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Radiation multigroup diffusion for
refractive, lossy media in ALE3D (U)

A. |. Shestakov and J. S. Silken

Lawrence Livermore National Laboratory
Livermore CA

We describe development of radiation multigroup diffusiomdule RADMGDIFF in LLNL's code ALE3D.
RADMGDIFF was initially developed to model radiation flow amhomogeneous, refractive, absorptive
medium, specifically, silica (Si§). The intended application modeled a proposed procedursuidace
damage mitigation of final NIF optics. For such experiments models rapid heating and cooling of
a silica disk. Heating stems from energy deposited by a lat®se energy is deposited effectively on
the surface thereby raising the local temperature. Heagiggates into the material via conduction and
radiation transport. Heat escapes by means of radiati@h{caa lesser extent, by convection. Derivation
of the appropriate radiation diffusion equations appedhestakowet al[11]. Here, we summarize the
Shestakoet al paper and describe recent, related work and enhancemdR€IMGDIFF. Most notably,
we define a different fundamental varialflethe integral over direction of the intensity divided by the
square of the refractive index. Usigdeads to a succinct expression for a condition at an intenadérial
interface. The interface condition is a generalizationh& boundary condition derived in Shestalaiv
al [11] for a planar air-silica interface that incorporateBaetivities obtained from the Fresnel relations.
RADMGDIFF may also be used for conventional multigroupusfbn calculations, i.e., for materials with
refractive indexes equal to one. We compare results witiméxasn a problem that models cooling of two
adjacent hot slabs in which the opacity varies with tempeeatWe present results on a 3D version of the
“Crooked Pipe” aka “Tophat” test problem of Graziani [4] &Bdntile [5]. (UNC)
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Introduction _ Absorption coefvs. energy
Radiation is often ignored in relatively low
temperature regime§’(< 8000 °K) due to its low
energy content. Nevertheless, radiation is still an
efficient vehicle for energy (heat) transport and
loss. Its importance as an effective heat transfer
mechanism for glass has long been recognized.
Gardon [3] and Condon [2] present valuable
surveys of the process. Early work modeled the
enhanced energy transfer due to radiation by
adding to the conventional energy fliy, VT a -
gray radiative heat flux proportional t¢oT*, proton enerayy (1)

wheren is the medium’s (in this case, frequency  Figyre 1: Opacity  (cm™!) vs. photon energyv

averaged) refractive index ands the (eV) and three group averaged analogues. Data
Stefan-Boltzmann constant. In this model, the digitized from Kitamura et al [8].

radiation field is assumed to be tightly coupled to

the medium. Hence, the radiation spectrum equals

the matter emission soured3, (1), whereB, (T)

is the Planck function. Tight coupling requiresa  Derivation of equations

large opacity forll frequencies. However, for In the following, unless noted otherwise, we use
glass in general and silica (SiPin particular, the ~ CGS units. Ignoring material motion, two
absorptivity has a complicated spectral structure, equations model the relevant physics. The first
as displayed in Figure 1. At room temperature, in governs material internal energy flow, i.e., heat
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dash: 128 groups

o-line: 32 groups

*~dash: 8 groups
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Absorption k (1/cm)
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the IR-visible part of the spectrum & 1 um, conduction,
v ~ 1eV) the medium is transparent; the opacity
k ~ 0.01 cm~!. However, it is quite opaque for CoT =V -k,VT+5—K,p,. 1)

certain smaller photon energies;atz 0.13 eV

k> 10%, anincrease of0%. Thus, we do not have In Eq.(1),C is the heat capacity;,, the

tight coupling for allv, which implies one should  conductivity,S an external energy source (e.g., a
evolve a separate equation for the radiation field. laser) andx, ,, is the rate of energy exchange

In principle, the equation could evolve the average between radiation and the medium; it's sign

of radiation intensity over direction of propagation depends on whether locally the radiation is

and frequency; effectively, an equation for a “hotter” than the matter.
radiation temperaturé&,.. However, modeling
radiation with only &l equation can yield The second equation describes radiation energy

erroneous results. THe. equation is the limiting transport and energy exchange with the medium.
case (a single group) of a multigroup formulation. For homogeneodsrefractive lossy media, we

A multigroup equation stems from discretizing the begin with the equation derived by Pomraning [10]
frequency variable into a finite number of groups. to which we add coupling due to absorption,
Results in Shestakat al[11] show that the

quality of the result degrades as the frequency (1/vg) B:(I/n?) + - V(I /n?) =
discretization is coarsened, thereby demonstrating (k/n*) [0 B,(T) —1I]. (2)
the need for a multigroup system.

Yna homogeneous medium, the index of refraction, opac-
ity, and hence, group speed are independent of space and time
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The LS of Eq.(2) differs from Pomraning’s [10] radiation field is in LTE, the RS of Eq.(4) is zero.

Eq.(5.64) et seq. since we ignore spatial and Thus, in LTE the spectral radiation energies

temporal changes of. necessarily differ by the ratigw,/n;)3, wheren,, ,
are the material indexes. However, distinct

In EQ.(2), the intensity depends on time, position, energies meank is discontinuous across the

propagation directiof?, and frequency. The interface. The discontinuity could be resolved by
equation introduces the group speggdthe opacity diffusion, i.e., radiation (heat) flow across the
x and the Planck function, interface. The flowing radiation couples to the
4 9 media thereby leading to a temperature change,
B,(T) = 2hv°/c i.e.,T" would no longer be constant; clearly, an
exp(hv/kT) — 1" impossibility. The conundrum is discussed in the

section where we derive interface conditions.
whereh andk are the Planck and Boltzmann

constants, resp., ands the vacuum light speed. Boundary, interface conditions
Note that in refractive media, radiation emission is |, transport, radiation energy propagates along
given byn” B, and radiation propagates atthe e ction (raysX2. At an interface of two
frequency-dependent group spegdwhich is materials, incoming radiation is reflected and,
related to the phase spegg Born & Wolf [1], depending on material properties and the incoming
 dn ray’s angle of incidence, radiation can also be
vg = vp/(l + ——) , Up=c/n. transmitted across the interface. Figure 2 displays
v a typical boundary or internal interface between
materialsa andb. SymbolsQ2, ; and€; ; denote

By taking moments of Eq.(2), Shestaketal[11] ~ incoming rays from materials andb, resp.

derive two equations containing the spectral energypyMboIst2, » and{2; . denote reflected rays.
density, Symbol€2, ; denotes the transmitted ray. In the

E=(1 dol 3 figure, there is no transmitted r&Y, ,; all energy
= (1/v) ar Wi ) carried by<€2, ; is specularly reflected. The fraction
the flux, and the pressure tensor. A single equatio of energy in the incoming rag; carried away by

is obtained by ignoring the temporal derivative of r}re]:ggtfil\ift? raﬂv,\;rl]se:jeetermlieg 'byAtr;fn divis
the flux and expressing the tensor, in the usual way{he interf;’ce(ﬁz;rmal COS pr=73% -1 n
by a third of the energy density. The result is the '

multifrequency diffusion equation, -
q 4 q Boundary condition

Here, we summarize the derivation in [11]; it is
based on work of Larseet al,[9]. Assume Fig.2
represents part of the boundary. Equations are
solved in materiab. In materiala, the radiation
field is assumed to bdiffusive;it is specified by
the Planckian field3, (7}), whereT, is known.

HE V- g—iVE = k[4n 2 B,(T) —v,E]. (4)

The coupling tern¥k,. ,,, introduced in Eq.(1) is the
integral of the RS of Eq.(4) over all frequencies.

The RS of Eq.(4) has an interesting implication for
multiple materials. Consider abutting media with

distinct indexes: and group speeds. Approximate boundaryl,,(©2) must be specified. In a refractive

thewv,’s by the resp_ectwe phase speeds. medium. it consists of two parts,
Assume the materials are at a common temperature

T. Equation (4) holds inside each material. If the I,(2) = 14 (Q) + 1, - (2) . (5)

For transport, intensity emanating from the
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Now assume that equations are to be solved in both
materialsg andb, i.e., the interface of Fig.(2) is
Q. inside the computational domain. As in the
previous section, in materia) the intensity
mat b emanating from the interface is a sum of two parts.
Op,i . One part is the fraction of intensity in materigl
n,z directed toward the interface, that is reflected back.

Oa,r Another part is the intensity transmitted from
mat a materiala.

Qo Qp Equation (6) relates the radiation energyn the
surface of the material, and its normal derivative,

to a term proportional to the external radiation
energy. At steady-state, the derivative vanishes and
E = 47 n?B,(T,)/v,s. Equation (6) was derived
assuming the external medium is a black body at
temperaturd,, the external refractive index equals
one, and externally, radiation propagates at speed

In Eq.(5),1,,, represents intensity transmitted from ¢ Thus, the steady-state radiation energy density is

Figure 2: Schematic of rays across boundary or
material interface.

the exterior, i.e., due 5, (T,). Analogously,J;,, discontinuoust the air-silica interface. The silica
represents the fraction of intensity directed toward €N1€T9Y differs from the external value by the factor
the boundary that is reflected. Batfy, and 1, n* ¢/vg. The discontinuity complicates obtaining a
Eq.(5) is satisfied by integrating over the point-centered scheme that solves for surface
hemisphere inside The integration requires values, ar_ld (2) The numerical domain extends over
computing moments aR (), both media.
1 . . . - .
. j To avoid computing a discontinuous field, we
R J — ’
" _/0 dpp B(p), j =12, ... introduce a new dependent variable,
Computing the-; moments, is not trivial since £=(1/n?) | dwl. 7)
R(p) is evaluated using the complicated Fresnel 4r
relations that include absorption, Isard [7], HarpoleThe field¢ has the same units ds If the n? factor
[6]. The boundary condition is, is neglecteds is identical to thescalar fluxof
1+ 3y 9 neutron transport theory. Usirggas the dependent
E - (1 “or ) (§> (- VE) variable brings another benefit. In refractive media,
5 L I/n?, notl, is conserved along field lines [10].
= dnn”B,(T,)/vg, (6)

The derivation of the equation fgris similar to

wheren andv, are properties of material B \
" Y9 prop y the one forE. After some algebra, we find

settingr; to zero, lettingr = 1 and replacing,

ith in the familiar Mil itiof. 1 1
with ¢, we obtain the familiar Milne conditio y 0V 3_’£V§ — k(47 B,(T)—€]. (8)
g
Interface condition
Note thath is theinward normal. Boundary and interface conditions foare
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obtained using the two-term expansion for the near normal incidence, the absorptive Fresnel law
intensity in terms of, reduces to the simpler non-absorptive variant,

I/n2 = (1/4nm)[¢ — (1/K) Q - VE]. (9) N, sinf, = n sinf . (12)

Equation (9) and a derivation similar to the one In the following, we will use Eq. (11) to derive the

that led to Eq.(6) yields the boundary condition at amterface con(_jmo_n since one can easily express
diffuse external source one angle or its differential in terms of the otfer.

14 3r9 2 . B The major difficulty in deriving the condition is
< (1 - 2?”1) <§> (0:VE) =4 B,(Ta), (10) e 1o integrating the transmitted radiation over the
hemisphere in material The transmitted radiation

where, as beforej is the inward normal. The stems from a non-diffuse intensity in material
derivation assumes = 1 in the external medium. i.e., itis has the same form as Eq.(9), but with

When the gradient vanishes, Eq.(10) implies that ormg subscripted with. After some algebra, we

the surface valug equalsiz B, (7.), i.e.,¢ is obtain the following expression for material
continuous. I )
r .
- | i e (1752) () @ v -

The derivation of the internal material interface 1—2r1/) \3k
condition is similar to that for the boundary 1 ) ( 2 ) .

_ = V&) T, 12
condition. We first focus attention on the relation a (1 —2rq Ka (8- VEa) J (12)
just inside materiab, see Fig. 2. In the following,  \yhere
guantities in material are not subscripted by
while those ina carry the subscript. J— /1 dupl— R(p)] 41— ”_2 (1—p2)

0 n2 ’

The dqt'ﬁer?ntche Efﬁwfen the_t[[ntsrfac(j:_e tz_:md(tz)oundaryand as beforeR is the reflectivity. Ifn > n,, there
condition is thatthe transmitied radia 'M_ ) is no danger with negative values under the root
stems from non-diffuse radiation in materiathat

¢ dal directian. . Fig. 2. Al sinceR — 1 as the term in the root turns negative.
isnrrergtne?iaf Ot?]% ?n t(larr(lesci tly is“vé ’i\;seer?bylgE.q : (9)83\;ith Equation (12) reduces to a relation between the
a . . . . . .
' T2 ’ two gradients sincg is continuous, i.e§ = &,.
Q replaced by2, ;. The direction€2 and(2, ; are 9 € §=t
related via the Fresnel equation. For absorptive

media, the relation is [6], Equation (12) arises after integrating over the

hemisphere in material When we perform an

F(Ba,04) nq sinf, = F(B3,0)n sin 6 analogous hemispherical integration of the
’ ’ ’ intensities in materiat, and combine the result
whereg = (k/n)? and analogously fo,. The with Eq.(12), we obtain the desired condition,

symbolk is the absorption indéx The angle® . _
andd, are those betwee® and(2, ; and the (1/7) 0-VE(1+3re+3J,) =
interface normal, resp. The squarefaf (1/ka) 8- V& (14 3ra,q +3J), (13)

where,

[F(B,0)° =1~ B+1/(1-B)2 + 45/ cos?0,

1 n?
and analogously foF'(3,,6,). It is easy to show Jo = /O dpta pa [1 = R(pa)] \/1 T2 (1= n3).
that for small angles] or 0, F' ~ V2. Hence, for

“We can also express one angle in terms of the other using
*The opacityx = 47k/\, with X the vacuum wavelength.  the general Fresnel relation, but the equation is messy.
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The integrals/ and.J, differ in that.J integrates
over the materiab hemisphere whilg/, integrates
over materiak, and similarly for the moments,
andry 4.

If materialsa andb have the same index of
refraction, the Fresnel equation is a tautology and
Eq.(13) reduces to

(1/k)0 - VE = (1/ka) 1 - V&,

The relation is consistent with Eq.(8); it states that
fluxes of¢ are continuous.

Results, Cooling two materials

The equations foE' are implemented in ALE3D.
In August 2010, although RADMGDIFF allowed
multiple materials and the material-dependent

opacities could vary with temperature, the interface

condition Eq.(13) had not been incorporated.
Hence, for multiple material simulations,
RADMGDIFF could only be used as a
conventional radiation multigroup diffusion solver
(n =1, vy, = ¢). Anumber of simulations were
made to test the code. Here we present a
comparison with Lasnex.

Consider a 1D slab of Si)1 cm thick, initially at
T = 2500 °K. The slab is bounded by air on both
sides, wherd,, = 298.15. For0 < Z < 0.5, the
heat capacity” = 2.201 - 107 erg/cc®K, the
conductivityk,, = 2.201 - 10° erg/cm K, and

the opacityx is as shown in Fig.1. For

0.5 < Z < 1, we use a tenfold small&€r andk,,,,
and haves proportional tol” so it increases tenfold
from the Fig.1 value af” = 100 to 5000.

The comparison ALE3D with Lasnex appears in
Table I, where we display results after 1 sec. The
first six rows represent the maximum, left, and
right matter and radiation temperatures. The last

UNCLASSIFIED
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illustrates the efficiency of radiation as a means of
energy transport. The final radiation energies are
10'° less than what the field absorbed from the
matter and radiated out.

Table I: Slab cooling problem; ALE3D,
LASNEX comparison; 16 groups;t = 1's;
maximum, left-, right-side temperatures (K);
matter, radiation, coupled energies (J/radian)

LAS A3D(,—1
max(l;,) 2477.3 24785
max(l,) 1555.6 1549.4
Ty 2428.8 2404.2
T,;, 14245 14113
T, 1687.0 1578.7
T., 1328.9 1286.2
E.-1073 1.4704 1.4675
E.-107% 19469 1.9194
E.-107° 4.2706 4.5668

Results, TopHat

To illustrate, RADMGDIFF’s 3D performance, we
consider the “Crooked Pipe” aka “TopHat” test
problem of Graziani [4] using the specifications of
Gentile [5]. The numerical domain consists of a
quadrant of a 7 cm long cylinder, with radius = 2.
The cylinder consists of two materials; one thick
with opacity 2000 cm!' and one thin with

x = 0.2. The domain is similar to a thick walled
pipe with the inside (thin) material largely
contained inside a 0.5 cm radius. However, inside
the pipe, for2.5 < Z < 4.5, the thin domain
expandsto a 1.5 cm radius. Centered in the
expanded thin cylinder is another cylinder,
effectively an obstruction, consisting of the same
thick material as the pipe walls. The obstruction

three are the final matter and radiation energies anextends oveB < Z < 4 and has a 1 cm radius.
the accumulated energy coupled (J/radian), which The computational mesh over just the thick region

also equals the energy that exited through the
boundary. The magnitude of coupled energy
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DB: fest]0_001,00000
Cycle:0  Tme:0

Mesh
Vor mesh_3d

DB: fe5110_001.00252
Cre ime:1.01

1613008

user: als
Tue Dec 7 16:05:29 2010

Figure 3: TopHat test problem, 3D mesh over
thick material. . [
Figure 4: TopHat test problem, radiation

temperature T;. in thick material, ¢ = 10 ns.

The initial temperature i = 50 eV in both
materials. At = 0, at one end of the thin material,
we impose a Milne condition with a source
temperaturd’y; = 500 eV. Symmetry is imposed

on the azimuthal sides = 0, 7/2 and vacuum
conditions are imposed on all other boundaries. We
solve in gray mode, i.e., with just one group. The
simulation is run t@¢ = 10 ns.

DB:fest10_001,00252
Cycle:257  Time:1.01613e-08

Figure 4 displays the radiation temperatifjeover
the thick domain. Note that because of the high
opacity, radiation has raiséd primarily only on
the surfaces separating thick and thin materials;
very little radiation has propagated inside.

Figure 5 displayd’. over the thin domain.
Radiation has propagated over most of the domain

user: als
Tue Dec 7 16:09:302010
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