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Model Order Reduction Motivation

Motivation

General problem: solve
matrix equation
A(s)x = b(s), with the
system depending on a
vector of parameters s.

I FEM, MoM, PO, . . .
I Parameters may be

frequency, matrials,
dimensions, . . .

Even if solution take a
few minutes, thousands of
such solutions may be
needed

I Uncertainty
Quantification

I Optimization
I Parameter Exploration

Circuit board capable

of moving inside enclosure
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Model Order Reduction Classic MOR Techniques in FEM

Advantages

Find a reduced test matrix V ∈ RN×m, with m � N
I Solve reduced order model

Ãx̃ = V HAV x̃ = V Hb

I Numerous strategies for finding V : matching Taylor polynomials up to
a certin order at one or more points in parameter space

Commonly applied to FEM , which gives numerous advantages
I Sparse matricies
I Simple form for A(s) and b(s), e.g.,

(S + ε1ω
2T1 + ω2T )x = ωb

I Easy to precalculate V HSV , V HT1V , etc., so Ã can be rapidly and
exactly calculated for any parameter values
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Model Order Reduction Classic MOR Techniques in FEM

Disadvantages

Moment-matching order and points typically chosen beforehand,
based on user knowledge and experience. Meeting desired error
tolerance is combination of luck and skill.

Difficult to incrementally increase dimension of reduced order system.

1
x y

x2 xy y2

x3 x2y xy2 y3

Requires intrusive modifications of FEM code to isolate parts that
depend on parameters.
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Generalized MOR Algorithm

Desired Features

Ability to:

update model until
reaching user-specified
accuracy

easily adapt to an
arbitrary number of
parameters

work with many different
solvers and formulations
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Generalized MOR Algorithm Adaptive Procedure

Adaptive Sampling

Create model so as to match true solution at several samples points.
I I.e., colspace(V ) = span{x(s1), . . . , x(sM)}

Assume error estimator is given
I distribute test points (⊗) around sample points (•)
I choose next sample point where error is estimated to be largest
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Generalized MOR Algorithm Adaptive Procedure

Error Estimation

Error estimator based on change in model solution:

1 Starting with original trial matrix Ṽ , add sample point and update to
get V

2 Solve

Ṽ HAṼ x̃ = Ṽ Hb

V HAV x = V Hb

for model solutions at each test point

3 Calculate

est. error =
‖Ṽ x̃− V x‖
‖V x‖
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Generalized MOR Algorithm Black-Box Approach

Reduced Matrix Interpolation

In black-box approach,
assume only

I Solutions of
A(s)x = b(s)

I Multiplication of
A(s)c

I Calculation of b(s).

Explicit calculation of
Ã = V HAV would spoil
ROM efficiency

Instead, interpolate
entries of Ã at sample
points
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Generalized MOR Algorithm Black-Box Approach

Interpolation Functions

In general, polynomial disadventages
as interpolating functions (curse of
dimensionality, etc.)

Radial basis functions

fi (s) = Φ(‖s− si‖)

I Depends only on distance from
sample point si

I Many choices for Φ(r):
√

r2 + a2 mulit-quadratic

ear2

Gaussian
r2p log r thin-plate spline
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Generalized MOR Algorithm Black-Box Approach

Summary

Calculate solution x(s) 
at worst test point, 

add to V matrix

Add new test points

Estimate error at each 
test point

Multiply solution by 
A(s) at previous 
sample points

Interpolate reduced 
system VTA(s)V using 

RBFs

Is global error 
acceptable?

Select point with 
largest error

no

yes

End
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Examples Patch Antenna

Patch Antenna

Parameter Range

Frequency 3–8 GHz
εr1 (bottom layer) 1–7
εr2 (top layer) 1–7

84,718 DOF

Full solve time: 33 s
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Examples Patch Antenna

Patch Antenna Results

S11 with εr2 = 3

(a) τ = 0.1 (b) τ = 0.01 (c) Farle & Dyczij-Edlinger,
TAP (in press)

Tolerance Tolerance Farle &
τ = 0.1 τ = 0.01 Dyczij-Edlinger

Model Dimension 22 39 165
Model Creation Time (hh:mm) 1:01 2:48 1:17
Model Evaluation Time (ms) 60.1 114 13.7
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Examples Patch Antenna

Patch Antenna ROM Error

εr1 = 4, εr2 = 3
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Examples Oscillator Circuit

Oscillator Circuit

Enclosure
I 15 cm × 15 cm × 7 cm

Frequency 2 GHz
Solution Method EFIE
N 4122
MOR Tolerance 0.1
Samples 10
Time (mm:ss)a 27:15
Full Solution Timea 42 s
Model evaluation time 2.1 ms

aUsing two 8-core nodes
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Examples Oscillator Circuit

Sampling Locations
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Examples Oscillator Circuit

Changing CB Location
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Examples Oscillator Circuit

Solution Details
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Examples Oscillator Circuit
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Examples Oscillator Circuit

Conclusion

Conventional MOR methods from FEM not easily applicable to other
fomulations

I requires black-box approach

Error estimation allows adaptive sampling

Radial basis function interpolation offers numerious advantages
I easily to incrementally update model
I generalizes well to multiple dimensions
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