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Synthesis, Consolidation and Characterization of Sol-gel
Derived Tantalum-Tungsten Oxide Thermite Composites

ABSTRACT

Energetic composite powders consisting of sol-gel (SG) derived
nanostructured tungsten oxide were produced with various amounts of
micrometer-scale tantalum fuel metal. Such energetic composite powders were
ignition-tested and results show that the powders are not sensitive to friction,
spark and/or impact ignition. Initial consolidation experiments, using the High
Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived
nanostructured tungsten oxide produced samples with higher relative density
than can be achieved with commercially available tungsten oxide. The SG
derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta -
WO3) energetic composite was consolidated to a density of 9.17 g-cm™ or 93%
relative density. In addition, those samples were consolidated without significant

pre-reaction of the constituents, thus retaining their stored chemical energy.

The heat of combustion of two distinctly synthesized stoichiometric
tantalum-tungsten oxide energetic composites was investigated by bomb
calorimetry. One composite was synthesized using a sol-gel (SG) derived
method in which micrometric-scale tantalum is immobilized in a tungsten oxide
three-dimensional nanostructured network structure. The second energetic
composite was made from the mixing of micrometric-scale tantalum and

commercially available (CA) nanometric tungsten oxide powders. The energetic



composites were consolidated using the spark plasma sintering (SPS) technique
under a 300 MPa pressure and at temperatures of 25, 400, and 500°C. For
samples consolidated at 25°C, the density of the CA composite is 61.65 + 1.07%
in comparison to 56.41 + 1.19% for the SG derived composite. In contrast, the
resulting densities of the SG composite are higher than the CA composite for
samples consolidated at 400 and 500°C. The theoretical maximum density for
the SG composite consolidated to 400 and 500°C are 81.30 £+ 0.58% and 84.42 +
0.62%, respectively. The theoretical maximum density of the CA composite
consolidated to 400 and 500°C are 74.54 = 0.80% and 77.90 = 0.79%,
respectively. X-ray diffraction analyses showed an increase of pre-reaction of
the constituents with an increase in the consolidation temperature. The increase
in pre-reaction results in lower stored energy content for samples consolidated to

400 and 500°C in comparison to samples consolidated at 25°C.

The activation energy of a SG derived tantalum-tungsten oxide thermite
composite was determined using the Kissinger isoconversion method. The SG
derived powder was consolidated using the HPSPS technique at 300 and 400°C.
The ignition temperatures were investigated under high heating rates (500 —
2000°C-min™). Such heating rates were required in order to ignite the thermite
composite. Samples consolidated at 300°C exhibit an abrupt change in
temperature response prior to ignition of the main combustion reaction. This
change in temperature response is attributed to the crystallization of the

amorphous WQOj; in the SG derived Ta-WO3 thermite composite and not to a pre-



ignition reaction between the constituents. Ignition temperatures for the Ta-WO;
thermite ranged from approximately 465 to 670°C. The activation energies of the
SG derived Ta-WO;3; thermite composite consolidated at 300 and 400°C were

determined to be 37.787 + 1.58 kJ-mol™ and 57.381 + 2.26 kJ-mol™, respectively.
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Chapter 1

1.0 INTRODUCTION

1.1 ENERGETIC MATERIALS

Energetic materials are substances that store chemical energy. Energetic
materials can be classified into different classes that include propellants,
pyrotechnics, explosives and common fuels such as gasoline and diesel.
Energetic materials are made up of a fuel and oxidizer constituents. For the
most part, the energy release rate of propellants and pyrotechnics is a relatively
slow (seconds scale) deflagration process. In contrast, explosives release their
energy in a relative fast (microseconds) detonation process. There are several
methods for producing energetic materials, some of which will be presented in
Section 1.3, but the most common method is by mixing oxidizer and fuel
constituents. The mixing of such constituents may produce monomolecular
energetics, where the oxidizer and fuel moieties are contained within a single
molecule such as nitrocellulose, nitroglycerine and trinitrotoluene or energetic

composites of separate oxidizer and fuel phases.

1.2 ENERGETIC COMPOSITES

Energetic composites are of significant interest due to the wide range of
material properties that can be tailored by controlling the chemical composition

and the particle size of the fuel metal and oxidizer, independently. One of the



main subsets of energetic composites consists of thermite materials where
typically, the fuel is a metal and the oxidizer is a metal oxide. Thermite reactions
are exothermic reactions that may be initiated and become self-sustaining
releasing large amounts of heat [1]. A typical thermite reaction is described in

Eq. (1.1)

M+AO - MO +A+AH 1-1

where M is a metal, A is a metal oxide, MO and AO are their corresponding
oxides and AH is the heat of reaction.

Thermite composites have been studied intensively due to the wide variety
of potential applications such as demolition of concrete [2], self-destructive
electrical components [3], primers [4], stab detonators [5], and reactive fragments
[6]. A more thorough review of thermite reactions and their applications has
been provided by Wang et al. [1].

Due to the relatively high enthalpy of formation of its oxide at 25°C (-
1675.7 kJ-mol™) and its low melting point (660°C), aluminum has been widely
used as a fuel metal. Nanometric sized aluminum has been studied with a
variety of oxidizers such as Fe,0j3;, Bi,O3, CuO, MoO3; and WO3;. Nanometric
aluminum — metal oxide thermite reactions have been shown to be highly
energetic and proceed at relatively high rates. Although aluminum — metal oxide
energetic composites have been widely studied, most studies have focused on

reactions of loose powders, partially confined systems, or resin-bonded energetic



composite materials [7-10]. There have been comparatively few studies with
alternative fuel metals such as Ta, Zr, Hf, or Si mixed with oxidizers [11]. And
those studies have focused on loose powders or consolidated parts with

relatively low value (< 50%) of relative density.

1.3 SYNTHESIS OF ENERGETIC COMPOSITES

As presented in Section 1.1, energetic materials may be produced by
simply mixing oxidizer and fuel constituents, but there are other synthesis
methods by which energetic composites may be produce. Energetic materials
can be prepared as films deposited on substrates. These films may be
composed of alternating metallic layers [12, 13] or layers of metal fuel and metal
oxide with well defined thickness and composition [14]. A major disadvantage to
this approach is that it is time consuming, expensive, and yields relatively small
amounts of material.

Another method for synthesizing energetic composites involves the
ultrasonic mixing of fuel and oxidizer nanoparticles. Such subset of energetic
composites has been referred to as Metastable Interstitial Composites (MIC) [8].
And although, this process is relatively inexpensive and large quantities of
material can be prepared quickly, an important concern is the homogeneity of the
fuel and oxidizer mixture to minimize variability in their thermal behavior.

Arrested Reactive Milling (ARM) is another method by which energetic
materials may be produced. In this method exothermic nano-energetic

composites are prepared by mechanically milling the starting metal fuel and



metal oxide mixture but stopping the milling process before the mixture reacts
exothermally [15-17].

Sol-gel synthesis [18-20] technigues have been used to produce energetic
composites consisting of immobilized metal fuels inside a three-dimensional
nanostructured metal oxide. This method produces an energetic composite in
which the metal fuel is homogeneously distributed throughout the nanometric

oxidizer, and it can be scaled up to produce large sample quantities.

1.4 CONSOLIDATION OF ENERGETIC COMPOSITES

Due to the fact that energetic composites store energy, one is required to
take the necessary precautions to avoid accidents. For instance, if one wants to
consolidate the energetic material, one may not apply considerable temperatures
and pressures that may initiate the exothermic reaction of the composite. To
minimize pre-combustion reactions between the energetic constituents during the
consolidation process, most energetic composites have been pressed into pellets
using conventional hydraulic presses at room temperature [7-11]. The resulting
average densities of such pellets are in the order of 50% their theoretical
maximum density. In order to minimize the pre-combustion reaction between the
energetic constituents and increase the resulting theoretical maximum density,
the spark plasma sintering (SPS) technique may be applied on the consolidation
of energetic composites.

Essentially, the SPS method is based on the theory of high temperature

plasma generated in the gaps between powder materials by an electrical



discharge during DC pulsing while applying pressure to the powders. The DC
pulsing provides rapid Joule heating to a graphite die assembly which heats the
powders of interest. Figure 1 shows a model of the SPS setup. Therefore, SPS
can rapidly consolidate powders to near theoretical densities through the

combined actions of a rapid heating rate and pressure application.

Load

Powder
——

DC Pulse

Generator
Vacuum

Chamber

Figure 1: Schematic representation of SPS setup.

In our research, SPS is carried out under vacuum using a Dr. Sinter 1050

apparatus, Figure 2 (Sumitomo Coal Mining Co., Japan).



Figure 2: Image of the Sumitomo Mining Corp. model SPS-1050 consolidation
equipment known as “Dr. Sinter”.

1.5 PERFORMANCE MEASUREMENTS

In addition to investigations on the synthesis and characterization of
energetic composites, several efforts have been made to determine their
performance. Several researchers have investigated the ignition sensitivity,
energy release rates, and the activation energies of energetic composites as a
function of fuel particle size.

Among the most common techniques to characterize the performance of
energetic materials are differential scanning calorimetry (DSC) and differential
thermal analysis (DTA). Several researchers [21-26] have used such techniques
to measure the performance of energetic materials, but others have used or
developed different techniques to measure the performance of energetic

materials. Perry, et al. [27, 28] measured the ignition and propagation



characteristics of unconfined aluminum-tungsten oxide powder. During the
experiment, the burning velocity of the thermite was measured using an open
channel. The powder was ignited on one end of the channel and two light fibers
transmitted light to optical detectors. The velocity was determined using the time
between the two light pulses. In addition, Perry, et al. [27, 28] measured the
pressurization rate and peak pressure by igniting the material in a closed vessel
(13 cm™) and recording the pressure-time data. The powder was ignited using a
fiber-optic coupled 30 ns, 20 mJ pulse Nd-YAG laser. The pressure vessel was
instrumented with two pressure transducers to collect the data.

Bockmon, et al. [29] performed combustion measurements on aluminum-
molybdenum oxide using open ended cylindrical acrylic tubes in which the
sample is packed and ignited. The experimental setup is instrumented with fiber-
optic photodetectors and piezocrystal pressure sensors to measure the
combustion velocity and the pressure generated by the burning reaction.

To determine the ignition kinetics of an aluminum rich — titanium alloy
which was processed by mechanical alloying the material, Shoshin, et al. [30]
coated a thin layer of the powder onto an electrically heated filament. A DC
voltage was applied to heat the filament. A silicon photodiode was focused on
the coated sample to determine the ignition of the sample. By varying the
applied voltage, Shoshin was able to apply different heating rates ranging from
10° to 10* K-s™ to the material of interest and therefore, calculate important

kinetic parameters. The temperature history of the heated filament was



measured using a high-speed, infrared pyrometer. This experimental technique
has also been used in thermite composites [31].

To characterize the combustion performance of their powders produced
by Arrested Reactive Milling (ARM) Schoenitz, et al. [15] and Stamatis, et al. [32]
used the constant volume explosion experiments presented by Cashdollar et al.
[33]. Essentially, the experiments consisted in placing the thermite powder on a
ceramic support inside a closed pressure vessel equipped with a pressure
transducer. The powder was then ignited using a heated wire. The pressure
traces were recorded and combustion products were collected for further
analysis.

In a less complex experimental setup, Lee et al. [34] determined the
activation energy of several intermetallic materials from temperature-time
thermograms using a conventional furnace while purging argon gas and varying
heating rate.

And in a more sophisticated experimental setup, Mileham [35]
characterized the reactive process that occurs during the laser initiation of an
aluminum-iron oxide thermite. The reactive process was analyzed using the
laser-induced desorption ionization time-of-flight mass spectrometry technique
and learned that the decrease in ignition time observed in this material might be

due to the liberation of reactive metallic aluminum when the particle size is small.



1.6 OBJECTIVE

The goal of this study was to synthesize a nanostructured thermite
composed of amorphous WO3 with immobilized Ta metal particles using sol-gel
techniques and to consolidate the Ta-WO3; energetic composite to near
theoretical density without significant reaction to ensure complete retention of the
chemical energy. To achieve densification without significant pre-combustion
reaction, it is necessary to use accelerated consolidation techniques. One such
technique is spark plasma sintering (SPS). The process combines the application
of pulsed DC current with uniaxial pressure. Its advantages stem from a
combination of factors including high heating rate (up to about 2000°C-min™),
high pressure (up to about 1 GPa),and electromigration [36]. The high pressure
is obtained in a modification of die design, as has been reported previously [37].
We utilized this modified SPS technique in our study, which we will refer to as
High Pressure Spark Plasma Sintering (HPSPS). Chapter 2.0 will cover in detail
the synthesis of the sol-gel Ta-WOg3; energetic composite as well as the
consolidation conditions used to densify the composite.

Aside from synthesizing and consolidating an amorphous WO3; with
immobilized Ta thermite composite, it is important to evaluate the performance of
the thermite composite. Chapter 3.0 will report on the energy release of the
consolidated composite pellets determined by combustion calorimetry as a
function of consolidation temperature. Chapter 4.0 will cover in detail how the
activation energy of the composite as a function of consolidation temperature

was measured using a custom built ignition apparatus.
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To compare the consolidation and the performance results from the sol-
gel derived Ta-WO3; composite, a commercially available WO3 (crystalline) with
macrometric Ta thermite composite was mixed. This commercially available
thermite composite was exposed to the same consolidation parameters as the
sol-gel derived and its performance was tested under the same conditions as the

sol-gel derived composite.
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Chapter 2

Synthesis, Small Scale Testing and Consolidation
of Tantalum-Tungsten Oxide Thermite
Composites

2.0 INTRODUCTION

The search for new energetic materials continues to be motivated by the
desire to optimize performance and sensitivity. Energetic composites are of
significant interest due to the wide range of material properties that can be
tailored by controlling the chemical composition and the particle size of the fuel
metal and oxidizer.

One of the exciting potential applications of energetic composites is as
multifunctional energetic material (MFEM). MFEM'’s draw inspiration from natural
systems and are energetic materials that in addition to providing stored chemical
energy afford at least one other desired attribute that can be utilized in an
engineered system. In many cases this second attribute is mechanical strength.
Potential applications that may envision utilizing MFEMs are thermal batteries,
micro-electro-mechanical systems, and anti-tamper devices [38] As mentioned,
one of the critical the two functionalities afforded by MFEMs is mechanical
strength. For a given material optimal mechanical strength is realized as that
system approached theoretical maximum density. Therefore one of the aims of

this study was to investigate processing conditions that gave high densities.
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Rates and mechanisms for fully dense self-propagating high temperature
synthesis (SHS) thermite reactions have only been available from studies of a
limited number of materials [14, 39]. In the present study we have investigated
the system where Ta is the fuel metal and WO3; is the oxidizer. Ta-WOs; is a
particularly interesting system because of its high theoretical density (9.85 g-cm’
%). The stoichiometric thermite reaction for the Ta-WOj3; energetic composite can

be described by the following equation:

6 Ta+5W0; —-3Ta,O5+5W 2-1

The enthalpy of the above reaction is -174.879 kJ-mol?, giving an adiabatic
combustion temperature of 2181°C. The enthalpy of Eq. (2.1) was determined
using the HSC Chemistry Version 4.0 software [40].

We have developed sol-gel processes that enable the production of a
wide range of metal oxides and their precursors [41]. The process takes
advantage of recent progress in the use of organic proton scavenging agents to
produce metal oxide precursors. The precursors can then be processed into
aerogels, xerogels, or nanopowders of the desired materials. The method is
especially versatile as it enables the facile incorporation of additional phases into
the composite [42]. This approach has been used successfully to prepare
energetic nanocomposite materials [8, 41]. Using these techniques allows for the
tailoring of the product morphology, crystallinity, and even the production of

nanocomposite powders [43-45]. The sol-gel technique makes it possible to
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tailor the particle size of the fuel metal and oxidizer independently and therefore

the energy delivery rate (finer composites lead to higher power generation) [46].

The goal of this study was to synthesize nanostructured, amorphous WO3
with immobilized Ta metal particles using sol-gel techniques and to consolidate
the Ta-WO3 energetic composite to near theoretical density without significant
reaction to ensure complete retention of the chemical energy. To achieve
densification without reaction, it is necessary to use accelerated consolidation
techniques. One such technique is spark plasma sintering (SPS). The process
combines the application of pulsed DC current with uniaxial pressure. Its
advantages stem from a combination of factors including high heating rate (up to
about 2000°C-min™), high pressure (up to about 1 GPa), and electromigration
[36]. The high pressure is obtained in a modification of die design, as has been
reported previously [37]. We utilized this modified SPS technique in our study,

which we will refer to as High Pressure Spark Plasma Sintering (HPSPS).
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2.1 EXPERIMENTAL METHODS

2.1.1 Synthesis of WO; sol-gel and formulation of Ta - WO3; composites

The tungsten salt used in this study was WOCI, (F.W. = 342 g-mol™; 98%
pure from Sigma-Aldrich, Milwaukee, WI). The epoxide used as a gelation agent
was 3,3,-dimethyloxetane (DMO) obtained from Sigma-Aldrich and reported to be
98% pure. The solvents utilized were 200 proof ethanol (Pharmco-AAPER,
Brookfield, CT), cyclohexane (ACS reagent = 99% purity from Sigma-Aldrich,
Milwaukee, WI), de-ionized and distilled water.

A typical gel synthesis experiment involves the following steps: 14.76 ¢
(43.5 mmol) of WOCI, was dissolved in 125 mL of an e