
LLNL-CONF-456051

Comparison of Leading Parallel
NAS File Systems on Commodity
Hardware

K. Fitzgerald, M. Gary, R. M. Hedges, D. M.
Stearman

September 20, 2010

Petascale Data Storage Workshop
New Orleans, LA, United States
November 14, 2010 through November 14, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

1


Abstract—High performance computing has experienced

tremendous gains in system performance over the past 20 years.
Unfortunately other system capabilities, such as file I/O, have not
grown commensurately. In this activity, we present the results of
our tests of two leading file systems (GPFS and Lustre) on the
same physical hardware. This hardware is the standard
commodity storage solution in use at LLNL and, while much
smaller in size than production systems, is intended to enable us
to learn about differences between the two systems in terms of
performance, ease of use and resilience. This work represents the
first hardware consistent study of the two leading file systems
that the authors are aware of.

Index Terms—parallel file system, Lustre, GPFS, HPC I/O

I. INTRODUCTION

igh performance computing has seen increased
performance in the last decade of about three orders of

magnitude due to advances in processor speed, core count, and
scale of networks. In the same time frame, disk performance
has experienced relatively little increase in performance,
perhaps one order of magnitude. The increased computational
capability has dramatically increased the data requirements,
exacerbating the issue. For HPC systems this leads to a
requirement for a parallel file system: A shared disk file
system, presenting a single name space which can be written
to in a coordinated fashion by all nodes of a cluster, and
potentially comprised of thousands of individual disk drives.

While we were familiar with the GPFS (proprietary) file
system from IBM [1], when we began developing HPC
clusters based on commodity hardware and open source
software (Linux), there was no applicable open source
solution. This led to funding development of the Lustre
Parallel File System[2] via the ASCI Path Forward Program.
LLNL has a strong interest in open source solutions that
enable us to be involved in our own support and development
as well as influencing a path beneficial to the high-end
community. Thus we have been a strong supporter of Lustre
over the years. Lustre is our current NAS solution: a
network-based file system that is shared among many large

This work was supported by the U.S. Department of Energy under
Contract #DE-AC52-07NA27344

clusters including our BlueGene/L and BlueGene/P (Dawn).

A few other products have emerged in this space, Panasas’
PanFS [3] being the most notable. IBM’s GPFS (Global
Parallel File System) has been around for a long while and in
use as directly attached storage (storage nodes on the internet
network) on IBM systems at Livermore including ASCI
White. At the same time we have been encouraging and
participating in the development of Lustre, we have been
happily running a multi-PetaByte GPFS on Purple. In our
environment, GPFS is an obvious candidate.

Previously, our lab has published regarding the details and
rational for our testing protocol [4]. Several groups have
investigated and compared the architectures of the existing
parallel file system solutions [5-7]. For the last several years,
there has been a popular tutorial comparing the file systems,
including performance information, and practical advice
regarding using the file systems[8].

We are planning the environment for Sequoia, a 20 PetaFlop/s
IBM system with an I/O target of 512 GB/s, and a stretch goal
of 1TB/s. In considering file system options, we wanted to
compare aspects (ease of administration, performance,
resilience, etc) of the two leading solutions with identical
hardware. The intention was to get an apples-to-apples
comparison between Lustre and GPFS. At the scale we are
investigating here, these tests (even performance tests) should
be viewed as comparing functionality of the two file systems.

II. LLNL WORKFLOW

The HPC applications that we encounter in the Livermore
Computing Center typically consist of hundreds or thousands
(or hundreds of thousands) of communicating MPI tasks. In
the process of executing an application it is common that each
task have the possibility to efficiently create a file, open it,
write and read data, query the size of the file and finally close
it. In the case of checkpoint activity, each task may create and
write a separate file.

Here we will diagram the dominant workflow for LLNL
simulation applications as seen from the perspective of the
data created by the simulation code. It has been characterized
as “write once, read seldom”. “Restart data” describe the

Comparison of Leading Parallel NAS File
Systems on Commodity Hardware

Keith Fitzgerald, Mark Gary, Richard Hedges, D. Marc Stearman,

Lawrence Livermore National Laboratory

H

2

complete state of a simulation, so that a simulation can be
restarted and continued from the point represented by that
data. “Plot data” may be sufficient for analysis (post
processing) but without sufficient state to resume the
simulation.

The file system strategy that we have devised to support this
workflow is to utilize a Storage Area Network, or SAN. This
approach has the SAN mounted by all the systems involved in
the workflow: the user is able to utilize the best system for the
task at hand. For example, we have visualization clusters that
are outfitted with GPUs, or with larger memory nodes. In all
cases, these systems use the client-side software to mount the
SAN file system. Data need not move or be redundantly
copied in this environment, easing the workflow significantly.

III. THE LUSTRE FILE SYSTEM

The Lustre File System is an open source project recently
acquired by Oracle [6]. The Lustre architecture provides
physical and logical separation of data and metadata. The
metadata is information about a file or directory (name, access
time, etc) and is stored in a single physical system called the
Meta Data Server (MDS)1. The actual data portion of the file
is split up and accessed in parallel across a (potentially large)
group of storage units known as Object Storage Servers (OSS)
with software servers called the Object Storage Targets (OST).
In practice at Livermore, our file systems consist of up to 256
OSS nodes each with multiple OSTs (software) per single
OSS (hardware) node.

We presently have several developers on staff that participate
in development and are very familiar with the both codebase
and operational aspects of Lustre. We also have a close
working relationship with the Lustre developers and the
Hyperion cluster is the primary at-scale test resource for the
Oracle Lustre development team.

1 The clustered Metadata Server has been architected and implemented, but
has yet to make it into the shipping product.

For this work, we were using Lustre version 1.6.6 with
numerous patches from our local development team. While
this might reduce the relevance of these results for those
readers considering a more standard Lustre installation, testing
with these patches is relevant to our primary goal of planning
the Sequoia environment.

IV. THE GLOBAL PARALLEL FILE SYSTEM (GPFS)
GPFS is a mature product available from IBM [5]. GPFS is
able to operate either in a direct-attached mode, where the disk
nodes are directly attached to the same internal network as the
compute nodes, or as NAS. Livermore currently has a multi -
PetaByte direct-attached GPFS file system on our Power5+,
100 TFlop system named Purple.

GPFS also separates metadata and file data, however it does
not use a dedicated MDS node like Lustre. With GPFS, each
client node takes the role of the MDS node for a subset of
files, and handles metadata requests for any process on the
network interested in one of those files. GPFS has an option
to centralize the metadata itself, but it is architected to run the
metadata service in parallel on the client nodes.

We are not as familiar with GPFS internals and have chosen
not to gain access to the proprietary source code. Our
experience with GPFS is in the directly attached mode – we
have no experience with the system in a network setting as we
are attempting to test here. In our discussions and surveys, we
find that we are testing a usage model of GPFS that is
supported, but not widely used. We used GPFS version 3.2
for this work. For the purpose of these tests, We had IBM
personnel configuring the software, review results, adjust
configuration, etc.

V. SETUP FOR TESTING

The cluster hardware used to drive the storage resource was
Hyperion – an 1152 node X86_64 system with a full Fat Tree
InfiniBand 4x DDR interconnect. One half of the nodes on
Hyperion use Intel Harpertown processors, the other half use
Intel Nehalem. All compute nodes are dual-socket, quad-core.

As is the recipe for our present systems, I/O from Hyperion is
routed via gateway (GW) nodes that take IB and produce
10GbE to our SAN infrastructure. The 10GigE network
routes through a core router to 10 GigE storage edge switches
to which we have connected four storage server nodes plus
one metadata server node that front-end a Data Direct
Networks DDN 9550 disk controller. The network is capable
of delivering five GB/s of bandwidth from the cluster to the
DDN RAID system. This configuration matches the structure
all of our systems use to communicate with the global shared
file systems.

The LLNL SAN infrastructure is based on 10GbE with edge
routers and a core switch. Specifically, he network is a three-

Start job on set of
nodes
•Read restart data

from previous run
•perform simulation

steps
•write restart and plot

data

Continue computing
•perform more

simulation steps
•write more restart

and plot data

Hit time limit
•might restart on new

set of nodes or
diffferent cluster

Post process on
visualization cluster

3

stage 10Gb Ethernet network with a Cisco Nexus 7018 as the
core, an Arista 7148S as the edge switch on the storage side
and a Cisco Nexus 5020 next to the 4 GW nodes. All of the
file systems on a network are available to all of the systems on
that network. The path from a client to a storage server starts
with the client calling the write or read command, which
passes the request across the IB network to the GW node.
There a message is translated from IB to IP and enters the
client edge router near Hyperion. The edge router connects to
the core router which forwards to the storage edge router and
finally on to the storage server node (see Figure 1). The
storage server node writes or reads the data to/from the DDN
9550 storage system and the acknowledgement or data travels
back across the network to the client node.

The physical storage is a single DDN9550 system capable of
delivering 2.4 GB/s with 4MB I/O requests or 2.0 GB/s with
1MB requests. There are 48 tiers of 250GB SATA disks in 24
8+2 RAID3 luns per controller. On top of the storage
hardware there are four OSS nodes which are Dell R610
systems with dual socket, quad core Intel Nehalem E5530
processors at 2.4 GHz. Each OSS node has a 10 Gb/s Ethernet
interface to the storage network and an SDR InfiniBand (IB)
connection to the DDN 9550. There is a pair of MDS
(failover) servers (Dell R610) attached to a 16 bay SAS/SATA
JBOD enclosure with sixteen 15K RPM SAS drives.

Figure 1: Hardware test environment - Lustre

Due to our inexperience with GPFS in the test environment,
we invited IBM to install, tune, test and review the results of
our testing activities. Over a period of about one month the
system was tweaked, tested, and tweaked again. In the
process we learned quite a bit about GPFS’s architecture and
the features of its administrative tools. One of our findings is
that the differences in the architecture of GPFS and Lustre are
so significant that they directly and substantially impact the
performance results achieved.

In Figure 2 we have the GPFS configuration for the tests. We
use the same physical hardware as with Lustre. The main
difference is that the MDS server that was used for Lustre no
longer has that role and becomes simply a GPFS file server
alongside the other 4 nodes (which were OST’s in the Lustre
configuration). Metadata operations are still isolated on the
high performance disks used exclusively for metadata
operations. This was to insure that file data operations do not
impact metadata operations.

The metadata server for GPFS consists of the client nodes
themselves, operating in parallel with each responsible for the

metadata it creates. The metadata does make its way to the
disk on the left hand side of figure 2 and is then available via
the NSD0 file server node. This architecture is flexible in that
NSD0 can be either a set of systems, or run on the data server
nodes alongside the data aspect. This is quite different than
Lustre’s single MDS and has a strong influence on metadata
performance as described below.

Figure 2 Hardware test environment - GPFS

VI. BENCHMARKING STRATEGY

Testing was done in an automated fashion with each test
repeated at least twice with the best-case result shown. While
this approach has been called into question, our reasoning is
that is the method we use for testing on production systems,
where we are assuming that the best case that we can measure
is one without contention from other file system activity.

We used a Livermore developed test harness with IOR
(http://sourceforge.net/projects/ior-sio) for throughput
measurements and mdtest for metadata performance
measurements. (http://sourceforge.net/projects/mdtest/) .

In selecting test conditions, it is our basic assumption that data
will not be read by the node that wrote it. When reading a
restart file, for example, it would be unreasonable to assume
that subsequent accesses would be by the same node, given
our workflow. Those accesses could even be coming from an
entirely different cluster. Another case for file stats is “ls –l”
from a single interactive node. In these cases the stats,
accesses, etc come from nodes or even clusters other than
those creating the files. For this reason, we have run all of the
tests where subsequent access (reads or stats for the metadata
testing case) are performed by a different node. This will
defeat the client caching mechanism and cause the data to be
read from disk in each case.

VII. THROUGHPUT TESTING

Throughput or bandwidth testing is intended to provide insight
into the ability of the file system to deliver a significant
fraction of the peak bandwidth of the hardware. As mentioned
previously the peak for our setup was 2.4 GB/s. IOR is an
MPI-coordinated bandwidth test capable of testing single and
multi-node performance for file-per-process and single-
shared-file access and both contiguous and noncontiguous data
patterns. IOR is good at producing a high, sustained I/O load
on a parallel file system.

In the first test, we focused on performance for a single client.
This is the case where one MPI task handles all of the I/O for

4

an application, or the case where we are streaming data to
tertiary storage from a single client. With a peak capability of
2.4 GB/s, we see GPFS getting about 50% and Lustre about
25% of that bandwidth.

We believe GPFS is better able to take advantage of multi-
threading and lays data for a single file onto all servers in a
4MB round-robin fashion. Lustre will stripe 2 way by default,
but this does not turn out to be the performance limiting factor
as further testing with larger stripes still did not achieve parity
with GPFS. We had previously learned that Lustre’s single
file performance is limited to the performance of a single core
due to it’s design which does not take full advantage of the
number of cores and threads in modern processors..

At LLNL, the most common way for applications to do I/O is
for each process to open a file to write its portion of the data to
its own file. Here we see GPFS peak of 2668 MB/sec at 4
nodes, but Lustre does trail GPFS by only about 10% with a
peak of 2286 MB/sec at 16 nodes. This is as expected due to
the fact that GPFS does better load balancing and Lustre has
the additional overhead of calculating checksums. For the
corresponding read performance, we see that both file systems
are well-matched at the limits of the test hardware capabilities.

Working with LLNL in the past, IBM has made an effort to
match GPFS’s file per process performance by tuning the
shared file throughput. GPFS quickly reaches peak of about
2500 MB/sec at 4 nodes and remains reasonable consistently
near the peak up to the 128 nodes used in the test. GPFS also
reaches the half-peak performance level with a single node.
Lustre performs less well, increasing performance on a more
gradual basis and hitting a plateau of ~2000MB/sec at 64
nodes. Lustre doesn’t reach the half-peak performance level
until 4 nodes and has a dip in performance from 1 to 2 nodes.
For reading a single shared file, GPFS outperforms Lustre by a
slim margin at first, then the opposite is true as the test scales
up. Both achieve ~2000MB/sec at the highest scale.

In bandwidth testing, we had expected GPFS to have a wider
margin of advantage due to its larger network blocksize (4 MB
vs Lustre’s 1 MB blocksize). The tests here do not appear to
show this due to the DDN’s architecture which provides
sufficient disk bandwidth behind the RAID controller to
saturate the controller with only 1 MB blocks. To explore this
area, we disabled a portion of the RAID devices. GPFS is
able to sa tura te the cont ro l ler ’s bandwidth in th is
configuration with only 24 tiers of disk where Lustre required
48. This subtle but important result could dramatically impact
the cost of an installation by reducing disk requirements.

VIII. METADATA PERFORMANCE TESTING

mdtest can measure the rates of file and directory creation,
stat’ing and removals for the situation where all processes act
in the same directory and the situation where each process
works in it’s own directory. We tested both situations. The
situation where an application does all of its file system

activity within a single directory of the file system is the most
common case for our user applications. The other case where
the application creates a directory for each MPI task and the
task subsequently performs all of its file system work in its
own directory i s l e s s c o m m o n , b u t i s occasionally
encountered.

For these metadata tests files were zero length (contained no
actual data). Tests were run on multiples of 2 nodes up to 128
with 8 processes per node. In the test, each process creates,
then stats a different node’s files and finally deletes the 100
files or directories it created.

GPFS metadata performance where stats come from a
neighboring node, were a fraction of those from Lustre, by a
factor up to an order of magnitude. For GPFS, a stat operation
from a node other than the creator forces the creating node to
flush to disk, which is a very expensive operation. The result
is that GPFS is penalized quite significantly. The penalty of
the flush is more than would occur in a situation where a file is
not stated immediately but some time afterward when the file
system flush has an opportunity to occur naturally.

When the stats are performed by the creating node, GPFS
outperforms Lustre by a wide margin. As we understood the
distributed metadata aspect of the GPFS architecture, we
realized the speedup was a result of the client nodes acting as
metadata servers and caching file operations locally.

We selected that subsequent operations not come from the
node creating the files/directories because these test conditions
are most appropriate for our applications and workflow. We
acknowledge that the applications have been adapted to work
well with the Lustre file system. Had our applications been
optimized to work with GPFS they would have to operate
differently and the mdtest measurements would reflect this.

It was communicated to us that simply having task zero (or
any single task) do all of the metadata operations would
reduce this problem and bring the performance up at least to
the level of Lustre. The different architectures produce widely
different performance profiles based on these seemingly
simple changes.

For creating directories within a shared directory, Lustre was
significantly faster than GPFS. This is due to the fact that in
creating a directory, GPFS must add the parent directory “..”
pointer. This requires exclusive lock the parent directory for
each create effectively serializing the process and adding
overhead. Lustre, with it’s single MDS looks much better for
this test, though it shows signs of tailing off past 16 nodes.

Similarily for stats, the single MDS is a significant advantage
for Lustre resulting in over 3X the performance of GPFS.
GPFS does better in this test, but our conclustion is that
distributed architecture of GPFS needs a heavier load to show
its benefits over the single MDS for Lustre – for smaller

5

systems and with this method of activity, Lustre appears to
have an advantage.

The file removals, much like creates, are in favor of Lustre
with Lustre directory removal performance over 12X that of
GPFS. This is due to the synchronization overhead, again, in
GPFS’s distributed algorithm. The testing results for file stats
and removals within a shared directory are substantially
similar to that of the directory case.

In testing file creates, we find an interesting difference in
GPFS’ performance. Here , GPFS does qui te wel l ,
outperforming Lustre by 30% in places. The reason for this is
that creating many files in a shared directory is common
practice and the GPFS developers have provided a well-
performing solution. This is because, after listening to
feedback from users, the developers of GPFS have
implemented shared directory file creates with a parallel
algorithm enabled via a fine grained directory lock.

In our test for the unique directory method, we see that
Lustre’s performance scales nicely up until about 32 nodes
where it starts to drop off. The GPFS performance is not as
good as Lustre, only catching up as Lustre declines at 64
nodes and tailing off in a similar way past that point.

File and directory stat operations within a unique directory are
not significantly different from that of a shared directory. For
GPFS, both situations force a node to flush to disk to answer
the stat operation since it is initiated from a different node.

Finally, and for completeness, removal of files and directories
within a unique directory show poor performance for GPFS
relative to Lustre.

The previous metadata tests used a constant number of
operations (100) per node and varied the number of nodes
used. Lustre outperformed GPFS in these tests. In order to
understand scaling up, we chose to hold the number of
processes static at 128 and vary the number of file and
directory operations for each process from 10 to 500. Here we
again used the mdtest benchmark in a shared directory.

The file stats per second in a unique directory gives hints that
the GPFS architecture may have advantage if put under a
heavier load. It is not easy to imagine a situation where every
process needs 500 files, but perhaps if the number of files
itself is the key to performance, large systems with hundreds
of thousands of processes may show GPFS to be better suited.
Unfortunately we are not able to test at these levels and know
of no site with a NAS-based GPFS installation and a hundred-
thousand plus node system.

IX. CONCLUSIONS

For the throughput performance tests, both file systems were
able to drive the small backend hardware at high rates, with

GPFS outperforming Lustre for the most part by 20% or more
for writes with about equal performance on reads. The data
here also indicate that GPFS is much better at making use of
multiple cores in a system when compared to Lustre. Further,
due to its larger message size, GPFS can saturate the RAID
controller capacity with fewer backend disks.

For metadata performance, GPFS shines for stat operations
being performed by the node that created the file or directory
since metadata operations can be effectively cached. When
stats are not from the creating node, Lustre is faster in all but
the case of statting a large number of files in a shared
directory. In most metadata test cases, the performance of
Lustre is significantly better than that of GPFS. In the same
tests, Lustre is permitted to cache the results and artificially
appears to have a large advantage.

Metadata operations are associated with creating files and
directories, querying them for information and deleting them.
For the most part, our expectation is that the majority of
application activity involves writing and reading files vs. the
management of metadata. Unless the application is using the
file system as a communication device (a bad idea these days),
metadata operations are likely a tiny fraction of the file system
activity. Yet performance is critical as we have learned with
BlueGene/L and BlueGene/P where applications running on
~132,000 MPI tasks can each create a file for results or
checkpoint data.

REFERENCES

1. Frank B. Schmuck , Roger L. Haskin, GPFS: A Shared-Disk File
System for Large Computing Clusters, Proceedings of the
Conference on File and Storage Technologies, p.231-244, January
28-30, 2002

2. “Lustre File System: High-Performance Storage Architecture and
Scalable Cluster File System”, white paper available at
https://www.sun.com/offers/details/LustreFileSystem.xml

3. David Nagle , Denis Serenyi , Abbie Matthews, The Panasas
ActiveScale Storage Cluster: Delivering Scalable High Bandwidth
Storage, Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, p.53, November 06-12, 2004

4. Richard Hedges, Bill Loewe, Tyce McLarty and Chris Morrone,
“Parallel File System Testing for the Lunatic Fringe: The Care and
Feeding of Restless I/O Power Users,” Mass Storage Systems and
Technologies – MSST 2005.

5. Margo, M. W., Kovatch, P. A., Andrews, P., and Banister, B. “An
Analysis of State-of- the-Art Parallel File Systems for Linux.” The
5th International Conference on Linux Clusters: The HPC
Revolution 2004, Austin, TX, May 2004. This paper compares
GPFS, Lustre, PVFS on an IA-64 linux cluster.

6. J. Cope, M. Oberg, H. M. Tufo, and M. Woitaszek. Shared parallel
file systems in heterogeneous Linux multi-cluster environments. In
Proceedings of the 6th LCI International Conference on Linux
Clusters: The HPC Revolution, Chapel Hill, North Carolina, Apr.
2005. The paper provides an investigation of PVFS2, GPFS,
Lustre, and TerraFS across multiple Linux clusters.

7. M. Oberg, H. Tufo, and M. Woitaszek, "Exploration of Parallel
Storage Architectures for a Blue Gene/L on the TeraGrid," in 9th
LCI International Conference on High-Performance Clustered
Computing, March 2008. The paper investigates storage cluster
configurations IBM Blue Gene/L computer using GPFS, Lustre,
and PVFS.

8. Robert Ross, Robert Latham, Marc Unagast and Brent Welch,
“Parallel I/O in Practice”, Proceedings of Supercomputing 2009

