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Abstract

Babel is an open-source language interoperability
framework tailored to the needs of high-performance scien-
tific computing. Its primary focus is on fast in-process com-
munication across various languages. In doing so, some
additional call overhead is often inevitable. For several
pairs of languages, however, shortcuts exist that allow
for more efficient function calls. As Babel is a dynamic
framework, the particular set of languages involved is often
only known at runtime.

In this work, we present a simple yet very effective
optimization that can be used to reduce the call overhead
between various pairs of languages. In particular, our opti-
mization is applicable if caller and callee are implemented
in the same language. We implement and evaluate these
techniques for C++ and Python. When applicable, our
optimization virtually eliminates the overhead for a small
memory cost. Compared to previous versions of Babel,
this means a speedup ranging from about 5x for simple
numerical argument types up to roughly 125x for strings.

I. Introduction

Supercomputing simulations are critical for global
warming predictions, energy research, and for advancing
basic scientific understanding. With supercomputers be-
coming more powerful in each generation, more sophisti-
cated and detailed simulations become feasible. Also, these
simulations often integrate mathematical models from dif-
ferent domains to achieve better precision, e.g., climate
models might be combined with social models to predict
emissions of carbon dioxide. This trend has led to large and
complex systems that are difficult to maintain. One of the
main reasons for this complexity is legacy code that often
cannot be replaced for technical or economical reasons.

One approach to manage this complexity is component
based software design. This approach can greatly facili-
tate reuse, interoperability, and composability of software.
Consequently, it has become very popular in the design of
business applications and internet technology and there is
large number of widely available frameworks, e.g., COR-
BA/CCM [31], [16], Microsoft’s (D)COM [13] and .Net
[29], or Sun’s JavaBeans [33]. The Common Component
Architecture (CCA) [9] is a joint effort by researchers from
both academia and U.S. national laboratories to establish
and adapt these techniques for scientific computing. The
CCA basically mediates how components interact with
each other and with the underlying framework.

A major requirement for scientific computing is
language interoperability. This allows the component
paradigm to incorporate legacy software written in mixed
languages. Babel [18] is focused on the special needs of
high-performance scientific computing. As such, it can be
used stand-alone or as part of the full CCA [6] component
framework.

In order to address interoperability challenges, Babel
makes use of the scientific interface definition language
(SIDL). SIDL builds on previous work such as CORBA
[31] or COM [32] by tailoring the idea to the needs of
scientific computing. This includes support for dynamic
multi-dimensional arrays, array strides, single and double
precision complex numbers, and structs.

Babel transparently supports both fast in-process func-
tion calls and remote method invocation (RMI) [27]. In
the latter case, caller and callee may reside in a different
address space or on different machines. Babel does not
impose constraints or assumptions on the parallel com-
munication model used within components, which may
be any combination of MPI [20], OpenMP [11], Posix
Threads [14], Global Arrays [30], or similar techniques.
However, Babel allows for composition of parallel compo-
nents, e.g., the Co-op project [3], [23] found that an RMI
paradigm for MPMD programming was easily understood



and very effective for application developers [25], [7], [10],
[8]. The domains in which Babel is used are widespread
and range from applications in chemistry, astronomy, and
biology to mathematical solvers, programming models, and
performance monitoring tools. Established users of the Ba-
bel language interoperability middleware and/or the CCA
as a whole include the hypre preconditioner library[5],
the ComPASS project [2], the CSDMS project [1], the
FACETS project [4], and the MPQC quantum chemistry
package [22], [24], [21].

Based on SIDL interface specifications, Babel assists
the developer by generating language-specific prototypes.
It also generates the necessary glue code for non-native
method invocations. For each of the supported languages,
Babel tries to make data passed into or returned from
functions appear as “natural” as possible, e.g., a string
appears as a character array in C while it is represented as
a java.lang.String object in the Java bindings. Thus, each
Babel call involves some additional overhead to do the
necessary conversions, implement a common object model
(even on top of procedural languages such as C or For-
tran), and to provide a transparent exception mechanism.
For non-local calls, there is an additional, much larger,
overhead to marshal and un-marshal the data and to do
the network transfer.

Motivation

Until recently, the main focus in Babel development has
been correctness and broadening of its capabilities. In fact,
most applications use a very coarse grained component
model with infrequent Babel calls so that call overhead
due to language interoperability hardly matters, e.g., ex-
periments for course-grained interface descriptions [26]
clearly show that the overhead of Babel is well within
measurement imprecision – usually below 1%.

However, there are also interesting applications where
the overhead of method invocations can become a signif-
icant factor compared to the computational payload of a
function. One of these examples is TSTT (Terascale Sim-
ulation Tools and Technologies), which aims to establish a
community standard interface for mesh refinement codes.
Performance studies [28] showed considerable overhead
compared to a native interface, which led to the adoption
of fast native interfaces instead of SIDL as their primary
technique.

Also, for several users, language interoperability is not
necessarily the main argument for adopting Babel. Instead,
they are sometimes mainly interested in clean interface
specifications, remote method invocation, or the object
oriented programming model provided on top of traditional
procedural languages such as Fortran. For these users,
even a moderate overhead is often reason enough (a)

not to adopt Babel at all or (b) design applications with
these performance considerations in mind, often leading to
less intuitive interfaces [24]. Thus, the primary motivation
of this work is to reduce the Babel overhead for these
users, thereby facilitating adoption and impacting a larger
audience.

Performance optimizations for fine-grained interfaces
are complicated by the fact that it is in general only
known at runtime (a) if caller and callee reside in the
same address space and (b) which pair of languages is
actually involved in a particular method invocation. This
is due to polymorphic function calls and Babel’s support
for transparent remote method invocations. In this work,
we propose an in-process optimization that can effectively
eliminate the call overhead for various pairs of languages
for a small memory cost. In particular, this is useful when
caller and callee are implemented in the same language,
which is very common scenario in practice. The main
contribution of this work is a dynamic optimization that
avoids unnecessary conversions and copying whenever
possible by generating efficient dynamic delegates in the
auto-generated client-side glue code. This approach retains
all the advantages of dynamic binding and remote method
invocation while providing roughly the performance of
native calls when both objects end up residing in the
same address space and being implemented in the same
language.

II. Babel Architecture

Babel provides a traditional object-oriented program-
ming model with single inheritance and multiple im-
plementation of interfaces. By default, all functions are
virtual, i.e., the function being called always depends on
the dynamic type of the object rather than the static type
of the reference. Babel also provides implicit reference
counting and memory (de)allocation.

Backends are available for a large and growing set
of languages, cf. Figure 1. Restricting Babel to the least
common denominator across all these languages would
be a non-practical approach. Instead, Babel tries to take
advantage of native language features such as builtin data
types or method overloading whenever possible and pro-
vides reasonable alternatives in the remaining cases, e.g.,
overloading symbols is supported in most object oriented
languages while unique identifiers are required for Fortran.
Across all supported languages, Babel provides sophis-
ticated features such as transparent support for remote
method invocation, overloading, inheritance, and exception
handling, e.g., it is common use to derive a Python class
from a class written in Fortran to overwrite a subset of the
member functions.

In order to achieve this, Babel employs a C-based in-
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Fig. 1. Programming languages supported in
Babel 1.4.

termediate object representation (IOR). The IOR is exactly
the same, no matter which language has been used to
implement or invoke a particular method.

Figure 2 depicts the general scheme of a local Babel
function call. On the client side, a so-called stub is gener-
ated that converts arguments to Babel’s IOR representation,
calls the proper method entry point from the object’s entry
point vector (EPV), and converts eventual return values to
the representation used in the original language. On the
server side (skeleton), the inverse operations are performed,
i.e., arguments are converted from IOR to the particular im-
plementation language, the user-supplied implementation
is called, and return values are converted back to Babel’s
IOR. In addition, the skeleton is responsible to catch
exceptions thrown in the implementation and convert them
to a language-independent representation. The overhead
introduced by this scheme depends on the particular pair
of languages and the type of the arguments. For remote
objects, the only difference is that the EPV will not directly
point to the skeleton but to a babel-generated function
(remote method stub) that marshals and un-marshals the
arguments and performs the necessary network transfer.

III. Approach

Babel supports virtual function calls even on top of
procedural languages such as Fortran. Consequently, it

cannot rely on builtin object-oriented language features.
Instead, it implements its own virtual function table and
generates the necessary dispatch code for the various
supported languages in the client stubs. Dynamic dispatch
using virtual function tables was first introduced in Sim-
ula [17] and is today the preferred technique for widely
used languages such as C++ [19].

In Babel jargon, each object or interface carries a
reference to an entry point vector (EPV) that defines the
set of member functions supported by the corresponding
type. Figure 3 shows the memory layout for a Babel object
with a simple inheritance structure. Solid lines denote
generalization while dashed lines stand for implementation
of interfaces.

Babel maintains a strict separation between client and
server code to ensure that components can be distributed
in binary form together with the corresponding SIDL file.
In the current design, the method entry points stored in
the EPV are the only way to “cross” the barrier between
client and server code. Skeletons always expect and return
data in Babel’s IOR and translate arguments to and return
values from the particular implementation language.

This approach has many advantages. However, in terms
of performance, it is often not optimal. For several pairs of
languages, there are “shortcuts” that involve less runtime
overhead than converting to and from Babel’s IOR. The
most obvious and also the most common case are method
invocations where both client and server are implemented
in the same language.

To motivate this with a concrete example, consider
a string being passed using mode in-out from a C++
client to a member function of a SIDL component also
implemented in C++. Babel’s C++ bindings use a reference
to a std::string object, which boils down to a simple
address passed on the stack. In Babel’s IOR, however,
the same string is represented as a char ** pointer, as
implementations are allowed to return a string different
from the one being passed. The stub calls strdup to
allocate memory and clone the string wrapped by the
std::string object. After the call is finished, the result
string is assigned to the std::string object (which
may involve memory reallocation) and the temporary allo-
cated memory has to be released. On the server side, the
skeleton has to wrap the raw character pointer using a fresh
std::string object created on the stack, pass it to the
actual implementation by reference, and copy the raw data
back to the input string. Depending on the length of the
string returned, this last step may involve dynamic memory
reallocation as well. In practice, the whole procedure is
roughly two orders of magnitude slower than a native call
by reference.

We propose a solution that requires modification to
Babel in two areas. The first is a language-independent



convert arguments
native ÙIOR

call via EPV

convert return value
IOR Ùnative

convert arguments
IOR Ùnative

call native implementation

convert return value
native ÙIOR

Stub (Client) Skeleton (Server)

Fig. 2. Babel method invocation. Arguments and return values are converted to Babel’s intermediate
object representation (IOR) before being passed.

generalization of Babel’s IOR. The second are language-
dependent extensions of the various backends, of which
Python and C++ have been implemented so far. The latter
is the more interesting example and is discussed in more
detail in the following sections.

Generalized Dispatch Tables

Support for dynamic dispatch in Babel implies that we
cannot statically deduce the actual implementation lan-
guage used for a particular method invocation in general.
Instead, it depends on the dynamic type of an object, e.g.,
invoking method b() on an object reference of type B
in the example introduced in Fig. 3 might be either a
Python or a C++ call, depending on whether the actual
object is of type B or C. Also, the amount and type of
information we need to provide in order to implement
efficient in-process method invocations strongly depends
on the particular implementation language.

Our solution is an extension to Babel’s EPV data
structure that allows language backends to expose al-
ternative method entry points with a calling convention
different from Babel’s IOR. For each method, the EPV is
augmented by two additional fields, i.e., an enumeration
type and an opaque pointer. The interpretation of the latter
is determined by the first and allows language backends
to expose the information necessary to implement more
efficient method invocations. However, a Babel backend is
considered complete even if it does not implement these
extensions.

Two modifications are necessary for language bindings

to make use of these features. On the server side, Babel
calls a generated function set_epv for each component
to initialize the static EPV and, optionally, the additional
fields introduced above. On the client side, additional
dispatch code has to be generated that takes advantage of
these language specific “shortcuts” if present.

Since EPVs are static information, both the additional
memory and runtime overhead for initialization of dynamic
dispatch tables is negligible in practice. However, for most
language pairs, there is a small runtime overhead necessary
to implement the dynamic dispatch.

C++ Bindings

Babel’s C++ bindings closely model the method sig-
natures and inheritance structure defined in the SIDL file.
There is a one-to-one correspondence between basic SIDL
types and their C++ equivalents. Whenever feasible, SIDL
types are mapped to their native C++ or STL equivalents.
For more complicated types such as arrays, Babel provides
a runtime library with corresponding C++ interfaces. The
semantics of the client side bindings are similar to C++
smart pointers, i.e., reference counting is handled implic-
itly. Interfaces are implemented using abstract base classes.
Native exception mechanisms are used to handle SIDL
exceptions.

The set of classes generated by Babel for the class
hierarchy introduced in Figure 3 is show in Figure 4. Both
BaseInterface and BaseClass are part of Babel’s
runtime library. The user implements only the classes to
the right of the dashed line. The remaining classes are glue
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Fig. 3. Babel object layout for a simple inheritance structure.

code generated by Babel and basically wrap the IOR for
the corresponding SIDL class.

Babel generates a static _create member function
that is used to create and initialize new SIDL objects.
Initialization is performed recursively for base classes and
records a pointer to a newly created implementation object
in the data field of the IOR. The generated skeleton casts
this field back to the appropriate type and invokes the
user-defined implementation after converting in-arguments.
Note, that the generated member functions for client stubs
are non-virtual and can thus be bound at compile time
as Babel implements virtual call semantics in a language-
independent way.

Except for cv-qualifiers, type signatures of Babel-
generated method stubs and of user-supplied implemen-
tations are equivalent. Thus, in the case of C++ calling
C++, we ideally “replace” the generated method stub with
the actual implementation to avoid the usual overhead. In
software engineering literature, this technique is usually
referred to as delegation. The key to implement this
efficiently are member function pointers – one of the
darker corners of C++. We will thus continue with a
little excursion to recap the idiosyncrasies of this language
feature before explaining how we can employ it for zero-

overhead native function calls in Babel.
C++ Method Function Pointers: Regular function

pointers in C and C++ are relatively simple: they hold
the address to some chunk of code in memory and their
type information is used by the compiler to emit code
complying with the particular calling conventions. Member
function pointers are a quite different story. As the name
suggests, member function pointers are designed to hold
the address of a C++ member function. The standard is
very restrictive in what you can do with them: they can
be set to NULL, compared for equality and inequality (as
long as both operands are of the same type), and compared
against zero. According to the C++ standard1 [12], they can
also be cast using reinterpret_cast to a member
function pointer of an unrelated class. Unfortunately, this
(a) does not work for several compilers in practice and (b)
is not really useful as everything you can legally do with
it is to cast it back to the original type.

To understand why, recall that for virtual functions, the
actual function being called depends on the supplied this
pointer. In the case of multiple inheritance, the compiler
furthermore has to adjust the provided this pointer before
the actual call. There is a vast diversity in how compilers

1Section 5.2 10/9
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implement this behavior. Some (more exotic) compilers
emit a piece of thunk code that performs the necessary
calculations before jumping to the real function. There is
one of these thunks for each member function involved in
multiple inheritance. The technique is simple, but involves
some runtime overhead due to the additional indirection.
A more common technique employed in almost all major
compilers is to add additional fields that specify the this
pointer offset and, in the case of virtual methods, the index
in the virtual function table. Thus, depending on the target
machine architecture and the compiler being used, the size
of member function pointers can be anywhere between four
and 20 bytes. The size of member function pointers also
depends on the particular inheritance structure as compilers
apply different optimizations for single, multiple, and
virtual inheritance in practice. Thus, casting a member
function pointer to a different type can change its size and
may lead to bizarre side effects.

Fast Delegates for C++ Client Bindings: Client
bindings generated by Babel are strictly separated from
the actual implementation and do not depend on whatever
language has been used to implement a particular class.
This also means, that the user-defined type of the imple-
mentation class is not known to the compiler. In order
to implement efficient function calls, we need a way to
(a) communicate the proper this pointer and the method
entry point between client and server and (b) reliably
invoke the actual implementation.

Surprisingly, the last part is easy to achieve. The reason
is that member function pointers can be declared and
invoked on incomplete types, e.g., the following code
sequence is legal C++:

c l a s s A;
void i n vo ke (A ∗obj , void (A: : ∗ p t r ) ( ) ) {

( obj−>∗p t r ) ( ) ;
}

The compiler has to be able to generate correct code know-
ing nothing about class A. The anonymous class basically
forces the compiler to disable all the optimizations it might
do for a known inheritance structure. This leads to the
bizarre situation that casting of member function pointers
is standard-compliant but non-portable, their invocation on
the other hand, once the cast succeeds, is non-standard but
portable in practice. An elegant way to handle compilers
not supporting unrelated casts is by employing partial
template specialization based on the actual size of member
function pointers. Interested readers are referred elsewhere
[15] for an excellent in-depth discussion.

The one ingredient missing is the proper this pointer.
For classes implemented in C++, Babel maintains such a
reference in the data pointer shown in the object layout in
Figure 3. Note, that there is one such pointer per class in
the inheritance hierarchy and it depends on the dynamic
type of the actual object which one to use. This information
cannot be inferred by the generated client stub in general.

Our solution is to pass the offset relative to the begin-
ning of the IOR along with the method function pointer
on to the client. The opaque EPV pointer points to a struct
that contains both the member function pointer and the
proper offset to calculate the this pointer. For interfaces,
the correct this pointer can be obtained by adding the
offset to the object pointer indicating the beginning of
the actual object; see Fig. 3 for reference. In the case of
static functions, we can avoid this indirection and store the
native function pointer directly in the generalized EPV.

On the client side, a small thunk is generated instead
of the default stub code that dynamically chooses between
the native version (if applicable) and the generic fallback
code. The dispatch code dynamically checks if an object
supports fast native calls by exposing the necessary method
entry points. It then computes the this pointer, fetches
the method function pointer, and directly invokes the user-
code. Otherwise, control is handed over to the generic
Babel stub.

For native function calls, this is always a win; see
Section IV for computational results. Also, there is almost
no associated memory cost apart from the slightly bigger
EPVs and a few additional bytes in code size needed for
the dispatch thunk. It does, however, add a few extra cycles
to the costs of a function call if the check fails, i.e., we
are calling a non-native implementation.

We can do considerably better by spending a few extra
bytes per method in order to cache the outcome of the
dispatch process. The result is a pair consisting of a this
pointer and a method function pointer, either pointing to
the generic Babel stub or the native user code. The thunk



generated for each method then basically looks like the
following code sequence.

i n l i n e void foo ( a 1 , a 2 , . . . , a n ) {
( t h i s f o o −>∗mfp foo ) ( a 1 , a 2 , . . . , a n ) ;

}

A reasonably optimizing compiler will inline this code
sequence, which brings the cost of a native Babel call down
to the cost of a regular member function pointer invocation
once the pointer is cached. For compilers without support
for link-time optimization, it is essential to generate the
method dispatch in the header file for the obvious reasons.

We implement both eager and lazy caching. In the first
case, we bear the costs at object creation time in favor of
faster method invocation. In the latter case, the member
function pointer and the this pointer are computed at
the first invocation, requiring an additional runtime check.
However, this check is fully predictable and turns out to be
very cheap on modern architectures as they execute code
speculatively based on sophisticated branch prediction
units.

For some compilers such as gcc we can still do slightly
better. As discussed before, invoking a member function
pointer can be quite costly as it may involve this pointer
adjustments and vtable lookups. For recent versions of
gcc, things get even worse as the compiler applies a
tricky optimization to decrease the size of member function
pointers at the expense of a small runtime overhead: the
vtable index and the method entry point share the same
field in its internal data structure. Addresses are always
aligned and thus even. For a vtable index i, the value 2i+1
is stored, which is always odd and allows the compiler to
distinguish among the two cases. The necessary dynamic
check adds a few extra cycles to the costs of a method
function pointer invocation.

Fortunately, gcc implements a nifty C++ language
extension to make up for this. It allows developers to
extract the actual function pointer that would be called for
a given pair of object and method function pointer, e.g., we
can cast a method function pointer of type void (A::∗)( int )
to a regular function pointer of type void (∗)( A∗, int ) by
supplying a concrete this pointer. By employing this
feature, the space overhead for caching can be reduced
to two machine words per member function (the this
pointer and a more efficient regular function pointer) and
the costs for native method invocations is reduced to the
costs of an indirect function call – as low as we can get
for polymorphic function calls.

There are two rather subtle differences in the pro-
gramming model compared to regular Babel calls. First,
the generic skeleton generated by Babel catches language
specific C++ exceptions and converts them to generic SIDL
exceptions before passing them on to the user. By applying
our optimization, this conversion does not happen and

the user will observe the unmodified C++ exception. This
may change the behavior of existing code but is easy to
handle in practice. The second difference is related to out
arguments. In the traditional setting, Babel consistently
initializes those arguments even if they are never defined
in the user-supplied code. Again, this initialization does
not happen in the optimized case. Code relying on this
behavior has been always undefined but works reliably
using older versions of Babel or when the optimization
is disabled.

Python Bindings

As for C++, namespaces and object hierarchies defined
in SIDL map nicely to native Python packages and mod-
ules. Babel uses Python C extension modules that wrap
the internal object representation and implement argument
marshaling and method dispatch.

As Python is a dynamic language, most of the diffi-
culties of invoking member functions of incomplete types
discussed before do not apply. Instead, Python provides
bound member functions that “remember” their context.
Depending on whether or not a method is ultimately
implemented in Python, a callable bound to the actual
implementation object or the regular stub is returned upon
attribute look-up. As for C++, a reference to an object
of the user-supplied implementation class is maintained in
the data pointer, cf. Figure 3. Its computation involves the
same steps as discussed before in the context of C++.

Depending on whether or not a method is declared
static, we apply a different method to implement the
attribute lookup.

• Static methods are resolved at module initialization
time and override the default client stub in the module
dictionary.

• For non-static member functions, we override
Python’s default implementation for tp_getattro
that is called to lookup object attributes dynam-
ically. For native member functions, this proce-
dure returns a callable bound to the actual im-
plementation. Otherwise, we defer the lookup to
PyObject_GenericGetAttr. This process is
less efficient but does not require the maintenance of
a dictionary per object. However, different trade-offs
are possible.

IV. Experimental Evaluation and Discussion

In this section, we present a performance evaluation
of the optimization presented in this paper. The results
are very encouraging showing call overheads practically
on par with native virtual function calls in C++ for a



very moderate memory overhead while retaining all the
flexibility of regular Babel objects.

Measuring fine-grained call overheads can be a chal-
lenging problem. We thus subsequently discuss the per-
formance measurement techniques employed to minimize
external interference factors before presenting detailed
experimental results for various data types on a recent
Linux kernel using the two major compilers used in the
scientific community: Intel’s icc and the GNU compiler
gcc.

A. Methodology

Estimating performance on modern X86 micro-
architectures has become an almost impossible task. The
reasons are manifold: hyper-threading, programmable de-
coding units, branch prediction, out-of-order execution and
aggressive speculation are only some of the causes. Ad-
ditional noise is generated by cache coherence protocols,
deep memory hierarchies, shared systems resources such
as buses, and operating system overhead.

The costs for Python method invocations have been
measured using the builtin timeit module with 10.000
iterations and a repeat count of three. We measure the
duration of a method invocation for an empty function
using various argument types. The Babel version is a
modified pre-release for 1.5.

Reliable results for C++ are much harder to obtain. We
use CPU cycle counters (rdtsc) to obtain cycle-accurate
timings. Calls are executed repeatedly (106 times). We
report the average call costs using statically linked binaries.
The duration of an equivalent empty loop is used to
account for the loop overhead. An empty volatile-qualified
inline assembler block was used to prevent the compiler
from optimizing the loop away. As we execute calls
repeatedly, we deliberately measure best-case performance
as caches and branch target buffers will perform near-
optimal. In practice, calls may involve a higher overhead.

Operating system overhead can lead to considerable
noise (> ±10%). We thus ran our C++ benchmarks
directly in the context of the kernel and disabled software
interrupts before beginning the measurements (cli). A
serializing instruction (cpuid) is issued to force com-
pletion of in-flight instructions executed out of order.
Furthermore, we disabled power management, symmetric
multi-processor support (SMP), and hyper-threading. Thus,
apart from non-maskable interrupts, we can be certain that
no other code is interfering with our profiling runs. We use
a 32 bit stock Linux 2.6.32 kernel with a corresponding
Kernel Mode Linux2 (KML) patch to execute regular
processes in ring zero. Results are shown both for gcc

2http://web.yl.is.s.u-tokyo.ac.jp/∼tosh/kml

Argument Type Native Babel 1.4 Caching
none eager lazy

Array 6.8 86.7 33.0 6.0 7.0
Struct 21.0 40.0 40.9 20.5 20.1
String 7.4 874.2 32.9 6.2 7.0
Complex 8.0 69.7 34.6 6.0 7.0
Int 6.4 38.3 31.2 5.5 7.5
None 6.0 37.2 30.5 5.4 5.6

TABLE I. Call overhead in machine cycles for
C++ comparing the costs for native method
invocations and calls through the Babel mid-
dleware using gcc.

version 4.3.2 and the Intel compiler in version 11.1. Bench-
marks were executed on a 2.4 GHz Intel CoreTM 2 Duo
system with 2GB of DDR2 memory. Results can vary
significantly for different compiler flags. To make for a fair
comparison, we used the highest particular optimization
level (-O3) and enabled machine-specific code generation
(-mtune=native).

For most simple data types, our results are very precise
showing almost no variability. However, more complicated
types such as strings or arrays involve temporary memory
allocation and copying. For these benchmarks, some vari-
ability caused by the memory subsystem is unavoidable.
We thus repeat measurements 100 times, always disregard-
ing the first run. For all data points, the sample standard
deviation is smaller than 10%. Simple cases such as integer
arguments show almost no deviation.

B. Computational Results

Table I shows experimental results for C++ calls with
various argument types in machine cycles. For space
limitations, we only present interesting data types. Other
basic data types such as floating point numbers, chars, or
enums roughly show the same behavior as integer values.
Arguments are passed by value (mode in in Babel jargon).
The first data column shows the costs of native C++ virtual
method invocations. Column “Babel 1.4” shows results for
Babel without the optimizations proposed in this paper,
everything else being equal. Data for the various caching
strategies discussed in Section III can be found in the last
three columns (“Caching).

Data shown in Table I has been gathered using gcc,
which provides a C++ language extension that allows for
more efficient method pointer invocations. For eager and
lazy caching, the Intel compiler produces only slightly
worse results but requires more memory, cf. Table II. How-
ever, icc produces slightly more efficient code without
caching, e.g., an integer method invocation costs about 25
instead of 30.5 cycles.

It is interesting to see how our results compare to those
published about eight years ago for Babel 0.7 [9] using



no eager lazy
caching caching caching

memory (static) 12 12 12
memory (per obj.) 0 12/8 12/8
caching none object first

creation invocation

TABLE II. Overview of various caching strate-
gies. Memory overhead is reported in bytes
per method for icc and gcc respectively
(32 bit Linux).

older hardware (500MHz PentiumTM III) and compiler
technology. In terms of machine cycles, we observe an
astonishing improvement both for C and C++ by a factor of
about 2.9 and 2.7 respectively. This is also true for simple
data types where the potential for compiler optimizations is
quite limited. Thus, a large fraction of this is probably due
to advances in processor technology, e.g., branch prediction
and superscalar micro-architectures. This is even more
impressive as clock rates are up by roughly another factor
of five on modern machines.

In the case of C, the Babel overhead compared to the
costs of a native function call is moderate. This is not
surprising as Babel’s intermediate representation (IOR) is
written in C and hardly requires additional transformation.
Two noteworthy exceptions are raw arrays (rarrays)
and arrays with order specifications. In the first case,
raw data pointers can be used instead of SIDL arrays
to resemble existing interfaces. However, in the current
implementation, Babel internally wraps them in its usual
data structure by obtaining the necessary meta-data from
their declaration. Thus, contrary to intuition, raw arrays are
among the more expensive argument types in Babel. The
second case are arrays with column or row order specifica-
tions (ordered array). Babel does whatever necessary
to comply with these specifications, which might result in
a deep copy of the actual data. Note, that these cases do
not benefit from any of the optimizations presented in this
paper. In many cases, the potential improvement would be
rather small compared to the costs for copying the array.
Thus, our current implementation disregards these cases
and unconditionally falls back to the default client stubs.
The user should be aware of the potential costs when using
these features.

Considering C++, the costs for language interoperability
are more significant. Even for simple data types, the costs
compared to a native call increase by a factor of about 5x.
For arguments requiring additional conversion, this only
gets worse, e.g., passing an interface is about 45 times
slower than the native equivalent; for strings, the overhead
is – depending on its length – more than two orders of
magnitude.

Our system leaves the trade-off for the various caching

strategies to the user’s discretion; see Table II for an
overview. Depending on the characteristics of the applica-
tions, any of techniques may be preferable. The user can
select among them using pre-processor flags at compile
time.

The static memory overhead per method is relatively
small and usually of no concern to the user. The dynamic
memory overhead per object and method for the imple-
mentation of fast delegates may be more of an issue for
very lightweight objects. The user may choose to spend no
memory at all (“no caching”). Even in this case, applying
our techniques is always a clear win compared to the
costs of a generic Babel call if both caller and callee are
implemented in C++.

If the user is willing to spend some memory, we can
do considerably better. There is almost no regression for
non-native calls and native Babel calls cost about the
same as regular virtual C++ method invocations. For gcc,
we can take advantage of a non-standard C++ extension
and reduce the costs to the cost of a simple function
pointer invocation. Otherwise, we have to pay the costs
for a less efficient member function pointer invocation.
The memory overhead is two machine words per method
in the first case, and the costs of a regular pointer plus a
member function pointer otherwise. In the case of eager
caching, we pay the costs for the initialization of these
fields at object creation time. For lazy caching, we do
the same at the first invocation, requiring an additional
dynamic branch. However, the differences are rather small
as modern architectures successfully hide these costs in
their branch prediction units.

In both cases, the speedup compared to regular native
Babel calls ranges from about 5x for simple data types
up to roughly 125x for strings. Thus, by spending a
small amount of memory, we can effectively eliminate the
runtime overhead for language interoperability completely
for native method invocations without loosing flexibility.

Similar speedups could be achieved for Python; see
Figure 5. However, while static and non-static methods
behave similar in C++, there is a rather large difference
for our Python implementation. The reason is that we do
the dynamic lookup at every invocation for regular Python
objects while we do it only once at object creation type
for static methods. The same technique can also be applied
to non-static methods, but would involve allocation and
initialization of a local dictionary per object (as for regular
Python objects).

V. Outlook and Future Work

The concepts proposed in this work nicely translate
to other pairs of languages, but require some language-
specific effort. C++ and Python where the most tempting
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Fig. 5. Speedup for Python method invoca-
tions compared to previous versions of Ba-
bel.

targets to start with, but we plan to add support for further
language pairs in the near future. Apart from these fine
grained optimizations, we are pursuing ideas that require
more fundamental changes to Babel by allowing for a more
flexible representation of the IOR. These changes would
allow to optimize the generated glue code for the particular
subset of languages actually involved in an application.
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