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Abstract

Ion-implantation is a useful technique to study irradiation damage in nuclear materials. To study He ef-
fects in nuclear fusion conditions, He is co-implanted with damage ions to reproduce the correct He/dpa
ratios in the desired or available depth range. However, the short-term fate of these He ions, i.e. over the
time scales of their own collisional phase, has not been yet unequivocally established. Here we present
a computational study of the short-term evolution of He implantation in an Fe substrate to approximate
the conditions encountered in dual ion-implantation studies in ferritic materials. Using a combination of
SRIM, molecular dynamics and kinetic Monte Carlo (kMC), we calculate the fraction of He atoms that end
up in substitutional sites shortly after implantation, i.e. before they contribute to long-term miscrostruc-
tural evolution. We find that fractions of at most 3% should be expected for most implantation studies.
Additionally, to inform the kMC calculations, we carry out an exhaustive calculation of interstitial He
migration energy barriers in the vicinity of matrix vacancies and find that they vary from approximately
20 to 60 meV depending on the separation and orientation of the He-vacancy pair.

Keywords: fusion materials, helium, ion implantation

1. Introduction

This paper tries to answer a simple yet important question in He-implantation studies: Do ion-
implanted He atoms end up as interstitial or as substitutional particles in the target matrix? The difference
is critical because of the large diffusivity difference between both forms of He: interstitial He (i-He) dif-
fuses extremely fast, sampling large portions of the configurational space quickly, readily finding other
defects or microstructural features. Conversely, substitutional He (s-He), while energetically more stable,
is immobile, necessitating migration of other point defects before it can move. This can happen either by
reacting with a self-interstitial atom (SIA) that recombines with the vacancy and knocks the He back to an
interstitial site, or by correlated lattice exchange reactions with a vacancy in nearest-neighbor positions.
Either way, the diffusivity of s-He is still several orders of magnitude lower than that of i-He.

Despite the important implications of these mechanisms on the subsequent microstructural evolution,
at present most researchers consider that 100% of the implanted He is interstitial [1, 2, 3] and can only
become substitutional by finding an isolated vacancy in an uncorrelated fashion via long-range diffusion.
The question we ask here is whether this is true for all He atoms or whether some of them can become
substitutional as part of their own implantation process prior to uncorrelated diffusion taking place.

Here we present a computational study involving the binary collision approximation (BCA), molecular
dynamics (MD), and kinetic Monte Carlo (kMC) simulations. The BCA is used to simulate the penetration
of He beams of various energies into Fe targets, and to obtain energy distributions of Fe recoils due to
He impact. MD is then used to simulate He thermalization after the primary knock-on event in its own
collisional environment, and to ascertain whether He atoms create stable Frenkel pairs that can result in
correlated recombination. Finally, we use kMC to calculate the fraction of freely-migrating He atoms from
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Figure 1: Cumulative Fe recoil distribution for He-ion beam irradiations with recoil energies of 0.33, 1.7 and 3.5 MeV incident energy.
The threshold displacement energy is 25 eV.

Table 1: SRIM parameters for the three He-beam energies considered.

He ion energy (MeV) 0.33 1.7 3.5
Depth (µm) 0.7 2.6 6.0
% energy to recoils 0.43 0.11 0.07
Average recoil energy (eV) 194 211 222
Maximum recoil energy (keV) 66 134 315

those that do create defects but do not find the vacancy during MD time scales. From these simulations,
we find that nearly 3% of the He atoms end up in subsitutional sites. While this number appears small,
it nonetheless leads to dramatic differences in the microstructural evolution of the material, as will be
shown in future studies.

2. Results

2.1. Calculation of recoil distributions and He energies

The He energy range of interest for fusion materials lies between 3.5 and 0.33 MeV, corresponding to
the energy of α particles emitted from fusion reactions and those produced via (n,α) transmutation reac-
tions in Fe1. In addition, ion beam experiments typically use energies in this range to achieve penetrations
of a few microns, so it is useful to have an intermediate energy for reference. Thus, we first calculate the
Fe recoil distribution for three He-ion energies, namely 0.33, 1.7 and 3.5 MeV, using SRIM [5]. The cumula-
tive recoil energy distributions in each case are given in Fig. 1, where a threshold displacement energy of
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Figure 2: Spectrum of Fe recoils sampled by MD simulations in comparison with spectrum for 1.7 MeV He obtained using SRIM.

25 eV was used. As the figure shows, the three recoil distributions are almost identical. This is because He
ions only create recoils when they have slowed down to a few keV, without much participation from their
higher-energy histories, which as shown in Tab. 1 only contribute to penetration and maximum recoil
energy. It is more informative to compare the average recoil energies, which, in contrast, differ only by a
few eV. In all cases, the energy expended in recoils amounts to less than 0.5% of the total ion energy.

These results suggest that in the energy range relevant to fusion materials the actual ion energy is
irrelevant for damage purposes. Therefore, we take the 1.7 MeV spectrum shown in Fig. 2 as representative
of all He energies and proceed to simulate the effect of these recoils on lattice damage. We note that SRIM
does not capture channeling, which may have some impact on the final results.

2.2. Molecular dynamics simulations of He impact in Fe

Next we study the fate of He ions at the end of their collision trajectories, when they collide with
the last of their recoils before thermalizing in the host lattice. We assume that these recoils are ejected
with energies consistent with the recoil spectrum obtained using SRIM (see Fig. 2), as the probability
for high energy recoils, produced early in the He collision sequences, is very small. The objective is
then to investigate whether He ions can become substitutional by interacting with vacancies of their own
creation, rather than by long-range diffusion. For this, we perform MD simulations of He collisions in Fe
and analyze the final configurations.

Simulations were carried out using the massively parallel MD code lammps [6]. The simulation cell
consisted of 38 × 38 × 38 conventional body-centered cubic (BCC) unit cells corresponding to 109,744
Fe atoms. All simulations were carried out at a temperature of 700 K, which is representative of fusion
conditions. Atomic interactions were modeled using the Fe-He interatomic potential of developed by

3



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 25  50  75  100  125  150  175

N
um

be
r 

of
 F

re
nk

el
 p

ai
rs

Recoil energy (eV)

Figure 3: Average number of stable Frenkel pairs created during the MD simulations of He collision cascades in Fe. The bars indicate
the standard deviation of the number of defects created.

Juslin and Nordlund [7], which builds on the Fe potential by Mendelev et al. [8] and gives an equilibrium
lattice constant of a0 = 2.871 Å at 700 K. The collision simulations were done with He as an energetic ion
in an otherwise perfect Fe lattice. The He atoms were assigned kinetic energies that produce a Fe recoil
distribution consistent with the SRIM data in Fig. 2. We sample the Fe recoil velocity vFe directly from the
SRIM spectrum and, assuming purely elastic collisions, assign a velocity vHe to the He atom

vHe =

(

mHe

mFe
− 1

)

vFe. (1)

where the mass ratio is mHe/mFe≈ 0.077 and the velocity vector is directed at the Fe PKA.
The atoms that were initially within a radius of 18.65 a0 of the center of the simulation cell were

considered the core region while all other atoms were assigned to the edge region. The latter were coupled
to a Nosé-Hoover thermostat at 700 K, while the remainder of the system evolved in time according to the
microcanonical ensamble. The equations of motion were integrated until either the He atom thermalized
(kinetic energy less than 0.1 eV) or escaped the core region. The final configuration was relaxed using
conjugate gradient minimization and defects were identified by analyzing the occupancies of the Wigner-
Seitz cells of the initial perfect BCC lattice. In total, we simulated 5,000 events to extract sufficient statistics.

Out of the total 5,000 events simulated, 2,668 (53.4%) were terminated when the He atom exited the
core region. They are interpreted as cases in which the He equilibrates in a region “far” away from the
PKA, such that the probability for the He to recombine with defects created in the original cascade is very
small. Accordingly these events are counted as i-He in the total atom tally. The remaining 2,332 events
were analyzed to obtain the number and distribution of irradation induced point defects. In 25 cases the
helium ended up in a substitutional site corresponding to 1.07% of the “thermalized” cases and 0.5% of
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Figure 4: Pair correlation of He interstitials and Fe vacancies obtained from 1,634 cases of He impact in a Fe lattice. Comparison of
the relative contributions of different energy windows shows a slight shift toward smaller distances for smaller energies.

the total number of events. This occurred typically within 4 to 6 ps of simulated time. Of the remaining
events, 673 cases (13.5%) resulted in He thermalization but no Frenkel pairs, further adding to the i-He
tally.

The remaining 1,634 cases (32.7%) deserve special attention. This group includes those He atoms
that have thermalized within the core region and have created stable Frenkel pairs but have not become
substitutional during the MD simulation. The number of stable point defects created by the He collisions
as a function of PKA energy is shown in Fig. 3. Although in principle, He can also be trapped by SIAs [9],
we did not observe any instances where this occurred. SIAs created during the cascade either diffused
away from the core region or were situated too far from the final position of the He atom.

Analysis of the resulting configurations enables us to determine the spatial correlation of He intersti-
tials with vacancies as shown in Fig. 4. The overall distribution has a mean of approximately 30 Å, with
lower energy contributions slightly shifted to shorter separations. In any case, to determine the fate of
these He ions conclusively, one needs to “age” these configurations further using a technique capable of
probing longer time scales. This is akin to calculating the fraction of freely migrating defects in high-energy
cascade simulations [10]. To this end, we carry out kinetic Monte Carlo (kMC) simulations of He-vacancy
reactions according to the distribution given in Fig. 4.

2.3. Kinetic Monte Carlo simulations of He-vacancy reactions

The kMC simulations consisted of a single vacancy located at the center of a reaction sphere and
a randomly-oriented He atom separated from the vacancy by a distance sampled from the distribution
shown in Fig. 4. We have used the Green’s function Monte Carlo method [11] in a continuum Fe medium
with two spherical particles representing the He atom and the vacancy. The sum of the radii of the
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Table 2: Summary of results from MD and kMC simulations of He impacts in BCC Fe. For the data obtained from kMC simulations
the third column states the number of occurences equivalent to the number of events treated by MD simulations. The actual number
of events simulated by kMC was 106 (see text for details).

Event Number of occurences Relative fraction
i-He He escaped core region during cascade (MD) 2668 53.3%

no stable defects created during cascade (MD) 673 13.5%
He escaped core region after thermalization (kMC) 1513 30.3%
total 97.1%

s-He He trapped during cascade (MD) 25 0.5%
He trapped after thermalization (kMC) (MD) – 2.4%
total 2.9%

vacancy and He atom was set equal to the third-nearest neighbor distance in the BCC lattice, r = a0
√

2
to be consistent with the He-V binding energy calculations performed in the Appendix. Other authors
have suggested that binding occurs up to the fifth nearest neighbor distance [12]. No further correlation
between the He atom and the vacancy is assumed, i.e. jumps toward and away from the central vacancy
are sampled with equal probability. The critical parameters for the kMC simulations are the temperature,
the diffusivities, and the size of the simulation box. The temperature was 700 K, the same as in the MD
simulations. With respect to the diffusivities, we neglect vacancy diffusion, as its diffusion coefficient is
known to be several orders of magnitude lower than that of He, even at these temperatures. The diffusion
coefficient of He in BCC Fe was taken from Terentyev et al. [12], who used the same interatomic potential
as in the present work and obtained DHe = 5.1 × 10−3 exp (−76/kT) cm2s−1 (migration energy in meV).
Finally, also for consistency with the MD simulations, we considered a spherical region with radius equal
to 18.65a0.

If over the course of a simulation the He atom escaped the spherical region, it was added to the i-He
count, whereas, if it reacted with the vacancy in the center of the simulation sphere, it was tallied as a s-
He. After 106 events, we calculated the probability for He-vacancy recombination under these conditions
to be 7.4%. The probability of He escape in an infinite medium has a known analytical solution given by
[13]

p = 1 − 2r

d
(2)

where d is the initial separation distance. This formula yields an average reaction probability of approxi-
mately 12%, which is higher than the kMC value because it is not limited to a finite reaction volume.

When prorated to the number of cases that constitute the He-vacancy pair correlation in Fig. 4, this
result, added to the 0.5% computed directly from the MD simulations, results in a total fraction of s-He
of 2.9% in ion implanted BCC Fe. The various contributions to this number are summarized in Tab. 2 for
clarity.

3. Discussion and conclusions

Understanding how implanted or transmutation He is partitioned between i-He and s-He is paramount
because of the different characteristics of both species in the BCC lattice. A comprehensive review on the
role of He in Fe has been recently published [14], where the basic energetics are given and a review
of the existing literature is provided. All studies agree that s-He is energetically more favorable with a
lower formation energy and a strong He-vacancy binding energy but cannot move unless aided by other
point defects. For its part, i-He diffuses very fast in all three dimensions, rapidly probing vast regions
of configuration space and finding sinks or other defects very efficiently. These different behaviors have
important implications in terms of the long term microstructural evolution. For example, He in solution
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in the BCC lattice is known to stabilize vacancy clusters produced directly in high-energy cascades. In
terms of its effect on direct damage production, however, the evidence reported in the literature is con-
tradicting. On the one hand, some researchers using the Fe–He Wilson-Johnson potential [15] have found
that high-energy cascades in BCC Fe doped with small concentrations of s-He result in higher numbers
of vacancy clusters than in pure Fe [16]. They also found these clusters to be generally larger in size. On
the other hand, using the Juslin-Nordlund potential —employed here— Lucas and Schäublin have found
that it is i-He in solution that causes larger cluster sizes and number densities to appear [17]. In fact,
they observe that s-He reduces the number of stable defects with respect to pure Fe. These workers also
performed a systematic Fe–He potential comparison, noting that the Juslin potential gives results that are
overall in better agreement with DFT calculations [18]. In any case, these results show the importance
of determining the correct partition of implanted He, something typically neglected in most rate theory
studies, where He is generally inserted as i-He (although some notable exceptions exist [19]).

Next we discuss the validity and limitations of our approach. This work hinges on the fact that Fe
recoil spectra from He ions with a wide range of incident energies are almost identical. Further, assuming
that recoils produce isolated cascades, data extracted from ion beam experiments can be used to infer
the behavior of α particles created in (n, α) reactions. Then, the only difference between (n, α) reactions
and He-ion irradiations is that the former are created homogeneously within the matrix, whereas ions
penetrate a short distance into the material (c.f. Table 1), but up to the cooling-down phase of the cascade,
damage is produced in an identical fashion in both instances.

With regard to the interatomic potentials used, we have already mentioned the studies in Refs. [17, 14].
Stewart et al. [20] have recently carried out an exhaustive comparison of Fe–He and He–He potentials
available in the literature. These authors noted that the Fe–He potential is strongly dependent on the
matrix (Fe–Fe) to which it is coupled, and that the potentials used in the present work produce little
clustering. In addition, Yang et al. [21] and Pu et al. [22] have shown that different potentials can have
a noticeable influence on vacancy cluster formation in displacement cascades. All of these effects should
again be mitigated at high temperatures, yet in light of these results some variability in the final fraction
of s-He can be expected.

Another, limitation is the assumption of uncorrelated diffusion in the kMC calculations. Presumably,
the migration energy of an i-He varies as a function of its proximity to a vacancy from the value in the
bulk (here Em = 58 meV, see Fig. A.5) to zero in the two interstitial sites closest to a vacancy (leading to
spontaneous recombination). In this work, however, we have neglected this dependency, for two main
reasons. First, because at the simulation temperature, the i-He diffusion barriers, which are typically
on the order of 40 to 60 meV (see Tab. A.3), are well below kinetic energy fluctuations, as shown in the
analysis provided in the Appendix. Second, this correlated effect is partially captured by adjusting the
interaction distance, which was set to 5th nearest neighbor distance in this work. Indeed, other (lattice)
kMC calculations of He and He-vacancy complex diffusion have also disregarded this effect for similar
reasons [23].

In conclusion, we have performed a computational study of He implantation in BCC Fe and have
calculated the fraction of implanted He that becomes substitutional during its own collisional phase. We
find that a fraction of approximately 3% is reasonable for the energy range of interest to fusion materials.
Damage accumulation calculations should take this datum into account, although more calculations are
needed to accuratelt quantify the impact on long-term microstructural evolution.
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Notes

1The transmutation reaction 56Fe(n,α)53Cr results in an excess mass of me = mFe + mn − (mCr + mα) = 55.9349375 + 1.0086692 −
(52.9406494 + 4.0026032) = 0.0003541 amu. This is equivalent to E = mec2 = 0.33 MeV, although some variability in the form of a
relatively narrow energy spectrum is to be expected depending on local conditions such as orientation, atomic vicinity, etc. (Source
of particle rest masses: NIST [4])

Appendix A. Helium interstitial migration in the vicinity of an iron vacancy

To supplement the kMC simulations conducated as part of the present work, we carried out a system-
atic study of He interstitialimigration in the vicinity of a vacancy. Calculations of migration barriers for
He interstitials in defect-free iron and in the vicinity of a vacancy were carried out using the drag method
implemented by the authors in the MD code lammps. All barrier calculations were carried out at the
zero-K lattice constant of 2.855 Å using 16 × 16 × 16 supercells based on the conventional BCC unit cell.

The formation energies of interstitial helium in tetrahedral and octahedral sites are 4.39 eV and 4.52 eV,
respectively. In the ideal lattice the coordinates of the tetrahedral and octahedral interstitial are (0, 1

4 , 1
2 )

and (0, 0, 1
2 ) in units of the lattice constant. As can be deduced from Fig. A.5, there are 12 tetrahedral

and 6 octahedral sites in the conventional BCC unit cell. Figure A.5 also summarizes the results for the
migration barriers of tetrahedral He interstitials in defect-free iron. We obtain a barrier of 58 meV for
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Figure A.6: Binding energy of He-vacancy pairs as a function of separation after relaxation.

migration along 〈110〉 in agreement with Ref. [7]. For migration along 〈100〉 the calculations yield a value
of 127 meV, which precisely corresponds to the enegry difference between the tetrahedral and octahedral
sites as the latter coincides with the saddle point.

Before we address the migration of He in the vicinity of a vacancy, we first study the effect of the
vacancy strain field on the energetics of He interstitials. To this end, we constructed all crystallographically
distinct He-vacancy pairs that can occur within a radius of four lattice constants, which yields 78 distinct
pairs.

The binding energy for a He-vacancy pair is defined as

∆Eb = ∆E f (He − V) − ∆E f (He) − ∆E f (V), (A.1)

where ∆E f (He − V), ∆E f (He) = 4.391 eV, and ∆E f (V) = 1.721 eV are the formation energies of the He-
vacancy pair, the isolated He interstitial as well as the isolated vacancy. Negative and positive values of
∆Eb indicate attraction and repulsion of the He-vacancy pair, respectively. The formation energy is given
by

∆E f = Edef −
Ndef
Nid

Eid, (A.2)

where Ei and Ni are the total energy and the number of Fe atoms in configuration i. Here, we have quietly
set the chemical potential of He to zero which has a minimal effect on the formation energies and no effect
on the binding energy.

The binding energy is shown as a function of the He-vacancy separation in Fig. A.6. Note that the
two nearest He-vacancy pairs have been omitted in Fig. A.6, since they spontaneously recombine with
the vacancy leading to a strongly negative binding energy of −2.01 eV. We find notable variations in the
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Table A.3: Migration barriers for He interstitials in the vicinity of a vacancy. xini: initial position in fractional coordinates with respect
to the vacancy located at the origin, Nini: initial neighbor shell, x f in: final position, N f in: final neighbor shell, ∆Ei− f = E f − Ei:
energy difference (meV), ∆Eb: migration barrier (meV).

xini Nini x f in N f in ∆Ei− f ∆Eb

1 1
2

1
4 3 1 3

4
1
2 4 −9 31

1 1
4

1
2 3 0 45

5
4

1
2 0 5 85 123

0 0 0 S −1945 16
1 1

2
3
4 4 −9 31

0 0 0 S −1945 23
1 3

4
1
2 4 1 1

2
3
4 4 0 17

1 1
2

1
4 3 9 40

5
4 1 1

2 6 69 120
3
4 1 1

2 4 0 4
1 1

4
1
2 3 9 40

1 5
4

1
2 6 69 120

5
4

1
2 0 5 3

2
3
4 0 8 −20 45

3
2

1
4 0 7 12 78

1 1
2

1
4 3 −85 38

1 1
2 - 1

4 3 −85 38
7
4

1
2 0 13 −18 55

0 0 0 S −2030 59
5
4 1 1

2 6 3
2 1 3

4 10 2 63
3
2 1 1

4 9 1 56
1 5

4
1
2 6 0 56

1 3
4

1
2 4 −69 51

7
4 1 1

2 14 7 58
3
4 1 1

2 4 −69 51
3
2

1
4 0 7 7

4
1
2 0 13 −30 35

5
4

1
2 0 5 −12 66

3
2 0 1

4 7 0 58
3
2 0 - 1

4 7 0 58
3
2

3
4 0 8 −32 40

3
2 - 1

4 0 7 0 125
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binding energy at least up to a separation of about 2.2 lattice constants. It is furthermore noteworthy
that the variation in the binding enegry is not monotonic with the distance but exhibits pronounced
oscillations that to some extent can be correlated with different crystallographic directions.

We can now consider the different possibilities for He interstitials migrating in the vicinity of a vacancy.
From Fig. A.5, we can deduce that from any tetrahedral site there are six possible jumps, four of which
are along 〈110〉 and two of which are along 〈100〉. More specifically,

1. tet → tet: (0, 1
4 , 1

2 ) + (0, + 1
4 , + 1

4 ) → (0, 1
2 , 3

4 )

2. tet → tet: (0, 1
4 , 1

2 ) + (0, + 1
4 ,− 1

4 ) → (0, 1
2 , 1

4 )

3. tet → tet: (0, 1
4 , 1

2 ) + (+ 1
4 ,− 1

4 , 0) → ( 1
4 , 0, 1

2 )

4. tet → tet: (0, 1
4 , 1

2 ) + (− 1
4 ,− 1

4 , 0) → (− 1
4 , 0, 1

2 )

5. via oct: (0, 1
4 , 1

2 ) + (0, + 1
2 , 0) → (0, 3

4 , 1
2 )

6. via oct: (0, 1
4 , 1

2 ) + (0,− 1
2 , 0) → (0,− 1

4 , 1
2 )

The barriers that are obtained for these paths starting from different initial He-vacancy arrangements
are summarized in Table A.3. We find that while there is a great variability of the values, in general
migration barriers range from about 20 to 50 meV for shells 3 and 4, and from 40 to 60 meV for shells 5 to
7, relatively quickly closing in on the bulk value of 58 meV. Using these data, we rationalized (see Sec. 3)
that a good choice for the interaction radius entering the kMC simulations is five lattice constants.
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