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Motivation 
 
Computer simulations of many science and engineering problems require modeling the 
equations of hydrodynamics which describe the motion of materials relative to each other 
induced by various forces.  Many important DoD simulation problems involve complex 
multi-material systems that undergo large deformations.  Examples include the analysis 
of armor defense, penetration mechanics, blast effects, structural integrity, and 
conventional munitions such as shaped charges and explosively formed projectiles. 
Indeed, the original motivation for developing codes that solve the equations of 
hydrodynamics, herein referred to as “hydrocodes”, was to solve problems with defense 
applications. 
 
The FY2010 Requirements Analysis Report issued by the DoD High Performance 
Computing Modernization Program (HPCMP) Office shows that a major portion of DoD 
HPC activities involves hydrocodes [HPCMP2010].  The report surveyed 496 projects 
across the Services and various Agencies, representing 4,050 HPCMP users at more than 
125 locations, including government, contractors, and academia, and grouped each 
project into one of ten categories. The Computational Fluid Dynamics (CFD) category 
accounted for the most projects (37% of the total) and the most users (27% of the total).  
The Computational Structural Mechanics (CSM) category was fourth with about 10% of 
total users.  According to the report, hydrocodes, specifically, are among the most used of 
all applications with several ranked in the top ten in terms of number of users.  In 
addition, of all non-real time applications, four DOE hydrocodes (CTH, ALE3D, Sierra, 
and Alegra) are ranked in the top ten in terms of CPU hours. 
 
Numerical algorithms found in hydrocodes present unique computational issues not 
found in our other challenge problems. A typical hydrocode approximates the 
hydrodynamics governing equations using a discrete representation in which the spatial 
problem domain is partitioned into a collection of volumetric elements defined by a 
mesh. Difference equations that approximate differential operators in the equations 
couple data quantities on the mesh (e.g, at nodes and elements) via “stencil” operations. 
Other computations, involving material properties and equation of state, are interleaved 
with the stencil operations. The operations must be performed in a specific order for 
numerical and physical accuracy.  Due to these computational characteristics, plus the 
importance of hydrocodes to DoD HPC efforts, a hydrodynamics challenge problem is 
important inclusion in a code suite used to evaluate UHPC architectures. 
 

                                                
∗ This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344.  LLNL report  LLNL-SR-454998. 
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Hydrodynamics Methods Overview 
 
There are two alternative specifications of the hydrodynamics governing equations. 
These formulations can be found in any book on continuum mechanics; e.g., see 
[Batchelor2000]. In the Eulerian frame of reference, physical quantities, such as density, 
pressure, and velocity, are defined as functions of spatial position and time.  Thus, the 
Eulerian form of the equations can be thought of as describing the spatial distribution of 
the flow quantities at each instant in time.  The Lagrangian formulation exploits the fact 
that some physical quantities refer to identifiable pieces of matter in addition to their 
positions in space, a view similar to particle mechanics.  In the Lagrangian formulation, 
the flow quantities are defined as functions of time and particular material elements and 
describe the dynamical history of those elements.  Both formulations are used in 
hydrocodes and have advantages and disadvantages for various applications. 
 
Eulerian hydrocodes, such as CTH, typically employ an orthogonal mesh for accuracy of 
the numerical approximation.  The mesh is fixed in time and space and the materials flow 
through the mesh as a simulation progresses.  Such codes are particularly useful for 
simulation problems that exhibit strong shearing and vortical motion such as turbulent 
flows. However, moving material boundaries and interactions among multiple materials 
are less natural to express in Eulerian methods.  For example, each material in a mesh 
element may be represented as a fraction of element volume. Thus, material interfaces 
tend to diffuse when not aligned with the mesh. Without additional numerical machinery 
to resolve material interfaces, Eulerian methods require very fine mesh resolution for 
good spatial accuracy.  See the left-hand image in Figure 1. 
 
In Lagrangian hydrocodes, the initial mesh configuration partitions the problem domain 
into material elements and element boundaries are constructed to align with material 
interfaces.  As a simulation evolves, the mesh follows the motion of these elements 
through space and time.  Lagrangian methods handle moving boundaries and multiple 
materials naturally and can provide a highly accurate solution without an excessively 
refined mesh for many problems.  See the right-hand image in Figure 1. However, when 
the flow involves sufficiently complex structure, Lagrangian methods can perform poorly 
as mesh elements distort and possibly tangle.  
 
ALE (Arbitrary Lagrangian Eulerian) codes (such as ALE3D [ALE3DWeb]) have been 
developed to seek a compromise between the Eulerian and Lagrangian formulations.  
ALE methods can accurately solve problems involving moving boundaries, multiple 
materials, and strong shearing and vortical flow regions.  The general strategy is to 
evolve the problem using the Lagrangian approach until the mesh reaches a level of 
distortion such that continuing in this fashion is problematic.  At this point, the mesh is 
“relaxed” to a more desirable configuration and the physical quantities are mapped to the 
new mesh and the simulation continues. 
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Figure 1: Illustration of how the boundary between two materials (white and blue) may be represented on a 
mesh.  The left image shows a fixed Eulerian mesh and a material interface that does not align with mesh 
element boundaries.  The position of the material interface may be approximated using material volume 
fractions in the elements.  The right image shows how Lagrangian mesh nodes follow the motion of the material 
interface, thus representing it much more accurately. 

 
Lagrangian Hydrodynamics Challenge Problem 
 
Regardless of algorithm methodology, operations performed in most hydrocodes are 
similar in terms their computational characteristics and data access patterns.  In the 
interest of algorithm simplicity and smaller code size, we have chosen Lagrangian 
hydrodynamics for our challenge problem. 
 
Governing Equations 
 
The equations of hydrodynamics represent the conservation of mass, momentum, and 
energy [Batchelor2000].  In the Lagrangian description, the differential equations are: 

 
 
 
 
 
 
 
 
 
 
Here, the Lagrange time derivative (or material derivative) is a total derivative moving 
with the flow field: 
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The variable quantities on the left hand-side are density ρ, the velocity vector , internal 
energy . The total strain rate tensor is: 
 
 
 
 
where is the position vector in three-dimensional space. The total stress 
tensor is 
 
 
 
where is the isotropic pressure  
 
 
 
 
and the tensor contains the stress deviators .  The quantity is the 

specific volume: .  The tensor  is the deviatoric strain rate tensor: 

 
 
 
 
The pressure is usually determined by an equation of state that gives the pressure as a 
function of density and internal energy: .  The stress deviator terms are 
usually determined by some constitutive relations. 
 
In the interest of simplicity for our challenge problem, we will consider the Euler 
equations which describe a single material and assume an inviscid approximation of the 
stress tensor; i.e., no shearing stresses   The resulting equations are: 
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Mesh Quantities 
 
These equations will be solved on a “staggered” spatial mesh [Wilkins1964], where each 
mesh element is a (potentially distorted) hexahedron. Specifically, thermodynamic 
quantities , ,  are approximated as piece-wise constants within each element with 
their value represented at the element center. This is known as single-point quadrature. 
Kinematic variables , are defined at the element nodes. The spatial relationships 
among these quantities are illustrated in Figure 2. Spatial gradients are computed using 
finite element formulations that will be described later. 
 

 
Figure 2:  Staggered mesh representation for flow quantities. Figure shows a two-dimensional mesh for 

simplicity.  Representation on a three-dimensional mesh is the obvious extension. 

 
Numerical Time Integration 
 
After establishing the initial state of the solution variables on the mesh and appropriate 
boundary conditions, the equations described above are integrated in time to advance the 
solution. We use an explicit time stepping algorithm which advances the solution through 
a discrete sequence of time increments; i.e., the solution at time is advanced to time

, where is the step number and is the time increment.  
The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of the time 
increment and is based on the shortest distance across any mesh element and the sound 
speed of the material in the element [CFL1967].  
 
To numerically model the entropy-conserving properties of the governing equations, they 
must be augmented with a dissipation mechanism. In reality, physical viscosity has a 
dissipation length scale of a few molecular mean free paths. Such a small length scale is 
inappropriate for the length scale of mesh elements.  Nevertheless, using the exemplar of 
real viscosity, von Neumann and Richtmyer originally developed the concept of an 
artificial viscosity and their approach has been extended to many useful variations over 
the years [Reference for Q model in code]. 
 
Single-point quadrature elements (whereby element quantities are defined by a single 
value as described earlier) possess spurious singular modes, or “hourglass” modes, which 
can result in physically unrealistic response.  To remedy this, we employ the Flanagan-
Belytschko kinematic hourglass filter [FlanBely1981]. 
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The use of an artificial viscosity and an hourglass filter imply that we solve modified 
forms of the momentum and energy equations.  For the Euler equations described above, 
these equations become: 
 
 
 
 
 
 
 
 
 
Here, (which acts like a pressure) is the artificial viscosity term and and are the 
acceleration and heating due to the due to the hourglass filter. 
 
 
Summary of the Lagrange Time Step 
 
Given the solution quantities at time a time increment , the 
procedure for advancing the solution to time consists of 
the following steps.  
 

1. Construct the force at each mesh node. 
 
Integrate  over a control volume at each node. 
Calculate the hourglass filter contribution at each node. 

Sum these to get the force at each node. 
 

2. Compute the acceleration at each mesh node, including boundary conditions. 
 
The acceleration at each node is the force computed in step 1 divided by the nodal 
mass,   Where we have a symmetry boundary condition, we set the 
appropriate component of the acceleration vector to zero. 

 
3. Compute the velocity at each node. 

 

The new velocity is computed by integrating the acceleration: . 

Then, apply cutoffs to velocity components that are close to zero. 
 

4. Update the position of each mesh node.  
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The new position of a node is computed by integrating the velocity: . 

 
5. Calculate various element quantities based on new node positions.  These include 

element volume, characteristic length (function of element volume and area of 
element faces), velocity gradient, etc.  
 

6. Calculate artificial viscosity in each element. This includes linear and quadratic 
terms. Artificial viscosity is set to zero if element is expanding. 
 

7. Evaluate material model properties based on material in each element. This 
includes equation of state evaluation, pressure update, and internal energy 
update. 
 

8. Calculate next time increment and return to step 1. 
 

 
Test Problems 
 
The Lagrange algorithm described above can be applied to a wide range of 
hydrodynamics simulation problems. To simplify the challenge problem code, we will 
limit its application to a few well-know test problems that can be used to verify 
correctness of the implementation and analyze execution performance.  Specifically, the 
problem setup phase will be hardcoded for these test problems.  Such test problems will 
include the Noh infinite strength and Sedov blast wave problems [NohWeb, Sedov1959]. 
Example calculations of these problems are shown in Figures 3 and 4. Both problems 
have known analytic solutions and can be scaled to arbitrarily large problem sizes with 
mesh resolution being the primary scaling factor.  We expect that a UHPC system should 
be able to run a calculation containing up to one billion mesh elements and potentially 
more than that, depending on available memory. 
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Figure 3: The Sedov blast wave problem models an expanding shock front originating from a point blast. 

 
Figure 4: The Noh problem involves a spherically-symmetric shock directed toward the origin and 
then reflected back with "infinite" strength. 
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Benchmarks and Metrics 
 
Several of the operations found in the Lagrange time step will be broken out into smaller 
benchmark kernels for performance analysis on various architectures. These may include 
the element volume calculation, artificial viscosity calculation, and computation of the 
hourglass filter. 
 
We will propose various metrics to evaluate performance along with values of these 
metrics that we observe on current systems for similar calculations.  These may include: 
 

• Grind Time: A common metric used to evaluate performance of finite element 
codes is “grind time”, which is the time required to update the solution variables 
in an element through one time increment, typically in mocroseconds.  Current 
production codes typically execute the Sedov problem on x86-64/Linux systems 
with a grind between 2 and 3 microseconds on one processor. 

 
• Memory Bandwidth: Our implementation will utilize an unstructured mesh 

representation which is often employed in production hydro codes for flexibility 
in defining complex geometries.  The use of mesh connectivity arrays, such as 
those that define nodes associated with each mesh element, results in indirection 
that can stress system memory bandwidth. 

 
• Scalability and Parallelism: Our implementation will be designed to treat each 

mesh element as the smallest unit of work. This will allow a very large amount of 
fine-grained parallelism to be exercised by UHPC systems. 

 
• Programmability: Our challenge problem reference implementation will be 

derived from a production hydrocode containing hundreds of thousands of lines of 
source code.  However, our reference implementation will consist of only a few 
thousand lines.  This will allow exploration of implementation alternatives suited 
to novel UHPC architectures, potentially involving significant code rewriting. 
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