection (28).

Images are captured by a CCD camera (Princeton Instruments CCD-612-TKB, Roper 

Scientific) after passing consecutively one of six narrow bandpass filters (40nm FWHM, 

CVI Laser) on a filter wheel centered at 700, 750, 800, 850, 900 and 1000nm. For 

calibration purposes, images from a 90% reflectance paper (Kodak) are also acquired at 

each image filter. 

Occlusion experiments on healthy volunteers

A pressure cuff was used to occlude the upper right arm of five right handed healthy 

volunteers with 180mmHg pressure. This amount of pressure was chosen to achieve 

arterial occlusion and the pressure lasted for 5min. Multi-spectral images were taken 

every 30 seconds before occlusion, during occlusion and for 5 minutes afterwards, 

resulting in 21 time points in total. Occlusion experiments were chosen as the behavior of 

blood volume and blood oxygenation over time is well known, which is ischemia during, 

and reactive hyperemia after occlusion (4, 8, 29, 30).
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All volunteers signed a consent form approved by the Institutional Review Board of the 

Eunice Kennedy Shriver National Institute of Child Health and Human Development 

under the protocol number 08-CH-0001. 
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Methods

Reconstruction of skin chromophores

Diffuse multi-spectral images obtained during the occlusion experiment were used for 

reconstruction of blood volume and blood oxygenation. Preprocessing of the data 

included spectral and spatial illumination artifact removal as described in (5). The next 

step in preprocessing was rigid body registration for motion artifact removal and was 

performed by MultiStackReg in Image J. In a last step, curvature correction was 

performed to remove shape based intensity bias (31). 

Four wavelength (λ) images were used (700, 750, 800, and 850nm) and reconstruction 

was performed using MATLAB (Math Works, Natick, MA) by least squares non linear 

fitting of the data to the analytical skin model used (5). The analytical skin model is 

based on a two layered structure, the first one being the melanin containing epidermis, the 

second one being the blood containing dermis, with optical properties of the skin taken 

from literature values (32-34), and can be written as:

2( ) . ( ) . ( )e e dI S A A   [1]

where Ie is the wavelength dependent intensity measured in the CCD camera. The 

attenuation by the epidermis, Ae, is based on Lambert’s law and can be written as:

   11 3.330.66 10. m ee e
v dd

eA e e 
      [2]

with vm the concentration of melanin, de the thickness of the epidermis and µe the 

absorption coefficient of the epidermis, which is based on the absorption of melanin. The 

attenuation by the dermis, Ad, which includes the absorption due to blood volume, vdb, 
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and oxygenation, vboxy, is based on the analytical solution of photon migration in turbid 

media (35) based on random walk theory and can be written as:
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   1d v v vb o x y d e o x y b o x y o x ydb            [4]

where µs is the reduced scattering coefficient and µd is the absorption coefficient of the 

dermis, with µdeoxy and µoxy being the absorption coefficients of deoxygenated and 

oxygenated blood respectively. The scaling factor S, blood volume, vdb, and blood 

oxygenation, vboxy, are unknown a priori and were solved for.  

The scaling factor was calculated for each subject and time point and averaged over time. 

This so obtained subject specific scaling factor was then used to compute the 2D maps of 

blood volume and oxygenation over the course of the experiment. Computational time for 

each 2D image, which is in the order of 200 x 200 pixels, was 45min on a 2.6GHz, 3GB 

RAM Personal Computer (PC).    

Principal Component Analysis

Principal Component Analysis (10) linearly transforms the data into an orthogonal 

coordinate system whose axes correspond to the principal components in the data, i.e., 

the first principal component accounts for as much variance in the data as possible and, 

successively, further components capture the remaining variance. Through an 

eigenanalysis, the principal components are determined as eigenvectors of the dataset’s 

covariance matrix and the corresponding eigenvalues refer to the variance that is captured 

within each eigenvector. 
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We use three wavelengths (750, 800, 850nm) from the occlusion experiment, which 

provides three 2D images. These wavelengths were chosen, as they are centered around 

800nm, which is the isosbestic point of blood, where the absorption coefficient of 

deoxygenated (Hb) and oxygenated (HbO2) blood are equal. Fig. 1 shows the absorption 

spectra for Hb and HbO2, illustrating that the absorption of Hb is dominant at 750nm and 

for HbO2 at 850nm. In this wavelength range, the dominant chromophore is blood and 

should therefore explain most of the variance of the data. 

After subtracting the mean of the data, PCA was performed on the collection of three-

dimensional pixel vectors x1,...,xn  of the zero mean data. We first diagonalize the 

covariance matrix 

Cov(X)  E (XXT ), [5]

where 1( , . . . , )nX x x is the zero mean data matrix. The three eigenvectors p1,p2,p3 - the 

principal components ordered according to the magnitude of their eigenvalues – provide 

the transformed data 

Y W TX , [6]

where W  (p1 p2 p3). Rearranging the vectors in Y into matrices yields again three 

2D images. The first image represents the projected data along the first eigenvector. As 

mentioned above, blood is the dominant chromophore, and it will turn out that the first 

layer correlates with blood volume. The second image is each datapoint’s projection 

along the second eigenvector and we will show that it correlates with blood oxygenation.

The computational time to process one set of data (three images at 21 timepoints) on a 

2.6GHz, 3GB RAM PC was in the order of 1 second. 
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Results 

In order to evaluate the potential of PCA to retrieve the spatial distribution of 

chromophores, we first generate a conventional pixel-wise reconstruction of blood 

volume and oxygenation over an imaging area of several centimeters. We then compare 

results after applying PCA to the contributions of the principal components. The 

objective was to demonstrate the anticipated response (ischemia and reactive hyperemia) 

for all subjects and a qualitative and quantitative assessment of the consistency between 

reconstruction results and the eigenvectors. 

Fig. 2 shows 2D reconstruction maps of fractional blood volume concentrations over time 

for one representative healthy volunteer’s lower forearm. Only every second time point is 

shown for conciseness, with the first row showing the baseline before occlusion, row 2 

and 3 showing results during and after occlusion respectively. Veins contain more blood 

than the surrounding tissue and are clearly separable in the reconstruction maps by 

increased blood volume. Fig. 3 shows the corresponding blood oxygenation result over 

time, before, during, and after occlusion. Veins do not show a significant difference in 

blood oxygenation compared to surrounding tissue and can not be easily separated. The 

overall tissue oxygenation follows the typical expected trend of ischemia during 

occlusion (drop of oxygenation compared to baseline) and reactive hyperemia after 

occlusion (over shoot compared to baseline). 

To evaluate the ischemic and hyperemic behavior even further, average concentrations of 

blood volume and oxygenation were calculated over the entire 2D maps for each time 

point. The results for four subjects can be seen in Fig. 4a for blood volume and 4b for 
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blood oxygenation, with error-bars given by the standard deviation over all pixels per 

time point. Only four of the five subjects were included in the analysis, as the analysis of 

the fifth subject was hindered by motion artifacts greater than one third of the image size. 

The dashed lines indicate the time points of beginning and ending of applied pressure. 

Fig. 4a shows that blood volume stays over time within 5% variation, while Fig. 4b 

shows changes in blood oxygenation over time, corresponding to ischemia during and 

reactive hyperemia after occlusion. 

Fig. 5 shows a set of three wavelength images (750, 800, 850nm), represented in a 3D 

scatter-plot in the wavelength space, with each pixel being color-coded by the 

reconstruction results of blood volume (Fig. 5a) and blood oxygenation (Fig. 5b). Data 

shown in this figure are from the same subject as in Fig. 2 and Fig. 3 at the 12th time 

point, which is the first point after occlusion. All other subjects and time points show a 

similar behavior, which can be summarized as following: a) the data is of elliptical 

distribution, indicating that it can be described by a linear transformation. b) The 

reconstruction values of blood volume lay along the main axis of the ellipse, which will 

be described as eigenvector 1 (vertical black line in Fig. 5a and Fig. 5b), and are well 

separable. c) The reconstruction results of blood oxygenation show a separation 

perpendicular to the main axis of the ellipse, which will be described as eigenvector 2 

(horizontal black line in Fig. 5a and Fig. 5b). All three points combined indicate that a 

linear transform of the data by PCA is not only valid, but that it should be possible to 

separate blood volume and oxygenation. The separation between blood volume and 

oxygenation with PCA can only be possible, if alignment perpendicular to each other is 
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given. This is an inherent necessity for PCA, since data is being described with 

eigenvectors, which are perpendicular to each other. 

We subsequently performed PCA for each set of wavelength images and time points for 

all subjects. Doing so, we obtained three eigenvectors per time point and subject. 

Eigenvector 1 was found to be the same for each subject and over all 21 time points, 

except for small angular shifts (data not shown), and being well aligned with blood 

volume (see Fig. 5a). Stability over time and subjects in eigenvector 1 indicates reliability 

in calculation. Eigenvector 2 and 3 showed large deviations within one subject and no 

consistent pattern was found over time, indicating that the separation between 

eigenvector 2 and 3 was ambiguous.  An ambiguity in eigenvector 2 and 3 indicates that 

blood volume and oxygenation can not be reliably separated. Neither eigenvector 2 nor 3 

showed any temporal change similar to blood oxygenation over time. Fig. 6a 

demonstrates this non specific behavior, showing a transformed data set along the 2nd and 

3rd eigenvector, color-coded by blood oxygenation. Data shown here is from the same 

subject as in Fig. 5, but at different time point. As the apparent structure of the 

oxygenation results is not aligned with either eigenvector, PCA failed to attribute one 

specific direction to blood oxygenation when performed on one single data set of three 

wavelength images. 

The blood oxygenation color-coded data appeared aligned and perpendicular to the 

primary axis of the ellipse when looking at each time point separately. The next step in 

the analysis was therefore to create one large data set per subject, which included all time 

points (21 times 3 wavelength images) and resulted into one set of eigenvectors per 

subject. Fig. 6b shows the result of the same subject for the large data set color-coded by 
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blood oxygenation. The data are well aligned along the second eigenvector with blood 

oxygenation values being aligned in the same direction, therefore showing a dependence 

of the 2nd eigenvector on oxygenation. Fig. 6c shows the same data as in Fig. 6a (one time 

point) but transformed with the eigenvectors found by the data set including all time 

points. When applying the subject specific eigenvector set, the data and its oxygenation 

become aligned to the second eigenvector. This phenomenon is consistent for all subjects 

and time points, making it possible to separate blood volume and oxygenation .        

In Fig. 7 we demonstrate the validity of image summation (creating a single data set for 

all time points) for PCA analysis. Here we assume that the set of 21 images is sufficient 

to develop a patient specific component space. We plot ‘n’ against angular offset of the 

eigenaxes, where n is the number of images used to generate the PCA summation space. 

For each n we generate 100 random choices of images (note that duplication occurs only 

for n=1 and n=21). Fig. 7a shows the plot of average angular separation of an individual 

summation space from the average space (21 images), with standard deviation for 

eigenvector 1 (data in blue). The separation of the final angular eigensystem from ground 

truth (given as the eigensystem of the entire image ensemble) is also shown (data in red). 

Fig. 7b and Fig. 7c show the same data for eigenvectors 2 and 3.

Fig. 8 shows the 2D representation of the transformed data along the three eigenvectors 

over time for the same subject as in Fig. 2 and Fig. 3. The eigenvectors used were 

obtained by taking a combined data set of all time points per subject. Fig. 8a shows the 

result for the first eigenvector, which shows the same structures and temporal behavior as 

blood volume in Fig. 2. Eigenvector 2 can be seen in Fig. 8b, which shows a similar 

temporal and spatial appearance as blood oxygenation, as seen in Fig. 3. Fig. 8c shows 
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eigenvector 3, which does not show significant trends or structures and might be 

attributed to noise. It shall be mentioned that the scales in the three images is different 

from each other and that the first eigenvector is one magnitude larger than eigenvector 2 

and 3. 

Results in Fig. 9 show the average distances along the eigenvectors. The average was 

taken as in Fig. 4 over the entire 2D maps for each time point, with error-bars given by 

the standard deviation over all pixels per time point. The qualitative behavior over time 

for eigenvector 1 (9a) matches the behavior seen in Fig. 4a; eigenvector 2 (9b) shows the 

same temporal behavior as Fig. 4b. Combined with the results from Fig. 5 and Fig. 6, the 

data suggest that the first eigenvector can be described by blood volume and the second 

one by blood oxygenation. The third eigenvector (9c) does not show any change over 

time.

Fig. 10a shows the direct comparison between eigenvector 1 and blood volume and 10b 

between eigenvector 2 and blood oxygenation for all pixels and time points per subject. A 

clear almost linear relationship can be seen between eigenvector 1 and blood volume, 

indicating that these two are uniquely correlated. The same trend can be seen for all 

subjects, but subject 3 shows a shift towards higher blood volume values. Fig. 10b shows 

the results for eigenvector 2 versus blood oxygenation. The relationship is not as linear 

but blurred compared to 10a, as well as shifted along the eigenvector axis. This indicates 

that blood oxygenation values can be recovered within a constant shift compared to 

reconstruction results.   
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Discussion

Diffuse multi spectral imaging of skin in the near infrared wavelength range allows for 

quantitative chromophore assessment which can be used to attain functional information. 

Especially blood volume and oxygenation are of interest for skin lesion treatment follow 

up as a parameter of the angeogenic process and metabolic state of a tumor. Previous 

work of assessing these parameters in healthy and diseased skin (1-9) included fitting the 

acquired intensity data to an analytical model of photon migration in diffuse media. 

Reconstructed concentration maps are therefore based on the wavelength dependent 

absorption coefficient and require an accurate model. Furthermore, model based 

reconstruction is computationally intense and time consuming, therefore not applicable 

for real time assessment in a clinical setting.        

PCA has been used as a tool to analyze digital RGB images for extracting blood and 

melanin concentration and for lesion segmentation in various conditions (21-25). To our 

best knowledge, no attempt was done for extraction of blood oxygenation using PCA 

from RGB or multispectral images or for comparison of PCA with reconstruction results. 

The reconstruction results of four healthy volunteers undergoing occlusion of the upper 

arm and imaged at the forearm (Fig. 2-4) presented in this work demonstrate that the 

spatial distribution (Fig. 8) and temporal behavior (Fig. 9) of eigenvector 1 matches that 

of blood volume and eigenvector 2 matches that of blood oxygenation. In order to obtain 

these results, one data set, including all time points per subjects, was created, as we have 

seen that PCA does not pick up on blood oxygenation otherwise. Surprisingly the subject 

specific eigenvector set is the same for all four subjects with only small angular shifts 

smaller than 7 degree (data not shown). This overlap in eigenvectors indicates that it 
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might be possible to create one general set of eigenvectors describing blood volume and 

oxygenation. This of course raises the question if such a description is valid when applied 

to a different data set, i.e. from skin lesions, and if the transformation still holds. In 

addition, arterial blood could not be imaged, as arteries lie deeper in the skin. It would be 

of interest to validate the PCA results with arterial oxygenation values, which are in the 

order of 99%. Future work will be addressing these questions.

The results also indicate an almost linear dependence of the first eigenvector with blood 

volume (Fig. 10a), demonstrating that values from PCA can be converted to actual 

concentrations of blood volume. Only subject 3 showed a deviation from the others in 

terms of a shift towards higher values of blood volume. This shift might be explained by 

the nature of our reconstruction algorithm, which assumes the same epidermal thickness 

for all subjects’ forearms (60µm). We have data (unpublished) which shows that a 

difference of the epidermal thickness within the standard deviation of reported literature 

values for arms will lead to a significant overestimation of blood volume. The shift in 

Fig. 10a can therefore be explained by the inaccuracy of the reconstruction rather than 

due to PCA errors. 

Fig. 10b indicates that there is a defined relationship between eigenvector 2 and blood 

oxygenation, but it is much more blurred and shifted along the eigenaxis. We hypothesize 

that the blurring might be partially explained by reconstruction errors of blood 

oxygenation as well as PCA itself. As mentioned above, PCA applied to one single image 

did not successfully align the axis of oxygenation changes to one specific eigenaxis and a 

data set including all time points was required to do so. The data was therefore centered 

on the mean of the large data set, not the individual ones. As the second principal 
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component is one order of magnitude smaller than the first component, even small shifts 

in the data over time will lead to relatively larger errors (blurring) compared to the first 

component. The shift along the second eigenvector, in particular for subject 2 (Fig. 10b), 

might well be explained by centering the large data set rather than the individual ones. 

When transforming the data with a given set of eigenvectors, the resulting data is not 

necessarily centered on the origin, leading to shifts along the axes. 

The results from the direct comparison between reconstruction of blood volume and 

oxygenation with the PCA results of the same multi-spectral image set indicates that PCA 

may be a viable alternative tool for skin chromophore assessment. Future work will have 

to include phantom experiments as well as skin structure assessment for improvement of 

the reconstruction results and thus explaining remaining variation in the direct 

comparison between PCA and reconstruction results. Since PCA is considerably faster 

(three orders of magnitude) compared to the time consuming reconstruction algorithms 

commonly used, it may provide a significant advantage for extracting metabolic 

information results in real time. Future work will include applying PCA to multi spectral 

data from skin surface lesions, as well as acquiring more data from healthy volunteers to 

increase statistical power. 
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Conclusion 

We acquired multi spectral images from healthy volunteers’ lower forearms during an 

occlusion experiment and compared reconstruction results for blood oxygenation and 

blood volume with results from PCA. Reconstruction was performed by fitting the data to 

our two layered analytical skin model and blood oxygenation results showed the expected 

course of ischemia during occlusion and reactive hyperemia afterwards. PCA was 

performed on a large data set of all time points per subject and one subject specific set of 

eigenvectors was used to transform the time dependent data. Results showed that the first 

principal component corresponds well to the time course and spatial distribution of blood 

volume, the second one to blood oxygenation, and the third one did not show any 

temporal or spatial change. A direct comparison between reconstruction results and 

principal components showed a linear dependence between blood volume and blood 

oxygenation with the first and second component respectively. The correspondence 

between blood oxygenation and the second principal component was blurred and a shift 

between subjects was observed, indicating that the dependence is more susceptible to 

noise and errors. The results are encouraging and demonstrate the potential of PCA for 

quantitative skin chromophore assessment. The biggest advantage of PCA compared to 

reconstruction algorithms is its computational inexpensiveness, with PCA being three 

orders of magnitude faster. This allows for real time mapping of skin chromophores with 

PCA and would therefore find great use in clinical routines.    
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Figure Legend

Figure 1 Absorption spectra of deoxygenated (Hb) and oxygenated (HbO2) blood with 

the isosbestic point of blood at 800nm. For 750nm and 850nm, the absorption 

coefficients for oxygenated and deoxygenated blood are well separable.    

Figure 2 Fractional blood volume concentrations over time. The first row shows the 

reconstructed blood volume map over several centimeters of a lower forearm before 

occlusion. The second row shows blood volume of the same area of the arm during 

occlusion and the third row shows results after release of pressure. Veins are clearly 

distinguishable due to the increase in blood compared to surrounding tissue.     

Figure 3 Fractional blood oxygenation over time of the same area as shown in figure 1. 

The second row shows blood oxygenation during occlusion and the expected ischemic 

behavior, which is a decrease in oxygenated blood. The third row shows the expected 

hyperemic behavior, which is an overshoot of oxygenation.        

Figure 4 Average Blood Volume (4a) and Blood Oxygenation (4b) over time for four 

subjects. The dashed lines indicate start and end of occlusion.  

Figure 5 3D scatterplots of wavelength specific intensity data colorcoded with a) blood 

volume and b) blood oxygenation. The black lines indicate the eigenaxes found by PCA. 

Eigenvector 1 is aligned with blood volume, eigenvector 2 with blood oxygenation. 

Figure 6 Transformed data after PCA in the eigenvector 2 and 3 plane, color-coded with 

the corresponding blood oxygenation results. 6a shows PCA performed on one time 

point, 6b over the data including all time points, and 6c shows the transformed data of 

one time point using the set of eigenvectors obtained in 6b.   
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Figure 7 Validity of image summation for PCA. Data in blue is average distance from 

local ensemble plus its standard deviation. Data in red is distance of local ensemble 

average from ‘truth’ (21 image ensemble). Fig. 7a shows data from eigenvector 1; 7b 

from eigenvector 2; and 7c from eigenvector 3. 

Figure 8 Eigenvectors obtained by PCA over time for one subject. 8a shows the first 

eigenvector, which corresponds to blood volume; 8b shows the second eigenvector, 

which corresponds to blood oxygenation; 8c shows the third eigenvector. 

Figure 9 Average eigenvectors over time for four subjects. The dashed lines indicate start 

and end of occlusion.  Fig. 9a shows eigenvector 1, 9b eigenvector 2, 9c eigenvector 3.  

Figure 10 Blood volume vs. eigenvector 1 (10a) and Blood oxygenation vs. eigenvector 

2 (10b). 
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Figure 2

0min

B
ef

or
e

Blood volume

0.5min

D
ur

in
g

1.5min 2.5min 3.5min 4.5min

5.5min

A
fte

r

6.5min 7.5min 8.5min 9.5min

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

20mm



29

Figure 3 
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Figure 4
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Figure 5
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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