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On the molecular quasispecies model and the dominance of the
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Tanya Kostova * Carol Zhou , Adam Zemla

Abstract

We discuss quasispecies theory and the limitations of Eigen’s quasispecies model with regard to natural
viral quasispecies. Analysis of Eigen’s model is performed focusing on the question: what is the effect of
increasing mutation rate on the population density of the dominant (most prevalent) genotype? Rigorious
mathematical analysis is possible at the two extremes: when the mutation rate is low (in the vicinity of
zero) or when it is very large (close to one). At the first extreme, Eigen’s model predicts that the fittest
genotype (i.e., the one that has the highest fitness) is the dominant one. At the other extreme, we prove
that any genotype could gain dominance, depending on whether certain relations among the replication
and degradation rates are fulfilled. We derive formulas that enable exact prediction as to which genotype
will emerge as dominant at high mutation rates, and we demonstrate by means of numerical examples the
validity of the predictions. We construct examples, based on the theory where we show, by computations,
that the fittest (wild) type can remain dominant for all values of the mutation rate. Importantly, we do
not restrict the analysis to the (typically considered) single-peaked fitness landscape, nor to the case in
which all degradation rates are equal (as done in previous simulations by other authors).

Keywords: quasispecies, viral evolution, error threshold, genotype dominance, spectral abscissa, quasi-
positive matrix, asymptotic stability

1 Introduction

Evidence shows that RNA viruses exist as heterogeneous populations of diverse genotypes in cell culture
experiments [40, 41], within individual hosts [1, 24, 32, 18, 27] and in populations of hosts [22, 33]. This
diversity is believed to result from the high frequency of mutation that occurs during RNA virus replication.

Viral mutation rate, defined as the number of misincorporations per nucleotide copied [10] during virus
replication within the cell, has been measured for various viral species. It has been estimated that RNA
viruses mutate on average 200-300 times faster than DNA viruses [11, 12] and that the mutation rate of
RNA viruses ranges between 1075 and 1073 [10]. The high mutation rate of RNA viruses is explained by
the absence of a proof-reading function of the RNA viral polymerase. Because viral genomes vary in length
between 3.10% — 3.10%, the estimates of RNA viral mutation rate lead to the conclusion that during RNA
genome replication very few progeny genomes escape mutation [12].

Many of the mutant progeny contain deleterious mutations that produce defective viral genomes or non-
functional proteins—yet others are capable of repeating the replication and diversification rounds in millions
of host cells. A fraction of these avoid immune responses, emerge from the host, and continue the cycle in
other hosts. This complex process leads to the formation of a heterogeneous population of viral genotypes,
called quasispecies.

A quasispecies is defined as ”a dynamic distribution of nonidentical but closely related mutant and
recombinant viral genomes subjected to genetic variation, competition and selection and which acts as a
unit of selection” [10] and the concept is currently relatively widely adopted within the virology community
([8, 40, 34, 35, 23, 6, 29, 26], among many others) to qualify the variability of genetic sequences corresponding
to the same virus species.
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The central tenet of the quasispecies theory, first introduced in a mathematical model by Eigen [13] and
further analyzed by Eigen and and Schuster [14] is that evolution acts on the population as a whole rather
than on individual genotypes. Environmental pressures and bottlenecks lead to the formation of specific
equilibrium distributions of genotypes (and phenotypes), in which a specific genotype, referred to as the
master sequence, is present at dominant frequency, while the rest (the minor genotypes) occur at lower
frequencies, many of which may be undetectable using any currently available sequencing technologies.

The central tenet offers an explanation of many important phenomena observed in nature and in the
laboratory. For example, if environmental conditions change, the relative fitnesses of the genetic variants
would presumably also change. In general, as a result of environmental changes, a new master sequence
emerges surrounded by a different distribution spectrum of minor types. As an illustration, if the quasispecies
is forced to replicate in a different cell type, many variants (including the master type) may be unable to
replicate at all, while other, minor types may be highly successful in replication and eventually emerge in
dominant proportions within the population. As another example, crossing the species barrier is readily
explained by quasispecies theory. The presence of a wide distribution of genotypes generated by replication
in one host species increases the chances of generating a minor genotype capable of reproducing in a different
host species. Combined with opportunity to infect that species, the minor genotype may be able to replicate
thereby forming the seed of a new master sequence that is well adapted to the new host. Third, the emergence
of a new master sequence offers explanation of the emergence of resistance to antiviral drugs. A drug that
has been developed to target a certain sequence (based on a particular isolate that may represent the current
dominant genotype) may not work against some of the minor sequences, which in the presence of the drug
eventually may become dominant.

Despite the popularity of quasispecies theory, it is also accompanied by skepticism, controversy and
confusion. The reasons for this are two-fold.

First, the mathematical model on which it is based, was developed to represent the dynamics of self-
replicating molecular species and was not meant to take into account the specifics and complexity of virus
replication, including, among many other features: a) phenotypic constraints, exemplified by secondary and
tertiary RNA and protein structures; b) the dependence of the replication rate on RNA-derived polymerase
and virus-specific enzymes; ¢) complementation. The model also makes some assumptions (discussed below)
that are not realistic for viruses. As such, some of the virologists are skeptical about one of the predictions
of Eigen’s modell, namely, the existence of an ”error threshold” of the mutation rate.

The error threshold was demonstrated in computational experiments done first by Swetina and Schuster
[38] and later repeated by many authors [44, 15, 36]. The implication of the error threshold is that above a
certain value of the mutation rate the master sequence loses dominance, becoming a very small fraction of
the population, and the quasispecies consists of a large number of genotypes in low concentrations. This was
interpreted as information loss [16], and the conjecture that virus quasispecies exist near the error threshold
was put forward.

Some authors express skepticism regarding the existence of the error threshold in reality [37, 21, 5]. Iranzo
and Manrubia [21] believe that ”natural quasispecies” are not close to the error threshold, as the quasispecies
model does not take into account the large number of genotypes expressing the same phenotype; thus, much
of the genotypic variability does not manifest as phenotypic variability. Summers and Litwin [37] argued
that the error threshold in Eigen’s model exists only because of the unrealistic assumption that all mutant
genotypes are able to replicate no matter how far (in terms of number of mutations) from the wild type
(i.e., the fittest genotype) they have diverged. They formulated a simple model that approximates Eigen’s
model dynamics, and showed that without this assumption, their model does not predict error catastrophe.
Cases-Gonzales et al. [5] note that "with real viruses, a large expansion through sequence space cannot
occur, and . . . the increase in error rate results in a decrease of specific infectivity which can lead to the
extinction of the population with modest expansion in sequence space”.

Experiments with ribavirin that were meant to demonstrate the existence of the error threshold in
poliovirus [6] showed that the increase in mutation rate caused by the drug was accompanied by a steep
decrease in infectivity. This was interpreted as the virus having passed the error threshold. However it
was later shown that poliovirus develops resistance to ribavirin expressed by the emergence of a genotype
coding for a polymerase with increased fidelity which narrows back the quasispecies diversity [31, 42]. The
propensity for poliovirus to adapt and avoid error catastrophe cannot be predicted by the quasispecies model
because it does take into account the complexity of the virus replication mechanism which involves virus
genome - encoded production of virus species-specific polymerase and enzymes.



Second, the error threshold as a concept is not well understood. It is frequently mistaken for the extinction
threshold, both in theory [43, 36, 21, 37] and experiment [9, 42]. The conceptual difference between error
threshold and extinction threshold was made clear in [4] and recently reiterated by Holmes in [20]. Below
we add clarification on the subject.

Extinction threshold is a term used to explain an abrupt change in density or number of a population
brought on by changes in important parameters, such as habitat loss or increased death rate due to various
factors (e.g., human factors, disease). The extinction threshold is a central concept in theoretical ecology
and conservation biology. Mathematical models in ecology explain the extinction threshold as the value
of a parameter at which the zero equilibrium (i.e., the state of the model when the population number is
zero) becomes an attractor - that is to say all populations eventually decrease and go extinct with time. In
epidemiology the same concept (called the eradication threshold) is used to study the conditions under which
a disease can be eradicated; here the threshold again separates parameter values for which the zero (infection-
free) equilibrium is stable or unstable. The ecology and epidemiology literature abounds in publications
exploring extinction (eradication) thresholds under various conditions ([28, 2, 17, 25], just to mention a few).

In regards to the quasispecies model, if the parameter of interest is the mutation rate ¢, the extinction
threshold would be a value of ¢ beyond which the quasispecies would eventually reach extinction. Whereas
Eigen’s model demonstrates the error threshold, it does not support the existence of an extinction threshold.
The mathematical structure of Eigen’s model is such that for each set of parameters it can have only one
equilibrium, which is strictly positive and globally stable. This means that independent of the initial genotype
frequencies, the quasispecies population converges with time to an equilibrium in which each of the genotypes
is present. Therefore, in Eigen’s model the quasispecies does not have an extinction threshold. However, as
simulations have demonstrated, an error threshold does exist at least for parameter values of Eigen’s model
for which the simulations were made.

Further, Eigen’s model has some peculiarities that were mostly overlooked in the literature. If one takes
a careful look at the simulations made by Swetina and Schuster and other authors, one notes (see for
example[38], p.340, [16], p.118) that for very high mutation values (probability of mutation close to 1) two
genotypes dominate: the original master sequence and its ”mirror sequence” (i.e., the one in which all
nucleotides have mutated). This peculiarity was only marginally mentioned in the original model papers
and is easily overlooked in simulation plots that do not represent a range of values of q spanning from 0 to
1. Thus, according to Eigen’s model, at very high mutation values, not only is it possible that the original
master sequence still exists, but it may exist at a high frequency in the population, second only to its
mirror sequence. In addition, according to the simulations (cited above), the mirror sequence becomes the
dominant genotype at very high mutation rates. We note that for real viral genomes the mirror sequences
would certainly be functionally defective and, thus, the conclusion derived from simulations of Eigen’s model
at very high mutation rates is unrealistic.

It is important to note that all simulations for the error threshold were done for the special case in which
the degradation rates of all genotypes were equal [38, 44, 15]. In some cases the degradation rates were
set to zero, and in others they were set to a chosen constant. However, it is reasonable to assume that
well adapted virus genotypes would be more effective in disabling cellular mechanisms of antiviral defense,
including mechanisms for degrading RNA (i.e., miRNAs reviewed in [30], p.195, [19], [39]). It would be
instructive to explore how differing degradation rates would affect the outcomes of simulations using these
models. Apart from this, simulations were also only performed with a limited choice of replication rates:
while the wild type had one, higher replication rate, the rest of the mutant genotypes had the same, lower
rate of replication (the so called ”one-peak landscape).

This paper provides analysis of the above mentioned features of the quasispecies model that have been
traditionally overlooked in the literature. We use methods of stability analysis and properties of quasipositive
matrices to understand what is happening with the behavior of the quasispecies model at very high mutation
rates. We do not limit our analysis to restricted values of the degradation and the replication rates. We prove
that for very high mutation rates the wild type can be again the dominant type and we derive the analytical
conditions under which this can be the case. Interestingly, we prove that if all degradation rates were equal
(which was the case for the computational experiments in [38]), the wild type could not be dominant for
very high mutation rates. Our analysis not only explains the computational observations in [38] but also
derives the conditions under which, according to Eigen’s model, a mutant genotype may emerge as dominant
at high mutation rates.

Further, we examine the problem of the preservation of the master sequence. We ask the question



whether the wild type can remain dominant (i.e., is found in highest concentration compared to all other
types of the quasispecies) for all values of the mutation rate. When the mutation rate is small, the wild
type is dominant. When the mutation rate increases, many other mutants appear and some may become
dominant. It is, however, conceivable that if the wild type is dominant for both low and high mutation rates,
it might, under certain conditions, remain dominant for all values of the mutation rate. We show by means
of computational experiments that this indeed could be a possible case, at least as a prediction of Eigen’s
model.

2 Background

2.1 Eigen’s quasispecies model

The model considers the concentrations, or frequencies x; of a given number N of ”information carriers”,
or ”"sequences”, Sy, Sa, ..., Sy each of which can replicate (produce copies of itself) with a rate A;, which in
the model is a constant (i.e., independent of x1,...,zx). The replication of each S; is imperfect; there is a
non-zero probability @;; (the probability of mutation) that sequence S; will produce by mistake a copy of
any sequence S;, while Q;; is the probability that sequence ¢ will faithfully reproduce itself. All sequences
can be degraded with rates, correspondingly, D; (the degradation rates).

The quantity A; — D, is called the excess productivity, while the quantity A;Q;; — D; is the "fitness” of \S;
[38]. Obviously, when replication has perfect fidelity (Q;; = 1), the fitness is equal to the excess productivity.
When the fidelity of replication @;; is not perfect (Qi; # 1), the fitness of S; may differ from the excess
productivity and change when Q;; changes. Noting this, in the text that follows, we shall call A; — D; also
the "nascent fitness” of \S;.

FEigen’s quasispecies model is designed in such a way that the sum of all concentrations is equal to 1:

> ai=1 (2.1)

In the language of dynamical systems, the hyperplane (2.1) is an invariant set of the model; thus, if at time
0 the initial concentrations are on the hyperplane, they will remain on it for all t. To ensure this property
of the system, Eigen introduced a flux function f(Z) = > (A; — D;)z; and defined the model as follows

i = [AiQui — Di — f(D)|zi + > ApQiran,i =1,.., N (2.2)
k#i

The model and its consequences were further investigated [38, 15] for binary sequences (i.e., such that
each position on the sequence can take two values: 0 and 1) of a fixed length n, and under the assumption
that each position can change its value (i.e., mutate) during one sequence replication event, with probability
q. Thus, the probability that a sequence of length n will mutate to another sequence with the same length,
but differing from the first in m positions (i.e., when the Hamming distance d(¢, j) between the two sequences
ism) is (1 —q)" ™q™

In general the probability of mutation of sequence S; to sequence S; with Hamming distance between
the two equal to d(i, j) is

Qij = (1— Q)n_d(i’j)qd(i’j)- (2.3)

This formula is based on the assumption that each position mutates independently (i.e., there is no mutational
dependency among positions).

2.2 Swetina and Schuster’s simulations and the error threshold

Swetina and Schuster used the mutation rate in the form (2.3) to perform numerical simulations of the model
(2.2) with increasing sequence length n [38]. For each n they varied ¢ from 0 to 1 and for each ¢ and n
they calculated the equilibrium distribution. The simulation showed that at low mutation rates (¢ ~ 0),
the dominant genotype is the one with the highest nascent fitness, calculated as A; — D;. This genotype is
called the wild type.

When ¢ was increased beyond a certain ”error threshold” value, the wild type lost its dominance abruptly
and became a very small fraction of the population. The other genotypes existed at low equilibrium levels as



well [38]. To illustrate the simulation results, the frequencies of all species with a given Hamming distance
from the wild type were summed up (let us denote these by ¥4, where d is the Hamming distance from
the wild type). Then, for values of the mutation rate above the error threshold g, and below another,
second threshold value gn,q, all ¥4 appeared to have the same constant value. Actually, above this second
threshold, the simulations showed the resurrection of the wild type, which was dominated by its ”mirror”
sequence.

The reappearance of the wild type at very high values of the mutation rate above the second threshold
is contrary to intuition. The wild type reappears only because the quasispecies model allows sequences
with arbitrary Hamming distance from the wild type-including the mirror sequence-to remain viable and
replicate. As a consequence, for very high values (close to 1) of the mutation rate, the wild type mutates
primarily into its mirror sequence, and because the wild type has the highest replication rate, it and its
mirror eventually become the dominant types. This assumption (that arbitrary sequences are viable and
replicate), as pointed by some authors, including [37], is not valid for viral RNA. Actually, sometimes a single
mutation is deleterious, and there is no reason to believe that a mirror sequence would encode anything other
than a non-viable genome.

We note that the calculations in [38] were done with all values of the degradation rates equal to each
other: D; = D,i=1,...,N. Also, all similar simulations in the quasispecies literature, such as [15, 44] were
done under the same assumption. Another restriction on the model parameters used in all simulations is the
so-called single peak fitness landscape, in which the wild type has the highest nascent fitness and all other
genotypes have equal or lower nascent fitnesses: Ay — D1 > Ay — Dy = ... = Ay — Dy. Having in mind that
D; = D, the latter boils down (in Swetina and Schuster’s and other simulations) to Ay > Ay = ... = Ay.

We conclude this section by noting that even though the quasipecies model makes many unrealistic
assumptions with regard to viral replication, it may have fundamental properties that might be inherited by
more realistic models. In addition, Swetina and Schuster’s simulations were done with a restrictive set of
parameters, so it is of interest to see what is gained if these restrictions are relaxed or removed.

3 Model analysis

3.1 Notations and definitions

The following represent a comprehensive list of notations and definitions used throughout the text.

I, - the identity matrix in R¥;

If A is a matrix (or a vector), A > 0 if all its entries are nonnegative, A > 0 if A > 0 and at least one of
its entries is positive, and A >> 0 if all its entries are positive;

A is called quasipositive if it has nonnegative off-diagonal elements;

A(A) - eigenvalue of matrix A;

s(A) - spectral abscissa of the matrix A, the largest real part of any of the eigenvalues of A: s(A4) =
max; A;i(4) ;

S; - genotype sequence indexed j;

n - number of positions ("nucleotides”) in a sequence;

N -number of all possible sequences of length n (N = 2™);

¢ - mutation rate, equal to the probability of one point mutation per one sequence replication;

Qi - probability of mutation of S; into .S; during one sequence replication;

Qi; - fidelity of replication of S;; Qi + -, Qij = 1;

Q= (Q”) - the mutation probability matrix;

diag(A;) - a diagonal matrix with elements A;;

D; - degradation rate of S;;

A; - replication rate of S;;

D =diag(D;) ; A = diag(4;)

A;Q;; — D; - fitness of S; for a given fidelity of replication Q;;

F;, = A; — D; - excess productivity of type i, also called nascent fitness;

f(z) => (A; — Dj)x; - average excess production of sequences, also equal to the average fitness in the
absence of mutation;

z3° - the frequency (concentration) of S; at equilibrium;



Z*(q) = (25°(q), ..., z2°(q)) - the unique positive equilibrium of sequence frequencies for a given mutation
rate ¢ € (0,1);

Mirror sequence - given a sequence with index [ and a sequence with index m, such that d(I,m) = n (i.e.
they differ in all positions), S; is the mirror of S, and vice versa.

3.2 The unique positive equilibrium and its meaning

If all sequences are capable of replication, i.e. A; > 0, for all 7, and if the probabilities of mutation are positive,
Eigen’s model (2.2) has a unique positive equilibrium, solving &; = [4;Q;; — D; — f(Z)]z; + Zk# ArQipxy =
0,7=1,..., N, denoted here as #*°. In Appendix B we prove the existence of a unique positive equilibrium
under slightly more relaxed conditions. Namely, if the mutation probability matrix @ is irreducible and
A >> 0, there is a unique ©*°. The mutation probability matrix is irreducible if for any pair of sequences S;
and S; there is a non-zero probability that S; will mutate into S; after a certain number of replications. For
example, if Q;; # 0, there is a non-zero probability of mutation from S; to \S; in just one sequence replication.
If Qi; = 0, but there is a "path” {iiy, 4142, ...,1pj } s0 that Qis, Qi,4,..-Qs,; > 0, there is a positive probability
of mutation from S; to S; in p 4+ 1 consecutive replications.

Eigen and coworkers showed in [15] that all solutions of the model, independently of the initial conditions
converge to £°; that is the equilibrium £ is globally asymptotically stable. Note that because the equilibrium
is positive, none of the genotype frequencies can become 0. Thus, Figen’s model predicts that, for given
replication and degradation rates and mutation probabilities, for all possible initial distributions of the
genotype sequences, after a sufficiently long period of time the quasispecies will self-organize and approach
the same equilibrium state.

For the evolutionary biologist this result translates into the following implication (i.e.,- the central tenet
of quasispecies theory).

Selection acts upon the quasispecies population as a whole. It leads to the establishment of a dynami-
cal equilibrium distribution of genotypes and not just to the "survival” of a most fit genotype. Assuming
there exists only one genome with highest frequency, that one is called the master sequence. All other geno-
types coexist, even if in minuscule proportions. These genotypes continually mutate into each other while
maintaining the equilibrium distribution.

Although the result above is true for any form of the mutation probabilities satisfying the only restriction
Qi + Zj# Qij = 1, further we shall focus on Eigen’s model with a mutation matrix defined as in (2.3). We
assume without loss of generality that the nascent fitness of genotype S is the highest:

A1 — Dy >Ai—Di,i7A1. (31)

We will explore the following questions. What happens when the mutation rate increases? Which is the
master sequence when ¢ is small and which is it when ¢ approaches 1?7 What happens when ¢ increases from
0to 17

3.3 Analysis for small mutation rates

When the mutation rate is very low, i.e. ¢ &~ 0, and if (3.1) holds, S; is the dominant genotype. We see this
by first considering the case with absolute fidelity of the replication, i.e. when ¢ = 0.

(a) Case q=0.
If g =0, Qi = 0,7 # j . Denoting the nascent fitnesses as F; = A; — D; > 0, the system can be written
as
{tiz [Fi—f(f)]xi,izl,...,N. (32)

We show in Appendix C that this system does not have positive equilibria. If all F; are different, there
are exactly N equilibria: the unit vectors (1,0, ...,0),(0,1,...,0),...,(0,0,...,1). Otherwise the system can
have other equilibria, apart from these. We show in Appendix C that (1,0, ...,0) is globally stable while all
other equilibria are unstable. This result has the following biological interpretation.

In the absence of mutation, independently of the initial distribution of different genotypes, the quasispecies
approaches a state in which all genotypes with nascent fitness less than the mazimum would disappear, while
the genotype with the highest nascent fitness would persist.
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Figure 1: When g increases from 0, the unique positive equilibrium moves on a curve starting from the stable
equilibrium (1,0,0) for ¢ = 0. See text.

(b) Case ¢ =~ 0. Since we know that there is a unique positive equilibrium for each value of the mutation
rate ¢ € (0,1), we now question what is the location of this equilibrium in the hypercube C = (0,1)N. We
show that when ¢ increases gradually above zero, the positive equilibria #°°(q) lie on a curve starting at
the globally stable equilibrium (1,0, ...0). To prove this we first use the Implicit Function Theorem to show
the existence of a curve of equilibria (not necessarily positive) and then prove that this curve lies in C by
verifying that 2$°(¢) € (0,1) (Appendix D). We also show in appendix D that the frequency of the wild
type gradually decreases while the frequencies of the other types increase when the mutation rate starts to
increase from 0.

We illustrate this and further statements iin Figure 1 where we have depicted a three dimensional sequence
space. As 21:17273 x; = 1, the frequencies x; are physically located on the part P of the plane defined by this
equation and lying within the cube (0,1)3. When ¢ = 0 the stable equilibrium is at 2; = 1,29 = 0,23 = 0
(Figure 1(a)). When ¢ starts increasing from 0, the family of equilibria Z°°(g) lies on a curve starting at
(1,0,0), Fgure 1(b). The curve is initially in the shaded part D of P which is characterized by the property
1 > X9,x3, i.e. S1 is dominant. When g grows further, there is the possibility that £°°(¢) will move out of
D and S; will lose dominance. There is also another possibility, that when ¢ increases from 0 to 1, the curve
of equilibria will never leave D and S; will remain dominant.

In short, in Appendix D we obtain the following result:

Proposition 3.1. For ¢ =~ 0,q > 0 the unique positive equilibrium T>°(q) of the system (3.2) lies on
a curve starting, at ¢ = 0, from the equilibrium #°°(0) = (1,0,...,0)T. For values of q in some small
interval around ¢ = 0, the wild type frequency x3° remains larger than the frequencies of the remaining types:

x> a0 =2,...,N (i.e. Sy is the dominant species for small mutation rates).

Since the equilibrium frequency of the wild type 2$° decreases when the mutation rate ¢ increases from



0, two possibilities arise: either 23° becomes smaller than some other genotype frequencies for some value of
q or it remains the highest frequency for all g.

Biological interpretation. For small values of the mutation rate, the wild type remains dominant, although
its frequency in the population decreases when the mutation rate increases. The wild type may lose its
dominance when the mutation rate increases further, or it can remain dominant independent of the mutation
rate.

3.4 Analysis for high mutation rates

Further we investigate what happens with the curve of equilibria for large values of q.

3.4.1 A toy model with N =2

We consider now an oversimplified ”sequence” consisting of only one "nucleotide”, which can assume only
two values (0 or 1). The consideration of this example will be helpful in analyzing a more complex model
with N > 2. In this case only two “genotypes” - S; = {0} and S = {1} are possible. Alternatively, we may
consider that S; and Sy are two subpopulations of the quasispecies: one with higher nascent fitness than
the other. Let their replication rates be A; and As and their degradation rates be D; and Dy. We assume
again that S; has higher nascent fitness than Ss:

Ay — Dy > Ay — Ds. (33)
The quasispecies model then takes the form:

i1 =[A1(1 —q) — D1 — f(@)]21 + A2qz2 = ¢1(Z, q)
By = A1qry + [A2(1 — q) — D2 — f(Z)]22 = ¢2(7, q)

where # = (z1,22) and f(Z) = (41 — D1)x1 + (A — Da)xs.

According to the results in the previous section, when ¢ = 0, the model has two equilibria: (1,0) and
(0,1). From the latter originates the positive equilibrium x5°(q), 5°(¢) which is such that for small mutation
rates ¢, 9°(q) > 23°(¢q). The wild type (the one with the larger nascent fitness A1 — D;) is dominant for
small mutation rates.

If 23° becomes equal to x5° at some threshold value ¢ = gmin and, 3° < x3° when ¢ grows further
beyond the threshold, then S; loses dominance. We show in Appendix E that under certain conditions on
the replication and degradation rates, the wild type never loses dominance.

(3.4)

Proposition 3.2. If, in addition to (3.3), one of the following conditions is also satisfied:

(CL)Al - A2 S 0
or (3.5)
(b)Al — Ay >0 and Ay + Dy > Ay + Dy,

the wild type remains dominant for all ¢ € (0,1); i.e. x1(q) > z2(q) for all q € [0,1].

Proof of this statement is reported in Appendix E.

Biological interpretation. Thus, for this toy case we proved that if the wild type (genotype S7) has higher
nascent fitness but lower replication rate than genotype Sa, (i.e. (*) A2 —A; > 0and A1 — Dy > A — D») it
will remain dominant independently of the value of the mutation rate. This result points to the importance
of considering differences in the degradation rates. In effect, if the degradation rates of S; and Sy were
equal, higher nascent fitness would imply higher replication rate: A; — D1 > Ay — D5 if and only if A; > A,
and the above pair of inequalities (*) would be invalid. Different rates of degradation can affect the rates of
accumulation of genotypes as differences in the degradation rates can cause a species that replicates more
slowly to have higher nascent fitness, as would be the case when the inequalities (*) hold together. If the
more fit species has a lower replication rate, then it will produce mutants more slowly but will be degraded



less readily, whereas the mutant species will produce the wild type at a higher rate and be degraded faster
at the same time.

We also showed that if the wild type has a higher replication rate than the mutant, it can still remain
dominant for all values of the mutation rate, if A; + Dy < A+ Ds. That is, if the wild type is degraded at a
much lower rate than the mutant, so that the previous inequality holds, the wild type will remain dominant.
However, this (i.e. condition (b) ) is impossible if D1 = Ds.

Thus, the cases for which we show that the wild type remains always dominant are impossible if the
degradation rates of the two types are equal. Therefore if D1 = D5, the wild type will always lose dominance.

3.4.2 The dominant genotype for very large mutation rates (¢ ~ 1) and N > 2.

If the number N of genotypes NN is larger than 2, it is no more possible to derive the conditions for the
parameters of the model for which the wild type will be dominant independently of the value of the mutation
rate ¢ € [0,1]. However, we will derive conditions for the model parameters that will help us construct
examples for which the wild type preserves its dominance as well as other examples in which we can predict
the mutant types that emerge and remain dominant for sufficiently high mutation rates.

We consider binary sequences as in [38, 15, 44]. Thus if the sequence length is n, the number of possible
sequences is N = 2". We assume that all genotypes have positive replication rates A; > 0 and nonnegative
degradation rates, so that F; = A; — D; > 0. Finally, without loss of generality, we assume that type with
index 1 is the wild type, i.e. Fy > F;,i =2,...,N.

As we established in section 3.3, the wild type is dominant for sufficiently small values of the mutation
rate q. We next investigate whether and under what conditions it would be possible for the wild type to be
dominant, i.e. x5°(q) > x5°(q),? # 1 for very high mutation rate values, i.e. ¢ ~ 1. For this purpose we
shall show that for ¢ = 1 there is a unique nonnegative asymptotically stable equilibrium Z*°(1) and that for
g =~ 1, the positive equilibrium #*° branches out from Z°°(1). Then, we will derive conditions that ensure that
29°(1) > x°(1),Vi # 1. We will finally construct, using these conditions, examples of quasispecies models
that demonstrate that the wild type can remain dominant independently of the value of the mutation rate.

Case N=4 To ease understanding we demonstrate the approach in more detail for N = 4; however
this approach works for N = 2™. We consider a small quasispecies system with 4 species represented as
S1=(1,1),5: =(1,0),S53 = (0,1), S4 = (0, 0) with replication and degradation rates A; and D;, respectively.

Since q is the probability of mutation of one nucleotide per one sequence replication, the mutation
probability matrix @ is then

El - q§2 El - q;g (1 —2(1)(1 ( ' |

_ 1-q)g (1—¢q q 1—4q)q

@ (1-q)q¢ & (1-9? (1-q9q |’ (36)
¢ (1-q)q¢ (1—gqq (1—q)?

The system for the equilibria is
(QA— D — f(#)L)7™ =0, (3.7)

where A = diag(A1, As, As, Ay), D = diag(D1, D2, D3, Dy) and 14 is the identity 4 x 4 matrix.
When ¢ = 1, the matrix QA — D — f(#°°)I; becomes an X - shaped matrix

—D; — f(&*) 0 0 Ay
0 —Dy — f(&*) As 0
0 Ay —D3 — f(Z*) 0 (3:8)
A, 0 0 —Dy — f(7)
which is equivalent to the block - diagonal matrix
—Dy — f(&) Ay 0 0
_ Ay —Dy — f(Z™) 0 0
P= 0 0 —Dy — f(7) A ! (39)
0 0 Ay —D3 — f(7>)



and is no longer irreducible. Thus, for ¢ = 1, a positive equilibrium can exist only in the special case when
s(L1) = s(L2), where

o —D1 A4 o _D2 A3
Ly = ( A —D, ) , Lo = ( Ay —Dy ) (3.10)
We set this special case aside and consider the case when
s(L1) # s(La). (3.11)

Let us assume that s(Li) > s(Lz).

Because of the block - diagonal structure of P, and because Lj, Ly are quasipositive (Appendix A), no
positive equilibrium solution exists, but there are exactly two nonnegative equilibrium solutions, which we
denote as

77 = (X3, x5°,0,0)" and 5° = (0,0,x5°% x5°)" (3.12)

Here (x5°, x$3°)7 is the unique positive eigenvector of L; satisfying f(7°) = s(L1) and (x$°,x5°) is the
unique positive eigenvector of Lo satisfying f(75°) = s(La).
For this case we can prove the following

Proposition 3.3. If s(L1) > s(L2), ¥5° is a (locally asymptotically) stable equilibrium and §5° is unstable.
Conversely, if s(L2) > s(L1),¥5° is a locally asymptotically stable equilibrium and §5° is unstable.

Proof of this statement is reported in Appendix F.

Note. For the reader who is not acquainted with stability theory we would point out that an equilibrium
is locally asymptotically stable if the solutions of the quasispecies model converge to it if the initial (at time
0) distribution is close to the equilibrium; it is globally stable if all solutions (independently of their initial
conditions) converge to it.

Thus, so far we have shown that when ¢ = 1, the equilibrium corresponding to the matrix (L; or Ly )
with the larger spectral abscissa is the only nonnegative (locally asymptotically) stable equilibrium. Next
we show that this equilibrium gives rise to the family of positive globally stable equilibria of the model when
the mutation rate ¢ varies with values close to 1.

Proposition 3.4. Assume that s(L1) > s(La). When q changes, decreasing from 1, there exists a smooth
curve of positive equilibria £°°(q) defined in an interval around ¢ = 1 such that £*°(1) = §5°. Else, if
s(La) > s(L1), there is a curve of positive equilibria, such that Z°°(1) = §5°.

It can be proved (proof not shown) that if ¢ varies from 0 to 1, the positive globally stable equilibria of
(2.2) form a curve with one end, for ¢ = 0, at (1,0, ....,0)7, and the other, for ¢ = 1, at the unique positive
equilibrium (either ¢5°, if s(L1) > s(L2) or ¢5° otherwise). To determine which is the dominant genotype
for ¢ &~ 1, we need to find which one of the coordinates z{°(q) is the largest.

Let g ~ 1 be sufficiently close to 1. In view of the above analysis, if s(L;) is the largest spectral abscissa,
then the equilibrium #*°(q) = (£5°(q), z3°(¢), 23 (¢), 23°(¢)) is such that 25°(¢) ~ 0 and 2°(¢) ~ 0 and
either z9°(q) (the frequency of the wild type) or £3°(¢q) (the frequency of the wild type’s ”mirror” sequence)
is the dominant species. Alternatively, if s(Ls) is the largest spectral abscissa, then 23°(¢) ~ 0 and 23°(q) ~ 0
and either 23°(q) or 23°(q) (the frequency of its ”mirror” sequence) is the dominant species.

Thus, for ¢ ~ 1, there is always a pair of dominating sequences which mirror each other while the
remaining sequences are present at very low frequencies.

Additional conditions are needed to determine the dominant type for values of the mutation rate ¢ =~ 1.
These conditions are derived using the same analysis as in the case N = 2 above. Using proposition 3.2, we
obtain the following result.

Proposition 3.5. For the case N = 4, if the following conditions are fulfilled:
a) A;>0,D;>0,i=1,...,N
b)Flel—D1>A4—D4=F4>O,
¢) s(L1) = —3(D1 + Da) + 2\/(D1 — D4)? + 441 Ay > 5(Ls) = —2(D2+ D3) + 3/(D2 — D3)2 + 44, A3
d) A1 — Ay, <0o0or Ay — Ay >0 and Ay + Dy <A4—|—D4,
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then the wild type is dominant for high mutation rate g ~ 1.

If a), b) and c) are true, but instead of d) the following is true: Ay — A4 >0 and Ay + D1 > Ay + Dy,
the mirror sequence of the wild type is dominant for high mutation rates (sufficiently close to 1).

If the opposite inequality in c) is fulfilled, neither the wild type nor its mirror are dominant for high
mutation rates (q = 1); the other two sequences dominate.

Note. If D; = D as assumed in [38, 44, 15], conditions a)-d) cannot hold together, as b) and d) will be
contradictory.

3.5 General Case N > 2

Let us now consider the general case with the assumptions (3.1). Having the experience from the case N = 4,
let us arrange the quasispecies sequences in the following way. The index of the wild type is 1 and the index
of its mirror is 2. Next, take any sequence different from these two and give it an index 3 and give its mirror
sequence index 4, and so on. Continuing in this way, we arrange all sequences.

It is then evident that the system defining an equilibrium > for ¢ = 1 can be brought in the block-
diagonal form

L1 — f(@)I; 0 0
0 Lo — f(@)L 0 0

L™ = 0 0 Ly — f(@) ... 0 7 =0, (3.13)

0 0 o L — (@)D

where
—Dyi1 Ay

Li— , 3.14
( Agi—1 =Dy ) (8.14)

0 is a 2-dimensional square zero matrix, I5 is a 2-dimensional identity matrix and 0 is N-dimensional vector
with zero entries.
Let ko be an index for which Ly, has the largest spectral abscissa. We assume that

s(Lg,) = i:fr}.sz)}:v/Qs(Li) > s(Lj),j # ko. (3.15)

Then (3.13) has a nonnegative equilibrium 500 such that (7 =0, for ¢ # 2ko — 1 or 2k¢ and (53, 1, (3%,
solve the system

L 0 = . 3.16

k < CQOZO 0 ( )

o0

Here < Czk&fl ) is a positive eigenvector, corresponding to s(Lg,) and f({*>°) = s(Ly,) (see Appendix A).
2k

In addition, 0(5’2071 + (3, = 1 and are both positive.

For mutation rates approaching 1, the dominant genotype is either the one indexed with kg or its mirror.
The wild type will be dominant at high values of the mutation rate if kg = 1 and if Ay + Dy > Ay + D;. We
state the following (proof in Appendix H).

Proposition 3.6. Let the sequences comprising the quasispecies be indezed as described in the beginning of
this section. If the following conditions are fulfilled

a) A;>0,D;,>0,i=1,...,N;
b)Flel—D1>A2—D2:F2>0;

¢) s(Ly) = —%(Dl + Dy) + %\/(Dl — Dy)? +4A, 45 > (3.17)

1 1
— §(D21'—1 + Dy;) + 5\/(D21'—1 — D)2 + 449,149 = s(L;);

d)Al—AQSO orAl—A2>0andA1—|—D1<A2—|—D2,

11



the wild type will be dominant for high mutation rates.

If a), b) and c) are true, but instead of d) the following is true: Ay — As >0 and Ay + D1 > Ay + Do,
the mirror sequence of the wild type is dominant for high mutation rates.

If ¢) is not fulfilled, neither the wild type nor its mirror will be dominant for high mutation rates (q ~ 1).
Then for the index ko > 1 satisfying (3.15), one of the sequences Sap,—1 or Sak, will be dominant at high
mutation rates.

Biological interpretation. We have found conditions that guarantee that in the quasispecies model any
one of the genotype and mirror couples could dominate the ”quasispecies” at very high mutation rates. In
particular, we found conditions under which the wild type is dominant for both high and low mutation rates.
These conditions are expressed in terms of relationships between the replication and degradation rates of
the four participating genotypes.

If the degradation rates of all sequences are equal, these conditions cannot hold simultaneously, and the
wild type would lose dominance. In addition, if the degradation rates of all sequences are equal and the wild
type has the highest replication rate (single-peak fitness landscape) the mirror of the wild type is the dominant
type at high mutation rates ¢ = 1. These two arguments explain the observations in [38, 44, 15].

In the next section we create examples using the conditions of the above proposition to illustrate the
theoretical results.

4 Examples

The quasispecies model with mutation probability matrix and parameter values given below was solved using
Matlab’s routine ode45 on a sufficiently long interval so that at the end of the interval the solution was in the
vicinity of the equilibrium point and did not change up to the 16th digit. The value of the ”per nucleotide”
mutation rate ¢ was varied from 0.01 to 0.99 and the equilibrium concentrations for each ¢ were plotted.

Example 1. In this example, n = 2, N = 22 = 4 and we chose parameter values so that the conditions a)
- d) of Proposition 3.5 are fulfilled. The parameter values are D1 = 0.1; Do = 1.3; D3 = 1.5; Dy = 1.3; A; =
2; A2 = 1.5; A3 = 1.8; Ay = 1.4; and s(L1) = 1.0776, while s(L2) = 0.2462, with Ly and Lo defined in (3.10).

Based on Proposition 3.5, it is expected that x5°(q) > x5°(¢q) for ¢ = 1. The mutation probability matrix
has the form (3.6). As seen on Figure 2, the wild type remains dominant for all values of the mutation rate
q. Also as expected, the mirror sequence of the wild type becomes second in dominance for sufficiently large

q.

Example 2. In this example, n = 3, N = 23 = 8 and we chose parameter values so that the conditions
a)-d) of proposition 3.6 are fulfilled. The parameters are

D1 =0.1;Dy=14;D3=1;D4=0.8;D5 =0.5; Dg = 1.3; D7y = 1.1; Dg = 0.9;
Al = 2;A2 = 1.5;A3 = 1.2;A4 = 1.3;A5 = 0.9;A6 = ]..5;A7 = 1.2;A8 =1.8.

Again, the dominance of the wild type remains valid for all values of the mutation rate and its mirror
emerges as second to dominant for high mutation rates.

Example 3. In this example, n = 4, N = 2* = 16 and we chose parameter values so that the conditions
a)-d) of proposition 3.6 are fulfilled. The parameters are:

D1 = ].;DQ = ]..8;D3 = ]..7; D4 = 1.85;D5 = 1.6;D6 = 1.85;D7 = ]..6;D8 = ]..;Dg = ].;Dl() =
175, D11 = 185, D12 = 16, D13 = 16, D14 = 16, D15 = 175, D16 = 04,
1.9;A12 = 1.65;A13 = ]..7; A14 = ]..7; A15 = 1.8;A16 = 05,

As expected, the wild type is dominant for large values of ¢, seconded by its mirror. The wild type
remains dominant for all values of g € (0, 1).

12



Equilibrium concentrations
o
o

0.4

Fittest species maintains dominance

YaN A

A A
4 &
S a A S *

JAN JAN *

ES
* —
£
ES3
*
* X 4 .
+ + 1 ¥ T 00 T +
. * C o+
+ - -4

+ - +
% +
Il Il Il Il Il Il Il Il Il -%
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mutation rate q

Figure 2: Equilibrium concentrations calculated for Example 1. "A” — 1,7 *7 — x3,”

13

'77%‘%3’7

)

*7 — x4



Quasispecies equilibrium frequencies versus mutation rate

1 T T T T T T T
A
0.9 -
A
0.8 _
0.7 A -
g osf -
2
S A
=
o
9] YA\
= 0.5 -
2 A
o]
< a *
g 0.4} i
A
A X
A
0.3 A :
A *
A A A
A A A A A A *
0.2 . i
*
o O O O o )
s> > 8 B 5 b % b § . °© o
L . e 4 i
01 E i 3 ; & $ § % ¥ ¥ ¥ g g g o
' o ¥ g 8
g ¥
0 % Q ! ! ! ! ! ! ! ! @
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Mutation rate q
Figure 3: Equilibrium concentrations calculated for for Example 2. "A” — x1,” %7 — ag,” +”7 — 22,77 —

Y

x37”[>” _>x47’ O” —>$5,”V” %x6,”q” —){E']

14



Quasispecies equilibrium frequencies versus mutation rate.
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Example 4. In this example, n = 4, N = 2* = 16 and we chose parameter values so that the condition c)
of proposition 3.6 is not fulfilled. The parameters are:
1.75;D11 = 185,D12 = 1.6;D13 = 1.6;D14 = 1.6;D15 = 175,D16 = 001,
1.9;A12 = 1.65;A13 = 1.7; A14 = 1.7; A15 = 1.8;A16 = 0057

In addition, s(L;) = 0.0824 while s(Ls) is the largest of of all s(L;) and equal to 0.8493. As expected
from Proposition 3.6, S14 is the dominant sequence for ¢ &~ 1, seconded by its mirror sequence Si5 (Figure
5) . The wild type (depicted by triangle symbols) loses dominance for ¢ &~ 0.15 and never regains it.

5 Discussion

As discussed in the Introduction, Eigen’s model does not take into account the complex nature of natural
viral replication which involves viral genome-encoded species-specific replication factors (such non-structural
proteins and non-coding regions) that might enable preservation of the quasispecies and render impossible
phenomena such as mutation-induced error catastrophe. However, even a simplified model, which does
not capture the full complexity of a biological mechanism, may yet capture important salient features and,
therefore, be worthy of further investigation.

In this paper we analyzed Eigen’s quasispecies model, focusing on the effects of mutation rate on genotype
dominance. Rigorious mathematical analysis is possible in the extremes at which the mutation rate is very
small (near zero) or very large (close to one). At the first extreme, as expected, Eigen’s model predicts
that the fittest genotype (the wild type) - the one with the highest excess productivity - will dominate
(with highest concentrations) in the quasispecies population. In the other extreme, we have proved that,
depending on whether certain relations among the replication and degradation rates are fulfilled, any one
of the genotypes could become the dominant type in the quasispecies. For values of the mutation rate
between the extremes, two types of behavior are possible - either the wild type remains dominant or it
loses dominance. Dominance can be exchanged among various genotypes for intermediate values of the
mutation rate but eventually, one dominant genotype will emerge and it remain dominant as the mutation
rate increases and approaches ¢ = 1. We have derived formulae that enable exact prediction which genotype
will emerge as dominant at high mutation rates. We then demonstrated on numerical examples the validity
of the predictions. We used the developed theory to construct computational examples where the wild type
remains dominant and where a new dominant type emerges.

Importantly, we have not restricted our analysis to the single-peaked fitness landscape, nor to the case,
previously considered in simulations, with uniformly equal degradation rates. We considered and provided
proofs for the general case with arbitrary values of the replication and degradation rates.

We note that the same genotype can have different fitnesses depending on certain conditions, e.g. for
varying mutation rates. We introduced the concept of nascent fitness, i.e., the excess production rate of a
replicating genotype when the replication occurs with perfect fidelity. Doing so, we emphasized that the
fitness of a genotype is a relative concept, dependent not only on its replication and degradation rates but
also on other factors, one of which, in this model, is the fidelity of replication. When the mutation rate
increases, thus decreasing the fidelity of replication, the fitness of the genotype decreases.

From the mathematical perspective, we asked the question: given the equation for the equilibrium of
a system, can we characterize the largest coordinate of the equilibrium? The main challenge here was to
determine the stability of the possible equilibria in the extereme case when ¢ = 1. This was accomplished
by applying results from the theory of quasipositive matrices. We proved that in this case only one of the
numerous equilibria is locally stable and that it has a continuation when ¢ becomes less than 1, which is,
therefore, the unique globally stable equilibrium of Eigen’s model. This result allowed us to characterize the
largest equilibrium coordinate when ¢ ~ 1. For intermediate values of ¢ this approach does not work, of
course. This is why we contended to examine this case numerically and provide examples where the largest
eigenvalue coordinate remains such for all values of the parameter q.

Further theoretical development in this area will require analysis of modifications of Eigen’s model that
relax the assumption of mass conservation and consider the case when non-viable genotypes are defined and
have a zero replication rate. Another important question to consider is what artefacts may be introduced
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in constructing a model using four nucleotides, rather than the simplistic binary sequences used by all
quasispecies model simulations to date. Including more realistic complexity in a quasispecies model would
necessarily mean that the replication rates be functions of the concentrations, rather than constants. To
give an example, the rate of viral RNA transcription depends on the availability of RNA dependent RNA
polymerase, and the quantity of the latter is a function of available viral RNA templates. Thus, in the
early stages of host cell infection, transcription rate would be slow and would accelerate proportionally to
the growing number of available RNA templates. A viral replication rates that is calculated as a nonlinear
function, possibly involving all viral sequences, for example of the form A; > O T; T Similar arguments can
be put forward regarding the degradation rate as well. We plan to consider and analyse such modifications
and complexity in further work.
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Appendix A. Properties of quasipositive matrices.

(Spectral property) If A is an irreducible quasipositive matrix, it has a simple eigenvalue s(A) such that
s(A) > R\ (A) for all other eigenvalues \; of A, and a positive eigenvector &J(A) corresponding to s(A) and
any positive eigenvector of A is a multiple of &J. s(A) is called the spectral abscissa of A.

(Majorization property) In addition, if A and B are quasipositive matrices and A < B, and A + B is
irreducible, then s(A) < s(B).

These properties are easy corollaries of similar ones for nonnegative matrices derived in [3].

Appendix B. Existence of unique positive equilibrium of (2.2)
Any equilibrium of (2.2) satisfies the equation

[QA—D — f(@)I)T =0 (6.1)

where Q) = (Q;) is the mutation matrix, A is a diagonal matrix with elements A; and D is a diagonal matrix
with elements D;. Then obviously, any equilibrium & is an eigenvector of QA — D and the corresponding
eigenvalue is f(Z).

A substantial assumption is that the mutation matrix @ is irreducible and that A; > 0.( For example,
if @ is defined as in (2.3), and 0 < ¢ < 1, it is positive and therefore, irreducible.) Therefore, the matrix
QA — D is an irreducible quasipositive matrix. We now use the Spectral property of quasipositive matrices
(Appendix A) to conclude that QA — D has a unique positive eigenvector ¥ corresponding to the spectral
radius s(QA — D) and any other positive eigenvector is its multiple by a scalar. Because &> is positive
by assumption, then #° = o0 and f(Z*) = s(QA — D). The scalar o is obtained as follows: f(Z>°) =

A—-D A—-D
Uzi(Ai _Dz)'Uz = S(QA—D), ie. o= % Then, e = %ﬁlb the unique pOsitive
solution of (6.1).

If @Q is reducible, the quasispecies consists of at least two ”subspecies”, which cannot mutate into each
other. In this case each subspecies has its own equilibrium and the dynamics of the system develops in two
subspaces that do not intersect. We will not consider this case here.

Appendix C. The case ¢ = 0.

The equilibria of (3.2) are eigenvectors of F' = diag(F;) corresponding to eigenvalues \; = F;. If all F;
are different, there are exactly N equilibria - the unit vectors (1,0, ...,0), (0,1, ...,0), ..., (0,0, ..., 1). If some of
the nascent fitnesses are equal (for example Fy = F3), apart from them, the system also has other, infinitely
many equilibria (in this case, all vectors satisfying 1 = 0,22 + 23 = 1,2; = 0,i = 4,..., N). However,
all equilibria, with the exception of (1,0, ...,0) are unstable because the Jacobian at each such equilibrium
always has the eigenvalue F; — Ei\; Fix; > 0. We show next that the equilibrium (1,0, ...,0) is globally
asymptotically stable.

System (3.2) can be solved to give z;(t) = z;(0)eft=Jo F@()ds  Using this equality, and the following one

d
fds _ . Fit
—dtefo = % Fiz;(0)e™",

we solve for f: ) S Fyas(0)et
f(Z@) = S Fyi(0) f(;f eFisds

and take the limit at ¢ — oo to obtain
lim f(Z(t)) = Fy.

t—o0

We see from (3.2) that z;(t) — 0 for all ¢ # 1 and because of conservation of mass, it follows that
lim; oo x1 — 1.

Appendix D. For ¢ > 0 and close to 0, ©>(q) is a continuation of
(1,0,...,0).
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The existence of a continuation is easily established by the Implicit Function Theorem having in mind
that (1,0,...,0) is asymptotically stable and thus, the Jacobian is non-singular. However, it is important to
verify that x$°(q) € (0,1). This is easy to see by finding the derivatives of #3° at ¢ = 0. Specifically, we find
that dzo® P

T J
0 ( NA, — A )<o. 6.2
dq() i 1— 1(23)1F1F< (6.2)
1,j

If d(1,75) = 1, i.e. the sequence with index j is only one mutation away from the wild type, we find that

dz2° A

J
dq (0) o Fl —Fj

>0 (6.3)

Similarly, for the sequences that are 2 mutations away from the wild type, i.e. d(1,j) = 2, we calculate

d2x° 24
i 1
= .4
o dxge . . :
while . (0) =0, and in general, if d(1,5) =k, k=1,...,N :
d* a2 A
L (0) = kl—=—— 0 6.5
while all lower derivatives are equal to 0.
Using Taylor expansion, we see that for small values of ¢, 27° decreases when ¢ increases (dg”1 (0) < 0) and

k oo
for j > 1, 25°(q) are increasing functions of ¢: z5° ~ dd 2 (O) where k = d(1, j). Therefore, for small ¢ > 0
the continuation #*°(q) of #*°(0) is positive and coincides with the unique positive equilibrium of (3.2).
Obviously, as x3° are continuous, it follows that in some interval ¢ € (0, ¢min) , 1 > ;0 = 2,...,N.
Thus, we have proved Proposition 3.1.

Appendix E. Proof of Proposition 3.2.

Proof. Really, the equation for the equilibrium can be written as

(L= f(@))Z>* =0 (6.6)
where A ) 2
1—q)— D 2q
L= " : 6.7
( Aiq Ax(1—q)— D> ) (6.7)
As Z°° > 0 and because L is quasipositive (see Appendix A) it follows that #*° > 0 is the unique
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eigenvector corresponding to s(L) and s(L) = f(&*°).

s(L) = %(sl(q) + Sa(q)) + \/(M)Q + A1 Aag? (6.8)

where S;(q) = Ai(1—q) — D
Therefore f(#°) = S1(0)z5° + S2(0)25° = s(L) and z5° + 23° = 1 from where

o s(L) - 5(0)
= 5,00~ 5(0)° (6.9)

Let us now find conditions (if any) for which z§° > x3°, i.e. 1 > =, for all ¢ € (0,1). Using (6.9) and
(6.8) after simple but tedious algebraic calculations we obtain

71> 5 = (AL A2) — (D~ Do)][(Ay — A2) — (D1~ Do)~ 2q(Ay — A2)] 0. (6.10)
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Because of (3.3), the latter inequality is possible for all ¢ € (0, 1) only if (A1 —Ag)— (D1 —D2)—2q(A1 —A2) >
0.

(a) If Ay — Ay <0, the latter is always true.

(b) If A} — Ay > 0, the inequality is possible only if for all ¢ € (0, 1), 21=22. < 1 — 2¢, which is valid if

? (A1—Az)
and only if % < —1 which is equivalent to A1 — As > 0 and A1 + D1 < As + Ds.
Therefore, the wild type would remain dominant for all values of ¢ € (0,1) if and only if A; — A2 <0 or
Ay — Ay >0and A; + Dy < Ay + Ds. O

Appendix F. Proof of Proposition 3.3.

Proof. We first note that any equilibrium Z is an eigenvector of QA — D corresponding to the eigenvalue
f(&) and, for ¢ € (0,1), since QA — D is irreducible, the unique positive equilibrium £ is the eigenvector
corresponding to f(Z*) = s(QA — D).

As Ly and Ly are irreducible and quasipositive, they have unique positive eigenvectors @ = (x3°, x3°)7, th =
(x5, x3°)T corresponding to s(L1) and s(Ls). Because of the block - diagonal structure of P it has only two
nonnegative eigenvectors (up to a scalar multiplication):

770 = (X%, x3°,0,0)" and 75° = (0,0, x5°, x5°)". (6.11)
Note that ), x° = 1. Therefore x; < 1 which implies

af
d:ri Xi

= Fix® < A, (6.12)

The latter inequality is used in the proposition below.
Stability of y$°. The Jacobian at 7{° is equivalent to a block - diagonal matrix J(§7°) = diag(J1, J2)

where 5 4
—Dy — $Lx5e — F(57) Ay — (50X
J1 = < ILi— f(g?o)lg (613)
Ar = (G )xse —Dy = FExE - )
and
—Do — f(57°) As >
Jo = . 6.14
2 ( Ay —D3 — f(7°) (6.14)

As Ji and L; are both irreducible quasipositive matrices, using the Majorization property (Appendix
A), we obtain:
S(Jl) < S(Ll — f(]jloo)L;) =0. (615)

Also, s(J2) = s(L2) — f(y5°) = s(L2) — s(L1) < 0. Therefore, y$° is an asymptotically stable equilibrium.

Instability of y3°. Similarly, the Jacobian at & is equivalent to a block - diagonal matrix J(g2) =
diag(G1,G2) where
—D1 — f(95°) Ay

G = Ay —Dy = f(i5°) (6.16)

Obviously, s(G1) = s(L1) — f(75°) = s(G1) — s(G2) > 0. Therefore, §5° is an unstable equilibrium.

Vice versa, if s(La) > s(L1), y5° is stable and y{° is unstable. O

Appendix G. Proof of proposition 3.4.
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Proof. The existence of #>°(q) is guaranteed by the Implicit Function Theorem because the eigenvalues of

Jacobian at ¢5° lie in the left half of the complex plane; thus s(P) < 0 and the Jacobian is nonsingular.

We need only show that z$°(gq) € (0,1). Because 1 > x$° > 0,1 > x3° > 0, it follows that z5°(q) €
(o)

9 1) <0,i= 2,3

(0,1),2%°(q) € (0,1) for ¢ in the vicinity of ¢ = 1. Therefore, we need only show that a0

i.e., when g becomes smaller than 1, 2$° would increase from 0 and be positive).

Differentiating the right hand side of (2.2) with respect to g, we obtain:

derj” (6.17)
: .

dQ?J fe%e] dx(;o —00 dx(z)o
Xj:Aj dq +Xj:(AjQij_Fj) s — (D + f(£%)) ag —zj:Fj p
We next note that
ij = Oa if d .7 ' ;
Qij : (f ;)#n (6.18)
Qij = ]-a if d(7’7]) =n,

and
dQ;;

a4 =n, ifd(i,j) =n

—1,ifd(i,j))=n—1 (6.19)

0, otherwise,
and also
o0 (o]
77,28 #0

oo

J

(6.20)

x 0, otherwise.

d
Using (6.18,6.19,6.20) we get the following equations for z; (1) :

oo oo
dzx$ dzx$

(1), Mo\
dq dq

dQ24
—A oo
dq X1 s 4

()T = (-4 R

(L2 — f(y7")I2)( )T = (A, Ax®)" >> 0. (6.21)

We next note that the matrix —(La — f(¢5°)]2) is an M-matrix and thus, its inverse is positive. It follows
that

dzs® dzs° oo 7\ — oo oo
( d; (1), d—g(l))T = (L2 = (7))~ (Ax3%, Aax5) " < 0. (6.22)
This concludes the proof of the proposition.
O
Appendix H. Proof of Proposition 3.6.
The Jacobian at C is a block diagonal matrix J () = diag(J, ...Jn/2) where
—Dajo—1 — Farg—1C35,—1 — F(E>) Aaky — Faro ok,
Ty = . (6.23)
Aokg—1 — Foge—1C30, 1 —Daky — f(C*°) = Faro Cox,
and .
—Dai 1 — f(C™) Ag;
Ji = for i # ko. (6.24)
Agi1 —Dai — f(C*)

Using the same arguments as for the case N = 4 above, we find that (°° is asymptotically stable
and has a continuation ¥*(q) for ¢ < 1. The proof that the continuation really satisfies the condition
x° € (0,1),i =1,..., N is more complicated than in the case N = 4 . This is because if K = d(ko,j) > 1,
the first K — 1 derivatives of (;° with respect to ¢ are zero at ¢ = 1. In these cases we can take the K-th
derivative at ¢ = 1 and show that it is positive.

Thus, for high mutation rates, close to 1, the dominant genotype is either the one indexed with kg or its
mirror. The wild type will be dominant at high values of the mutation rate if kg = 1 and if As+Ds > A1+ D;.
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