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Abstract

Most vehicle classification approaches using video data
rely upon appearance based features. However in wide area
motion imagery, which is often captured from airborne sen-
sors and covers an area of several square kilometers, the
number of pixels per vehicle is very low. In this setting it
is difficult to develop robust appearance models with which
to classify vehicles. Thus we propose using vehicle motion
characteristics to augment appearance features in order to
improve upon vehicle classification. We utilize two modern
machine learning classifiers, Support Vector Machines and
Random Forests, to determine the utility of including such
features. We find that adding novel features derived from
speed and acceleration to the vehicle size feature noticeably
improves classification performance.

1. Introduction

Vehicle classification has many applications, including
traffic and threat analysis. Existing approaches to this prob-
lem make use of 2D or 3D template models [4, 3, 19, 9],
vehicle size [11, 5], or vehicle appearance (color, texture,
etc.) [14, 13, 6, 9]. Unfortunately, in wide area motion
imagery, the resolution of the vehicle is quite low, which
makes it difficult to develop this kind of detailed appear-
ance models. Figure 1 shows an example of the images we
would like to classify. There is very little structure, such as
edges or gradients, to make use of. Thus, the use of these
methods becomes problematic, with the exception of a size
cue.

Note that previous methods operate on a single image,
whereas our application allows to perform classification on
motion imagery. Motion has been shown to be a powerful

Figure 1. Classifying these vehicles into cars (left) and trucks
(right) is not possible with existing methods based on templates,
or appearance. The bottom row shows edges of the top images.

cue in a number of vision tasks and we investigate here its
use in vehicle classification. This is the primary contribu-
tion of this work.

We take advantage of motion by estimating vehicle mo-
tion, or tracking. A number of kinematics features, such as
speed, acceleration, and turning radius, are then extracted
from the vehicle’s track and these are then utilized for clas-
sification. We evaluate classification performance using
motion information alone, as well as when added to an ap-
pearance based classification technique. More specifically,
a binary classification of a vehicle as either a truck or a pas-
senger car is examined. A finer-grained classification into
SUV, taxi, etc. was considered, but due to the difficulty of
obtaining ground truth information, a broad categorization
into two classes is the objective.

To determine the utility of adding motion features in the
classification of vehicles, we apply two state-of-the-art ma-
chine learning techniques: Support Vector Machines [1] and
Random Forest classifiers [7, 8, 2]. The purpose of apply-
ing two different machine learning approaches is to deter-
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mine whether the performance gains of including motion
features are not limited or significantly favored by one type
of classifier over another. We also compare the amount of
performance gain that one can expect with these different
classifiers.

In studying these particular motion features, we make
the implicit assumption that trucks generally exhibit dif-
ferent motion characteristics than passenger vehicles. This
view is validated in section 3. In our case, we assume that
large trucks generally accelerate and travel at slower speeds
than passenger vehicles. We also assume that trucks exhibit
much larger turning radii than passenger vehicles.

This paper is organized as follows. In section 2 we dis-
cuss related work and existing approaches to vehicle classi-
fication. We then present the method with which we study
the performance of vehicle classification with motion fea-
tures in section 3. We discuss our experimental procedure
in section 4, and the results are presented in section 5.

2. Related Work
There exist many approaches for vehicle classification

from imagery, most of which rely solely on appearance
characteristics. Gupte et al. perform vehicle detection and
classification on video data [5]. Their classification algo-
rithm is simple and utilizes only vehicle size dimensions to
classify the vehicle types. [4], [3], [11], and [19] all take
this further and utilize various deformable models or tem-
plates to classify vehicles as sedan, truck, or other generic
type. That is they take a predefined basic shape of a vehi-
cle and stretch and scale these models in order to try and
fit the vehicle in an image into their templates. Koller et
al. use similar templates of generic vehicles to help perform
vehicle tracking [10].

Han et al. [6] use 3D curve probes to identify and lo-
cate specific ridges of a vehicle, e.g., wheel wells. The dis-
tances and relative locations for all of these curve probes
are then used to classify vehicles. Similarly, Ma and Grim-
son [13] use edge points and SIFT descriptors to define rich
representations for different object classes. This approach
models more details and improves robustness to give better
categorizations.

Using an approach that centers on using eigenspaces to
separate out feature points, Santhanam and Masudur Rah-
man classify objects as cars or non-cars [16]. Their ap-
proach considers only low level viewpoints of cars to clas-
sify objects so that the features of cars are well separated
from non-car features.

Both [14] and [15] take vehicle classification one step
further. They try to utilize video to identify a vehicle’s make
and model. Petrovic and Cootes [14] rely on a having a
vehicle’s front-view whereas Prokaj and Medioni [15] take
this further and removes this restrictions to identify a vehi-
cle from an arbitrary viewpoint.

All of the above vehicle classification algorithms rely on
physically low level video observations such as fixed portal
or traffic cameras. This makes it easier to view the side pro-
files of vehicles and view distinguishing features of differ-
ent vehicle classes. Additionally, such cameras have a much
higher pixel per vehicle count than is usually available in
aerial video. Moving into the overhead aerial domain, Kahn
et al. build 3D models with marked salient feature locations
for various vehicle types [9]. They then generate a render-
ing of how vehicles should look at a given perspective and
distance in a given video. They then match the location of
the salient features of the model overlaid on the video scene
to give an appropriate classification. However this overhead
imagery still had a high pixel-per-vehicle count.

In our problem space, we must utilize overhead aerial
video imagery with only a small number of pixels per vehi-
cle. Recognizing that with aerial video, high detailed static
information is difficult to obtain, [12] utilizes dynamic se-
mantic scene information to classify both static and moving
objects. Li et al. first focused on discerning between mov-
ing objects and static objects. Then for each, they create a
highly complex probabilistic model with various inputs that
would be used to classify vehicles.

3. Methods
As discussed in the introduction, our goal is to classify

vehicles into cars and trucks without entirely relying on ap-
pearance, but with utilizing all of the advantages of motion
data. To do this, we design new motion features that are
then used to train a standard classifier. In addition to mo-
tion features, other features such as vehicle size and turning
radius are considered.

3.1. Motion Features

The vehicle motion information that we would like to
take advantage of is determined by tracking the vehicle over
time. The tracking algorithm does not need specific capabil-
ity, only that it outputs the vehicle’s position in each frame.
Therefore, the input to our classification algorithm is simply
a track τ :

τ = {p1, · · · ,pN} (1)

where pi = (x, y, t), is the i-th position and timestamp of
the vehicle. In this work we use a multi-object tracking al-
gorithm that uses the constraint of consistent motion and
appearance to find the most likely data association in a slid-
ing window of frames. It is an improved version of [17].

Many different features can be extracted from a vehicle’s
track. Intuitively, the speed and acceleration characteristics
of a vehicle are indicative of the vehicle type. For example,
one would expect that passenger cars travel and accelerate
faster than trucks, or that the van of a letter carrier travels
slowly with frequent stops, and that an express courier has



Figure 2. Speed-acceleration samples of many cars and trucks
measured from their tracks. The speed and acceleration character-
istics of a vehicle can be used to discriminate a car from a truck.

yet other motion properties. We validated this intuition by
plotting a scatter plot of speed-acceleration values for dif-
ferent vehicle types. This is illustrated in Figure 2. While
there are some regions of speed-acceleration space where
it is not possible to distinguish a car from a truck, there
are speed-acceleration values where the distinction is clear.
This leads to the use of vehicle speed and acceleration as
features in this work.

Of course, the tracks are not without noise, and it is im-
portant to take this into account when estimating speed and
acceleration, as the sensitivity to noise increases in the esti-
mation of higher-order derivatives. The initial set of speed
estimates is calculated by taking vehicle position samples at
least 1 second apart and using the standard formula

vi =
||(xi+1, yi+1)− (xi, yi)||

ti+1 − ti
. (2)

Speed is then estimated by minimizing a robust (Huber) cost
function over a short temporal window of size 2K + 1:

v∗i = argmin

i+K∑
j=i−K

h(vj − v∗i ) (3)

h(δ) =

{
δ2 |δ| < b

2b|δ| − b2 otherwise . (4)

The parameter b is set approximately to the outlier threshold
(we use b = 1 for speed in meters per second). By using a
robust cost function, outliers (samples with |δ| > b) will not
heavily influence the speed estimate. Acceleration is esti-
mated using the same procedure with the robustly estimated
speed samples. The window size used is 29 (K = 14) when
estimating speed and 15 (K = 7) when estimating acceler-
ation.

Standard machine learning classifiers work with fixed di-
mensional feature vectors, but variable length tracks will
produce a varying number of speed and acceleration values.
Therefore, the variable-dimension feature space needs to be
transformed to a fixed-dimension one. Common approaches
to this problem include normalization (with respect to track
length), or sequence alignment for time-series data (with
Dynamic Time Warp). These solutions do not work here,
because they would produce a feature space where the same
car would have a different representation for each traveled
path (as each path may have a different speed/acceleration
value for every normalized path coordinate). Instead of do-
ing that, we solve the problem by going to a “bag of words”
representation: we discretize the speed-acceleration values
and compute an indicator vector (or a binary histogram).
This indicator vector is then used as input to a classifier. The
discretization is done by first computing a joint codebook of
speed-acceleration values and then assigning the label of the
nearest value pair in the codebook. The codebook itself is
computed using k-means clustering (a value of k = 1000
was used in this work). This representation is not sensitive
to a particular value of k as long as it is “large”, which is
often the case in other bag of words approaches [18].

The indicator vector is a binary vector that indicates
the presence or absence of every (discretized) speed-
acceleration value. It can also be thought of as a binary
histogram. A standard histogram is not used, because that
would allow the length of a track to bias the representation
(even if the histogram is normalized). For example, a car
that travels at a certain speed for a long time and then at
another speed for a short time would have a very different
representation using a standard histogram if the duration for
each speed was switched. An indicator vector instead rep-
resents what speed or acceleration is possible for a given
vehicle. Thus, it is very suitable for discriminating vehi-
cles with different speed and/or acceleration characteristics,
such as cars vs. trucks.

3.2. Other Features

While motion features are the focus of this work, there
are other useful features that can be calculated from tracks.
A feature that works particularly well for rough car vs. truck
classification is the vehicle size. The size of the vehicle in
geo-rectified imagery is easily estimated from the bounding
box of the tracked object. Naturally, larger vehicles (trucks)
will have a larger bounding box than smaller vehicles (cars).
Here, the size is calculated as the radius of circle enclosing
the bounding box.

Another feature that may be useful is the vehicle turning
radius. Ideally, this would be estimated in places such as
parking lots, where vehicles are often forced to make tight
turns. Estimating this characteristic from tracks as the ve-
hicle is making standard 90◦ turns seems less appealing.



(a) Raw unprocessed video frame (b) Stabilized, geo-rectified
video frame

Figure 3. Example frames of the type of aerial overhead video

Nevertheless, we investigate the usefulness of this feature.
Specifically, the turning radius can be estimated from track
data by first detecting all 90◦ turns and then measuring the
arc length of the turn. Turn detection can be accomplished
by finding peaks in an angular velocity plot (where angle
measures the direction of travel) or more robustly by train-
ing an HMM using speed and angular velocity data. Alter-
natively, a regressor can be trained to directly estimate the
turning radius when appropriate data are available. In this
work we use the former method for turn detection (angular
velocity maxima).

4. Experimental Procedure

To test the usefulness of using motion signatures in ad-
dition to simple appearance models we apply our methods
to real video data. An example frame of the type of wide-
angle video collection similar to that of the real video data
we used is presented in Figure 3. Figure 3(a) shows a raw
unprocessed frame of the video similar to that of which we
work with. Figure 3(b) shows a video frame after it has been
geo-rectified and stabilized for use in tracking. This sample
is a small area of the video from which 3(a) is derived.

The video that we use has about 6000x6000 frame size
and it is captured at 2 frames per second from an aerial plat-
form. The video is mosaicked from a matrix of cameras,
stabilized, and georectified before vehicle tracks are esti-
mated. The ground sampling distance (GSD) of the video
is one meter, i.e. each pixel represents one square meter.
Each vehicle covers a footprint of approximately 12-18 pix-
els. An example of the vehicles viewed at a similar GSD is
given in Figure 1.

Once the video is processed and our tracking algorithm
has been applied, we extract vehicle characteristics using
the method described in section 3. The final set of data from
our video included 39 trucks and 469 passenger vehicles. In

order to assess variability of the classification and the signif-
icance of the differences using various information, we use
cross validation. Due to the limited data set, we perform
5-fold cross-validation to select stratified non-overlapping
data on which to train and to test. Note that since not all
vehicles turn during the time window of observation, there
are even fewer vehicles for which we have turning radius
information. There are 11 trucks and 249 passenger vehicle
in the dataset when we consider turning radius.

Once we have our 5 folds of cross-validation data, we ap-
ply both support vector machine (SVM) and Random Forest
(RF) classifiers to the data. We repeat this testing for each
different fold to obtain 5 different receiver operator charac-
teristic (ROC) curves, which we can combine to create the
summary empirical ROC curves defining the performance
range of each classifier utilizing different sets of features.

For the SVM classifier, there are two parameters: a reg-
ularization parameter that controls the trade-off between
the maximization of the margin and the slack variable
penalty. Both of these parameters are determined using
cross-validation. We use a radial basis function kernel
which has a width parameter, and this parameter controls
the variance.

For the Random Forest classifier, there are two main tun-
ing parameters that influence the performance of the clas-
sifier: number of trees in the forest and the split dimen-
sion at each tree level. We experimented with various forest
sizes and split dimensions. For the case where we included
the vehicle velocity/acceleration features, we used 300 trees
with a split dimension of 30. The split dimension for using
only the vehicle size as a feature must be one since there is
only one feature.

5. Results

We utilize receiver operator characteristic curves to com-
pare the performance of vehicle classification under var-
ious circumstances. Figure 4 shows the empirical ROC
curves determined by the 5-fold cross-validation applica-
tion of both Support Vector Machines and Random Forests.
Each subfigure has three curves, the 20 percentile, 50 per-
centile (median), and the 80 percentile ROC performance
curves. This shows the range of performance for each clas-
sifier using the indicated features. Additionally to compare
the different ROC curves, we present in table 1 the area un-
der the median ROC curves (AUC).

Table 1. Area Under Median ROC Curves
SVM RF

Size 0.805 0.160
Motion 0.483 0.604

Size + Motion 0.892 0.858
Size + Motion + Turn 0.879 0.654



(a) SVM classification comparing vehicle size feature
only and motion features only.

(b) SVM classification using vehicle speed/acceleration
and size features compared to size feature only.

(c) SVM classification using vehicle speed/acceleration,
turning radius, and size features.

(d) RF classification comparing vehicle size feature only
and motion features only.

(e) RF classification using vehicle speed/acceleration and
size features compared to size feature only.

(f) RF classification using vehicle speed/acceleration,
turning radius, and size features.

Figure 4. Empirical receiver operating characteristic (ROC) curves showing performance of vehicle classification using Support Vector
Machines (SVM) and Random Forests (RF) incorporating various types information. The solid lines correspond to the 50 percentile
(median) curves, while the dotted lines correspond to the 20 and 80 percentile curves.



Examining the performance of both SVM and RF clas-
sification for using just vehicle size as the feature in Fig-
ures 4(a) and 4(d) we see that using only vehicle size for
vehicle classification is a useful feature in classifying ve-
hicles in overhead aerial video. However, there is clearly
room for improvement on the performance, which is why
we consider using motion features. We compare the perfor-
mance with the addition of motion and turning radius fea-
tures to the performance of utilizing only the size feature in
remaining plots. For the Random Forest performance for
size-feature only, we also tested with a larger forest (5000
trees) and performance only marginally increased, so these
results are not due to having a small forest size.

To see if there is potential for vehicle speed and ac-
celeration features to increase performance of the vehi-
cle classification, we again examine Figures 4(a) and 4(d).
We see that using Random Forests indicates that utilizing
speed/acceleration features only does better than random
guessing at the median. The AUC value of 0.604 for the
motion only RF classification confirms that there is poten-
tial gain by including motion features. When only using
speed/acceleration features, the Support Vector Machine are
more inconclusive, and an AUC of 0.483 results suggests
that it is not sufficient just to use these features to classify
vehicles using an SVM.

Looking at Figures 4(b) and 4(e), we can see that com-
bining both vehicle size and speed/acceleration motion
characteristics together to perform vehicle classification im-
proves vehicle classification performance over using each
feature independently. For SVMs, while performance at
the very low false alarm rates is similar for size and mo-
tion+size, the motion and size ROC curve shows a signif-
icant improvement over size only. In fact, the motion and
size median curve comes close to performing as well as the
size only 80 percentile curve. The combination of features
also decreases the performance variance of the SVM classi-
fication in comparison to using size only. Additionally, the
AUC values when including motion features do increase by
a significant amount as shown in table 1.

When utilizing both size and motion features with the
Random Forest classifier, we get higher fidelity at the high
detection rates than when utilizing only size. This is be-
cause all samples regardless of class have the same score.
That is, there is no separation between classes past a certain
threshold when using only the size feature. This is why the
ROC curves stop past some threshold in Figure 4(e). This
also forces a very low AUC value for size-only classifica-
tion with Random Forests in table 1.

In Figures 4(c) and 4(f) we see that including vehicle
turning radius is inconclusive. Both SVM and RF classifiers
exhibit a much wider performance range when utilizing all
three features. Additionally the performance at low false
alarm rates is poor for both types of classifiers. This is likely

Figure 5. Median ROC performance curves comparing the usage
of different frame lengths in computing vehicle motion features.
These curves utilize vehicle size and motion features.

due to the small sample size of turning radius data as well
as the similarity of turning path for both vehicle classes in
90◦ turns.

In comparing Random Forests to Support Vector Ma-
chines when using size and motion features, we see that
the Random Forests generally do not perform as well on
this data set, though the performance difference is not large.
This is evident in the small difference for the AUC of the
median ROC curve in table 1. One potential source of this
discrepancy is that we did not perform a full sweep across
all possible parameters during training as is done for the
Support Vector Machine. However, by using both SVM and
RF classifiers, we are confident that motion features indeed
help vehicle classification. Although, there are minor dif-
ferences in overall the performance bounds between the two
classifiers, both techniques show similar gains.

Finally, we also study whether or not the number of
frames captured and used to extract motion features has a
significant impact on classification performance. In Figure
5, we compare the median ROC performance curves when
using various track lengths. We see that the performance
difference when using different track lengths is not signifi-
cant, especially at low false alarm rates. This suggests that
when performing vehicle classification, we do not need to
have long tracks in order to perform vehicle classification
with motion features.

6. Conclusion

We have shown that the inclusion of vehicle acceleration
and speed features helps improve vehicle classification in
comparison to using only appearance based features. We
have also shown that this conclusion is agnostic to the type
of machine learning classification techniques.

For the future, we will explore context sensitive vehicle
motion behavior. That is we want to incorporate informa-



tion about the type of road on which a vehicle is travel-
ing into the speed and acceleration features. For example,
trucks and cars travel faster on a freeway compared to a
non-freeway road. At the same time, vehicles accelerate
more often on non-freeway roads, but do not travel faster.
So if we were to separate these operating regimes instead of
mixing both together as we currently have, we should see
additional performance gains for both the case of motion
only features and the case of combined size and motion fea-
tures. We will also further study the effect of track length
on classification to determine whether or not the number of
turns a vehicle makes significantly impacts the amount of
speed/acceleration information available for vehicle classi-
fication.
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