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Abstract

Enterprise and high-performance computing systems
are growing extremely large and complex, employing hun-
dreds to hundreds of thousands of processors and soft-
ware/hardware stacks built by many people across many
organizations [1]. As the growing scale of these machines
increases the frequency of faults, system complexity makes
these faults difficult to detect and to diagnose. Current sys-
tem management techniques [2], [3], which focus primar-
ily on efficient data access and query mechanisms, require
system administrators to examine the behavior of various
system services manually. Growing system complexity is
making this manual process unmanageable: administrators
require more effective management tools that can detect
faults and help to identify their root causes.

System administrators need timely notification when a
fault is manifested that includes the type of fault, the
time period in which it occurred and the processor on
which it originated. Statistical modeling approaches can
accurately characterize system behavior [4]. However, the
complex effects of system faults make these tools difficult
to apply effectively. This paper investigates the application
of classification and clustering algorithms to fault detec-
tion and characterization. We show experimentally that
naively applying these methods achieves poor accuracy.
Further, we design novel techniques that combine classi-
fication algorithms with information on the abnormality
of application behavior to improve detection and char-
acterization accuracy. Our experiments demonstrate that
these techniques can detect and characterize faults with
65% accuracy, compared to just 5% accuracy for naive
approaches.

I. Introduction
Global research and commerce require level of com-

puting capabilities that lead to complex systems that have
hundreds to hundreds of thousands of cores, gigabytes to
terabytes of RAM and software and hardware components
from many sources. This vast scale increases the probabil-
ity that some component will fail and the complexity of the
effects of those failures. More importantly, the dependence
of businesses on the continued availability of these systems
leads to an annual cost of such failures between $22.2 and
$59.5 billion [5]. Further, the frequency and complexity of
these failures will increase with the demand for systems
with even greater capabilities. The costs of these failures

will also increase unless we provide system administrators
with tools that can quickly detect and help solve failures.

Today’s system administration techniques are increas-
ingly inadequate for modern systems. These tools provide
vast amounts of data about the systems and mechanisms
to search and to filter system logs and health reports
from system nodes and resource [2], [3]. However, they
require humans to interpret this data to detect faults and
provide little insight into their root causes. These limita-
tions arise from the complex ways in which faults affect
large systems. They often propagate from one component
to another, eventually causing either full failures or more
subtle problems like degradations in quality of service or
functionality. Overcoming these limitations will require
models of system behavior and how faults affect it.

Prior research has developed techniques to generate
models of specific systems, either manually or based on an
explicit system specification. Although manually generated
models can predict the root causes of faults [6], [7], they
require significant effort to create for the wide variety
of system components and their interactions. Further,
components can exhibit complex interactions in which
one component influences distant components without
affecting intervening components [8]. Alternatively, fully
automated techniques infer key system behaviors and how
faults affect them based on statistical models and empirical
observations [4]. These models can then determine whether
the system’s behavior is normal or abnormal and identify
the source or the nature of the abnormality.

In this paper, we study limitations of naively applying
machine learning models to detect and characterize system
faults. We design methods that improve model error-
detection accuracy by leveraging information about event
probabilities. We focus on the most critical capabilities for
a fault analysis system: the fault type; the time period in
which the fault is manifested; and the system component(s)
in which it originated.

Current techniques train a statistical model on sample
application runs that exhibit normal behavior as well
as runs with one or more types of abnormal behavior.
They decompose application runs into individual events of
approximately a few seconds or milliseconds so that the



latency of fault diagnosis and resolution can be roughly
that long. When presented with a specific execution, the
model can then determine whether the execution is more
consistent with normal or abnormal behavior and, if ab-
normal, the class of faulty runs to which it is most similar.

This paper makes two fundamental contributions. First,
we show that this intuitive statistical modeling fails for
common types of system faults. Second, we overcome
this limitation by using event probability information that
requires no additional monitoring. Intuitively, the naive
application of machine learning classification algorithms
cannot detect accurately complex system faults. Consider,
for example, a fault that causes a reduction in CPU perfor-
mance such as a CPU-hang or a change in core frequency.
Traditional classification algorithms cannot detect or char-
acterize this fault because it affects software inconsistently.
This fault will affect CPU-bound code regions significantly
but will have little impact on memory-bound regions.
Further, if a misbehaving piece of software is the root
cause of the fault, the operating system will schedule this
software into discrete time periods, leading to sporadic
effects. This fact that many events during faulty execution
behave normally can cause traditional techniques, which
label all events during the faulty time period as faulty, to
train inaccurate models that cannot differentiate between
normal and faulty behavior.

Our novel solution can employ traditional statistical
classifiers for complex fault detection and analysis. It
enhances the quality of the information being classified
by building a secondary statistical model that captures the
probability that a given event came from a normal or faulty
run. We use these probabilities to filter the original labeling
presented to the classification algorithms, which focuses
their power on the abnormal events. Specifically, it enables
the classifier to correctly identify many more faulty events
at the cost of a small number of false positive predictions,
while reducing the number of false negatives. Figure 1
shows a diagram that compares the naive classification
approach with our refined approach.

The naive model, which only classifies individual
events, can overwhelm system administrators with many
individual reports that correspond to the same fault. Our
approach eliminates this problem by clustering fault detec-
tions to provide administrators with just one notification
for each system fault. In another major result, we show
that even a small rate of false fault detections when
traditional classifiers correctly differentiate most normal
and faulty events can cause clustering to produce incorrect
fault predictions. Our technique addresses this problem
by focusing attention to fault detections that correspond
to very low probability events, which improves accuracy
of fault detection from 5% to 65% on faulty runs, while
maintaining a 5% false positive rate.

Figure 1. Naive- versus new-classification approach.

This paper is organized as follows. Section II presents
our experimental set up, describing the applications and
statistical methods that our analysis uses our behavior
monitoring infrastructure. Section III describes our general
approach to model application behavior and shows that the
intuitive approach results in very poor accuracy. Section IV
then explains the causes of this inaccuracy and shows how
to combine event abnormality information with classifica-
tion algorithms to improve detection accuracy significantly.
We examine this approach in detail in Section V to show
that information about the distance of an event from
its normal behavior is useful for fault characterization.
Section VI then shows how to aggregate individual fault
predictions into a single statement of the fault’s starting
and ending times, location and type.

II. Experimental Setup
For our experimental analyses we have chosen to fo-

cus on detecting faults that occur on High-Performance
Computing (HPC) systems during the execution of the
scientific applications that typically run on these systems.
HPC systems are among the largest and most powerful
in the world, with the Top 500 most powerful systems
capable of sustained 31 to 2,500 TeraFlops of computa-
tional power [9]. The largest systems have over 200,000
processors, 200TB of RAM and Petabytes of disk storage.
Even though HPC systems are built from high-quality
components and use light-weight software stacks, the
very large scale of these machines means that they fail
very frequently. Major systems like the ASCI Q machine
experienced 26.1 CPU failures per week [10], and the
100,000 node BlueGene/L machine at Lawrence Livermore
National Laboratory suffers from one L1 cache bit flip
every 4 hours. From the perspective of applications, HPC
systems fail 10-20 times each day due to failures in system
hardware and software [11].

HPC systems are primarily used to run large-scale
scientific applications written using the Message Passing



Interface (MPI) programming model, which allows appli-
cation processes to communicate via operations such as
send, receive and broadcast. We modeled the behavior
of such applications by breaking them up into individual
events and then creating statistical models that predict
whether any given event corresponds to a normal or
faulty execution. We used the PnMPI [12] tool to monitor
application MPI calls. At each MPI operation, we monitor
the application’s calling stack and the values of the count
and datatype arguments of the MPI routine. The time
period between two such points is denoted as an “event”
and corresponds to the execution of an MPI function or
application-code between two MPI calls. A given combi-
nation of call stack and MPI arguments is denoted “event
context” and intuitively, events that share the same context
will exhibit the same runtime behavior.

We use the NASA Advanced Supercomputing Parallel
Benchmarks (NAS)[13] to represent a typical scientific
application. These benchmarks consist of 8 parallel ap-
plication kernels written using MPI Specifically, we focus
on the applications BT, CG, LU, MG and SP—we omitted
EP, FT and IS because their use of MPI is too simplistic
or infrequent to accurately capture their behavior at the
granularity of MPI calls. These applications consist of
a setup phase, a main compute phase and a shutdown
phase. Since only the main compute phase is designed
to represent realistic application behavior, our experiments
focus on faults that manifests only during this phase.
Our experiments were conducted on the Hera cluster at
LLNL, which consists of 800 4-socket nodes that are
equipped with quad-core 2.3Ghz Opteron 8356 CPUs (10h
microarchitecture) and 32GBs of RAM. Each application
was executed with 16 processes on an input that results in
a 10-60 second execution time (class “A” for BT, LU and
SP, class “B” for CG, and MG).

Since real system faults are sufficiently rare that they
cannot be used for a large-scale experimental evaluation,
we rely on several synthetic faults that model various types
of resource exhaustions and slowdowns. Specifically, while
the main application is executing, our test harness starts
up a single thread on one of the cores being used by the
application. This thread repeatedly executes an operation
that interferes with the execution of the main computation.
Table I shows the types of faults injected in our experi-
ments. These faults represent slowdowns or interference
problems that affect different system resources, focusing
on CPU, Memory and Socket problems, and capture the
major issues of detecting and characterizing system faults.

In the sections below we describe how to train a
model that detects faults and characterizes the fault class
they belong to: CPU, MEM or SOCK. To this end we
will focus on two use-cases. The KnownFault use-
case represents the situation where administrators can

describe previously observed faults in terms of code
examples and need help to identify them if they ap-
pear again in the future. The UnknownFault use-
case represents the scenario where administrators describe
fault classes using one more representative codes and
need the system to detect new faults that are similar to
the representatives. The model will be trained on three
codes from each class. CPU faults will be represented
by CPU_incr, CPU_pow and CPU_mmm; MEM faults by
MEM_1MB_All, MEM_1GB_All and MEM_1GB_Walk;
SOCK by SOCK_1KB_1Mesg, SOCK_1KB_10Msg and
SOCK_32KB_10Msg. To evaluate the model’s effective-
ness on the KnownFault use-case we will use it to
detect and characterize CPU_incr, MEM_1GB_All and
SOCK_1KB_1Mesg (marked in dark gray in Table I).
We will evaluate its effectiveness on UnknownFault by
using it to analyze CPU_rank1, MEM_1MB_Walk and
SOCK_1KB_10Mesg (marked in light gray in Table I).
The analysis in Sections III, IV and V will focus on
KnownFault because the major observations are the
same for both use-cases. Section VI, which discusses the
design of a real system administration tool will look at the
tool’s effectiveness on both evaluation sets.

Hardware performance counters are a valuable resource
for measuring the behavior of software and hardware.
Modern microprocessors provide hundreds of possible
performance counters, with the Opteron 10h microarchi-
tecture providing 272 major counters, many of which have
multiple options. Unfortunately, the Opteron 10h allows
only four of these counters to be monitored simultaneously,
making it necessary to carefully choose the counters to
be monitored to ensure that the observed counter values
properly differentiate the phenomena being studied. Since
we had little intuition about which counters would be
the best to monitor, we selected the four counters that
are most significantly affected by our faults. We do this
by observing the values of all counters when a sample
application was injected with each individual fault and
selecting the counters the values of which differ the most
when exposed to the different fault types.

The counters chosen by this method were:

• INSTRUCTION_FETCH_STALL - “The number of
cycles the instruction fetcher is stalled.” [14]

• X87_FLOPS_RETIRED_MULT - “The number of
multiply operations (uops) dispatched to the FPU
execution pipelines.” [14]

• BRANCH_TAKEN_RETIRED - “The number of taken
branches retired.” [14]

• DATA_CACHE_ACCESSES - “The number of ac-
cesses to the data cache for load and store refer-
ences.” [14]



Fault Type Fault Variants
Fault variants used for training

CPU incr pow mmm rank1
CPU-intensive Increment clib pow Dense matrix-matrix Rank-1 update

workloads of variable function multiplication of 100x100 matrixes on 100x100 matrix
MEM 1MB_All 1GB_All 1MB_Walk 1GB_Walk
Memory-intensive Random access of Random access of 256KB window that is iteratively

workloads 1MB or 1GB memory region shifted over a 1MB or 1GB memory region
SOCK 1KB_1Mesg 1KB_10Mesg 32KB_1Mesg 32KB_10Mesg

Socket-intensive Establishes a socket and connects to it, sends 1 or 10
workloads messages 1KB or 32KB in size, then closes socket

KnownFault use-case UnknownFault use-case

Table I. Types of injected faults

III. Modeling Approach
Our modeling procedure, illustrated in Figure 1, begins

by collecting a set of training and evaluation runs for each
application. We used two types of application runs: (1)
non-faulty runs, where the application is executed free of
faults, and (2) faulty runs, where we inject training faults
listed in Table I during the application execution. For the
training set, we used 16 non-faulty runs and 16 faulty runs.
During the ith faulty run, we inject the fault into the ith

application MPI process to include faults originating in all
processes in our training set. In each faulty execution, a
fault thread was executed for most of application’s main
computation loop, ensuring that the model is provided with
many faulty events on which to train. Our evaluation set
is similar to the training set, except that the faults are
drawn from the KnownFault or UnknownFault use-
cases and includes additional 40 non-faulty runs.

Given a set of training runs, we analyze the observed
events and annotate them as follows:

• NO_FAULT: No injected fault thread was executing
during the event

• THIS_PROCESS - CPU/MEM/SOCK: A fault thread
of the given type was executing at the same time and
on the same process as the event.

• OTHER_PROCESS - CPU/MEM/SOCK: A fault thread
of the given type was executing at the same time as
the event but on a different process.

We then take a traditional classifier and train it on these
events, where each event has the above class label and
the following feature set: (i) unique ID of its starting end
ending MPI calls, including call stack and arguments, (ii)
event’s execution time, (iii) values of all 4 performance
counters measured from the start to the end of the event.
The classifiers used in this study were Random Forest,
C4.5 Decision Tree, Logit Boost and Random Committee,
using the implementations available in Weka 3.6.2 [15].
Since the number of events generated by 160 training runs
was very large (from 7e+5 for MG to 2e+7 for LU), it was
infeasible to build classifiers on all the events in all the
runs in the training set. As such, we trained classifiers on
a randomly-chosen subset of upto 80,000 events, choosing

an equal number of events from each training run using a
uniform distribution.

Each classifier was executed on the events in the evalu-
ation runs to predict each event’s label. These predictions
were used to determine when the application’s execution
was affected by a fault, the fault loctaion as well as
the type of fault (CPU, MEM or SOCK. We did this by
dividing the application’s execution into time windows of
50ms, and using the labels of the events in the window
to label the window itself. The label of a given process
within a window is NO_FAULT if no faults were predicted.
Otherwise, it was the most common fault label among the
individual event predictions. The label of an entire window
across all processes is NO_FAULT if either no faults were
detected on any process or if all predicted fault labels were
for OTHER_PROCESS, since in this case the fault was not
sufficiently evident for any one process to detect the fault
within itself. If one or more processes did detect a fault on
themselves (the THIS_PROCESS - FAULT_TYPE label),
the time window is assigned the label of the process that is
most confident about its labeling, i.e., the largest fraction
of its events in the time window have this label.

Figure 2 shows the accuracy of this approach with all
the classifiers for the KnownFault use-case (results are
very similar for UnknownFault) and Figure 3 shows the
accuracy for non-faulty runs. The figures show the fraction
of the application’s running time where the classifier
predicted that a fault was manifested and this prediction
was either true or false. A prediction is true if the fault’s
location type is correctly identified, and it is false oth-
erwise. These correspond in the figure to true positive
and false positive predictions. The figure also shows the
fraction of time when the classifier predicted that no fault
was occurring and this prediction was correct or wrong.
These are the true negative and false negative predictions.
The first observation is that the Logit Boost classifier is
significantly more accurate than the others because it is
significantly more careful about labeling an event as a fault.
As a result, on non-faulty runs its false positive rate is
almost 0%, whereas for other classifiers it ranges between
2% and 40%. Also, while it has a much lower true positive
rate for the faulty runs, the false positive rates of the other
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Figure 2. Prediction accuracy of classifiers on the faulty runs of the KnownFault use-case using naive training
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Figure 3. Prediction accuracy of classifiers on non-faulty runs using naive training

classifiers are significantly higher than their true positive
rates. In contrast, the two rates are similar for Logit Boost,
meaning that any tool built using its classifications will not
need to filter out a few good predictions from many bad
ones. Since Logit Boost performed consistently better for
most of our experiments, for the remainder of the paper
we focus on models based on this classifier.

Looking at the accuracy of the resulting model, we see
that its has a low true positive rate of .11% for BT and
less than .01% for CG and LU. To understand the source
of this problem we examined the possibility that the model
was not being provided with sufficient information about
how the application was behaving before each event. To
evaluate this possibility, we repeated the above modeling
procedure but for each event we also provided the calling
context, time and performance counters of the preceding
four events. Figure 4(a) shows the accuracy of the resulting
model on the KnownFault faulty runs and Figure 4(b)
on non-faulty runs with the Logit Boost classifier. The data
shows that the introduction of additional historical infor-
mation actually degrades the model’s accuracy, dropping
the true positive rate to 0%. This means that a lack of
history is not the source of the poor accuracy and indeed,
that the introduction of additional features that have little
impact on application’s behavior have a negative impact
on accuracy.

IV. Abnormality-Enhanced Classification
The reason for the poor accuracy of the naive approach

is that system faults do not affect applications in a consis-
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Figure 4. Prediction accuracy of Logit Boost classifier
on KnownFault faulty runs and non-faulty runs, using
naive training with 5-event history on faulty runs

tent. Instead, they only affect a small fraction of them. For
example, faults that affect CPU performance will have little
effect on memory-intensive code. Further, if the problem



Figure 5. Abnormality values of events in a run of BT
injected with CPU_incr

comes from errant software activity, its effects will be even
more irregular because the execution of this software will
be scheduled into discrete units by the operating system.
Figure 5 illustrates this effect as exhibited in a run of
the BT application when injected with the CPU-intensive
thread. The horizontal axis shows individual events and
the vertical axis shows a measure of how significantly the
event’s behavior is affected by the fault (i.e., abnormality
values, which are computed as shown below). The figure
shows that most events during the non-faulty time period
behaved normally (with abnormalities on the order of
1E+1), with a few outliers. Further, it shows that when the
fault was activated, most events still behave normally, with
a few events that were affected very significantly (with
abnormalities on the order of 1E+6).

A problem with the basic modeling approach is that
while the effect of faults is irregular, this model assumes
the exact opposite, labeling as faulty all events in the
faulty-run. This presents the classification algorithm with
a very noisy training set, forcing it to differentiate two sets
of events:

• “Normal” events - almost all (e.g. 99.9%) behave
normally with a few outliers, and

• “Faulty” events - most (e.g. 90%) behave normally
and some behave abnormally.

Since the behavior of the events in the two sets overlaps
significantly, most classifiers cannot easily differentiate
them. This suggests that the key to creating a more accurate
model is to pre-process (or filter) the training data provided
to classifiers to focus them on just truly abnormal events.

To evaluate this hypothesis, we create a probability dis-
tribution that describes the behavior of the events in each
context. The distributions are estimated using the events
in the non-faulty runs in our training set. For each event
context, we compute five probability distributions, one for
each quantity observed by our monitor in each context:
elapsed time and four performance counters. Distributions
capture the normal behavior of application events and make
it possible to measure the deviation of an event from
its normal behavior as the event’s probability given the

distributions of any of its observed quantities.
Since we don’t know in advance what probability

distribution would be the best fit for the data, we use non-
parametric density estimation to build the distributions. In
particular we used normalized histograms to represent the
distributions. Since in our case the range of possible values
was unknown, we used an adaptive histogram algorithm
that chooses the locations and sizes of the histogram value
ranges to fit the observed data. The algorithm works as
illustrated in Figure 6. When a new data value is added to
the histogram, is it assigned to its own value range. When
the number of ranges in the histogram rises above a pre-
defined bound, the two nearest ranges are merged. Finally,
we turned these histograms into continuous probability
distributions by (i) connecting adjacent buckets with lines,
(ii) attaching the upper and lower halves of a Gaussian
distribution to the largest and smallest bucket, respectively,
to model the probability of data points above and below the
observed data region and (iii) normalizing the entire region
to ensure that the sum under the curve is equal to 1. In our
experiments we used histograms with 30 buckets since in
practice this provides sufficient resolution to ensure good
model accuracy.

While the resulting distributions accurately capture the
distributions of observed time and counter values, they also
include some noise in the form of outlier values that are
poor representatives of the application’s normal behavior.
We minimize this effect by removing the 10% largest and
smallest values seen of each observation at each event
context.

Data Values

Data Values

Histogram
Bucket 
Counts

Data
Samples

Gaussian Tail

Line Connectors

Figure 6. Example histogram

We use the probability distributions as a filter on the
training sets provided to the classification algorithms in
the procedure described in Section III. For each event
from a faulty run we compute the probability of each
of its observed quantity (time and performance counters).
We then compute the event’s abnormality value as the
negative logarithm of its probability. We use this measure
because the logarithm function helps classifiers differen-
tiate between the small probability values of abnormal
events. This is useful if abnormality values are used as
features. Further, it is negated so that unlikely events
have larger values, which is more intuitive for our fault
detection use-case. We compute the abnormality value of



the entire event as the Euclidean average of the abnormality

values of each observed quantity (
√∑n

i=1 abnorm2
i

n for n
observed quantities, where abnormi is the abnormality
value of quantity i). Events that occur while the fault thread
is executing and have abnormality values above a given
threshold are labeled with the fault type and location, as
described in Section III. Events that occur while there is
no fault or those that have abnormality values below the
threshold are labeled as non-faulty. the threshold is equal
to the maximum abnormality values ever observed, plus
three standard deviations to make sure that normal events
are never confused with abnormal ones. Finally, while we
trained our original model on a randomly chosen subset of
upto 80,000 events, in this adjusted model we must ensure
that the classifier is provided is many examples of both
normal an abnormal events. We use the same procedure
to choose upto 40,000 normal events and upto 15,000
abnormal events to train the classifier. The number of
events used in this experiment was smaller than the number
used for the original model to show that the number of
events is not important to the model’s ultimate accuracy.

Figure 7(a) shows the result of using event probabilities
to filter the training set for the KnownFault faulty runs,
using Logit Boost classifier (results for UnknownFault
are very similar). Specifically, it shows the absolute differ-
ence between the true/false positive/negative rates of the
original predictor (labeled ‘‘Plain Classifier’’)
and the new predictor with abnormality filtering (labeled
‘‘Abnorm Filtered’’). The difference is Abnorm
Filtered - Plain Classifier. The data shows that
the use of abnormality filtering increases the number of
positive detections, with many more true positives than
false positives. The same is observed with negative detec-
tions, where the the number of false negatives is reduced
more than the true negatives. Note, however that the
number of true positive predictions is still not significantly
higher than the number of false positive predictions and is
much lower than the number of false negative predictions:

BT CG LU MG SP
true positives
false positives 2.99 2.09 2.17 2.97 0.92
true positives

false negatives 0.27 0.16 0.2 0.12 0.16
The large number of false negatives relative to true pos-
itives occurs because the model is trained to differentiate
normal events from different types of abnormal events.
As such, even when a fault thread is executing it will
only label the abnormal events as faulty, classifying the
remaining events as non-faulty even though they are sur-
rounded by many faulty events. This means that the key
to detecting faulty regions of application execution is to
check whether fault predictions are common. Further, if
we look at the actual positive predictions we find that the
true positives consistently predict the same fault type and

location whereas false positives are more erratic, making
a variety of different predictions. Both these properties is
used in Section VI to detect faulty periods of application
execution by looking at sequences of frequent identical
fault predictions.
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Figure 7. Prediction accuracy of Logit Boost classifier
using abnormality-enhanced training on KnownFault
faulty runs

Figure 7(b) shows the filtered model’s accuracy for non-
faulty runs relative to the plain classifier. It hows that al-
though filtering significantly improves fault detection rates,
it also has a side-effect of increasing the false positive rate
by 0% - .35%. As discussed in Section VI this causes tools
based on this model to have some false positives but overall
does not significantly degrade this technique’s utility for
creating a useful system administration tool.

V. Using Abnormality as a Feature
Having established that event probabilities can be used

to improve model accuracy by filtering the training set,
another key question to answer is whether these probabili-
ties can be used as features to further improve the accuracy
of the model. We explored this by looking at two sets of
additional features.

First, we incorporated the abnormality value of each
observed quantity (elapsed time and performance counters)
of an event as additional classification features. The abnor-
mality values were computed as above, with respect to the
probability distributions from the non-faulty runs. The new



training set thus contained almost twice as many features
as the training set evaluated in Section IV. For each event
we used the event context as well as two numbers for each
observable quantity: its observed value and its abnormality
value. In subsequent figures this type of training is denoted
‘‘Abnorm Feature’’. Figures 8 (a) and 9 (a) show
the accuracy of these classifiers using the Logit Boost clas-
sifier on the KnownFault faulty runs (very similar results
for UnknownFault) and non-faulty runs, respectively.
These figures show the difference between the accuracy
of the two techniques (Abnorm Feature - Abnorm
Filter). This data shows that the use of abnormality
as a feature adds little to the model’s accuracy. However,
as shown in Section VI, these small differences can be
important when trying to detect the faulty time period from
a relatively small number of fault detections. For instance,
in the KnownFault experiments observe that Abnorm
Feature’s number of true negatives for CG rises and
true and false negative counts fall. Meanwhile, for MG it
sees a rise in the number of true positives, a smaller rise for
false positives, and a drop in false negatives. The increased
number of true positive and negative detections will make
easier to identify time periods as being faulty. Meanwhile,
note that the dominant effect of Abnorm Feature on
SP is a rise in the number of false positives, which is
much larger than the rise in true positives. This will serve
to confuse the signal, making fault detection less precise.

To better understand the value of probabilities we
examined the effect of using all available probability
information as classifier features. To this end we took
all the abnormal events that occurred during each faulty
training run and computed a probability distribution from
them, following the algorithm described in Section IV. We
used just the abnormal events rather than all events because
these events represent the particular ways in which each
type of fault affects the application’s execution. We then
used them in two ways to build a training set for our
classifiers. First, we extended the above training set by
providing for each event the probability of each observed
quantity with respect to the each fault type’s probability
distribution. Each event was thus described by its (i) type,
(ii) observed quantities, (iii) their abnormality values and
(iv) their probabilities with respect to fault distributions.
This was termed ‘‘Fault Prob Feature’’ training.
Further, to understand the relative value of probabilities vs
observable quantities, we also created a training set that
omits observable quantities, providing just event types,
the abnormality values and probabilities with respect to
fault distributions, denoting this ‘‘Only Fault Prob
Feature’’. Note that since we built distributions of
faulty runs from only abnormal events, these distributions
correspond to far fewer events than the distributions of
non-faulty runs. If we did not observe any events for a

given event context, the probability of observables of all
events within this context was set to a dummy constant.

Figures 8(b,c) and 9(b,c) shows the results of training
the Logit Boost classifier using the modified training
sets. Figure 8 shows their accuracy on KnownFault
faulty runs (results for UnknownFault are similar) and
Figure 9 shows results for non-faulty runs. The introduc-
tion of new features (Fault Prob Feature) results
in a somewhat lower accuracy for faulty runs as well as
additional false positives on non-faulty runs. However, it
is not clear whether the reduced accuracy is caused by
probabilities being a poor data source or by the noise
introduced by constructing probability distributions from
a small number of events. Further, the data also shows
that removing the observable quantities from the training
set (Just Fault Prob Feature) further degrades
model quality. This suggests that abnormality values do
not carry as much information as the original observables
about an event’s behavior.

Note that while the absolute differences in true/false
positive/negative counts differ only percent, this may be a
large amount compared to the total number of faulty events
during the application’s execution. As shown in Section VI,
these differences in event detections have a large effect on
the accuracy of tools built from these models.

VI. Concrete Fault Predictions via Event
Clustering

Fault detection and characterization at the level of
individual events or 50ms time windows is interesting but
on its own it is not useful as a system administration
tool because it produces output that is too fine-grained
and verbose for human consumption. A real administration
tool must synthesize the individual fault classifications
into a report provided to an administrator that concisely
summarizes the time period when the fault occurred, the
portion of the system affected by the fault and the fault’s
type. The final section of this paper examines ways to build
such a tool and how the use of probability information
affects the tools accuracy.

The classification algorithm described above labels in-
dividual events and time periods with the type of fault that
was experienced at that time, if any. As discussed above,
the effects of faults are erratic, with some events behaving
abnormally and most events behaving normally. As such,
to succinctly summarize the fault’s time, location and type
we must identify the region of time that has a high density
of identical fault predictions. To this end we employed a
simple one-pass algorithm that identifies a time period as
faulty if

• All the time windows inside it are labeled with
the same fault type and faulty process or have the
NO_FAULT label, and
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Figure 8. Difference in prediction accuracy on KnownFault faulty runs using abnormality as a feature, relative to Abnorm
Filter
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Figure 9. Difference in accuracy on non-faulty runs using abnormality as a feature, relative to Abnorm Filter

• There are at least two windows inside the time period
that have fault labels, and

• The first and last time window have fault labels, and
• All adjacent time windows with a fault label are no

more than a given amount of time τ away from each
other.

The parameter τ controls the fault density of the de-
sired clusters and was set to 500ms in our experiments.
While we also experimented with more complex clustering
algorithms that use elaborate distance metrics and free
parameters, they do not perform better than the above
algorithm and their notions of density are less intuitive.
Further, since this algorithm can be implemented to use
one pass, it is well-suited for low-latency online fault
detection.

Figure 10 shows the accuracy of fault prediction on
the KnownFault faulty runs and non-faulty runs us-
ing the above algorithm and the Logit Boost classi-
fier that was trained using the Plain Classifier,
Hist Classifier and Abnorm Filtered algo-
rithms. Here successful fault detection is defined as pro-
ducing (i) a single time period labeled with the correct
fault type and fault process that (ii) overlaps with the time
when the injected fault was actually executing, and (iii)
the predicted duration of the fault is no more than twice
as long as the actual fault. This definition ensures that
the predicted fault both points to the type and location

of fault as well as a short time period where the fault
occurred. The data shows that when the classifier is trained
on the Plain Classifier training set the clustering
algorithm can correctly predict some faults, reaching 20%
accuracy on BT but much lower on the other applications.
Meanwhile, Hist Classifier’s 0% rate of positive
event detections results in 0% overall fault detection ac-
curacy. Abnorm Filtered features significantly better
accuracy that ranges from 56% for CG to 84% for BT.

Meanwhile, looking at the non-faulty runs, Plain
Classifier and Hist Classifier have no false
positives. Plain Classifier has no false positives
because its predictions are so erratic, it is very unlikely
to get two identical predictions that the clustering algo-
rithm can use to make a fault prediction. In contrast,
Hist Classifier has no false positives simply be-
cause it makes no positive fault predictions. Abnorm
Filtered’s fault detection is more aggressive and ac-
curate and this results in it detecting faults during a nor-
mal execution. Although the clustering algorithm guards
against erroneous fault detections by requiring that the
same fault is detected in at least two nearby time windows,
real behavioral abnormalities that were not part of the
injected fault can generate such a consistent detection if
they are similar to the injected fault types. This suggests
the choice of fault examples on which a model should be
trained is very complex and in the future we will work on



ways to more clearly separate normal application variation
from truly faulty behavior.

Figure 12 presents the difference between the accu-
racy of clustering based on Abnorm Feature, Fault
Dist Feature and Only Fault Dist Feature
and Abnorm Filtered on both KnownFaults faulty
runs and non-faulty runs. On faulty runs Abnorm
Feature is competitive with Abnorm Filtered, pro-
ducing similar fault detection rates. Further, it out-performs
Abnorm Feature on non-faulty runs, reducing the false
positive rate in BT from 12.5% to 10%, in CG from 5%
to 0%, in LU from 10% to 2.5% and in MG from 10% to
2.5%. However, on SP the false positive rate of Abnorm
Feature rises from 2.5% to 12.5%. These results are
consistent with the per-event accuracy analyses presented
in Section V and are explained in differences in number
of true and false predictions of individual events.

Similarly, the poorer per-event accuracy of Fault
Dist Feature and Only Fault Dist Feature
results in poorer accuracy of full fault detection based on
these models, with false positive rates 2.5% to 50% higher
than for Abnorm Filtered.
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Figure 11. Difference between fault detection and classi-
fication accuracy for KnownFault and UnknownFault

Looking more broadly at the applicability of this model
and clustering algorithm for system administration tasks,
Figure 11 shows the absolute difference between the ac-

curacy for the KnownFault and UnknownFault use-
cases (UnknownFault - KnownFault). The data shows
that when detecting a fault that the model was not explicitly
trained to detect, the tool has lower accuracy. Detection is
5%-30% lower for BT, CG, LU and MG but it is actually
10% better for SP. This suggests that proper use of such
a tool requires a good understanding of the types of faults
that are important to administrators so that appropriate
fault representatives can be created.

Our conclusions are summarized in Figure 13, which
presents the accuracy of fault detection in three scenar-
ios: (i) detecting faults that were anticipated by system
administrators (KnownFault runs), (ii) not anticipated
by administrators (UnknownFault runs) and (iii) for
not detecting faults in non-faulty runs. The Logit Boost
classification algorithm was used for these results. Ab-
normality filtering has a clear effect on the accuracy
of fault detection, improving it from 5%-10% with the
Plain Classifier to 55%-65% with the Abnorm
Filtered Classifier, averaged across all our ap-
plications. Further, the use of abnormalities as features
for the classifier helps reduce the rate of false positive
detections during non-faulty runs from 6% to 5%. Finally,
our experiments show that the use of event probabilities
with respect to faulty does not contribute the accurate fault
detection, resulting in reduced detection accuracy and a
higher rate of false detections.

VII. Related Work
Automatic fault detection can be broadly grouped under

two categories according to the way system events are
classified as normal or abnormal: (1) the probability-based-
classifier (or generative) approach, in which a probability
model is used to classify events on application executions
by evaluating their probability value. The model used is
typically a probability distribution that can be estimated
using parametric and non-parametric methods. In [16] au-
thors build a TAN model to capture correlations of system
metrics with the goal of predicting whether new metrics
belong to SLA violations or not. The TAN model allows
them to get probability values of multiple metrics more
efficiently than in a Bayesian network. In [17] authors
use a mixture of Gaussian distributions to capture the
probability of performance metrics. Approaches like [8]
use histograms as probability distributions, along with the
KL norm, to characterize deviations from normal behavior.
The use of Bayesian classifiers along with mixture models
to predict disk drives failures is explored in [18]; (2)
the traditional-classifier (or discriminative) approach, in
which a classifier is used to determine whether events
are normal or abnormal. This approach typically does not
rely on a probability distribution to make decisions but
in discriminative machine-learning classifiers like decision
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Figure 10. Fault detection and classification accuracy of clustering on KnownFault faulty runs
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Figure 12. Difference in fault detection accuracy on non-faulty runs relative to Abnorm Filtered

trees, neural networks, support vector machines, and un-
supervised methods like clustering. In [19] a probabilistic
context-free grammar (PCFG) is used to identify abnormal
web requests in large e-commerce systems. The grammar
is trained using faulty and non-faulty runs (which are
generated by fault injection). In [20] clustering of ap-
plication traces is used to detect performance anomalies
by looking at clusters with small number of elements
(abnormal clusters). In [21] authors use a Markov model to
identify abnormal changes of system metrics correlations.

A contribution of our paper is the use of abnormality
information (a generative approach) as a filter for the
traditional-classifier approach in order to make it more
accurate in detecting common faults. To the best of our
knowledge, no previous work has been devoted to study
this hybrid technique.

VIII. Summary
This paper examines the the problem of detecting,

localizing and characterizing system faults using statistical
modeling of application and system behavior. It (i) consid-
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Figure 13. Summary of fault detection accuracy results for all model types and sets of evaluation runs

ers an intuitive application of machine learning techniques
to this problem, (ii) experimentally shows the limitations
of this approach and (iii) identifies how it can be improved
significantly via the use of event abnormality information.
Our approach builds a secondary probabilistic model to
both filter the training set provided to the primary model
and to provide the model with additional features. It is built
on the observation that system faults have a very incon-
sistent effect on application behavior, strongly affecting
some application regions, while leaving most to execute
normally. We have experimentally shown that it is possible
to significantly improve the quality of the training set by
computing the probability that a given event will appear
in a non-faulty execution and only labeling truly abnormal
events as faulty. We have further demonstrated that the
false positive rate of fault detection can be improved if
these measures of abnormality are also used as additional
features for the classifier. Finally, our experiments indicate
that while the probability of events with respect to normal
executions is useful for fault detection, probabilities with
respect to faulty execution are not useful for fault detection.
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