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ABSTRACT

An important example of multiscale material response is the
fracture of ductile solids. In the process of ductile fracture, voids
nucleate, grow and coalesce, and it is this linking process that
creates the fracture. Ductile fracture has typically been mod-
eled at the continuum level, in a variety of models that may or
may not model voids explicitly. Previously we have studied the
plasticity associated with void growth in fcc metals, focusing on
copper [1, 4, 8, 11, 12, 13, 10, 9]. In the work discussed here we
examine void growth in single crystal and polycrystalline body-
centered cubic (bcc) metals (V, Nb, Ta, Mo and W) subjected
to tension at a high rate and high triaxiality. [2, 3] Large-scale
atomistic models provide detailed information on void nucleation
and growth and the plasticity generated as voids coalesce, based
solely on the constitutive properties inherent in the interatomic
forces. The details of the plasticity may be used to inform dis-
location dynamics and continuum plasticity models in order to
develop models that scale beyond the nanoscale. We also discuss
concurrent multiscale modeling of void growth using Coarse-
Grained Molecular Dynamics. [5, 6, 7]
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