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Radiation multigroup diffusion for
refractive, lossy media in ALE3D (U)

A. I. Shestakov and J. S. Sẗolken
Lawrence Livermore National Laboratory

Livermore CA

We describe development of radiation multigroup diffusionmodule RADMGDIFF in LLNL’s code ALE3D.
RADMGDIFF was initially developed to model radiation flow ina homogeneous, refractive, absorptive
medium, specifically, silica (SiO2). The intended application modeled a proposed procedure for surface
damage mitigation of final NIF optics. For such experiments,one models rapid heating and cooling of
a silica disk. Heating stems from energy deposited by a laserwhose energy is deposited effectively on
the surface thereby raising the local temperature. Heat propagates into the material via conduction and
radiation transport. Heat escapes by means of radiation, and to a lesser extent, by convection. Derivation
of the appropriate radiation diffusion equations appear inShestakovet al [11]. Here, we summarize the
Shestakovet alpaper and describe recent, related work and enhancements toRADMGDIFF. Most notably,
we define a different fundamental variableξ, the integral over direction of the intensity divided by the
square of the refractive index. Usingξ leads to a succinct expression for a condition at an internalmaterial
interface. The interface condition is a generalization of the boundary condition derived in Shestakovet
al [11] for a planar air-silica interface that incorporates reflectivities obtained from the Fresnel relations.
RADMGDIFF may also be used for conventional multigroup diffusion calculations, i.e., for materials with
refractive indexes equal to one. We compare results with Lasnex on a problem that models cooling of two
adjacent hot slabs in which the opacity varies with temperature. We present results on a 3D version of the
“Crooked Pipe” aka “Tophat” test problem of Graziani [4] andGentile [5]. (UNC)

Prepared for Proceedings of the NECDC 2010

UNCLASSIFIED



Document Number UNCLASSIFIED Document Date

Introduction
Radiation is often ignored in relatively low
temperature regimes (T < 8000 ◦K) due to its low
energy content. Nevertheless, radiation is still an
efficient vehicle for energy (heat) transport and
loss. Its importance as an effective heat transfer
mechanism for glass has long been recognized.
Gardon [3] and Condon [2] present valuable
surveys of the process. Early work modeled the
enhanced energy transfer due to radiation by
adding to the conventional energy fluxkm∇T a
gray radiative heat flux proportional ton2σT 4,
wheren is the medium’s (in this case, frequency
averaged) refractive index andσ is the
Stefan-Boltzmann constant. In this model, the
radiation field is assumed to be tightly coupled to
the medium. Hence, the radiation spectrum equals
the matter emission sourcen2Bν(T ), whereBν(T )
is the Planck function. Tight coupling requires a
large opacity forall frequencies. However, for
glass in general and silica (SiO2) in particular, the
absorptivity has a complicated spectral structure,
as displayed in Figure 1. At room temperature, in
the IR–visible part of the spectrum (λ ≈ 1µm,
ν ≈ 1 eV) the medium is transparent; the opacity
κ ≈ 0.01 cm−1. However, it is quite opaque for
certain smaller photon energies; atν ≈ 0.13 eV
κ > 104, an increase of106. Thus, we do not have
tight coupling for allν, which implies one should
evolve a separate equation for the radiation field.
In principle, the equation could evolve the average
of radiation intensity over direction of propagation
and frequency; effectively, an equation for a
radiation temperatureTr. However, modeling
radiation with only aTr equation can yield
erroneous results. TheTr equation is the limiting
case (a single group) of a multigroup formulation.
A multigroup equation stems from discretizing the
frequency variable into a finite number of groups.
Results in Shestakovet al [11] show that the
quality of the result degrades as the frequency
discretization is coarsened, thereby demonstrating
the need for a multigroup system.
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Figure 1: Opacity κ (cm−1) vs. photon energyν
(eV) and three group averaged analogues. Data
digitized from Kitamura et al [8].

Derivation of equations
In the following, unless noted otherwise, we use
CGS units. Ignoring material motion, two
equations model the relevant physics. The first
governs material internal energy flow, i.e., heat
conduction,

C ∂tT = ∇ · km∇T + S − Kr,m . (1)

In Eq.(1),C is the heat capacity,km the
conductivity,S an external energy source (e.g., a
laser) andKr,m is the rate of energy exchange
between radiation and the medium; it’s sign
depends on whether locally the radiation is
“hotter” than the matter.

The second equation describes radiation energy
transport and energy exchange with the medium.
For homogeneous1, refractive lossy media, we
begin with the equation derived by Pomraning [10]
to which we add coupling due to absorption,

(1/vg) ∂t(I/n2) + Ω · ∇(I/n2) =

(κ/n2) [n2 Bν(T ) − I ] . (2)

1In a homogeneous medium, the index of refraction, opac-
ity, and hence, group speed are independent of space and time.
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The LS of Eq.(2) differs from Pomraning’s [10]
Eq.(5.64) et seq. since we ignore spatial and
temporal changes ofn.

In Eq.(2), the intensityI depends on time, position,
propagation directionΩ, and frequencyν. The
equation introduces the group speedvg, the opacity
κ and the Planck function,

Bν(T ) =
2hν3/c2

exp(hν/kT ) − 1
,

whereh andk are the Planck and Boltzmann
constants, resp., andc is the vacuum light speed.
Note that in refractive media, radiation emission is
given byn2 Bν and radiation propagates at the
frequency-dependent group speedvg, which is
related to the phase speedvp, Born & Wolf [1],

vg = vp

/(

1 +
ν

n

dn

dν

)

, vp = c/n .

By taking moments of Eq.(2), Shestakovet al [11]
derive two equations containing the spectral energy
density,

E = (1/vg)

∫

4π
dω I , (3)

the flux, and the pressure tensor. A single equation
is obtained by ignoring the temporal derivative of
the flux and expressing the tensor, in the usual way,
by a third of the energy density. The result is the
multifrequency diffusion equation,

∂tE −∇ · vg

3κ
∇E = κ [ 4π n2 Bν(T )− vgE ] . (4)

The coupling termKr,m introduced in Eq.(1) is the
integral of the RS of Eq.(4) over all frequencies.

The RS of Eq.(4) has an interesting implication for
multiple materials. Consider abutting media with
distinct indexesn and group speeds. Approximate
thevg ’s by the respective phase speedsc/n.
Assume the materials are at a common temperature
T . Equation (4) holds inside each material. If the

radiation field is in LTE, the RS of Eq.(4) is zero.
Thus, in LTE the spectral radiation energies
necessarily differ by the ratio(na/nb)

3, wherena,b

are the material indexes. However, distinct
energies meansE is discontinuous across the
interface. The discontinuity could be resolved by
diffusion, i.e., radiation (heat) flow across the
interface. The flowing radiation couples to the
media thereby leading to a temperature change,
i.e.,T would no longer be constant; clearly, an
impossibility. The conundrum is discussed in the
section where we derive interface conditions.

Boundary, interface conditions
In transport, radiation energy propagates along
direction (rays)Ω. At an interface of two
materials, incoming radiation is reflected and,
depending on material properties and the incoming
ray’s angle of incidence, radiation can also be
transmitted across the interface. Figure 2 displays
a typical boundary or internal interface between
materialsa andb. SymbolsΩa,i andΩb,i denote
incoming rays from materialsa andb, resp.
SymbolsΩa,r andΩb,r denote reflected rays.
SymbolΩa,t denotes the transmitted ray. In the
figure, there is no transmitted rayΩb,t; all energy
carried byΩb,i is specularly reflected. The fraction
of energy in the incoming rayΩi carried away by
the reflected rayΩr is determined by the
reflectivityR(µ), wherecos µ = Ωi · n̂ andn̂ is
the interface normal.

Boundary condition
Here, we summarize the derivation in [11]; it is
based on work of Larsenet al, [9]. Assume Fig.2
represents part of the boundary. Equations are
solved in materialb. In materiala, the radiation
field is assumed to bediffusive;it is specified by
the Planckian fieldBν(Ta), whereTa is known.

For transport, intensity emanating from the
boundaryIb(Ω) must be specified. In a refractive
medium, it consists of two parts,

Ib(Ω) = Ib,t(Ω) + Ib,r(Ω) . (5)

Prepared for Proceedings of the NECDC 2010

UNCLASSIFIED



Document Number UNCLASSIFIED Document Date

A
A
A
A
A
A
AU

Ωa,i

�
�

�
�

�
�

��

Ωa,r

-n̂, ẑ
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Figure 2: Schematic of rays across boundary or
material interface.

In Eq.(5),Ib,t represents intensity transmitted from
the exterior, i.e., due toBν(Ta). Analogously,Ib,r

represents the fraction of intensity directed toward
the boundary that is reflected. BothIb,t andIb,r

depend on the reflectivityR(µ). For diffusion,
Eq.(5) is satisfied by integrating over the
hemisphere insideb. The integration requires
computing moments ofR(µ),

rj
.
=

∫ 1

0
dµ µj R(µ) , j = 1, 2, . . .

Computing therj moments, is not trivial since
R(µ) is evaluated using the complicated Fresnel
relations that include absorption, Isard [7], Harpole
[6]. The boundary condition is,

E −
(

1 + 3r2

1 − 2r1

) (

2

3κ

)

(n̂ · ∇E)

= 4π n2 Bν(Ta)/vg , (6)

wheren andvg are properties of materialb. By
settingrj to zero, lettingn = 1 and replacingvg

with c, we obtain the familiar Milne condition.2

Interface condition
2Note thatn̂ is theinward normal.

Now assume that equations are to be solved in both
materials,a andb, i.e., the interface of Fig.(2) is
inside the computational domain. As in the
previous section, in materialb, the intensity
emanating from the interface is a sum of two parts.
One part is the fraction of intensity in materialb,
directed toward the interface, that is reflected back.
Another part is the intensity transmitted from
materiala.

Equation (6) relates the radiation energyE on the
surface of the material, and its normal derivative,
to a term proportional to the external radiation
energy. At steady-state, the derivative vanishes and
E = 4π n2 Bν(Ta)/vg. Equation (6) was derived
assuming the external medium is a black body at
temperatureTa, the external refractive index equals
one, and externally, radiation propagates at speed
c. Thus, the steady-state radiation energy density is
discontinuousat the air-silica interface. The silica
energy differs from the external value by the factor
n2 c/vg. The discontinuity complicates obtaining a
numerical solution if: (1) It is obtained by
point-centered scheme that solves for surface
values, and (2) The numerical domain extends over
both media.

To avoid computing a discontinuous field, we
introduce a new dependent variable,

ξ
.
= (1/n2)

∫

4π
dω I . (7)

The fieldξ has the same units asI. If the n2 factor
is neglected,ξ is identical to thescalar fluxof
neutron transport theory. Usingξ as the dependent
variable brings another benefit. In refractive media,
I/n2, notI, is conserved along field lines [10].

The derivation of the equation forξ is similar to
the one forE. After some algebra, we find

1

vg

∂tξ −∇ · 1

3κ
∇ξ = κ [ 4π Bν(T ) − ξ ] . (8)

Boundary and interface conditions forξ are
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obtained using the two-term expansion for the
intensity in terms ofξ,

I/n2 = (1/4π) [ξ − (1/κ)Ω · ∇ξ] . (9)

Equation (9) and a derivation similar to the one
that led to Eq.(6) yields the boundary condition at a
diffuse external source,

ξ−
(

1 + 3r2

1 − 2r1

) (

2

3κ

)

(n̂·∇ξ) = 4π Bν(Ta) , (10)

where, as before,̂n is the inward normal. The
derivation assumesn = 1 in the external medium.
When the gradient vanishes, Eq.(10) implies that
the surface valueξ equals4π Bν(Ta), i.e.,ξ is
continuous.

The derivation of the internal material interface
condition is similar to that for the boundary
condition. We first focus attention on the relation
just inside materialb, see Fig. 2. In the following,
quantities in materialb are not subscripted byb,
while those ina carry the subscript.

The difference between the interface and boundary
condition is that the transmitted radiationIt(Ω)
stems from non-diffuse radiation in materiala that
streamed along a directionΩa,i, see Fig. 2. Also,
in materiala, the intensity is given by Eq. (9), with
Ω replaced byΩa,i. The directionsΩ andΩa,i are
related via the Fresnel equation. For absorptive
media, the relation is [6],

F (βa, θa)na sin θa = F (β, θ)n sin θ ,

whereβ = (k/n)2 and analogously forβa. The
symbolk is the absorption index3. The anglesθ
andθa are those betweenΩ andΩa,i and the
interface normal, resp. The square ofF ,

[F (β, θ)]2 = 1 − β +
√

(1 − β)2 + 4β/ cos2 θ ,

and analogously forF (βa, θa). It is easy to show
that for small angles,θ or θa, F ≈

√
2. Hence, for

3The opacityκ = 4πk/λ, with λ the vacuum wavelength.

near normal incidence, the absorptive Fresnel law
reduces to the simpler non-absorptive variant,

na sin θa = n sin θ . (11)

In the following, we will use Eq. (11) to derive the
interface condition since one can easily express
one angle or its differential in terms of the other.4

The major difficulty in deriving the condition is
due to integrating the transmitted radiation over the
hemisphere in materialb. The transmitted radiation
stems from a non-diffuse intensity in materiala,
i.e., it is has the same form as Eq.(9), but with
terms subscripted witha. After some algebra, we
obtain the following expression for materialb,

ξ −
(

1 + 3r2

1 − 2r1

) (

2

3κ

)

(n̂ · ∇ξ) =

ξa −
(

1

1 − 2r1

) (

2

κa

)

(n̂ · ∇ξa)J , (12)

where

J =

∫ 1

0
dµ µ [1 − R(µ)]

√

1 − n2

n2
a

(1 − µ2) ,

and, as before,R is the reflectivity. Ifn > na, there
is no danger with negative values under the root
sinceR → 1 as the term in the root turns negative.
Equation (12) reduces to a relation between the
two gradients sinceξ is continuous, i.e.,ξ = ξa.

Equation (12) arises after integrating over the
hemisphere in materialb. When we perform an
analogous hemispherical integration of the
intensities in materiala, and combine the result
with Eq.(12), we obtain the desired condition,

(1/κ) n̂ · ∇ξ (1 + 3r2 + 3Ja) =

(1/κa) n̂ · ∇ξa (1 + 3r2,a + 3J) , (13)

where,

Ja =

∫ 1

0
dµa µa [1 − R(µa)]

√

1 − n2
a

n2
(1 − µ2

a) .

4We can also express one angle in terms of the other using
the general Fresnel relation, but the equation is messy.
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The integralsJ andJa differ in thatJ integrates
over the materialb hemisphere whileJa integrates
over materiala, and similarly for the momentsr2

andr2,a.

If materialsa andb have the same index of
refraction, the Fresnel equation is a tautology and
Eq.(13) reduces to

(1/κ) n̂ · ∇ξ = (1/κa) n̂ · ∇ξa

The relation is consistent with Eq.(8); it states that
fluxes ofξ are continuous.

Results, Cooling two materials
The equations forE are implemented in ALE3D.
In August 2010, although RADMGDIFF allowed
multiple materials and the material-dependent
opacities could vary with temperature, the interface
condition Eq.(13) had not been incorporated.
Hence, for multiple material simulations,
RADMGDIFF could only be used as a
conventional radiation multigroup diffusion solver
(n = 1, vg = c). A number of simulations were
made to test the code. Here we present a
comparison with Lasnex.

Consider a 1D slab of SiO2, 1 cm thick, initially at
T = 2500 ◦K. The slab is bounded by air on both
sides, whereTa = 298.15. For0 < Z < 0.5, the
heat capacityC = 2.201 · 107 erg/cc◦K, the
conductivitykm = 2.201 · 105 erg/cm s◦K, and
the opacityκ is as shown in Fig.1. For
0.5 < Z < 1, we use a tenfold smallerC andkm,
and haveκ proportional toT so it increases tenfold
from the Fig.1 value atT = 100 to 5000.

The comparison ALE3D with Lasnex appears in
Table I, where we display results after 1 sec. The
first six rows represent the maximum, left, and
right matter and radiation temperatures. The last
three are the final matter and radiation energies and
the accumulated energy coupled (J/radian), which
also equals the energy that exited through the
boundary. The magnitude of coupled energy

illustrates the efficiency of radiation as a means of
energy transport. The final radiation energies are
1010 less than what the field absorbed from the
matter and radiated out.

Table I: Slab cooling problem; ALE3D,
LASNEX comparison; 16 groups;t = 1 s;
maximum, left-, right-side temperatures (◦K);
matter, radiation, coupled energies (J/radian)

LAS A3D(n=1)

max(Tm) 2477.3 2478.5
max(Tr) 1555.6 1549.4

Tm,l 2428.8 2404.2
Tr,l 1424.5 1411.3

Tm,r 1687.0 1578.7
Tr,r 1328.9 1286.2

Em · 10−3 1.4704 1.4675
Er · 10−15 1.9469 1.9194
Ec · 10−5 4.2706 4.5668

Results, TopHat
To illustrate, RADMGDIFF’s 3D performance, we
consider the “Crooked Pipe” aka “TopHat” test
problem of Graziani [4] using the specifications of
Gentile [5]. The numerical domain consists of a
quadrant of a 7 cm long cylinder, with radius = 2.
The cylinder consists of two materials; one thick
with opacity 2000 cm−1 and one thin with
κ = 0.2. The domain is similar to a thick walled
pipe with the inside (thin) material largely
contained inside a 0.5 cm radius. However, inside
the pipe, for2.5 < Z < 4.5, the thin domain
expands to a 1.5 cm radius. Centered in the
expanded thin cylinder is another cylinder,
effectively an obstruction, consisting of the same
thick material as the pipe walls. The obstruction
extends over3 < Z < 4 and has a 1 cm radius.
The computational mesh over just the thick region
is displayed in Fig. 3. However, the numerical
extends over both thick and thin materials.
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Figure 3: TopHat test problem, 3D mesh over
thick material.

The initial temperature isT = 50 eV in both
materials. Att = 0, at one end of the thin material,
we impose a Milne condition with a source
temperatureTs = 500 eV. Symmetry is imposed
on the azimuthal sidesφ = 0, π/2 and vacuum
conditions are imposed on all other boundaries. We
solve in gray mode, i.e., with just one group. The
simulation is run tot = 10 ns.

Figure 4 displays the radiation temperatureTr over
the thick domain. Note that because of the high
opacity, radiation has raisedTr primarily only on
the surfaces separating thick and thin materials;
very little radiation has propagated inside.

Figure 5 displaysTr over the thin domain.
Radiation has propagated over most of the domain.

Acknowledgments:
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Figure 4: TopHat test problem, radiation
temperature Tr in thick material, t = 10 ns.

Figure 5: TopHat test problem, radiation
temperature Tr in thick material, t = 10 ns.
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