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We present density-functional theory calculations of the optical absorption spectra of silica glass for temper-
atures up to 2400 K. The calculated spectra exhibit exponential tails near the fundamental absorption edge that
follow the Urbach rule, in quantitative agreement with experiments. We discuss the accuracy of our results by
comparing to hybrid exchange correlation functionals. We derive a simple relationship between the exponential
tails of the absorption coefficient and the electronic density-of-states, and thereby establish a direct link between
the photoemission and the absorption spectra near the absorption edge. We use this relationship to determine
the lower bound to the Urbach frequency regime. We show that in this frequency interval, the optical absorp-
tion is Poisson distributed with very large statistical fluctuations. We determine the upper bound to the Urbach
frequency regime by identifying the frequency at which transition to Poisson distribution takes place.

At finite temperatures, the absorption spectra of insulators
can be modified substantially through interaction of the elec-
tronic states with lattice vibrations. In 1953 Urbach observed
an exponential energy dependence of the absorption coeffi-
cient near the fundamental absorption edge that varied with
temperature as follows

α(ω, T ) = α0 exp

[

−σ
h̄ω0(T ) − h̄ω

kT

]

. (1)

Hereω0(T ) is a linear function of temperature, which at zero
K is defined to be the optical gap andσ andα0 are constants
that can be extracted from experiments. The so-called Urbach
rule described by Eq. (1), has been observed universally in
crystals as well as glasses, in both semiconductors and insu-
lators. The physical origin of the Urbach rule has been dis-
cussed extensively over the years [1–3]. At this point there
is consensus that it corresponds to transitions between local-
ized electronic levels that result from temporal fluctuations
of the band-edge electrons into the band gap, and extended
band-like states. Since Urbach behavior involves electron lo-
calization [4, 5] in the presence of vibrations, it is not ob-
vious that standard electronic structure theories such as the
density-functional theory (DFT) in the local-density (LDA) or
gradient-corrected (GGA) approximations can capture these
effects, in particular when considering their systematic under-
estimation of band gaps of insulators. In a pioneering work,
Draboldet al. performedab initio LDA molecular-dynamics
(MD) simulations of amorphous Si and calculated the fluc-
tuations in the single-particle eigenvalues at the band edges
[6]. When comparing with the photoemission spectra, they
obtained good agreement. This showcased the applicability
of ab initio MD in the adiabatic approximation within LDA
to describe the electronic structure of semiconductors at fi-
nite temperatures. However, the quantitative computation of
the Urbach tail of the optical absorption remains a daunting
task. It requires calculating the probability distribution of rare
dipole transition events, which necessitates long-timeab initio
MD simulations in order to obtain the time-dependent fluctu-
ations of the single-particle eigenvalues and the dipole matrix
elements. In the past, almost invariably the assumption has
been made that the latter do not vary appreciably with atomic
displacements or frequency, an assumption that is very diffi-
cult to justify specially at high temperatures.

In this paper, we investigate the Urbach rule in silica glass
usingab initio MD simulations. This has been motivated by
the need to develop a better understanding of the process of
laser damage to silica optics, of importance to diverse fields
from telecommunications to inertial confinement fusion. In
the past, much computational work has been directed to study-
ing zero K absorption due to defects in silica [7–9]. Re-
cently, the role of temperature has been emphasized by ex-
periments where damage was generated far below the bulk
material threshold by photons of energy 3.55 eV when silica
was heated to about 2200 K [10]. The Urbach rule plays a
crucial role here since the exponential dependence of absorp-
tion on temperature in Eq. (1), necessitates the existence of a
critical temperatureTc, at which the glass absorbs more pho-
ton energy than it can dissipate. However, extrapolation to
higher temperatures of the experimental spectra available up
to 1900 K cannot quantitatively reproduce the measuredTc.
Therefore better understanding of the kinetics of absorption at
finite temperatures in the Urbach regime is needed. Our pur-
pose here is to study the intrinsic absorption in silica at finite
temperatures, validate theab-initio MD approach with the ex-
isting experimental data, and then investigate the physics of
absorption in the Urbach tail, where accurate experiments are
not available.

The MD simulations presented in this work are per-
formed within the DFT-GGA framework using the PW91
parametrization [11, 12] as implemented in the Vienna ab-
initio simulation package [13–16] using the projector aug-
mented wave method [17, 18]. All calculations involve super-
cells containing 24 SiO2 formula units and the Brillouin zone
is sampled by a2×2×2 Monkhorst-Packk-point grid. In or-
der to obtain a realistic glass model, we started from a liquid
silica model obtained previously [19], which was quenched
down to zero K over a period of about 10 ps. The examina-
tion of the electronic structure of the resulting glass model
revealed several defect states due to the presence of a few
stretched and broken bonds. The defect states were elimi-
nated from the model by optimizing it using a bond-switching
Monte Carlo (BSMC) technique [20]. Several BSMC-refined
configurations were generated, each representing a random
network with perfect bond lengths and angles. Subsequently,
the configurations were structurally relaxed to the local GGA
total energy minimum. The final glass model that was cho-



2

 0

 50

 100

 150

 200

 250

−10 −5  0  5  10

D
en

si
ty

 o
f s

ta
te

s 
(s

ta
te

s/
eV

/c
el

l)

Energy with respect to valence band maximum (eV)

2400 K

1828 K

1200 K

PW91+χ

PBE0

(a)

   0

   1

   2

   3

   4

   5

   6

   7

   8

 0  5  10  15  20

E
ne

rg
y 

w
.r.

t. 
ze

ro
 K

 V
B

M
 (e

V
)

Molecular dynamics step

PW91
HSE06
PBE0

(b)

FIG. 1: (a) Density-of-states for the perfect glass at zero K calculated
using the PBE0 hybrid functional (lowermost line) and the PW91
functional with scissors correction (PW91+χ, second line from the
bottom). Also shown is the density of states for three different non-
zero temperature obtained from MD simulations using PW91+χ. (b)
Eigen energies for a number of configurations along an MD trajec-
tory obtained using two different hybrid functionals (HSE06, PBE0)
in comparison with the PW91+χ approach.

sen from this set had preserved its bond lengths and angles
after the relaxation process. The electronic density-of-states
(DOS) of this configuration as well asα-quartz are shown in
1(a), where comparison is made with the PBE0 hybrid func-
tional which includes 25% exact exchange [21–24]. The GGA
DOS includes a band-gap shift of∆g = 2.6 eV in order to
compare with the PBE0 results. Note the great agreement be-
tween the two calculations. This is not surprising. In gen-
eral it is expected that GGA-DFT, except for the band gap,
can reproduce most of the features of the electronic structure
of insulators accurately. However, as mentioned earlier, the
electronic eigenstates at the band edges undergo localization
when they fluctuate inside the band gap. If the band gap shift
depends strongly on the degree of localization of these states,
then GGA-DFT is fundamentally incapable of a quantitative
prediction of the Urbach tail. We have addressed this issue
by explicitly comparing the time evolution of the band edge
states at 2200 K, calculated from GGA with PBE0 as well as
HSE06 [25] (a hybrid functional that includes screened ex-
change), see Fig. 1(b). It appears that with a constant band
gap shift (2.6 eV for GGA and 0.9 eV for HSE06), all cal-
culations can be brought in agreement with each other. We
thus conclude that DFT-GGA provides a reasonable basis for
modeling the Urbach tail from first principles. A similar con-

clusion was reached by Alkauskaset al. in studying point
defects [9].

The absorption coefficient for photons of energyh̄ω of an
atomic configurationX, can be calculated as follows

α(ω;X) =
√

2
ω

c

√

|ǫ(ω;X)| − ǫR(ω;X), (2)

whereǫ(ω;X) is the complex dielectric function:ǫ = ǫR +
iǫI . In the velocity gauge,ǫI can be directly computed from
the single-particle wave functions, eigenvalues [26, 27] and
their occupanciesfnk as follows

ǫI(ω;X) =
4π2e2

m2
eω

2

∑

n,n′

(fn′k − fnk)
∣

∣Mk

nn′(X)
∣

∣

2

× δ (∆g + en′k(X) − enk(X) − h̄ω) , (3)

whereMk

nn′(X) are the polarization-averaged dipole matrix
elements between the statesnk in the valence band andn′

k

in the conduction band. The sums in Eq. (3) run over all the
bands and spins. The real partǫR can be obtained fromǫI

through a Kramers-Kronig relation. Since this involves an
integration over the entire frequency spectrum, we have in-
cluded as many as 1000 unoccupied bands in our calculations
in order to obtain accurate values forǫR.

At finite temperatures, the response functions as well as
the DOS are calculated by classical ensemble averaging over
ionic displacements in the Born-Oppenheimer approximation,
which amounts to averaging over the MD simulation time
steps. In this way, the electronic transitions are treated as
instantaneous. The finite-temperature electronic state occu-
pancies are determined by the Fermi-Dirac distributionfnk =

1/
(

1 + exp
(

enk−µ(T )
kT

))

. The electronic chemical poten-

tial µ(T ) is calculated from the charge neutrality condition,
∫ µ(T )

−∞
〈ρ(ǫ)〉T dǫ = Ne, whereNe is the total number of

electrons, and〈ρ(ǫ)〉T is the average DOS. Figure 1(a) shows
the average DOS at three different temperatures. The gray
region depicts the band-gap narrowing with increasing tem-
perature. This contributes to creating holes and electrons in
the valence and the conduction bands. The equilibrium con-
centrations of free electrons as a function of temperature can
be calculated by summing up the total occupancies of the con-
duction band states. Although the free electron concentration
is as large as10−17cm−3 at 2400 K, it is still too small to
have any measurable impact on the absorption coefficients in
the Urbach regime, i.e. the latter can be calculated with no
loss of accuracy with zero K occupancies. The connection
to absorption from the DOS is through the joint density-of-
states (JDOS), which for zero K occupancies can be defined
asJ(ω) =

∫

ρv(ω′)ρc(ω
′ + ω) dω′, whereρv(c)(ω) is the

DOS of the occupied (unoccupied) bands. At finite temper-
atures, a direct relationship between the JDOS and the DOS
only exists if the fluctuations in the valence and the conduc-
tion bands were independent

〈J (ω)〉T ≈
∫

〈ρv(ω′)〉T 〈ρc(ω
′ + ω)〉T dω′. (4)
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FIG. 2: (a) Joint-density-of-states and imaginary dielectric function
at two different temperatures calculated from MD simulations. The
inset shows the free electron concentration as a function of temper-
ature. (b) Absorption coefficient in the Urbach regime at different
temperatures calculated from MD simulations using the PW91 func-
tional with a scissors shift. The inset shows the result of the fit to
Eq. (1) and the comparison with the experimental data from Saito
and Ikushima [28].

We find that the above is a very good approximation at all fre-
quenciesω. This is illustrated in Fig. 2(a), where the structure
of the low-frequency exponential tail of the JDOS at several
temperatures can be observed. We also show the imaginary
dielectric function in the same figure. This was made possi-
ble through rescaling the JDOS with a temperature-dependent
effective dipole transition probabilityµ(T ) to fit the low-
frequency exponential tails of the imaginary dielectric func-
tion.

〈ǫI(ω)〉T ≈ µ(T ) 〈J (ω)〉T . (5)

Note how well these tails are reproduced by the JDOS over the
entire temperature range. This is an important result, which
suggests that the matrix elements are not necessary to repro-
duce the frequency dependence of the low-energy exponential
tail of the dielectric function. However, they cannot be ne-
glected entirely, since they lead to an effective temperature-
dependent coefficient that changes by a factor of two between
1200 and 2400 K. In the inset of Fig: 2(a), we show that
µ−1(T ) decreases linearly with increasing temperature.

We now proceed to calculate the absorption spectra using
Eq. (2), for temperatures ranging from 1200 to 2400 K as
shown in Fig. 2(b). Simultaneously fitting the low-energy ex-
ponential tails of the calculated spectra at all temperatures to

Eq. (1), yieldsσ = 0.473 and the values ofω0(T ) shown
in the inset of Fig. 2(b). The latter is very well approxi-
mated by a linear function of temperature,ω(T ) = 8.70 eV−
T · 1.07 × 10−3 eV/K. This result is in accordance with
Urbach’s rule and is in excellent agreement with the exper-
iments by Saito and Ikushima [28], whereσ = 0.585 and
ω(T ) = 8.76 eV − T · 1.01 × 10−3 eV/K. Both the experi-
mental [28] and calculated Tauc gap energies are shown in the
inset in Fig. 2(b). We have followed Saito and Ikushima [28]
and defined the Tauc gap as the photon energy corresponding
to 5×103 cm−1 absorption. The calculated linear temperature
dependence ofω0(T ) in Fig. 2(b) extends the Urbach rule up
to 2400 K. However, for the system size and simulation times
considered here, our glass model remains a vibrating system.
The effect of melting and diffusion on the Urbach rule is out-
side the scope of this work. This result is still valuable for
modeling run-away absorption where explosive heating oc-
curs over very short time scales.

It is interesting to note that in the Urbach regime the ratio
〈ǫI(ω)〉T / 〈ǫR(ω)〉T ≪ 1. A first order Taylor expansion
of Eq. (2) with respect to this quantity yields the following
expressions for the absorption coefficient

〈α(ω)〉T ≈ ω

c

〈ǫI(ω)〉T
√

〈ǫR(ω)〉T
≈ ω

c

µ(T ) 〈J (ω)〉T
√

〈ǫR(0)〉T
. (6)

The second approximation above is obtained by a zeroth order
expansion about the static dielectric constant〈ǫR(0)〉T , and
utilizes our earlier finding that the Urbach tail of the imaginary
dielectric function can be obtained from the JDOS, see Eq. 5.
Using the above together with Eq. (4), we can thus establish
a simple relationship between the absorption coefficient and
the DOS in the vicinity of the absorption edge, where the
temperature dependence of the prefactor is mainly through
the effective oscillator strengthsµ(T ), while 〈ǫR(0)〉T varies
only weakly with temperature, i.e. from 1.81 at 0K to 1.99 at
2400 K, corresponding to an increase of less than10% over
2400 K. We point out that the DOS is obtained experimentally
through photoemission spectroscopy. Therefore, the above re-
sult provides a direct link between the photoemission and the
optical absorption experiments in the Urbach tail region of the
spectrum.

Equation (6) has the important implication that at finite tem-
peratures the dipole matrix elements average out such that
in the Urbach tail they can be replaced by a temperature-
dependent prefactor. The atomic vibrations also lead to sig-
nificant statistical fluctuations, which at this point is compu-
tationally very expensive for us to quantify accurately. How-
ever, we can use Eq. (6) to obtain a lower bound on the sta-
tistical fluctuations inα(ω) by neglecting the fluctuations in
the matrix elements and study

〈

J 2(ω)
〉

T
. This is shown in

Fig. 3a), where comparison is made with〈J (ω)〉2T . A signif-
icant departure between the two curves is seen in the Urbach
tail, where the ratioQ(ω) =

〈

J 2(ω)
〉

T
/ 〈J (ω)〉2T can reach

104. Hence the standard deviation from mean absorption for
frequencies in the Urbach tail is more than an order of magni-
tude larger than〈α(ω)〉T .

The origin of the large fluctuations in the Urbach regime
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FIG. 3: (a) First and second moment of the joint density of states
(JDOS) as well as their ratio at 2400 K. (b) In the Urbach regime
The standard deviation of the JDOS equals the square root of the
average indicative of a Poisson distribution. The energy at which
the ratio deviates from one provides a simple measure for the upper
limit of the Urbach regime as indicated by the arrow. (c) At low
energies, the JDOS exhibits two distinct regions corresponding to
localized-delocalized (Urbach regime) and localized-localized tran-
sitions. Each region is described by a different exponential the cross-
ing point of which defines a lower limit for the Urbach regime. Note
that the Tauc gap lies above the region within which the JDOS ex-
hibits exponential tails. (d) Upper and lower limits of the Urbach
regime extracted from the data presented in (b) and (c).

lies with the discrete nature of the JDOS itself. Even if
〈J (ω)〉T ≪ 1, at each instant of time there can only exist
an integer numberN of pairs of electronic states available for
transition or none. Hence the absorption coefficient locally
fluctuates between zero andµ2 × N , which can amount to
fluctuations much larger than the mean value〈J 〉T itself. This
is a consequence of the quantum nature of matter. Let us now

define an absorption event as the instant of time whenN > 0.
Whenever absorption events occur so rarely that they can be
considered independent, the absorption process is Poisson dis-
tributed, with〈J (ω)〉T interpreted as the average rate of oc-
currence. An important signature of the Poisson distribution
is that its standard deviation is equal to the square root of its
average. Figure 3(b) shows the ratio between these two quan-
tities for JDOS as a function ofω for several temperatures.
We see that in the Urbach regime, the equality between two
quantities hold, while at higher frequencies their ratio starts
deviating from one. In fact, we may define the frequencyωU

below which the statistics becomes Poisson distributed. This
frequency signifies the upper bound to the Urbach tail region
of the spectrum. Figure 3(d) shows that above 1200 K,ωU de-
creases linearly with increasing This result bestows the finite-
temperature JDOS in the Urbach tail with distinct physical
significance. It represents the average rate of occurrence of
absorption events in this frequency interval. Although there
are no experiments that can directly measure JDOS, it can
be determined via Eq. (4) from the finite-temperature DOS,
which cam be obtained from photoemission experiments. The
Urbach tail region is a closed frequency interval in the opti-
cal spectrum. Above, we have determined the upper bound
for this interval. We can also determine its lower bound us-
ing Eq. (4) to compute〈J (ω)〉T down to very small values
with good statistical accuracy. Figure 3(c) shows that at very
low energies there is a transition in the signature exponential
decay of the Urbach tail to a steeper decay curve. The fre-
quencyωL at which this transition occurs can be used to sig-
nify the lower bound of the Urbach region. The temperature
dependence ofωL is shown in Fig. 3(d). The optical transi-
tions in this lower-frequency region correspond to transitions
between the localized levels in the exponential tails of the va-
lence and the conduction bands. In contrast the Urbach tail
originates from transitions between localized tail states and
extended band-like states.

Finally, let us discuss the impact of the above findings on
the modeling of laser heating in silica. To lowest order, laser
heating can be described by a heat conduction equation with a
source term that incorporates energy deposition by linear cou-
pling to the laserα (ω, T ) I(r), whereI(r) is the laser light in-
tensity. Neglecting fluctuations, this term can be parametrized
by α(ω, T ) = 〈α(ω)〉T . However, the rare event nature of ab-
sorption in the Urbach regime calls forα(ω, T ) to be treated as
a time and space-dependent Poisson process, where at a rate of
〈J (ω)〉T an absorption event with the strength ofω

c
µ2√

〈ǫR(0)〉
T

with the duration of 5 fs takes place. The spatial extent of each
event is≈1nm, as compared with a typical laser spot of about
200 nm lasting several nanoseconds.

This work performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 with support from the
Laboratory Directed Research and Development Program.
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