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
Abstract—High performance computing has experienced 

tremendous gains in system performance over the past 20 years. 
Unfortunately other system capabilities, such as file I/O, have not 
grown commensurately.  In this activity, we present the results of 
our tests of two leading file systems (GPFS and Lustre) on the 
same physical hardware.  This hardware is the standard 
commodity storage solution in use at LLNL and, while much 
smaller in size than production systems, is intended to enable us 
to learn about differences between the two systems in terms of 
performance, ease of use and resilience.  This work represents the 
first hardware consistent study of the two leading file systems 
that the authors are aware of.

Index Terms—parallel file system, Lustre, GPFS, HPC I/O

I. INTRODUCTION

igh performance computing has seen increased 
performance in the last decade of about three orders of 

magnitude due to advances in processor speed, core count, and 
scale of networks.  In the same time frame, disk performance 
has experienced relatively little increase in performance, 
perhaps one order of magnitude. The increased computational 
capability has dramatically increased the data requirements, 
exacerbating the issue. For HPC systems this leads to a 
requirement for a parallel file system: A shared disk file
system, presenting a single name space which can be written 
to in a coordinated fashion by all nodes of a cluster, and 
potentially comprised of thousands of individual disk drives.  

While we were familiar with the GPFS (proprietary) file 
system from IBM [1], when we began developing HPC 
clusters based on commodity hardware and open source 
software (Linux),  there  was no applicable open source 
solution. This led to funding development of the Lustre 
Parallel File System[2] via the ASCI Path Forward Program.  
LLNL has a strong interest in open source solutions that 
enable us to be involved in our own support and development 
as well as influencing a path beneficial to  the  high-end 
community.  Thus we have been a strong supporter of Lustre 
over the years.  Lustre is our current NAS solution: a 
network-based file system that is shared among many large 
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clusters including our BlueGene/L and BlueGene/P (Dawn).

A few other products have emerged in this space, Panasas’ 
PanFS [3] being the most notable.  IBM’s GPFS (Global 
Parallel File System) has been around for a long while and in 
use as directly attached storage (storage nodes on the internet 
network) on IBM systems at Livermore including ASCI 
White.    At the same time we have been encouraging and 
participating in the development of Lustre, we have been 
happily running a multi-PetaByte GPFS on Purple. In our 
environment, GPFS is an obvious candidate.

Previously, our lab has published regarding the details and 
rational for our testing protocol [4]. Several groups have 
investigated and compared the architectures of the existing 
parallel file system solutions [5-7].  For the last several years, 
there has been a popular tutorial comparing the file systems, 
including performance information, and practical advice 
regarding using the file systems[8].  

We are planning the environment for Sequoia, a 20 PetaFlop/s 
IBM system with an I/O target of 512 GB/s, and a stretch goal 
of 1TB/s.  In considering file system options, we wanted to 
compare aspects (ease of administration, performance, 
resilience, etc) of the two leading solutions with identical 
hardware.  The intention was to get an apples-to-apples 
comparison between Lustre and GPFS. At the scale we are 
investigating here, these tests (even performance tests) should 
be viewed as comparing functionality of the two file systems.  

II. LLNL WORKFLOW

The HPC applications that we encounter in the Livermore 
Computing Center typically consist of hundreds or thousands 
(or hundreds of thousands) of communicating MPI tasks.  In 
the process of executing an application it is common that each 
task have the possibility to efficiently create a file, open it, 
write and read data, query the size of the file and finally close 
it.  In the case of checkpoint activity, each task may create and 
write a separate file.

Here we will diagram the dominant workflow for LLNL 
simulation applications as seen from the perspective of the 
data created by the simulation code. It has been characterized 
as “write once, read seldom”.  “Restart data” describe the 
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complete state of a simulation, so that a simulation can be 
restarted and continued from the point represented by that 
data.  “Plot data” may be sufficient for analysis (post 
processing) but without sufficient state to resume the 
simulation. 

The file system strategy that we have devised to support this 
workflow is to utilize a Storage Area Network, or SAN.  This 
approach has the SAN mounted by all the systems involved in 
the workflow: the user is able to utilize the best system for the 
task at hand.  For example, we have visualization clusters that 
are outfitted with GPUs, or with larger memory nodes.  In all 
cases, these systems use the client-side software to mount the 
SAN file system.    Data need not move or be redundantly 
copied in this environment, easing the workflow significantly.

III. THE LUSTRE FILE SYSTEM

The Lustre File System is an open source project recently 
acquired by Oracle [6].  The Lustre architecture provides 
physical and logical separation of data and metadata.  The 
metadata is information about a file or directory (name, access 
time, etc) and is stored in a single physical system called the 
Meta Data Server (MDS)1. The actual data portion of the file 
is split up and accessed in parallel across a (potentially large) 
group of storage units known as Object Storage Servers (OSS) 
with software servers called the Object Storage Targets (OST).  
In practice at Livermore, our file systems consist of up to 256 
OSS nodes each with multiple OSTs (software) per single 
OSS (hardware) node.

We presently have several developers on staff that participate 
in development and are very familiar with the both codebase 
and operational aspects of Lustre.  We also have a close 
working relationship with the Lustre developers and the 
Hyperion cluster is the primary at-scale test resource for the 
Oracle Lustre development team.  

1 The clustered Metadata Server has been architected and implemented, but 
has yet to make it into the shipping product.

For this work, we were using Lustre version 1.6.6 with 
numerous patches from our local development team.  While 
this might reduce the relevance of these results for those 
readers considering a more standard Lustre installation, testing 
with these patches is relevant to our primary goal of planning 
the Sequoia environment.  

IV. THE GLOBAL PARALLEL FILE SYSTEM (GPFS)
GPFS is a mature product available from IBM [5].  GPFS is 
able to operate either in a direct-attached mode, where the disk 
nodes are directly attached to the same internal network as the 
compute nodes, or as NAS.  Livermore currently has a multi -
PetaByte direct-attached GPFS file system on our Power5+, 
100 TFlop system named Purple.

GPFS also separates metadata and file data, however it does 
not use a dedicated MDS node like Lustre.  With GPFS, each 
client node takes the role of the MDS node for a subset of 
files, and handles metadata requests for any process on the 
network interested in one of those files.  GPFS has an option 
to centralize the metadata itself, but it is architected to run the 
metadata service in parallel on the client nodes.

We are not as familiar with GPFS internals and have chosen 
not to gain access to the proprietary source code.  Our 
experience with GPFS is in the directly attached mode – we 
have no experience with the system in a network setting as we 
are attempting to test here.  In our discussions and surveys, we 
find that we are testing a usage model of GPFS that is 
supported, but not widely used.  We used GPFS version 3.2 
for this work.  For the purpose of these tests, We had IBM 
personnel configuring the software, review results, adjust 
configuration, etc.

V. SETUP FOR TESTING

The cluster hardware used to drive the storage resource was 
Hyperion – an 1152 node X86_64 system with a full Fat Tree 
InfiniBand 4x DDR interconnect.  One half of the nodes on 
Hyperion use Intel Harpertown processors, the other half use 
Intel Nehalem.  All compute nodes are dual-socket, quad-core.  

As is the recipe for our present systems, I/O from Hyperion is 
routed via gateway (GW) nodes that take IB and produce 
10GbE to our SAN infrastructure.  The 10GigE network 
routes through a core router to 10 GigE storage edge switches 
to which we have connected four storage server nodes plus 
one metadata server node that front-end a Data Direct 
Networks DDN 9550 disk controller.  The network is capable 
of delivering five GB/s of bandwidth from the cluster to the 
DDN RAID system. This configuration matches the structure 
all of our systems use to communicate with the global shared 
file systems.

The LLNL SAN infrastructure is based on 10GbE with edge 
routers and a core switch. Specifically, he network is a three-
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stage 10Gb Ethernet network with a Cisco Nexus 7018 as the 
core, an Arista 7148S as the edge switch on the storage side 
and a Cisco Nexus 5020 next to the 4 GW nodes. All of the 
file systems on a network are available to all of the systems on 
that network.  The path from a client to a storage server starts 
with the client calling the write or read command, which 
passes the request across the IB network to the GW node.  
There a message is translated from IB to IP and enters the 
client edge router near Hyperion.  The edge router connects to 
the core router which forwards to the storage edge router and 
finally on to the storage server node (see Figure 1).  The 
storage server node writes or reads the data to/from the DDN 
9550 storage system and the acknowledgement or data travels 
back across the network to the client node.

The physical storage is a single DDN9550 system capable of 
delivering 2.4 GB/s with 4MB I/O requests or 2.0 GB/s with 
1MB requests.  There are 48 tiers of 250GB SATA disks in 24
8+2 RAID3 luns per controller.   On top of the storage 
hardware there are four OSS nodes which are Dell R610 
systems with dual socket, quad core Intel Nehalem E5530 
processors at 2.4 GHz.  Each OSS node has a 10 Gb/s Ethernet 
interface to the storage network and an SDR InfiniBand (IB) 
connection to the DDN 9550.   There is a pair of MDS 
(failover) servers (Dell R610) attached to a 16 bay SAS/SATA 
JBOD enclosure with sixteen 15K RPM SAS drives.

Figure 1: Hardware test environment - Lustre

Due to our inexperience with GPFS in the test environment, 
we invited IBM to install, tune, test and review the results of 
our testing activities.  Over a period of about one month the 
system was tweaked, tested, and tweaked again.  In the 
process we learned quite a bit about GPFS’s architecture and 
the features of its administrative tools.  One of our findings is 
that the differences in the architecture of GPFS and Lustre are 
so significant that they directly and substantially impact the 
performance results achieved.  

In Figure 2 we have the GPFS configuration for the tests.  We 
use the same physical hardware as with Lustre.  The main 
difference is that the MDS server that was used for Lustre no 
longer has that role and becomes simply a GPFS file server 
alongside the other 4 nodes (which were OST’s in the Lustre 
configuration). Metadata operations are still isolated on the 
high performance disks used exclusively for metadata 
operations.  This was to insure that file data operations do not 
impact metadata operations.

The metadata server for GPFS consists of the client nodes 
themselves, operating in parallel with each responsible for the 

metadata it creates.  The metadata does make its way to the 
disk on the left hand side of figure 2 and is then available via 
the NSD0 file server node.  This architecture is flexible in that 
NSD0 can be either a set of systems, or run on the data server 
nodes alongside the data aspect.  This is quite different than 
Lustre’s single MDS and has a strong influence on metadata 
performance as described below.

Figure 2 Hardware test environment - GPFS

VI. BENCHMARKING STRATEGY

Testing was done in an automated fashion with each test 
repeated at least twice with the best-case result shown. While 
this approach has been called into question, our reasoning is 
that is the method we use for testing on production systems, 
where we are assuming that the best case that we can measure 
is one without contention from other file system activity.

We used a Livermore developed test harness with  IOR
(http://sourceforge.net/projects/ior-sio) for throughput 
measurements and mdtest for metadata performance 
measurements. (http://sourceforge.net/projects/mdtest/) .

In selecting test conditions, it is our basic assumption that data 
will not be read by the node that wrote it. When reading a 
restart file, for example, it would be unreasonable to assume 
that subsequent accesses would be by the same node, given 
our workflow.  Those accesses could even be coming from an 
entirely different cluster.  Another case for file stats is “ls –l” 
from a single interactive node.  In these cases the stats, 
accesses, etc come from nodes or even clusters other than 
those creating the files. For this reason, we have run all of the 
tests where subsequent access (reads or stats for the metadata 
testing case) are performed by a different node. This will 
defeat the client caching mechanism and cause the data to be 
read from disk in each case.

VII. THROUGHPUT TESTING

Throughput or bandwidth testing is intended to provide insight 
into the ability of the file system to deliver a significant 
fraction of the peak bandwidth of the hardware.  As mentioned 
previously the peak for our setup was 2.4 GB/s. IOR is an 
MPI-coordinated bandwidth test capable of testing single and 
multi-node performance for file-per-process and single-
shared-file access and both contiguous and noncontiguous data 
patterns.  IOR is good at producing a high, sustained I/O load 
on a parallel file system. 

In the first test, we focused on performance for a single client.  
This is the case where one MPI task handles all of the I/O for 
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an application, or the case where we are streaming data to 
tertiary storage from a single client.  With a peak capability of 
2.4 GB/s, we see GPFS getting about 50% and Lustre about 
25% of that bandwidth.

We believe GPFS is better able to take advantage of multi-
threading and lays data for a single file onto all servers in a 
4MB round-robin fashion.  Lustre will stripe 2 way by default, 
but this does not turn out to be the performance limiting factor 
as further testing with larger stripes still did not achieve parity 
with GPFS.  We had previously learned that Lustre’s single 
file performance is limited to the performance of a single core 
due to it’s design which does not take full advantage of the 
number of cores and threads in modern processors..

At LLNL, the most common way for applications to do I/O is 
for each process to open a file to write its portion of the data to 
its own file. Here we see GPFS peak of 2668 MB/sec at 4 
nodes, but Lustre does trail GPFS by only about 10% with a 
peak of 2286 MB/sec at 16 nodes. This is as expected due to 
the fact that GPFS does better load balancing and Lustre has 
the additional overhead of calculating checksums.  For the 
corresponding read performance, we see that both file systems 
are well-matched at the limits of the test hardware capabilities.

Working with LLNL in the past, IBM has made an effort to 
match GPFS’s file per process performance by tuning the 
shared file throughput. GPFS quickly reaches peak of about 
2500 MB/sec at 4 nodes and remains reasonable consistently 
near the peak up to the 128 nodes used in the test.  GPFS also 
reaches the half-peak performance level with a single node.  
Lustre performs less well, increasing performance on a more 
gradual basis and hitting a plateau of ~2000MB/sec at 64 
nodes.  Lustre doesn’t reach the half-peak performance level 
until 4 nodes and has a dip in performance from 1 to 2 nodes. 
For reading a single shared file, GPFS outperforms Lustre by a 
slim margin at first, then the opposite is true as the test scales 
up.  Both achieve ~2000MB/sec at the highest scale.

In bandwidth testing, we had expected GPFS to have a wider 
margin of advantage due to its larger network blocksize (4 MB 
vs Lustre’s 1 MB blocksize).  The tests here do not appear to 
show this due to the DDN’s architecture which provides 
sufficient disk bandwidth behind the RAID controller to 
saturate the controller with only 1 MB blocks.  To explore this 
area, we disabled a portion of the RAID devices.  GPFS is 
able  to  sa tura te  the  cont ro l ler ’s  bandwidth  in  th is  
configuration with only 24 tiers of disk where Lustre required 
48.  This subtle but important result could dramatically impact 
the cost of an installation by reducing disk requirements.

VIII. METADATA PERFORMANCE TESTING

mdtest can measure the rates of file and directory creation, 
stat’ing and removals for the situation where all processes act 
in the same directory and the situation where each process 
works in it’s own directory.  We tested both situations.  The 
situation where an application does all of its file system 

activity within a single directory of the file system is the most 
common case for our user applications.   The other case where 
the application creates a directory for each MPI task and the 
task subsequently performs all of its file system work in its 
own directory i s  l e s s  c o m m o n ,  b u t  i s  occasionally
encountered. 

For these metadata tests files were zero length (contained no 
actual data).  Tests were run on multiples of 2 nodes up to 128 
with 8 processes per node.  In the test, each process creates, 
then stats a different node’s files and finally deletes the 100 
files or directories it created.

GPFS metadata performance where stats come from a 
neighboring node, were a fraction of those from Lustre, by a 
factor up to an order of magnitude. For GPFS, a stat operation 
from a node other than the creator forces the creating node to 
flush to disk, which is a very expensive operation.  The result 
is that GPFS is penalized quite significantly.  The penalty of 
the flush is more than would occur in a situation where a file is 
not stated immediately but some time afterward when the file 
system flush has an opportunity to occur naturally. 

When the stats are performed by the creating node, GPFS 
outperforms Lustre by a wide margin. As we understood the 
distributed metadata aspect of the GPFS architecture, we  
realized the speedup was a result of the client nodes acting as 
metadata servers and caching file operations locally.  

We selected that subsequent operations not come from the 
node creating the files/directories because these test conditions
are most appropriate for our applications and workflow. We 
acknowledge that the applications have been adapted to work 
well with the Lustre file system.  Had our applications been 
optimized to work with GPFS they would have to operate
differently and the mdtest measurements would reflect this.  

It was communicated to us that simply having task zero (or 
any single task) do all of the metadata operations would 
reduce this problem and bring the performance up at least to 
the level of Lustre.  The different architectures produce widely 
different performance profiles based on these seemingly 
simple changes.

For creating directories within a shared directory, Lustre was 
significantly faster than GPFS.  This is due to the fact that in 
creating a directory, GPFS must add the parent directory “..” 
pointer.  This requires exclusive lock the parent directory for 
each create effectively serializing the process and adding 
overhead.  Lustre, with it’s single MDS looks much better for 
this test, though it shows signs of tailing off past 16 nodes. 

Similarily for stats, the single MDS is a significant advantage 
for Lustre resulting in over 3X the performance of GPFS.  
GPFS does better in this test, but our conclustion is that 
distributed architecture of GPFS needs a heavier load to show 
its benefits over the single MDS for Lustre – for smaller 
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systems and with this method of activity, Lustre appears to 
have an advantage. 

The file removals, much like creates, are in favor of Lustre 
with Lustre directory removal performance over 12X that of 
GPFS.  This is due to the synchronization overhead, again, in 
GPFS’s distributed algorithm. The testing results for file stats 
and removals within a shared directory are substantially 
similar to that of the directory case.

In testing file creates, we find an interesting difference in 
GPFS’ performance.   Here ,  GPFS does  qui te  wel l ,  
outperforming Lustre by 30% in places.  The reason for this is 
that creating many files in a shared directory is common 
practice and the GPFS developers have provided a well-
performing solution.  This is because, after listening to 
feedback from users, the developers of GPFS have 
implemented shared directory file creates with a parallel 
algorithm enabled via a fine grained directory lock.

In our test for the unique directory method, we see that 
Lustre’s performance scales nicely up until about 32 nodes 
where it starts to drop off.  The GPFS performance is not as 
good as Lustre, only catching up as Lustre declines at 64 
nodes and tailing off in a similar way past that point. 

File and directory stat operations within a unique directory are 
not significantly different from that of a shared directory.  For 
GPFS, both situations force a node to flush to disk to answer 
the stat operation since it is initiated from a different node.

Finally, and for completeness, removal of files and directories 
within a unique directory show poor performance for GPFS 
relative to Lustre.

The previous metadata tests used a constant number of 
operations (100) per node and varied the number of nodes 
used.  Lustre outperformed GPFS in these tests.  In order to 
understand scaling up, we chose to hold the number of 
processes static at 128 and vary the number of file and 
directory operations for each process from 10 to 500.  Here we 
again used the mdtest benchmark in a shared directory.

The file stats per second in a unique directory gives hints that 
the GPFS architecture may have advantage if put under a 
heavier load.  It is not easy to imagine a situation where every 
process needs 500 files, but perhaps if the number of files 
itself is the key to performance, large systems with hundreds 
of thousands of processes may show GPFS to be better suited.  
Unfortunately we are not able to test at these levels and know 
of no site with a NAS-based GPFS installation and a hundred-
thousand plus node system.

IX. CONCLUSIONS

For the throughput performance tests, both file systems were 
able to drive the small backend hardware at high rates, with 

GPFS outperforming Lustre for the most part by 20% or more 
for writes with about equal performance on reads.  The data 
here also indicate that GPFS is much better at making use of 
multiple cores in a system when compared to Lustre.  Further, 
due to its larger message size, GPFS can saturate the RAID 
controller capacity with fewer backend disks. 

For metadata performance, GPFS shines for stat operations 
being performed by the node that created the file or directory
since metadata operations can be effectively cached. When 
stats are not from the creating node, Lustre is faster in all but 
the case of statting a large number of files in a shared 
directory.  In most metadata test cases, the performance of 
Lustre is significantly better than that of GPFS. In the same 
tests, Lustre is permitted to cache the results and artificially 
appears to have a large advantage.  

Metadata operations are associated with creating files and 
directories, querying them for information and deleting them.  
For the most part, our expectation is that the majority of 
application activity involves writing and reading files vs. the 
management of metadata.  Unless the application is using the 
file system as a communication device (a bad idea these days), 
metadata operations are likely a tiny fraction of the file system 
activity.  Yet performance is critical as we have learned with 
BlueGene/L and BlueGene/P where applications running on 
~132,000 MPI tasks can each create a file for results or 
checkpoint data.
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