

Comparing Three Types of
Numerical Techniques for
the Integration of Perturbed
Satellite Motion

E. Robinson

June 22, 2010

LLNL-TR-438273

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

Comparing Three Types of Numerical Techniques for the
Integration of Perturbed Satellite Motion

Eric Robinson
United States Air Force Academy

Department of Mathematics, Mathematics Major
c11eric.robinson@usafa.edu

Abstract. This project compares the computational efficiency, stability/accuracy, and precision
of various numerical integration schemes to determine which is most appropriate for use in
conjunction analysis of satellite orbits. Specifically, this project examines a few of the top
Runge-Kutta, extrapolation, and multistep algorithms, combining both previous research in this
field with new analysis to form the final conclusion. In addition, a method is proposed for using
dense output to expedite orbit calculations.

Key Words: numerical integration, Runge-Kutta, extrapolation, multivalue/multistep predictor-
corrector methods, dense output

I. Introduction

The ultimate goal of considering satellite motion above the earth is to determine where a satellite
will be located given a known initial location, initial velocity, and a descriptive model of how the
position of that satellite evolves with time. Since these models are based on Newton’s Second
Law with respect to the motion of the satellite, they usually encompass a system of three
ordinary differential equations (one for each component of the standard basis for ℝ�), or ODEs,
each involving an acceleration term describing the net force acting on a satellite at any time.
Though some theoretical models may have analytical closed-form solutions for the position of a
satellite at any time (such as the result of Kepler’s Two-Body Problem), most applications take
into account the effects of other bodies such as the sun, moon, or even how Earth’s imperfect
spherical shape effects its gravitational pull. These outside effects on the satellite are called
perturbations and the resulting motion is described as being perturbed. As should be expected,
the vast majority of these models cannot be solved analytically, which means that solutions at
various points in time need to be determined via numerical integration techniques.

While some numerical techniques have been developed to directly integrate systems of
second-order differential equations, such as many satellite models based on Newton’s Second
Law, most are designed to work on systems of first-order equations. We will only analyze the
methods for first-order systems as the methods designed for second order systems become
inefficient for nonconservative systems. Thus, all celestial models will be transformed into a
system of six first-order ODEs.

Once this set-up is completed, the question becomes which of the available numerical
methods is best suited for the job of integrating satellite orbit ODE models. As previously
described, models of perturbed motion can be highly nonlinear and nonautonomous, meaning
that a single evaluation of the model (referred to as a “function evaluation”) costs much

2

computational effort. In addition, for applications involving the integration of perturbed orbits of
multiple satellites, any excess computational time can quickly become magnified. However, it is
also important to ensure that any methods implemented are both stable (i.e. they tend to converge
to the correct solution as step size increases) and meet desired precision/accuracy requirements.

This report will focus on first determining the stability of numerical techniques, and then
look at which techniques are best for integrating satellite orbit motion models at various
predefined error tolerances, closing with a recommendation about the best method to implement
for general satellite use. In order to reach this end, various algorithms from the three main
c l a s se s o f numer i ca l i n t eg r a t i on t e chn iques—Runge-Kut ta , ext rapola t ion , and
multivalue/multistep methods—will be evaluated. For background on how these families of
numerical methods are constructed see [1], [5], or [8].

II. Methodology

The idea of stability in numerical integration of ODEs brings into focus the concept of stiffness
in the ODE model. Stiffness occurs when the solution to a model changes on two very different
scales. Fortunately, stiffness requires a transient convergence to a stable final solution (see [3]
for more about this), which requires either the existence of a limit cycle or attracting fixed point.
Since satellite orbits are not isolated and do not converge to a single final trajectory, their models
are not stiff. Therefore, we do not need to consider methods that are made exclusively to solve
stiff systems. This is very helpful for computational efficiency because algorithms for solving
stiff systems require evaluations of the Jacobian matrix, which can be equivalent to multiple
function evaluations in computational time, so we know that non-stiff solvers will maximize
efficiency at no expense to precision or accuracy.

A great deal of pioneering work was done by O. Montenbruck in [4] on the subject of
efficiency of numerical integration techniques for satellite orbits. Montenbruck compared a
large variety of many different algorithms on the test case two-body problem. His findings
indicated that the most efficient algorithms were the 11th order Runge-Kutta-Nystrom method for
both low and high precision/accuracy, followed closely by the variable-order and stepsize
predictor-corrector, multivalue/multistep method of Shampine and Gordon (called DE) and the
variable- order and stepsize Gragg-Bulirsh-Stoer (GBS) extrapolation method, with the
efficiency modifications and stepsize/order control algorithm contained in [1], referred to as
ODEX. Montenbruck also mentions the possibility of using dense output algorithms to vastly
increase efficiency, but some of these methods were very young and therefore had not yet been
sufficiently analyzed. Dense output simply means that we perform some sort of interpolation
scheme on each step, allowing us to find output at any number of predefined points. The benefit
of dense output is that it allows us to integrate from the initial time to the final time and then use
interpolation to find the state vectors at various predefined times. This eliminates the need to
stop integration routines prematurely at each point, thereby increasing efficiency. For a
discussion of how this works and an analysis about interpolation error we refer the reader to [1].

This study compares the best algorithms from each of the three families of numerical
integration techniques—Runge-Kutta, extrapolation, and multivalue/multistep methods—as
determined by Montenbruck’s study. However, new findings and improved implementations of
the various numerical integration techniques have emerged since Montenbruck’s study.
Therefore, the study implements these methods in their most current versions to see if any of the

3

aforementioned new findings have affected the relative results of the premier algorithms in each
family.

We determined that the best method to analyze from the Runge-Kutta family was the
eight order method RK 8(5,3) presented in [8] which was found by Dormand and Prince due to
its seventh order error estimator, allowing for variable stepsize control, existence of a seventh
order dense output option for this specific method, and well-documented analysis in [1].
However, it should be noted that recent developments in 9th order Runge-Kutta methods have
been found and are presented in [10], [11], and [12] which may offer improved performance.
The GBS method was used as the representative from the extrapolation class as it can obtain very
high orders due to the even global error series of the modified midpoint method, the results of
which are subject to extrapolation. In addition, Hairer and Ostermann present a method in [2] to
provide dense output for the GBS method while maintaining its high orders, making it an ideal
candidate for comparison (a further explanation is provided in [1]). Finally, the method ode113
in MATLAB developed by Shampine and Reichelt was chosen as the multivalue/multistep
algorithm due to its ability to efficiently obtain high orders while also having been programmed
by its designer. Details about this method are presented in [9], which show that its predecessor
was the same algorithm used in the method DE mentioned in [4] and [5].

The Runge-Kutta-Nystrom Methods, found to be so effective in integrating the two-body
problem, were not evaluated by this study. This is because these methods are designed directly
integrate systems of second order ODEs, but are only efficient in comparison to the other
methods if the model is conservative, i.e. does not depend upon velocity. However, the full force
model that is needed for conjunction analysis includes a space drag term, which is dependent
upon velocity. In such a case, the information provided by Montenbruck in his study identifies
these methods as not being competitive with either GBS or DE/ode113.

In order to begin a comparison of methods, we must first develop a test model that will be
used for evaluation. The full force model that will ultimately be used for conjunction analysis
also includes many other perturbing terms aside from space drag, to include forces from the sun,
moon, and even changes to Earth’s gravitational field caused by such events as the movement of
waves in the oceans. Such a model is far too complicated to have a closed-form analytical
solution. Thus, we cannot use this system for our study as it affords us no method of
determining absolute error rather than simple error estimates. However, in order to obtain the
proper results, we should create some sort of test model that sufficiently simulates the sporadic
trajectories that can be created by the full force model. This means that the system created by
the two-body problem, even though it provides a closed-form solution for finding absolute error,
should not be used as the test model, for its solutions are much too regular in nature. This kind
of oversimplified model could cause an unwanted bias in our analysis, such as predicting that a
Runge-Kutta-Nystrom method would be more efficient than another method due to the
conservative nature of the two-body problem, when in fact this is an incorrect conclusion.

These considerations led to the creation of the test model described by equations 1. This
system simulates the three essential parts of the full force model: Earth’s gravitational field,
space drag, and perturbations caused by the sun, moon, and other objects.

4

�̇ = ��
�̇ = ��
�̇ = ��

��̇ = −��� − ��

�
�
�

+ 5 sin � �
������ �

��

��̇ = −��� − ��
�

�
�

+ 5 cos � �
1000�� �

��

��̇ = −��� − ��
�

�
�

+ 5 sin � �
1000�� �

��

� = ��� ≈ 3.986004415 × 10�� ��

�� , � = 5 × 10�����, � = 6.65256 × 10��

In this model, x, y, and z are the coordinates of the satellite relative to the center of the earth, ��̇ ,
��̇ , and ��̇ are the satellites components of velocity, G is the gravitational constant, �� is the
mass of the earth, D is the coefficient of space drag, and R is the distance from the center of the
center of the earth. The first term in each of the acceleration equations simulates space drag, the
second term simulates Earth’s gravitational force on the satellite, and the third term simulates the
sum of all other perturbations at some time t. The closed-form solution to this system is shown
in Appendix A.

This model was designed with two major assumptions that allowed for it to have a
closed-form solution. First of these was that the center of the earth always remains at the origin.
This is a valid assumption as the masses of satellites orbiting the earth can be considered as
negligible compared to the mass of the earth. In addition, movements of the earth caused by its
gravitational attraction to the moon will simultaneously move the satellite, so this effect is
lumped into the perturbation category instead of being simulated by the three body problem. The
second was that the initial speed �� of such a satellite should be similar to the speed of an object
orbiting in uniform circular motion at a distance R from the center of Earth, which is calculated
in equations 2.

�� = � �����

(�����)� ≈ 7740.6 �
�

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �(0)

�(0)
�(0)
��(0)
��(0)
��(0) ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡ �

0
0
0
��
0 ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡6.65256 × 10��

0
0
0

7740.6 �
�

0 ⎦
⎥
⎥
⎥
⎥
⎤

The result of this calculation led to the creation of the initial state vector in (3) at time zero. For
the remainder of this study, each integration will begin from this initial state unless otherwise
stated. Also, whenever we refer to the “initial vector” we mean this vector.

Using this test model, the algorithms will be compared in the following manner. To
analyze stability, each method will be integrated across a set time change at various error

(3)

(1)

(2)

5

tolerances for two slightly different initial trajectories. The difference will then be compared to
what the true analytical difference should have been to see which method is the most stable.
Then, the algorithms will be run with varying error tolerance levels across a set time change,
comparing computational time to error tolerance and absolute error. Finally, each algorithm will
be used to find a solution across a set of predefined points, which will be compared to the
solution found by dense output at those same points.

III. Code Design of Algorithms

All of the methods compared by this study were implemented using MATLAB. Since the
multistep method ode113 comes built-in with MATLAB with efficiency statistics, this code was
run without modification. The other two methods, RK 8(5,3) and GBS, were programmed using
information as reference material from [1], [5], and [8].

In addition to vectorizing the MATLAB code for increased efficiency, two main issues
were considered in creating RK 8(5,3) and GBS programs. The first was that we wanted our
initial stepsize to be as close to optimal as possible. This is important because a bad initial
stepsize estimate could lead to a series of rejected steps, which would be very costly. In order to
create an estimate that would be close to the initial stepsize without being in danger of rejection,
a routine was created that found the approximate acceptable initial stepsize for the two
algorithms at various levels of error tolerance. The results were plotted in figure 1. Error
tolerance is measured in meters.

Figure 1-Threshold for optimal initial steps

6

From Taylor’s Theorem, we know that error varies proportionally to some power of power of
stepsize, i.e. ����� ≈ �(ℎ)� for some constants a and b, where h is the stepsize. Thus, we
expect that the curves shown in figure 1 should be estimated with a power model where ���� =
�(ℎ)� for some constants c and d. Using the regression analysis tools in MATLAB’s curve
fitting tool, the best fit curve of this form for RK 8(5,3) was ℎ = 5.301 × 10��(�����)�.����

and for GBS was ℎ = .0234(�����)�.����. The �� values for these fitted curves were 0.9457 for
RK 8(5,3) and 0.9857 for GBS. Thus, these models were good fits. However, in order to insure
that the initial step is almost never rejected, we multiplied each model by a factor of 0.9.

The second issue considered in creating these programs was the value of the factor of
safety S used in the stepsize control algorithm. This only pertained to the RK 8(5,3) algorithm as
the GBS algorithm was completely defined by the method outlined in [1] and repeated in [8]. In
the RK 8(5,3) program, the stepsize control algorithm scales the current step by a factor that is
meant to keep the error at the desired level while maximizing computational efficiency. Since
RK 8(5,3) has a seventh-order error estimator according to [8], it scales as �(ℎ�) where h is the
stepsize. Thus, after the kth iteration, we have

ℎ��� ≈ ℎ� �������
����

�
�
�

where ���� is the magnitude of the error at the kth step and ������ is the magnitude of the desired
error at the next step. However, this is only an estimate, so in order to minimize the number of
costly rejected steps, we build a factor of safety � with 0 < � < 1 into the actual stepsize
control algorithm so that

ℎ��� = �ℎ� �������
����

�
�
�.

After a few initial test runs of RK 8(5,3) as compared to GBS and ode113, it seemed that
RK 8(5,3) began to become very inefficient around an absolute error tolerance of 0.0001. Thus,
we endeavored to further the longevity of the algorithm by adapting the factor of safety to make
RK 8(5,3) as efficient as possible around this absolute error tolerance. To do this, we ran two
test integrations, across 10 seconds and then 20 seconds, to see where the most efficient factor of
safety occurred (this is long enough for the stepsize to settle into its natural rhythm so we will
obtain a good estimate for the factor of safety). The results are plotted in figure 2. From these
graphs, we can see that the ideal factor of safety was � = 0.8, so this was chosen for integration.

Figure 2-Factor of safety in RK 8(5,3) stepsize control algorithm

7

The remainder of the routines for RK 8(5,3) and GBS were written completely from the
descriptions found in [1], [5], and [8]. The only other notable piece of information was that the
stepsize control algorithms utilized local error estimators instead of global. This was because the
existing algorithms are much more adapted to this method of stepsize control than using global
error. Thus, when actually implementing these algorithms, if a global absolute and relative
tolerance is desired, then we can either divide our local error tolerances by a scaling factor, or we
can implement a revision in our stepsize control algorithm (one such revision is presented on
pages 913-914 of [8]). If the former alternative is chosen, the analysis of this study suggests that
dividing the error tolerance by the dimensionless scaling factor (10���)(��) where �� is the final
time in seconds of the integration, should be sufficient. If this is not the case, then we simply
increase the coefficient of �� until the global error estimation is acceptable and then record this
new coefficient for later calculations.

IV. Analysis

The first comparison involved checking the stability of each of the methods. To do this, we
integrated across a time change of 1.1s, 2.1s, 3.1s, …,10.1s from two different starting states: the
aforementioned initial vector and an increase of .05% in all components of the initial vector. We
calculated the magnitude of the differences between these two trajectories at each time stop. The
results of this process for each of the different algorithms, as well as for the analytical solution,
are plotted on the left side of figure 3. The magnitude is given as a percent of the magnitude of
the original state vector, i.e. we are examining how the small difference between trajectories
increases the Euclidean norm of the state vector over time. This same process was repeated for
starting with a decrease in .05% of all components in the initial vector and was also compared to
starting at the initial vector. These results are shown on the right side of the same figure. All
integrations were performed with an absolute tolerance of .0001 and a relative tolerance of
3 × 10���.

Figure 3-Stability for absolute tolerance of .0001

8

As we can see from these plots, a small change is magnified much more quickly by
ode113 than for GBS or RK 8(5,3). This means that ode113 is the least stable of the three, most
likely because it must begin with a first order estimation before it can increase to higher order
estimations. However, none of the methods are necessarily unstable as this analysis was
performed with a rather weak error tolerance. In fact, all of this error can be controlled by
increasing our level of tolerance as can be seen by the later plots. Therefore, figure 3 only shows
that error propagates faster in ode113 than the other two methods. Thus, these results were
further affirmed by repeating these calculations with an absolute error tolerance of 10��� and
relative error tolerance of 3 × 10���. The results of these calculations are shown in figure 4.

The next point of comparison analyzed was computational efficiency vs. accuracy and
precision. This was done by looking at the number of function evaluations vs. absolute error
tolerance, computational time vs. absolute error tolerance, function evaluations vs. actual error,
and computational time vs. actual error. For this data, each method was integrated over a time
change of 500s starting at the initial vector for various levels of absolute error tolerance ranging
from 10� to 10��� and a relative error tolerance of 3 × 10���. The results of the first two plots
are shown in figure 5, and the second two are shown in figure 6.

Figure 4-Stability for absolute tolerance of �����

9

During evaluation, the RK 8(5,3) quickly became much more inefficient than the other
two methods to the point that computational time was being restricted by its evaluation. This
came even with the effort to optimize the RK 8(5,3) factor of safety for stepsize at a relatively
low precision of 10��. Therefore, its integration was stopped early as its computational time
passed the GBS method by a factor of 10. This also suggests that even if the untested higher
order Runge-Kutta method 9(8) from [10], [11], or [12] was chosen, it still would be
outperformed since only a one order decrease from this level quickly becomes very inefficient.

These plots are interesting because they show that even with smaller levels of error
tolerance, we may actually increase our actual error. This is not a normal occurrence, though, so
if a certain level of error is desired then that should be the error tolerance. In addition, in all
cases, the integration still obtains around the desired level of error, but sometimes we get lucky

Figure 5-Function evaluations and computational time vs. error tolerance

Figure 6-Function evaluations and computational time vs. actual/absolute error

10

and gain some extra precision. However, it does imply the need for stable method as error can
be somewhat sporadic.

Consideration of all four plots simultaneously leads to a few conclusions. The most
obvious of these is that the RK 8(5,3) method should never be used to integrate for high levels of
accuracy/precision on a complicated full-force model as it quickly becomes inefficient. The next
is that ode113 seems to require less function evaluations than GBS, but at the same time expends
much more time in overhead calculations of new coefficients for the underlying interpolating
polynomial at each step. This in turn causes the computational time to increase past that of GBS
very quickly. This can be seen by looking at Appendix B, which shows a table of all the data
created for the above plotted test runs. In addition, GBS actually becomes more efficient around
error tolerances of 10�� to 10��� while simultaneously decreasing absolute error. This comes as
a result of the ability for GBS to utilize incredibly high orders for calculations—in fact orders
can sometimes even reach 15 or 20. This allows GBS to take a much larger stepsize, which
keeps it efficient for high precision.

However, the full force model has much more expensive function evaluations, thereby
occupying a much larger portion of the computational time. Thus, ode113 may perform better
than GBS at higher precisions under the full force model than it did with the test model. To
estimate how much this precision actually is, we first considered the result presented by
Montenbruck in [4] that when integrating with a simple model such as our test model or the two
body problem, total computing time for extrapolation is 30-60% higher than expected from just
looking at function evaluations, and about 200% higher for variable order/stepsize multistep
methods. By construction of the methods, GBS should always require the same time per step in
overhead calculations regardless of function complexity. The same also holds true for ode113.
Combining all of this information leads us to the estimation that one function evaluation of the
full force model requires anywhere from 600% to 1200% of the time required for one function
evaluation of our test model. To account for this, the computational complexity of the test model
was multiplied by factors of 10 and 20 (to provide a buffer region in complexity), and then
integrated over 100s, beginning from the initial vector. The results are shown in figure 7.

Figure 7-Computation time for increased function complexity

11

What we can glean from this figure is that varying levels of computational complexity of
the underlying system changes the point at which GBS begins to outperform ode113. As
Appendix B shows right now, ode113 only outperforms GBS in computational time through
about 10��. However, figure 7 shows that increasing computational complexity by factors of 10
and 20 results in ode113 outperforming GBS through error tolerances of about 10�� and 10��

respectively.
It is interesting to note, though, that around an absolute error tolerance of 10���, the

slope of the ode113 curve is steeper than the slope of the GBS curve. Thus, it seems that there
should be some level of tolerance past 10��� where using GBS may even require less function
evaluations than using ode113, making the above analysis of computational time irrelevant at
these levels. Thus, GBS will always be the best choice if accuracy and precision are the main
concerns. This is consistent with the types of methods, for GBS can create incredibly high order
calculations, whereas ode113 has a maximum order of 12, according to documentation found in
the ode113 program in MATLAB.

The final question that needed to be considered was whether or not dense output can ever
be a better option than straightforward application of the methods. In all practicality, we will
only implement dense output interpolation for single-step methods, e.g. Runge-Kutta or
extrapolation, for these methods use a much larger stepsize than the multistep methods. This
means that the efficiency of the single step methods deteriorates much faster than the efficiency
of multistep methods as the number of predefined output points increases. This difference led
[4] to conclude that single step methods are inefficient if more than 50 to 100 output points are
required in a single revolution. However, in [1] Hairer et. al. completed a thorough error
analysis of high order dense interpolation schemes for many different test problems, to include a
few in celestial mechanics. Their results indicate that dense interpolation is in fact an efficient,
accurate alternative to multistep methods for generating outputs at many different points in a
revolution (especially when using their error control schemes for dense output of their GBS
extrapolation algorithm). It is important to note, though, that an interpolation scheme will
generally have greater error than the underlying method (even though the difference is very
small), so error tolerance levels should be adjusted accordingly. We refer the reader to [1] for an
investigation on how to adapt to the different error.

V. Results and Conclusions

The first main question that needed to be addressed was which method(s) provided the most
stability. From the analysis done in this area, we conclude that ode113 is not as stable as either
GBS or RK 8(5,3), while these two are about equal in this area. This means that ode113 is more
likely to compound errors over time and will be subject to greater global error than either GBS or
RK 8(5,3).

With regard to efficiency, we can conclude that RK 8(5,3) should not be used as the main
integrator at any level of error tolerance. This is because RK 8(5,3) quickly becomes very
inefficient, even at rather modest levels of error tolerance. On the other hand, the comparison
between GBS and ode113 is much more interesting. The test evaluations show that for higher
accuracy/precision, GBS is definitely better than ode113 as it affords much smaller error per unit
of computational time. However, if modest precision is desired, then ode113 may in fact
outperform GBS. For the 500s test case in this study, GBS is more efficient for error tolerances

12

less than or equal to 10��, otherwise ode113 is more efficient. As shown in the analysis, this
leads us to estimate that, for a full force model with 10 to 20 times as much complexity as the
test model, GBS will be more efficient through error tolerances of 10�� and 10��, respectively.
Otherwise, ode113 is more efficient. Results from the actual error for the 500s test cases confirm
this conclusion—ode113 exhibited smaller error for absolute tolerances greater than 10�� while
GBS returned smaller error for tolerances less than or equal to 10��. Analogous results were
found for the other test cases as well.

To extend these results to actual units in an entire orbit, we can safely assume that error
compounds linearly for a given level of tolerance since we control error via the built in error
estimators, which adds about the same amount of error at each step. Examining the errors shown
in Appendices B and C, we see that the pattern of absolute errors returned by GBS is much more
regular than ode113, meaning that smaller error tolerances are more likely to produce smaller
actual errors in GBS as opposed to ode113. Using these appendices to relate error tolerance to
actual error and taking into consideration the higher stability of GBS, we conclude the following
for a 90 min orbit: GBS is more stable and more efficient for absolute errors less than 100 m,
GBS and ode113 are comparable in efficiency for actual errors between 100m and 1000m, and
ode113 is more efficient while maintaining sufficient stability for actual errors greater than
1000m (these estimates only hold true for this specific test model). This estimate was obtained
by using the absolute error in the state vector as an estimate for the distance in meters of the error
tolerance, which is valid because the speed portion of the state vector has a negligible impact on
the magnitude of the vector, meaning that the magnitude is a close approximation of the error in
meters. For larger orbits, a safe estimate is that GBS is a better method for errors less than about
1 km, the two are comparable between 1 km and 10 km, and ode113 is better for errors larger
than 10 km. Our only reservation about this conclusion is that the test model did not incorporate
nonlinear terms because we wanted to incorporate drag and nonautonomous perturbations while
maintaining the existence of a closed-form solution. This may have added instability in the
methods, while simultaneously distorting the gravity term. However, the test cases in [4]
incorporated nonlinear terms and also had an analytical solution which showed that both
methods were stable under these situations, so we can reasonably accept our conclusions. In
addition, extra distortion of the gravity term tends to exaggerate the effect of perturbations,
meaning that our test model should do well at taking perturbations into account.

In practical usage, if we are in the region of error tolerance where we want to use a GBS
extrapolation scheme, then we should be considering the possibility of implementing dense
output interpolation. Now, dense output creates a different polynomial at each step, meaning
that we only want to use it if we have predefined output points to find (extending the results of
[4] we recommend dense output for more than 50-100 points per orbit). In the case that we have
all of these predefined output points prior to integration, we can simply use the extrapolation
method to integrate from the starting time to the time that is furthest away in the list of output
points, using dense interpolation to find the points in between. This can be done by running a
simple test at each step to see if any of the desired output points lie in that time step. In the case
where we do not know the output points prior to integration, but think that we may need to find
more than 50-100, we can store points at a set interval of steps (maybe every 10th step) and then
integrate from those points. This method is much preferable to the alternative of simply storing
final output points as it minimizes the number of integrations necessary while also maintaining
an almost set time interval between output points. If memory is a consideration, then dense
output can be used to store points at set time intervals (instead of after a set number of steps), and

13

then knowledge of these equal time intervals can be used to compress the data. Both of these
methods eliminate the need to store only final outputs from integrations which require high
memory storage and computation time rather than one or the other.

VI. Recommendation

When integrating satellite orbits, we recommend using GBS if accuracy and precision is
essential, and ode113 if a less accurate estimate is acceptable but efficiency is the largest
concern. If a mix of the two is required, then we recommend using GBS for integration.

When we refer to these methods, we specifically suggest using the GBS/ODEX algorithm
presented in [1] whenever we recommend using GBS because this is the most advanced model
that we saw in literature. Also, when we recommend using the built-in method ode113 from
MATLAB, there are also other comparable variable order/variable stepsize predictor corrector
methods that can be implemented (such as DE, see [9] for details on the similar methods to
ode113). In fact, ode113 is based on one of these according to [9].

If we are in the region of error tolerance where we want to use GBS extrapolation, and if
more than 50-100 output points are known to be needed prior to integration, then we recommend
integrating from the starting time to the time that is farthest away and using dense interpolation
to find the points in the middle. If we are in this region of error tolerance and we know that we
will need to find at least 50-100 predefined output points, but we do not yet know where these
points will be located, we recommend implementing one of two methods. The first of these is to
store points at a set interval of steps, maybe every 10th step, and then integrate from these stored
points. If memory is also a consideration, then we can use dense output to store points at set
time intervals, and use this knowledge to compress the data.

14

Appendix A—Closed form solution to test model

�(�) = ���(�� cos(��) + �� sin(��)) + �� cos � �
1000� + �� sin � �

1000�

�(�) = ���(�� cos(��) + �� sin(��)) + �� cos � �
1000� + �� sin � �

1000�

�(�) = ���(�� cos(��) + �� sin(��)) + �� cos � �
1000� + �� sin � �

1000�

��(�) = ���[�� (αcos(��) − �sin (��)) + ��(� cos(��) + � sin(��)] − ��
1000 cos � �

1000�

+ ��
1000 sin � �

1000�

��(�) = ���[�� (αcos(��) − �sin (��)) + ��(� cos(��) + � sin(��)] − ��
1000 cos � �

1000�

+ ��
1000 sin � �

1000�

��(�) = ���[�� (αcos(��) − �sin (��)) + ��(� cos(��) + � sin(��)] − ��
1000 cos � �

1000�

+ ��
1000 sin � �

1000�

� = Re �−� + ��� + 4�)
2 �

� = Im �−� + ��� + 4�)
2 �

�� = �(−5 × 10�)
��(10�) + �1 + �(10�)��

�� =
(−5 × 10�)�1 + �(10�)�
��(10�) + �1 + �(10�)��

�� = ��
�� = −��

�� = �(0) − ��

�� = 1
� ���(0) − ��� − ��

1000�

�� = �(0) − ��

�� = 1
� ���(0) − ��� − ��

1000�

�� = �(0) − ��

�� = 1
� ���(0) − ��� − ��

1000�

15

Appendix B—Data from 500s run of test model starting from the initial vector

Statistics for GBS, Not Dense
--
 atol Abs Err Comp Time (s) Total Evals Total Steps Rej Steps Ave Step Size
 100 392060.99 223.74 2207016 63548 2 0.00787
 10 231404.96 260.71 2646511 68581 1 0.00729
 1 15809.662 229.78 2924750 61366 30 0.00815
 0.1 2172.3823 228.47 3323516 59722 288 0.00841
 0.01 54.612532 214.33 3624922 54402 1 0.00919
 0.001 54.461768 221.82 4038266 54532 41 0.00918
 0.0001 12.889268 210.94 4338899 50579 1 0.00989
 1e-005 0.74946137 196.67 4432527 46169 9 0.01083
 1e-006 0.2505972 203.28 4592782 47296 68 0.01059
 1e-007 0.53701521 203.89 4591073 47207 126 0.01062
 1e-008 0.27440444 204.55 4600866 47460 112 0.01056
 1e-009 0.26235793 208.8 4621672 48184 129 0.01040
 1e-010 0.51799214 209.19 4629045 48417 126 0.01035

Statistics for Runge-Kutta 8(5,3), Not Dense
--
 atol Abs Err Comp Time (s) Total Evals Total Steps Rej Steps Ave Step Size
 100 129280.51 396.31 1165500 97125 66 0.00515
 10 3896644 1696.1 4269216 355768 153623 0.00247
 1 564851.09 3454.8 6404100 533675 242580 0.00172

Statistics for Shampine-Reichelt ode113, Not Dense
--
 atol Abs Err Comp Time (s) Total Evals Total Steps Rej Steps Ave Step Size
 100 2561189 97.732 704738 352162 413 0.00142
 10 527765.4 118.41 806544 403267 9 0.00124
 1 25789.537 159.88 976001 487982 36 0.00102
 0.1 1234.2579 197.98 1132490 566073 343 0.00088
 0.01 89.291882 250.28 1313134 656566 1 0.00076
 0.001 75.863337 325.75 1547785 773890 4 0.00065
 0.0001 210.65192 440.77 1863942 931970 1 0.00054
 1e-005 297.45475 471.55 1941568 970783 1 0.00052
 1e-006 39.213414 564.16 2160334 1080107 119 0.00046
 1e-007 2.3047878 606.68 2252519 1124297 3924 0.00045
 1e-008 14.834154 626.14 2297166 1146656 3853 0.00044
 1e-009 15.429796 670.52 2388832 1192610 3611 0.00042
 1e-010 27.632078 740.13 2533691 1265473 2744 0.00040

Note: Abs Err is the Euclidean Norm of the error vector

16

Appendix C—Data from 100s run of test model starting from the initial vector with
increased function complexities

Statistics for GBS, 10x Function Complexity
--
 atol Abs Err Comp Time Total Evals Total Steps Rej Steps Ave Step Size
 0.001 12.232453 59.25 808831 10953 12 0.00914
 0.0001 2.8688515 61.149 866717 10091 1 0.00991
 1e-005 0.13425077 60.974 880312 8972 1 0.01115
 1e-006 0.069040486 63.444 915522 9352 13 0.01071
 1e-007 0.085033552 64.098 924476 9622 35 0.01043
 1e-008 0.087997512 64.44 922557 9629 22 0.01041
 1e-009 0.089856153 65.097 935510 10042 35 0.00999
 1e-010 0.086921635 64.544 928228 9784 32 0.01025
 1e-011 0.081937314 63.414 917472 9400 22 0.01066
 1e-012 0.086592857 64.883 933486 9960 35 0.01008
 1e-013 0.07850433 64.684 915437 9335 25 0.01074

Statistics for ode113, 10x Function Complexity
--
 atol Abs Err Comp Time Total Evals Total Steps Rej Steps Ave Step Size
 0.001 2.7368396 51.294 313753 156875 2 0.00064
 0.0001 0.36105851 63.3 375362 187680 1 0.00053
 1e-005 1.2974144 68.088 398814 199406 1 0.00050
 1e-006 0.47633763 75.687 433444 216717 9 0.00046
 1e-007 0.075809975 79.405 451488 225346 795 0.00045
 1e-008 0.10192372 80.488 456742 228004 733 0.00044
 1e-009 0.37941862 85.598 478016 238663 689 0.00042
 1e-010 0.1125803 91.35 504250 251834 581 0.00040
 1e-011 0.17822356 92.575 512704 256103 497 0.00039
 1e-012 0.0094157452 102.03 554248 276948 351 0.00036
 1e-013 0.43999437 102.66 550805 275157 490 0.00036

Note: Abs Err is the Euclidean Norm of the error vector

17

Appendix C—continued

Statistics for GBS, 20x Function Complexity
--
 atol Abs Err Comp Time Total Evals Total Steps Rej Steps Ave Step Size
 0.001 12.232453 92.287 808831 10953 12 0.00914
 0.0001 2.8688515 98.093 866717 10091 1 0.00991
 1e-005 0.13425077 98.387 880312 8972 1 0.01115
 1e-006 0.069040486 101.65 915522 9352 13 0.01071
 1e-007 0.085033552 102.62 924476 9622 35 0.01043
 1e-008 0.087997512 101.9 922557 9629 22 0.01041
 1e-009 0.089856153 103.95 935510 10042 35 0.00999
 1e-010 0.086921635 102.81 928228 9784 32 0.01025
 1e-011 0.081937314 102.27 917472 9400 22 0.01066
 1e-012 0.086592857 103.48 933486 9960 35 0.01008
 1e-013 0.07850433 102.57 915437 9335 25 0.01074

Statistics for ode113, 20x Function Complexity
--
 atol Abs Err Comp Time Total Evals Total Steps Rej Steps Ave Step Size
 0.001 2.7368396 65.773 313753 156875 2 0.00064
 0.0001 0.36105851 79.995 375362 187680 1 0.00053
 1e-005 1.2974144 85.505 398814 199406 1 0.00050
 1e-006 0.47633763 95.19 433444 216717 9 0.00046
 1e-007 0.075809975 100.57 451488 225346 795 0.00045
 1e-008 0.10192372 100.22 456742 228004 733 0.00044
 1e-009 0.37941862 105.37 478016 238663 689 0.00042
 1e-010 0.1125803 113.55 504250 251834 581 0.00040
 1e-011 0.17822356 114.97 512704 256103 497 0.00039
 1e-012 0.0094157452 126.53 554248 276948 351 0.00036
 1e-013 0.43999437 126.23 550805 275157 490 0.00036

Note: Abs Err is the Euclidean Norm of the error vector

18

References

[1] Hairer, E., Nørsett, S.P., and Wanner, G. 1993, Solving Ordinary Differential Equations I.
Nonstiff Problems, 2nd ed. (New York: Springer).

[2] Hairer E. and Ostermann A. 1990, “Dense Output for Extrapolation Methods,” Numerische
Mathematik, vol. 58, pp. 419-439.

[3] MATLAB Product Support 2010, “Differential Equations in MATLAB,” The MathWorks, Inc.,
at http://www.mathworks.com/support/tech-notes/1500/1510.html#stiff

[4] Montenbruck, O. 1992, “Numerical Integration Methods for Orbital Motion,” Celestial
Mechanics and Dynamical Astronomy, vol. 53, pp. 59-69.

[5] Montenbruck, O. and Eberhard, G. 2000, Satellite Orbits, Models, Methods, Applications, (New
York, Springer).

[6] Numerical Recipes Software 2007, “Routine Implementing an Eighth-order Runge-Kutta
Method,” Numerical Recipes Webnote No. 20, at http://www.nr.com/webnotes?20.

[7] Numerical Recipes Software 2007, “StepperBS Implementations,” Numerical Recipes Webnote
No. 21, at http://www.nr.com/webnotes?21.

[8] Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. 2007, Numerical Recipes:
The Art of Scientific Computing, 3rd ed. (New York: Cambridge University Press).

[9] Shampine, L.F. and Reichelt, M.W. 1997, “The MATLAB ODE Suite,” SIAM Journal on
Scientific Computing, vol. 18, no. 1, pp. 1-22.

[10] Sharp, P.W. and Verner, J.H. 1998, “Generation of High-Order Interpolants for Explicit Runge-
Kutta Pairs,” ACM Transactions on Mathematical Software, vol. 24, no. 1, pp. 13-29.

[11] Tsitouras, C. 2001, “Optimized Explicit Runge-Kutta Pair of Orders 9(8),” Applied Numerical
Mathematics, vol. 38, pp.123-134.

[12] Verner, J.H. 1996, “High-Order Explicit Runge-Kutta Pairs With Low Stage Order,” Applied
Numerical Mathematics, vol. 22, pp. 345-357.

