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29
Abstract30

We extend the Bayesloc seismic multiple-event location algorithm for application to global 31

arrival time data sets. Bayesloc is a formulation of the joint probability distribution across32

multiple-event location parameters, including hypocenters, travel time corrections, pick 33

precision, and phase labels. Stochastic priors may be used to constrain any of the Bayesloc34

parameters. Markov Chain Monte Carlo (MCMC) sampling is used to draw samples from the35

joint probability distribution, and the posteriori samples are summarized to infer conventional 36

location parameters such as the hypocenter. The first application of the broad-area Bayesloc37

algorithm is to a data set consisting of all well-recorded events in the Middle East and the most 38

well-recorded events with 5° spatial sampling globally. This sampling strategy is designed to 39

provide the ray coverage needed to determine lithospheric-scale P-wave velocity structure in the 40

Middle East using the complementary ray geometry provided by regional (sub-horizontal) and 41

teleseismic (sub-vertical) ray paths, and to determine a consistent – albeit lower resolution –42

image of global mantle structure. The data set consists of 5401 events and 878,535 P, Pn, pP, sP, 43

and PcP arrivals recorded at 4606 stations. Relocated epicenters are an average of 16 km from 44

bulletin locations. Epicenters are found to be within 5.6 km on average from epicenters that are 45

known to within 1 km (e.g. nuclear explosions). For arrivals labeled P, Pn, and PcP,  ~92%, 46

~90%, and 96% are properly labeled with probability > 0.9, respectively. Incorrect phase labels 47

are found to be erroneous at rates of 0.6%, 0.2%, 1.6%, and 2.5% for P, Pn, PcP, and depth 48

phases (pP and sP), respectively. Labels found to be incorrect, but not erroneous, were 49

reassigned to another phase label. P and Pn residual standard deviation with respect to ak13550

travel times are dramatically reduced from 3.45 seconds to 1.01 seconds.  The differences 51

between travel time residuals for nearly reciprocal ray paths are significantly reduced from the 52
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input event locations, suggesting that Bayesloc relocation improves data set consistency. This 53

results also suggest that the dominant contribution to travel time residuals calculated from 54

information provided in global bulletins is location and picks errors, not travel time prediction 55

errors due to 3-D structure. Modeling the whole multiple-event system results in accurate 56

locations and an internally consistent data set that is ideal for tomography and other travel time 57

calibration studies. Simmons et al. (companion paper) use the Bayesloc-processed data set to 58

develop a 3-D tomographic image, which further reduces residual standard deviation to 0.5059

seconds. 60

61
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1. Introduction62

Production of accurate global and regional seismic bulletins for use in Earth model 63

development and empirical travel time calibration remains a painstaking and costly endeavor.64

The International Seismic Centre (ISC) produces the most comprehensive bulletin of seismic 65

event information, containing reconciled arrival time measurements (picks) and event 66

hypocenters based on data contributions from the National Earthquake Information Center 67

(NEIC) and numerous regional- and local-network operators. As such, the ISC bulletin is the 68

summary of an impressive international effort to analyze a massive stream of global seismic 69

data. Despite the wealth of information contained within the ISC bulletin, direct use of the ISC 70

bulletin (or constituent bulletins) in travel time tomography has been discounted.  A number of 71

investigations find that tomographic signal – the component of a travel time residual attributed to 72

deviation from a reference Earth model – is obscured by errant picks and substantial hypocenter73

errors [e.g. Grand 1990; Gundmundsson et al. 1990; Creager and Boyed 1992; Roehm et al.74

1999; Husen et al. 2009]. 75

Recognizing both the wealth of information in the ISC bulletin, as well as data quality76

issues, Engdahl et al. [1998] developed and applied methods to identify and remove pick outliers 77

and to correct phase-naming mistakes. Engdahl et al. [1998] also made use of core phases (e.g. 78

PKP) and secondary phases (pP, sP, pwP) to relocate and improve hypocenter accuracy.  The 79

resulting bulletin (EHB hereafter) remains the most utilized data set for the development of 80

global P-wave tomography models [e.g van der Hilst et al. 1997; Kennett et al. 1998; Bijwaard 81

et al. 1998; Boschi and Dziewonski 1999; Kárason and van der Hilst 2000; Antolik et al. 2003;82

Montelli et al. 2004]. Li et al. [2008] make use of teleseismic and regional EHB data to develop, 83

arguably, the most comprehensive image of mantle P-wave structure to date.  The EHB bulletin 84
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continues to evolve as detailed analysis of individual events and multiple-event analysis of event 85

clusters (e.g. aftershock sequences) are completed [e.g. Bondár et al. 2008, 2009]. However, 86

inaccuracies and inconsistencies are inevitable for bulletins that are based on single-event 87

locations; because additions and improvements are generally made one event at a time.88

Other approaches use waveform cross correlation to make exceedingly precise arrival-89

time measurements.  Recorded signals can be cross correlated with synthetic seismograms [e.g. 90

Grand 1994, 2002; Simmons et al. 2006, 2007], or many waveforms for a single event can be 91

cross correlated to obtain relative arrival times [e.g Masters et al. 2000; Bolton and Masters92

2001; Ritsema and van Heijst 2002; Houser et al. 2008].  Despite producing exceedingly precise 93

measurements, application of correlation methods is currently limited to long-period, teleseismic94

signals. Unlike teleseismic waveforms, widespread waveform similarity for recorded regional 95

waveforms is uncommon, which severely limits the applicability of empirical waveform 96

correlation.  Matching synthetic and empirical regional waveforms is similarly challenging; 97

because, region-specific models – or fully 3-dimensional models – are needed in order to 98

adequately match observed regional waveforms. As a result, waveform methods require further 99

development before a self-consistent regional and teleseismic data can be produced.100

In this study we continue the effort to improve the accuracy and consistency of bulletin 101

data, by adapting the Bayesloc method [Myers et al. 2007, 2009] of multiple-event location for 102

application to global seismicity. Bayesloc is a formulation of the joint probability function that 103

spans hypocenters, travel-time corrections, pick precision, and phase labels. Previous versions of 104

Bayesloc were tailored for application to event clusters (e.g. aftershock sequences), with travel-105

time correction and pick precision formulations that are designed for robustness.   Application to 106

a global data set requires a more general formulation.  Specifically, the formulation must enable 107
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datum-specific assessment of travel time correction and pick precision, while maintaining108

robustness. The updated Bayesloc algorithm enables production of an accurate and consistent 109

global/regional bulletin by simultaneously relocating events, assessing pick precision, a more 110

generalized travel time correction, and probabilistically assessing phase labels. Assessment of 111

phase labels includes the possibility that an arrival-time datum is erroneous. Bayesloc allows 112

prior constraints on any aspect of the multiple-event system, enabling directly utilization of113

previous work that statistically characterizes the accuracy of event hypocenters and picks [e.g. 114

Bondár et al. 2004; Bondár and McLaughlin 2009].  The use of prior information helps to115

mitigate regional location bias and improve outlier identification. The first application is to a 116

data set of all well-recorded events in the Middle East and an even sampling of the best-recorded117

events sampling the globe. 118

119

2. Method120

2.1 Multi-Event Relocation121

Multiple-event methods simultaneously invert arrival times for many events to determine 122

both event locations and a set of travel-time corrections. Travel-time corrections typically take 123

the form of station/phase terms [e.g. Douglas 1967], which restricts applicability to instances 124

where travel time prediction errors at a station and for a given phase are approximately equal for 125

all events (e.g. event clusters). Multiple event methods are known for generating precise relative 126

locations, but loss of location accuracy is inherent to the unconstrained station/phase 127

formulation, resulting in consistent location bias [Douglas 1967; Jordan and Sverdrup 1981; 128

Pavlis and Booker 1983]. Waldhauser and Ellsworth [2000] mitigate the limitations of the 129

station phase term by solving for event locations based on residual differences (a.k.a. double 130
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difference) and allowing the residual difference to vary slowly with event location. Menke and 131

Schaff [2004] show that double difference methods can resolve absolute location if network 132

coverage is outstanding. 133

The Bayesloc method [Myers et al. 2007] parameterizes the travel time correction as an 134

adjustment to the travel time curve for each phase, with the addition of station terms with a zero-135

mean prior.  Correcting the travel time curve mitigates gross travel time prediction errors, and 136

zero-mean station-phase terms maintains resolution of absolute location while accounting for 137

path-specific travel time variations. This formulation is robust to poor network configuration, 138

allowing broader application of the multiple-event method.139

In addition to precise locations, multiple-event relocation can be used to identify and 140

remove outlier data [e.g. Engdahl and Bergman 2001]. In single-event algorithms, the event 141

location can move significantly to accommodate an outlier datum; because, the tolerance for 142

overall arrival time misfit is relatively large. In multiple-event locators, the use of a self-143

consistent set of travel time correction parameters significantly reduces the tolerance for arrival 144

time misfit. Reduced tolerance for data misfit reduces the distance that an event location can 145

move to better fit an outlier datum, which results in a larger residual for outlier data. Further, an 146

outlier residual is more confidently identified in the context of many events recorded at a 147

common station. 148

149

2.2 Bayesloc modified for a global data set150

Bayesloc is a statistical model of the multiple event system, including event locations, 151

travel time corrections, assessments of arrival-time measurement (pick) precision, and phase 152

labels. The overarching statistical model is153
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156

where o represents event origin times, x represents event locations, T is the collection of travel 157

times from each event to each station for each phase (model-based prediction plus correction), W158

is the collection of all phase labels,  is a collection of travel time correction parameters,  is the 159

collection of arrival-time precision parameters, a and w are the collection of arrival times and 160

input phase labels.  Equation 1 decomposes the inversion of arrival time data to solve for the 161

components of the multiple-event system (left-hand side of equation 1), into a collection of 162

“forward” problems and prior constraints (right-hand side of equation 1). Specifically, the first 163

term (right-hand side) computes the probability of observing the collection of arrivals given a set 164

of hypocenters, travel times, phase labels, and pick precisions.  The second term computes the 165

probability of all travel times, given a model-based prediction (event location is implicit) and a 166

collection of correction parameters.  The third, fourth, fifth, and sixth terms are prior constraints 167

on hypocenters, arrival-time measurement precision parameters, travel time correction168

parameters, and input phase labels, respectively.   The denominator is the probability over all 169

arrival data, which serves as normalization. Analytical expressions for each term in equation 1 170

are provided in Myers et al. [2007, 2009].  171

Bayesloc uses the Markov-Chain Monte Carlo (MCMC) method to sample the joint 172

probability of the multiple-event system [see Gelman et al. 2004].  Sampling the probability 173

function is accomplished by starting with an initial configuration of the system, then randomly 174

proposing a new configuration using specifically designed proposal distributions (See Myers et 175

al., 2007, 2009). The probability of the current and proposed multiple-event configuration is 176
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computed using the forward calculations afforded by Equation 1.  A proposed configuration is 177

always accepted as the new “state” of the system if the probability is greater than the current 178

state.  If the probability of the proposed state is lower than the current state, then the new state is 179

accepted at a rate specified by the ratio of the probability for the proposed state and the current 180

state. Clearly, configurations of event locations and travel time corrections that reduce arrival 181

time residuals are higher probability configurations and are, therefore, preferred by the MCMC 182

algorithm. Likewise, fitting residuals with representative arrival-time measurement precision 183

(1/variance) parameters maximizes probability by including the most data within the high 184

probability portion of the distribution.185

The process of accepting/rejecting proposed configurations is continued until adequate 186

sampling of the joint probability density is achieved (typically 10,000 to 20,000 iterations).187

Graphical examination of the MCMC samples can be used to assess the non-parametric 188

probability density or an analytical form (e.g. Gaussian) may be used to summarize the MCMC 189

samples.  For example, the mean or mode of latitude and longitude samples for given event may 190

be used as an epicenter estimate, and an epicenter uncertainty ellipse can be computed from the 191

latitude and longitude covariance. 192

Myers et al. [2007, 2009] implement simple adjustments to the travel time curve and a 193

collection of station terms with a prior mean of zero to robustly correct for gross prediction 194

errors.  The travel time curve adjustment formulation is suitable for event clusters, where a 195

station term can adequately capture deviations from the adjusted travel-time curve.  However, 196

travel time corrections must be path specific in order to apply Bayesloc to a broad-area data set.  197

As such, we recast the Bayesloc travel time correction as,198

 ijW  T ijW  FijW W  i  j  iW  jW  W x i  s j , (2)
199
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where  is the travel time correction, T is the corrected travel time, F is the model-based travel 
200

time, and  is an adjustment to the slope of the travel time curve. The double bars in the  term 
201

indicate event-station distance and the variables x and s represent event and station positions, 
202

respectively. The  terms are static corrections attributed to a station (j), event (i), phase (W) or 
203

combination thereof. Realizations for each category of  term (i, j, iw, jw) are drawn from a 
204

zero-mean Gaussian distribution with unknown variance. The variance of each  term is 
205

estimated throughout Bayesloc sampling. In effect, station and event terms (i, j) are small 
206

corrections with respect to the corrected travel time curve (Fw+ w,+ bw||xi-sj||) and the station-
207

phase and event-phase terms (iw, jw) can further refine the travel time correction. 
208

Decomposition of terms in this way allows robust determination of station and event corrections, 
209

with resolution of event-phase and station-phase corrections if sufficient data are available. In the 
210

absence of sufficient data  terms will tend towards zero.
211

212

3. Data Set213

3.1. Event selection and data sources214

For the first application of Bayesloc to a broad-area data set we have gathered a list of 215

5,401 events throughout the Middle East and well-recorded events that provide global epicenter 216

coverage.  Arrival time data and event locations are drawn from the EHB bulletin [Engdahl et al.217

1998] and a subset of the Lawrence Livermore National Laboratory (LLNL) database [see 218

Ruppert et al. 2005]. The LLNL database contains a compilation of global and regional bulletins 219

as well as ~20,000 travel time measurements at regional stations (Pn) made by LLNL staff. The 220

data set contains over 4,000 events in the Middle East region.  Outside of the Middle East, the 221

best-recorded events with epicenter spacing of ~5° achieve broad global sampling.  Sampling of 222
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the global data set is accomplished by selecting the event with the most teleseismic P-phase 223

arrivals and removing all other events within ~5° arc distance of the selected event.  The process 224

is repeated until the event list is exhausted.  In order to preserve the depth sampling afforded by 225

the EHB bulletin, geographic event sampling is conducted in depth bins with lower bounds of 35226

km, 75 km, 150km, 300 km, 450 km, and 700 km.  All together, 878,535 P, Pn, pP, sP, and PcP227

arrivals recorded at 4,606 stations comprise the data set (Figure 1).  Table 1 lists the number of 228

arrivals for each phase.         229

The event sampling strategy is designed to provide the ray coverage needed to determine 230

lithospheric-scale structure in the Middle East using the complementary ray geometry provided 231

by regional (sub-horizontal) and teleseismic (sub-vertical) ray paths, and to determine a 232

consistent – albeit lower resolution – image of global mantle structure. Simmons et al. (this 233

volume) report on the tomography study using the Bayesloc bulletin developed in this study.234

235

3.2 Bayesloc Relocation236

The Bayesloc joint posteriori distribution for the Middle East/Global data set is 237

determined using 4 Markov Chains. The results presented here are averages of the last 12,000 of 238

15,000 MCMC samples for each chain.  The first 3,000 samples (“burn in”) were used to find the 239

neighborhood of the mode of the posteriori distribution and to adapt MCMC sampling.  As such, 240

the first 3,000 samples are not necessarily representative of the joint probability density.  Chain 241

mixing – using the parameter configuration of another chain as a proposed configuration – was 242

used to test for local minima. In order to better sample event locations, the starting position for 243

each chain was randomly perturbed from the location of the station having the earliest arrival 244

time pick for that event. Starting depths were set to 15 km, except for depths greater than 70 km245
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as listed in the EHB bulletin, in which case the EHB depth was used as the starting depth. In 246

addition to using the EHB depths as the starting positions, we place a prior constraint on event 247

depth of 5 km (standard deviation) for EHB locations with depths greater than 70 km.  Our 248

justification is that EHB depth-phase data were scrutinized for consistency and the effect of slow 249

wave propagation through the water column was accounted for when the surface bounce point 250

was determined to be in the ocean.251

The ak135 model [Kennett et al. 1995] was used for all base-model travel time 252

predictions. The Bayesloc travel time correction model includes a shift and change of slope of 253

each model-based travel time curve.  Myers et al. [2007] demonstrate that Bayesloc robustly 254

determines the slope of the travel time curve, so we use non-informative priors on the slope 255

correction ( in Equation 2). However, resolution of the shift of the travel time curve (w in 256

Equation 2) requires prior constraints on either the shift itself or prior constraints on some event 257

origin times. Because the ak135 model was developed and validated using the limited set of 258

nuclear explosions with known origin times and using locally recorded events, for which the 259

origin time is well constrained [Kennett et al. 1995], the absolute travel time for teleseismic 260

phases cannot be improved in this study.  Therefore, we place tight constraints on the shift of 261

teleseismic travel time curves (P, pP, sP, PcP). Unlike teleseismic phases, ak135 travel time 262

errors for the regional Pn phase are exceedingly non-stationary, with regional biases of many 263

seconds. We allow Bayesloc to model the regional Pn travel time bias in the Middle East by 264

placing a loose prior on the shift of the travel time curve of 5 seconds (standard deviation).265

In addition to travel time curve corrections, the Bayesloc travel time correction model266

includes event, station, event-phase, and station-phase parameters. Prior constraints on the 267

standard deviation of these parameters are uninformative, but a prior mean value of zero for the 268



13

collection of each parameter category is imposed. Prior constraints on the measurement precision 269

are also uninformative, so data weighting is entirely determined by adapting precision 270

parameters to fit data distributions during the MCMC sampling. Last, MCMC phase label 271

sampling is set so that if an alternative phase labels is tested, than there is an equal chance that 272

the label will be one of the other phases under consideration or the “erroneous” label.273

274

4. Results275

4.1. Epicenter shifts276

Figure 2 shows epicenter shifts for all of the global events and a representative sampling 277

of events in the Middle East. Epicenters shift by 16 km on average relative to the input bulletin 278

locations, and regional trends in the vector directions are evident. Eight of the events in the 279

global data set are listed in the IASPEI Reference Event List [Bondár and McLaughlin 2009]280

with location accuracy of 1 km or better. The average difference between reference epicenters 281

and Bayesloc epicenters is 5.6 km. This result suggests that the Bayesloc locations are 282

substantially more accurate than the bulletin location given that the average epicenter shift is far 283

larger than the error with respect to known locations.284

The shift in position from the starting (single-event) epicenter to the Bayesloc epicenter is 285

not random (Figure 2).  The consistency and magnitude of epicenter shifts for events in and near 286

subduction zones are particularly strong.  The direction of epicenter shifts in subduction zones 287

tends to be toward the subduction trench, which is consistent with the expected shift due to a slab 288

of fast oceanic lithosphere dipping under the overriding plate [Creager and Boyed 1992].  289

Outside of subduction zones, epicenters tend to shift northward in the Pacific basin, eastward in 290

Africa, and southward in the Middle East. Little shift is observed throughout northern Asia, 291
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because most of the events are nuclear explosions for which the known location is listed in the 292

EHB bulletin.  293

294

Location Example295

Figure 3 shows the location of the May 28, 1998 Pakistan nuclear explosion and Bayesloc296

location predictions.  The event was well recorded, but station sampling is not geographically 297

uniform.  Residual travel times at European stations are early (negative residual) with respect to 298

the known location [Albright et al. 1998] and the ak135 [Kennett et al. 1995] travel times. The 299

predominance of European stations with negative residuals results in a northward epicenter bias 300

when the ak135 model is used for travel time prediction (mislocation of 10.1 km).  Because the 301

prediction errors are not random, the resulting epicenter error ellipse does not cover the true 302

location. Bayesloc travel time corrections mitigate travel time prediction bias, resulting in an 303

epicenter error of 4.5 km. Modeling all components of the location system, including pick and 304

model error, results in a reduction of the epicenter error ellipse area from 207 km2 to 70 km2.  305

More importantly, the Bayesloc error ellipse covers the known location because the marginal 306

probability of the event location integrates over the joint probability of all other multiple-event 307

parameters.308

309

4.2. Bayesloc Posteriori Travel times310

Travel Time Curves311

The posteriori shift of the Pn travel time curve is 0.42 seconds, and the slope of the Pn312

travel time curve changes significantly.  The posteriori slope of the Pn travel time curve equates 313

to a phase velocity of 8.16 km/s compared to the starting value of 8.05 km/s for ak135.  The 314
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delay in Pn travel time is consistent with the thick crust of the Iranian Plateau and the decrease in 315

slope of the Pn curve suggests faster upper mantle velocity than the global average. Despite loose 316

priors on the slope of the P, PcP, pP, and sP travel time curves, the posteriori curves where not 317

significantly altered in the Bayesloc inversion.318

319

Data Precision320

Application of Bayesloc to global data sets with more events and arrivals further 321

improves the robustness of data precision modeling. The precision for each datum is the product 322

of an event, a station, and a phase term. Posteriori precision is dominated by pick (measurement) 323

error, but also includes other errors that may not be accounted for in the travel time correction. 324

Priors on the pick error were non-informative, resulting in a purely data-driven assessment of 325

precision. Figure 4 summarizes posteriori precision for the 3 components of the Bayesloc error 326

model. Low precision indicates that no configuration of the multiple-event system could be 327

found to fit the subset of data for the tested station, phase, or event. 328

The largest variability in precision is found for stations: arrival time data are very 329

consistent at some stations and inconsistent at others. The variability in precision equates to 330

station standard deviation ranging from 0.36 seconds to 23.62 seconds. The large variation in 331

station precision is likely a combination of inconsistent arrival time measurement practices, 332

station timing errors, and/or errors in the station location.  Likewise, arrival times are more 333

consistently fit for some events than for others, with the variability in event standard deviation 334

ranging from 0.59 seconds to 6.26 seconds.  A possible reason for variations in data fit between 335

events is that some events (e.g. explosions) generate more impulsive signals, as noted by Bondár 336

et al. [2004]. 337
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Figure 5 is a Gaussian representation of the posteriori data precision for each phase. 338

Precision is determined relative to the corrected travel times, but we do include the 0.42 s shift in 339

the Pn travel time prediction to show the significance of the shift with respect to the overall Pn340

distribution.  P is found to be most precisely picked, followed by Pn, pP, PcP, and sP.  This 341

result is consistent with common knowledge that first arrivals (P and Pn), which do not arrive in 342

the code of earlier phases, are most precisely picked, and the later phases, which generally arrive 343

soon after the P-phase, are less precisely picked. A summary of the posteriori pick uncertainty is 344

listed in Table 1.345

346

Phase Labels347

MCMC sampling includes testing alternate phase labels for each arrival datum.  The 348

phase labels that increase overall probability are more likely to be accepted, and posteriori 349

probability is measured by the frequency of each label in the MCMC sample. Posteriori 350

summary statistics for each phase are listed in Table 1.  The 4th column of Table 1 lists the 351

percentage of instances where the input and posteriori phase label agree and the posteriori 352

probability of the phase label is greater than 0.9.  The results suggest that input phase labels are 353

correct, with high confidence, in approximately 90% of the instances for this data set.  The 5th354

column lists the percentage of instances where the input and most likely posteriori phase label 355

agree. The 6th column lists that percentage of instances where the posteriori phase label was 356

deemed “erroneous” (i.e. the provided arrival time did not match the timing for any of the phases 357

considered in this study).  358

The results also suggest that the first-arrival, P and Pn phases, are not likely to be 359

erroneous, but the rate of erroneous data entries for later-arriving phase – pP, sP, and PcP – is 360
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approximately 1% to 2%.  The difference between columns 5 and 6 is the rate of phase 361

misidentification, i.e. valid arrivals with the wrong phase assignment.  For example, 362

approximately 3% of reported P phases are mislabeled.  Detailed examination of the Bayesloc363

output finds that if a P-phase is relabeled it is most likely to be relabeled as a depth phase. This 364

can occur when the P-phase is on a node of the focal sphere and a depth phase is not nodal.  The 365

depth phase pP is also commonly relabeled as either another depth phase or as P.  Figure 6366

shows an example of phase relabeling with waveforms added to substantiate the Bayesloc result. 367

Clearly the removal of one P-phase is correct, and relabeling the pP arrival to sP is sensible368

given the apparent arrival of the true pP phase that precedes the relabeled phase.369

370

Travel Time Residuals371

Bayesloc reduces P and Pn residual standard deviation by more than a factor of 3, from 372

approximately 3.45 s to 1.01 s. The Bayesloc data set excludes ~4% of input data that are not 373

labeled as P or Pn with posteriori probability exceeding 0.9, but only a small portion of the 374

observed reduction in standard deviation can be attributed directly to data removal. Simply 375

removing 4% of the data comprising the tails of a Gaussian distribution would reduce the 376

standard deviation from 3.45 to approximately 3.00 seconds.  In fact, the observed reduction in 377

residual standard deviation would require removing approximately 60% of the data comprising 378

the tails a Gaussian distribution. Reduction of residual standard deviation by a factor 3 through 379

Bayesloc relocation suggests that the dominant contribution to global bulletin residuals is 380

location and picks errors, rather than the effects of 3-D velocity heterogeneity. This finding is 381

consistent with the findings of studies referenced in the introduction.382
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Plotting ak135 travel time residual density as a function of event-station distance (Figure383

7) clarifies residual trends.  At teleseismic distances, the residual distribution shows a slight 384

negative trend. Patterns within the body of the residual distribution at between 20° and 50° also 385

emerge in the Bayesloc residuals. Pn residuals exhibit a distinct negative trend, consistent with 386

the Bayesloc correction to the Pn travel time curve for the Middle East.  The Pn distribution after 387

trend removal is slightly larger than the distribution for teleseismic P, because of increased pick 388

error and significant velocity heterogeneity in the Middle East region. Simmons et al.389

(companion paper) use the Bayesloc output as input to 3-D tomography.  With respect to the 3-D 390

velocity model, Bayesloc residuals become 0 mean with standard deviation of 0.50 seconds.  391

Moreover, the residual trends as seen in Figure 7 are removed when travel times are predicted on 392

the basis of the new global tomography model.393

394

Data Consistency Measured by Reciprocal-Path Travel Time Residuals395

Data set consistency can be measured by differencing travel times for reciprocal paths. 396

To the extent that reciprocal travel times disagree, residuals cannot be attributed to velocity 397

model errors and the data set is less desirable for tomography. A truly reciprocal path would 398

require two events that occur at the location of two seismic stations. For global data sets that are 399

comprised primarily of earthquakes, reciprocal pairs would be rare indeed, primarily because the 400

events would have to occur at the surface.  We can, however, identify station-event pairs that are 401

reciprocal within some spatial tolerance. We do not expect the travel times to be identical, but 402

the residuals with respect to a reference model (ak135 in this case) should be highly correlated, 403

because of significant overlap in the ray path sensitivity kernels [Rodi and Myers 2007].  404
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We identify 150 teleseismic paths with event-station distance between 15° and 92°, and 405

65 regional paths with event-station distance between 5° and 15°.  The maximum distance 406

(tolerance) between events and stations forming the ends of a reciprocal path is set to 1° for 407

teleseismic paths and 0.7° for regional paths.  This difference between ray end points constitutes 408

a smaller percentage of the overall path for teleseismic than for regional paths, so we may expect 409

better agreement for teleseismic reciprocal paths. Decreasing the tolerance for regional reciprocal 410

paths results in too few paths for meaningful analysis. Only events with depth less than 20 km 411

are considered.412

Figure 8 shows reciprocal paths and the differences between residual travel times for 413

each reciprocal pair. Teleseismic reciprocal paths provide good sampling in the Middle East and 414

a few paths at the Eastern Pacific Rim. Regional-distance reciprocal paths are entirely in the 415

Middle East for this data set. The standard deviation of residual differences for input teleseismic 416

reciprocal paths is 3.1 s, revealing considerable data set inconsistency. The standard deviation of 417

residual differences for Bayesloc teleseismic reciprocal paths is reduced to 0.8 s, suggesting 418

vastly improved data set consistency.  The number of path pairs is dramatically reduced at 419

regional distances, but the results also show improved data set consistency, with the standard 420

deviation of residual differences reduced from 1.7 seconds (input) to 1.0 seconds for Bayesloc.  It 421

should be noted that although reciprocity tests reveal substantial improvement in data 422

consistency, the Bayesloc procedure did not include reciprocity constraints, and improved 423

agreement between travel-time residuals for reciprocal paths is primarily an indication of 424

improved event locations.425

426
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4. Discussion and Conclusions427

Global bulletin arrival times provide the seismic community with a wealth of 428

information. However, use of bulletin data for the purposes of determining phase travel times is 429

limited, due to event hypocenter errors and contamination by a small percentage of erroneous 430

data.  Hypocenter errors are the result of both erroneous data and inaccurate travel time 431

predictions for radially symmetric Earth models. Unfortunately, making bulletin data useful for 432

tomographic and other travel time calibration studies is not as straightforward as identifying and 433

removing large-residual arrival time data; because, single-event locators move the event location 434

to a position that minimizes all travel time residuals, including an erroneous datum.  Therefore, 435

an erroneous datum may not be evident.436

Modifications to the Bayesloc joint probability formulation of the entire multiple-event 437

system afford simultaneous reanalysis of all arrival time data. Through MCMC hypothesis438

testing, Bayesloc captures the range of data, travel time, and hypocenter configurations that peak 439

overall probability. During MCMC sampling, Bayesloc continually explores how the entire 440

multiple event system responds to the hypothesis that any given datum is incorrectly labeled or 441

that the datum is erroneous. Therefore, an early assessment that a datum is erroneous does not 442

preclude reintroduction of the datum under more favorable parameter configurations. This 443

underscores the probabilistic nature of the Bayesloc result and that ambiguity in determining a 444

phase label, or any other multiple-event parameter, is propagated to the uncertainty of all other 445

parameters. This gives us confidence in the meaningfulness of high posteriori probability data 446

labels and in the posteriori assessment of measurement precisions, travel time corrections, and 447

event hypocenter probability regions.448
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Improved data consistency is exemplified by comparing residuals for nearly reciprocal 449

paths (Figure 8).  Differencing residuals for reciprocal paths reveals significant travel time 450

inconsistencies for the input (single-event location) data set.  Because reciprocal inconsistencies 451

cannot be attributed to the model error, reciprocal travel time inconsistency is a measure of the 452

degree to which a tomographic algorithm cannot fit the data.  Recent studies demonstrate that 453

data inconsistencies are not sufficiently mitigated by data averaging [Husen et al. 2009; Diehl et 454

al. 2009], and data inconsistencies resulting from event mislocation are particularly problematic 455

for tomography [Creager and Boyed 1992].456

The Bayesloc result presented here is used in a companion paper [Simmons et al. 201x] to 457

simultaneously image detailed lithospheric structure in the Middle East as well as broad structure 458

throughout the mantle. The tomographic study reinforces the accuracy and consistency of the 459

Bayesloc results presented here, as the residual distribution is further reduced by more than a 460

factor of 2 (variance reduction of 75%) to 0.50 seconds.  Lastly, lithospheric structure in the 461

Middle East is clearly imaged, and the magnitudes of velocity anomalies are significantly larger 462

than previous studies, despite the low variance of the input data set.  463
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581

Figure Captions582

583

Figure 1. Event epicenters and station locations.  All well-recorded events in the Middle East are 584

retained and global event sampling is approximately 5°.  Global sampling is performed 585

independently in event depth intervals down to 700 km (see text). The resulting data set provides 586

horizontal and vertical ray coverage through the Middle East, which is used by Simmons et al. 587

(this volume) in a tomographic study.588

589
Figure 2. Epicenter relocation vectors. The tail of each vector is at the starting location based on 590

the EHB and LLNL bulletins.  Vector length is scaled by the magnitude of the epicenter shift 591

(see inset scale), and vector orientation is in the direction of epicenter shift.592

593
Figure 3. Single-event and Bayesloc global relocation of the May 28, 1998 Pakistan nuclear test.  594

Bayesloc mislocation is 4.5 km with epicenter error ellipse area of 70 km2. Single event 595

mislocation is 10.1 km with epicenter error ellipse area of 207 km2. The satellite location is from 596

Albright et al., 1998.597

598

Figure 4. Posteriori precision (1/variance) for phase, station, and event terms. Data precision is 599

the product of these terms. Phases, stations, and events are ordered from least precise to most 600

precise.  See text for discussion.601

602
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Figure 5. Gaussian representation of posteriori measurement error distribution for each seismic 603

phase.  The 0.42 second shift of Pn travel prediction is included.   Standard deviation of 604

measurement error for each pick is also tabulated in Table 1.605

606

Figure 6. Example validation of phase relabeling based comparison with waveform data. In this 607

case, posteriori labels have probability greater than 0.9. The data shown here are a small subset 608

of the data for this particular event.609

610

Figure 7. Input and output (Bayesloc posteriori) residual occurrence as a function of event-611

station distance.  Input and output residuals are computed using the ak135 model. Color indicates 612

the density of residual occurrence on a normalized log scale. See text for discussion.613

614

Figure 8. Residual difference for approximately reciprocal paths. Solid lines are forward paths 615

and dashed lines are reciprocal paths. The choice of which path is forward and which is 616

reciprocal is arbitrary. Bayesloc reciprocal travel times are significantly more consistent than the 617

input data set. All event depths are 20 km or less to minimize path differences near stations. 618

Teleseismic path lengths are 15° to 95° and regional path lengths are 5° to 15°. Maximum 619

separation between events and stations defining reciprocal-path end points is 1° for teleseismic 620

paths and 0.7° for regional paths. See for discussion.621
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622

Table 1.  Number of picks for each event and summary of posteriori assessment of phase labels.623

Phase Number of 

picks

Estimated 

standard 

deviation 

Phase label 

retained with 

prob.>0.9 

Input label is 

most 

probable 

Most 

probably 

erroneous.

P 817,552 0.74 s 92% 96% 0.6%
Pn 42,327 0.90 s 90% 98% 0.2%
pP 10,524 1.60 s 90% 95% 2.1%
sP 4,992 2.22 s 92% 97% 2.6%
PcP 3,140 1.83 s 96% 98% 1.6%

624
625

Table 2.  Prior constraints (standard deviation).  Priors not listed are uninformative (broad).626

Travel Time Curves
Event 
Depth

Correct Phase 
Label input

Shift Slope

P 10-6 s 5 s/degree 0.9
Pn 5 s 5 s/degree 0.9
pP 10-6 s 5 s/degree 0.9
sP 10-6 s 5 s/degree 0.9
PcP 10-6 s 5 s/degree 0.9
EHB events 
with 
depth>70 
km

5 km

627
628
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630

Figure 1.631
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