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Abstract The ab initio no-core shell model (NCSM)
is a well-established theoretical framework aimed at

an exact description of nuclear structure starting from

high-precision interactions between the nucleons. In the
NCSM we consider a system of A point-like, non-rela-

tivistic nucleons that interact by realistic inter-nucleon

interactions. We consider two-nucleon interactions that
reproduce nucleon-nucleon phase shifts with high pre-

cision, typically up to 350 MeV lab energy. We can also

include three-nucleon interactions with terms, e.g., re-

lated to two-pion exchanges with an intermediate delta
excitation. Both semi-phenomenological potentials, based

on meson-exchange models, as well as modern chiral in-

teractions can be considered. The performance of the
NCSM within nuclear physics will be exemplified by

showing results from studies of light nuclei. Major chal-

lenges in the future development of the method will be
outlined.

Keywords First keyword · Second keyword · More

1 Introduction

This workshop contribution represents some of the ef-

forts that is going into achieving a first-principles de-
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scription of the structure of light nuclear systems for
which relativistic effects are assumed to be small. We

will discuss one particular method known as the ab ini-

tio no-core shell model (NCSM). The first part of this
paper will provide an introduction to the method with-

out too many technical details. The second part will

then be devoted to some recent large-scale applications
of the NCSM for nuclear systems in the p-shell. These

studies have been triggered by some great achievements

by our experimental friends as well as progress in im-

plementing chiral three-nucleon forces (3NF). Finally,
we will highlight one of the latest developments of the

NCSM in the direction of describing nuclear scattering

and reactions.

2 The ab initio no-core shell model

In the NCSM we consider a system of A point-like non-

relativistic nucleons that interact by realistic two- or

two- plus three-nucleon interactions. The translational-
invariant Hamiltonian is

HA =
1

A

A
∑

i<j

(pi − pj)
2

2m
+

A
∑

i<j

VNN,ij +
A

∑

i<j<k

VNNN,ijk.

(1)

The nucleon-nucleon (NN) potentials used in modern

ab initio approaches reproduce NN phase shifts with
high precision up to a certain energy, typically up to

350 MeV lab energy. In addition, realistic three-nucleon

(3NF) interaction includes terms are tuned to repro-

duce, e.g, A = 3 binding energies. In the NCSM, all
the nucleons are considered active; there is no inert

core like in standard shell-model calculations, hence the

“no-core” in the name of the approach. The many-body
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basis used in the method are constructed from square-

integrable single-particle basis functions. In particular,
the choice of a harmonic oscillator (HO) basis has sev-

eral advantages: (i) It allows easy transformation be-

tween coordinate and momentum space and offers the
choice of using either Jacobi or Cartesian coordinates.

(ii) The use of Slater determinant (SD) many-body

basis functions guarantees anti-symmetric wave func-
tions. (iii) The modeling of nuclear systems typically

require very large model spaces and the HO basis allows

to take advantage of the powerful second-quantization

shell model formalism. (iv) Finally, in contrast to the
standard shell model, the use of a complete HO model

space up to a certain energy cutoff (defined by the pa-

rameter Nmax) guarantees translational invariance even
when the finite SD basis in Cartesian coordinates is

used.

2.1 Renormalized interactions

In ab initio studies of the atomic nucleus we have to deal

with effects of the very complicated nuclear interaction

for which high-momentum components generate very
strong correlations. In order to account for these short-

range correlations and to speed up convergence with

the basis enlargement, we construct an effective inter-
action from the original, realistic NN or NN+3NF po-

tentials by means of a unitary transformation. The ef-

fective interaction depends on the basis truncation and

by construction becomes the original, realistic NN or
NN+3NF interaction as the size of the basis approaches

infinity. Technical details of the Lee-Suzuki transforma-

tion used in many NCSM applications can be found in
Ref. [1,2].

Recently, a new class of soft potentials has been de-

veloped. These interactions are obtained by applying

the unitary transformation to the two-nucleon system
in momentum space with a regulator to soften the po-

tential with the purpose of simplifying many-body cal-

culations. Some examples are the Vlowk [3] and the sim-
ilarity renormalization group (SRG) [4], as well as the

UCOM [5] NN potentials. In contrast to the Lee-Suzuki

transformed Hamiltonians these soft interactions are
not model-space dependent. This implies that apply-

ing them in the NCSM makes the method variational

with the HO frequency and the basis truncation pa-

rameter as variational parameters. However, converged
results obtained with these renormalized interactions

do not necessarily coincide with the exact results of the

original NN potential.
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Fig. 1 Ground-state energy of 6Li calculated with the INOY IS-

A interaction [6]. Each line represents results from calculations in
a particular model space as a function of the HO frequency. In-
set: Energy convergence as a function of model-space size, Nmax,
calculated at fixed frequency ~Ω = 14 MeV.

3 Convergence properties and benchmark

results

Using the exact Lee-Suzuki transformation the effec-

tive interaction becomes an A-body operator. In prac-
tice, we cannot in general construct this exact effec-

tive Hamiltonian. However, we can construct an effec-

tive Hamiltonian that is exact for a two-body, or for a
three-body system or even for a four-body system. The

corresponding effective interactions can then be used

in the A-body calculations. This cluster approximation
introduces a pseudo-dependence on the HO frequency

~Ω. This dependence will disappear as the model space

is enlarged, which is illustrated very clearly in Fig. 1

for 6Li. It is also worth pointing out that the varia-
tional principle is lost when using this approximation

of the effective interaction. The converged result can be

approached either from above or below.
As a benchmark example, and an illustration of the

use of modern chiral interactions including consistent

3NF in the NCSM, we present in table 1 a collection
of A = 3, 4 data. These results are obtained with and

without inclusion of the 3NF force. Besides the triton

ground-state energy, which is by construction within a

few keV of experiment, the NN+3NF results for the
4He ground-state energy and point-proton radius are

in perfect agreement with measurement. We also note

a perfect agreement between the two theoretical ap-
proaches, the ab initio NCSM and the variational HH

method of Kievsky et al [7].

4 The NCSM nuclear structure campaign

In the second part of this presentation we will present a

subset of results from the NCSM campaign of ab initio

nuclear structure studies.
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Table 1 Properties of 3H and 4He. Benchmarking of calculations with chiral NN+3NF interactions using NCSM [8] and Hyperspherical
Harmonics [7] methods. See Ref. [9] for details.

NN (N3LO) +3NF(N2LO) Expt.

NCSM HH NCSM HH

3H Egs [MeV] 7.852(5) 7.854 8.473(5) 8.474 8.482

〈r2
p〉

1/2 [fm] 1.650(5) 1.655 1.608(5) 1.611 1.60

4He Egs [MeV] 25.39(1) 25.38 28.34(2) 28.36 28.296

〈r2
p〉

1/2 [fm] 1.515(2) 1.518 1.475(2) 1.476 1.467(13)

4.1 Chain of Li isotopes

The Li and Be isotopic chains were recently studied

in the NCSM [10] to investigate the wealth of exotic
properties that generally pose a challenge for nuclear-

structure models

– The appearance of clustering.

– Halo structure of 11Li.

– Small ground-state quadrupole moment of 6Li.
– Systematics of an entire chain of isotopes.

This study was partly triggered by the experimental
achievements of measuring nuclear radii and electro-

magnetic moments with very high precision using laser

and β-NMR techniques at radioactive beam facilities,

see e.g. Ref. [11]. The systematics were investigated
carefully by performing a series of calculations using

CD-Bonn 2000 [12] and INOY (IS-M) [6] interactions in

very large model spaces. In Ref. [10] the final results of
this study were presented as the computed value in the

largest model space, obtained using an optimal HO fre-

quency. The degree of convergence was estimated from
the Nmax- and ~Ω-dependence of the results. The error

bars are not strict measures on the converged values

with associated uncertainties, but rather gauges on the

~Ω- and Nmax-dependence still remaining in the largest
model space that we were able to reach.

Alternatively, one can utilize the fact that NCSM

calculations performed at different HO frequencies should

all converge to the same value in the limit Nmax → ∞.
This constitutes an example of multiple converging se-

quences in the NCSM, discussed extensively in Ref. [13].

A constrained fit for an observable x can then be per-
formed. Below we assume each sequence to converge ex-

ponentially: x = x∞ + c0 exp (−c1Nmax), with x∞ the

value at Nmax → ∞ common to all series. We employ
a least-squares fit in which results obtained at larger

Nmax are weighted more. The error bar is associated

with the x∞ diagonal element of the covariance matrix

of the fit. Fig. 2 shows an example of this procedure for
the 8Li binding energy. Results from these constrained

extrapolations are labeled (∞) in the figures and tables

below.

Fig. 2 Multiple converging sequences for the 8Li binding energy,

computed with the CD-Bonn 2000 interaction using different HO
frequencies. The dashed lines are the constrained extrapolations
described in the text.

Fig. 3 shows the ground-state energies of A = 6−11

Li isotopes. The isotopic trend is nicely reproduced, but
also the known feature of pure NN interactions giving

too little binding of many-nucleon systems. The INOY

interaction is a bit different as the NN P -wave scat-
tering has been modified slightly in order to reproduce

binding energies and the analyzing powers in the A = 3

systems. It therefore give results that resemble what

you could expect from using a true 3NF interaction of
the type described in the literature. Note, however, that

the model spaces reached for 11Li were not large enough

to reach the exponential convergence region.

In Fig. 4 and Table 2 we compare the calculated and
experimental trends for a number of observables for the

Li chain of isotopes. With the exception of the radius of

the 11Li halo ground-state we find a very good agree-
ment between NCSM results and recent experiments.

The overall trends of all observables are well repro-

duced. Magnetic dipole moments are usually character-
ized by very good convergence properties in the NCSM

and we find a good agreement with the experimental

values. For this particular observable the NCSM results

are oscillating around the converged value making the
exponential extrapolation inadequate. Another success

is the tiny quadrupole moment of 6Li that is known to

pose a difficult task for most theoretical calculations.
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Fig. 3 NCSM calculated ground-state energies for Li isotopes
compared with experimental results. The exponential conver-
gence rate was not fully reached for 11Li. See the text and Ref. [10]
for details.
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Fig. 4 NCSM calculated electric quadrupole moments, magnetic
dipole moments, and charge radii of Li isotopes compared with

experimental results. See Ref. [10] for details.

In particular, the general failure of three-body models
for this observable has been blamed on missing anti-

symmetrization of the valence nucleons and the nucle-

ons in the alpha-core [14]. The NCSM correctly repro-
duces the very small value. Simultaneously, the trend

for the much larger moments of A = 7 − 11 is nicely

reproduced. We note that the ratio Q
(

11Li
)

/Q
(

9Li
)

is

found to be very close to unity, as confirmed recently
by very precise experimental data [15]. This finding is

obtained without a very accurate description of the di-

lute halo structure of 11Li; a structural feature that we

find would require an extension of the HO basis used

in the standard NCSM. Still, the decrease of the charge
radius of A = 6−9 isotopes is reproduced. Final results

Table 2 Ground-state energies (E), quadrupole moments (Q),
magnetic dipole moments (µ), and charge radii (rc) for Li iso-
topes. The CD-Bonn(∞) column are extrapolated results (see

text for details). The experimental results are from Refs. [16–18]
for energies, Refs. [15–17,19] for electromagnetic moments, and
from Refs. [20,21] for radii.

E [MeV]

CD-Bonn CD-Bonn(∞) Exp

6Li 29.07(41) 29.39(5) 31.99
7Li 35.56(23) 35.56(5) 39.24
8Li 35.82(22) 35.91(6) 41.28
9Li 37.88(82) 37.99(6) 45.34

11Li 37.72(45) 36.46(56) 45.72(1)

Q [e fm2]

CD-Bonn CD-Bonn(∞) Exp

6Li -0.066(40) -0.04(13) -0.0806(6)
7Li -3.20(22) -3.99(-) -4.00(3)
8Li +2.78(12) +3.18(-) +3.14(2)
9Li -2.66(22) -3.20(-) -3.06(2)

11Li -2.81(27) -2.92(17) -3.33(5)

µ [µN ]

CD-Bonn Exp

6Li +0.843(5) +0.822
7Li +3.01(2) +3.256
8Li +1.24(6) +1.654
9Li +2.89(2) +3.437

11Li +3.56(4) +3.671(1)

rc [fm]

CD-Bonn CD-Bonn(∞) Exp

6Li 2.40(6) 2.43(5) 2.540(28)
7Li 2.36(7) 2.36(6) 2.390(30)
8Li 2.31(8) 2.34(12) 2.281(32)
9Li 2.25(10) 2.25(14) 2.185(33)

11Li 2.26(13) 2.25(23) 2.426(34)

for all isotopes are presented in Table 2 together with

recent and very precise experimental results using the

nuclear magnetic resonance technique [19,15].

5 Light nuclei as open quantum systems

The study of the very loosely bound 11Li system nat-

urally leads us to the final part of this contribution.

Nuclei are open quantum systems with bound states,

unbound resonances and scattering states. A realistic
ab initio description of light nuclei such as 11Li should

have the capability of describing all the above classes

of states within a unified framework.
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In the resonating group method (RGM) [22] the

many-body wave function is decomposed into contri-
butions from various channels that are distinguished by

their different arrangement of the nucleons into clusters.

Let us focus on channels with at most two fragments.
The full wave function can be expanded in cluster chan-

nels ν

Ψ (A) =
∑

ν

Aν

{

Φ1νΦ2νϕν(rν)
}

. (2)

This expansion is complicated due to the presence of the

antisymmetrizer A, which accounts for the exchange of

nucleons between the clusters. The intrinsic wave func-
tions, Φ1,2, are internally antisymmetric and would, in

the NCSM/RGM approach [23,24], be eigenstates of

the NCSM effective intrinsic Hamiltonian for that par-

ticular cluster.
Introduce instead an expansion in a basis of binary-

cluster states.

|ΦJπT
νr 〉 =

[

(

|A−aα1I
π1

1 T1〉 |aα2I
π2

2 T2〉
)(sT )

×Yℓ (r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
.

(3)

In the above expression, |A−aα1I
π1

1 T1〉 and |aα2I
π2

2 T2〉
are the internal (antisymmetric) wave functions of the
first and second clusters, containing A−a and a nucle-

ons (a<A), respectively. The former basis states can be

used to expand the many-body wave function according
to

|ΨJπT 〉 =
∑

ν

∫

dr r2 gJπT
ν (r)

r
Âν |Φ

JπT
νr 〉 . (4)

Note that the (unknown) expansion coefficients will be

functions of the continuous variable r.
By diagonalizing the Hamiltonian (H − E) Ψ (A) = 0

in the space spanned by our basis functions we ob-

tain a non-local, integro-differential coupled-channels

Schrödinger Equation for the relative motion of the
clusters in our different channels.

∑

ν

∫

dr r2
[

HJπT
ν′ν (r′, r) − E N JπT

ν′ν (r′, r)
] gJπT

ν (r)

r
= 0 ,

(5)

The RGM equations differ from a conventional mul-

tichannel Schrödinger equation through the norm ker-
nel

N JπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′Âν

∣

∣

∣
ΦJπT

νr

〉

. (6)

Together with the Hamiltonian kernel

HJπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′HÂν

∣

∣

∣
ΦJπT

νr

〉

, (7)

these non-local quantities contain all the nuclear struc-

ture and anti-symmetrization properties of the prob-
lem. However, we note that the basis states are asymp-

totically orthogonal so that all important physical quan-

tities (such as S, T, K matrices) can be defined with the
asymptotic solution. The non-orthogonality mainly ap-

pears at short distances and is due to antisymmetriza-

tion effects and rearrangements (if the clusters are not
equal or similar).

The microscopic Hamiltonian is split into different
terms.

H = Trel(r) + Vrel + V̄C(r) + H(A−a) + H(a) , (8)

where H(A−a) and H(a), are the (A−a)- and a-nucleon

intrinsic Hamiltonians, respectively, Trel(r) is the rela-
tive kinetic energy and Vrel is the sum of all interac-

tions between nucleons belonging to different clusters

after subtraction of the average Coulomb interaction
between them, explicitly singled out in the term V̄C(r).

Accordingly, the intrinsic cluster states |A−aα1I
π1

1 T1〉
and |aα2I

π2

2 T2〉 are obtained by diagonalizing H(A−a)

and H(a), respectively, in the model space spanned by
the NCSM basis.

The basis can be orthogonalized so that a conven-

tional multi-channel Schrödinger equation is obtained.

For this one must introduce the square root, and its in-

verse, of the norm operator. This procedure is explained
in more detail in Ref. [24].

As an example of the NCSM/RGM method we will

present results from N+α scattering. The A = 5 system

is an ideal test ground for many-body scattering theory
for several reasons: (i) The A = 5 system does not have

a bound state; (ii) 4He is tightly bound so that single-

channel scattering is valid up to ∼ 20 MeV; (iii) There

are two low-lying p-wave resonances (3/2− and 1/2−);
(iv) Non-resonant s-wave scattering (1/2+) for which

large effects of the Pauli exclusion principle is expected;

(v) It is both theoretically and experimentally a very
well studied system. In particular there have been re-

cent microscopic models based on realistic interactions

using the GFMC [25] as well as the NCSM/RGM [23,
24].

A comparison with an accurate R-matrix analysis of
the nucleon-α scattering is presented in Fig. 5. It reveals

that for both neutron (left panel) and proton (right

panel) projectiles we can describe very well the 2S1/2

and, qualitatively, also the 2D3/2 phase shifts, using the

N3LO NN potential. The good agreement of the N3LO
2S1/2 phase shifts with the R-matrix analysis can be

credited to the repulsive action (in this channel) of the
Pauli exclusion principle for short nucleon-α distances,

which masks the short-range details of the nuclear in-

teraction. On the other hand, the same interaction is
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Fig. 5 Calculated phase shifts for (left panel) n-α and (right

panel) p -α scattering, using the N3LO NN potential [26], com-
pared to an R-matrix analysis of data (+). Theoretical results
include the 4He g.s., 0+0, 0−0, 1−0, 1−1, 2−0, and 2−1 states.
See Ref. [23,24] for details.

not able to reproduce well the two P -wave phase shifts,

which are both too small and too close to each other.

This lack of spin-orbit splitting between the 2P1/2 and
2P1/2 results can be explained by the omission in our

treatment of the 3NF terms of the chiral interaction,

which would provide an additional spin-orbit force.

6 Conclusions

We conclude that p-shell systems are very rich with fea-

tures and will continue to challenge theoretical mod-

eling efforts and provide benchmarks to test realistic
NN (+3NF) interactions.The NCSM is a very power-

ful many-body method, partly thanks to the advanta-

geous model space based on Nmax-truncated HO many-

body basis states. However, scale-explosion is a lim-
iting factor and the Gaussian asymptotics hinder the

description of long-range correlations and open chan-

nels. These issues are addressed in ongoing efforts us-
ing, e.g., importance-truncated model spaces [27] and

the NCSM/RGM extension towards a description of nu-

clei as open quantum systems.
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