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Abstract. A minimum set of equations based on the Peeling-Ballooning (P-B) mode with non-ideal physics
effects (diamagnetic drift, ExB drift, resistivity, and anomalous electron viscosity) is found to simulate
pedestal collapse when using the BOUT++ simulation code, developed in part from the original fluid edge
code BOUT. Linear simulations of peeling-ballooning modes find good agreement in growth rate and mode
structure with ELITE calculations. The influence of the E×B drift, diamagnetic drift, resistivity, anomalous
electron viscosity, ion viscosity, and parallel thermal diffusivity on peeling-ballooning modes is being studied;
we find that (1) the diamagnetic drift and ExB drift stabilize the peeling-ballooning mode in a manner
consistent with theoretical expectations; (2) resistivity destabilizes the peeling-ballooning mode, leading to
resistive peeling-ballooning mode; (3) anomalous electron and parallel ion viscosities destabilize the peeling-
ballooning mode, leading to a viscous peeling-ballooning mode; (4) perpendicular ion viscosity and parallel
thermal diffusivity stabilize the peeling-ballooning mode. With addition of the anomalous electron viscosity
under the assumption that the anomalous kinematic electron viscosity is comparable to the anomalous
electron perpendicular thermal diffusivity, or the Prandtl number is close to unity, it is found from nonlinear
simulations using a realistic high Lundquist number that the pedestal collapse is limited to the edge region
and the ELM size is about 5-10% of the pedestal stored energy. This is consistent with many observations
of large ELMs. It is also shown that for high Lundquist number there are two distinct processes in the
evolution of pressure profiles: a fast collapse greatly flattening the pressure profile near the peak pressure
gradient on the order of tens of Alfvén times after the onset of nonlinear P-B mode and a slow buildup
of pressure gradient. We can characterize the fast collapse as a magnetic reconnection triggered by P-B
modes→ an island formation and magnetic braiding→bursting process and a slow collapse as a turbulence
transport process. The estimated island size is consistent with the size of fast pedestal pressure collapse. In
the stable α-zones of ideal P-B modes, nonlinear simulations of viscous ballooning modes or current-diffusive
ballooning mode (CDBM) for ITER H-mode scenarios are presented.

1. Introduction

Through the development of the theory of peeling-ballooning (P-B) modes and their numeri-
cal implementation in codes such as ELITE [1, 2], a robust prediction of edge MHD stability
limits is available for existing and future tokamaks. It has been found that large ELMs are
triggered and pedestal height is constrained by the ideal P-B stability. P-B modes are ideal
MHD modes which are driven by a combination of sharp pressure gradients (ballooning)
and bootstrap current in the pedestal. The onset of each ELM (type-I) has been consistently
found to correlate with crossing of the ideal P-B stability boundary [3], i.e., P-B theory
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successfully describes the trigger of the ELM. Having said this, there are situations where
the profiles sit at marginal stability for some time before the ELM is triggered [4], so linear
stability analysis may not provide the complete picture. The nonlinear dynamics, and in
particular the physics of the ELM energy loss and pedestal dynamics after the onset of each
ELM (type-I) remain uncertain, and may even play some role in the trigger.

Nonlinear ELM simulations become computationally difficult for high Lundquist number
due to the fine resolution needed to resolve the narrow current sheet at rational surfaces
and/or narrowing fingers as a result of explosive ideal MHD instabilities predicted from
nonlinear ballooning theory [5, 6, 7], leading to collapse of the simulation time-step at the
early non-linear stage of P-B mode development[6]. A common practice is to use an anoma-
lous resistivity and/or ion viscosity as well as parallel thermal diffusivity to achieve nonlinear
ELM simulations, which leads to significantly different linear growth rates and instability
thresholds. Furthermore, in nonlinear resistive MHD simulations, the pedestal pressure col-
lapses deep into the plasma core, which yields much larger ELM sizes than observed.

In this paper we summarize recent developments in nonlinear simulations of peeling-ballooning
modes with anomalous electron viscosity and explore its role in ELM crashes[8, 9]. From
nonlinear simulations we have found that the P-B modes trigger magnetic reconnection,
which drives the collapse of the pedestal pressure. The hyper-resistivity is found to limit
the radial spreading of ELMs by facilitating magnetic reconnection. In quiescent H-mode
plasma, the hyper-resistivity also drives the viscous ballooning mode or the so-called current
diffusive ballooning mode (CDBM)[10], which is a magnetohydrodynamic (MHD) instability
and localizes in the outer region of the torus where the gradient of the pressure aligns with
the magnetic curvatures.

The organization of this paper is as follows. The basic set of equations and simulation model
are given in Sect. 2. Nonlinear simulations of peeling-ballooning modes are described in
Sect. 3. Nonlinear CDBM turbulence simulations in ITER H-mode Scenarios are given in
Sect. 4. The results are summarized and discussed in Sect. 5.

2. A Non-Ideal MHD Simulation Model

In the present paper, we describe nonlinear simulations of plasma edge pedestal collapse
using a three-field model in the tokamak configuration. The simulations are carried out in
the BOUT++ two-fluid framework [11], which allows studies of nonlinear dynamics of ELMs
including extensions beyond MHD physics. Based on the P-B model with non-ideal physics
effects (diamagnetic drift, ExB drift, resistivity, anomalous viscosity and parallel thermal
diffusivity), a minimum set of nonlinear equations for perturbations of the magnetic flux
A‖, electric potential φ, and pressure P can be extracted from a complete set of the BOUT
two-fluid equation [14], with an additional effect of hyper-resistivity incorporated [15]. This
can be written as
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Here ∇‖F = B∂‖(F/B) for any F , ∂‖ = ∂0
‖ + b̃ · ∇, b̃ = B̃/B = ∇‖A‖ × b0/B, ∂

0
‖ =

b0 · ∇, κ0 = b0 · ∇b0. Although hyper-resistivity ηH , also known as electron viscosity, is
generally negligibly small in collisional plasmas, it can be significant in a collisionless plasma.
In this model the frozen-in flux constraint of ideal MHD theory is broken by either resistivity
or hyper-resistivity. To investigate the effect of transport on the peeling-ballooning stability,
the parallel thermal diffusivity χ‖, anomalous parallel and perpendicular ion viscosities (µi‖
and µi⊥) are also included. However, unless specified, all transport terms — viscosities,
thermal diffusivity, hyper-resistivity, etc. — are zero.

The equations (1)-(3) are solved using a field-aligned (flux) coordinate system (x,y,z) with
shifted radial derivatives [11]. Differencing methods used are 4th-order central differencing
and 3rd-order WENO advection scheme. The resulting difference equations are solved with a
fully implicit Newton-Krylov solver: Sundials CVODE package. Radial boundary conditions
used are: $ = 0,∇2

⊥A‖ = 0, ∂P/∂ψ = 0, and ∂φ/∂ψ = 0 on the inner radial boundary;
$ = 0,∇2

⊥A‖ = 0, P = 0, and φ = 0 on outer radial boundary. The domain is periodic
in the parallel coordinates y (with a twist-shift condition) and in z (toroidal angle). For
efficiency, when performing nonlinear simulations, only 1/5th of the torus is simulated. The
number of grid cells in each coordinate are nψ = 512, nθ = 64, nζ = 32 for linear runs and
nζ = 64, 128, 256 for nonlinear runs (nψ and nθ are kept fixed).

In this study, the resistivity η, hyper-resistivity ηH , ion viscosities (µi‖ and µi⊥), parallel
thermal diffusivity χ‖ and edge density n0 = 1× 1019m−3 are treated as constants in space-
time across the simulation domain. In the present simplified model, both equilibrium flow
and turbulent zonal flow have been set to be zero: V0 = VE0 + V∇Pi

= 0 and 〈δv〉ζ =
〈vE〉ζ + 〈v∇Pi

〉ζ = 0. Therefore, the equilibrium electric field is Er0 = (1/n0Zie)∇rPi0 with
ion pressure Pi0 = P0/2, and the perturbed electric field is 〈Er〉ζ = (1/n0Zie)∇r〈Pi〉ζ . The
zonal magnetic field is also set to be zero as it is negligibly small compared to the equilibrium
magnetic field B0.

3. Nonlinear Simulations of Peeling-Ballooning Modes in Circular Geometry

To study the physics of nonlinear P-B mode dynamics, we choose circular cross-section
toroidal equilibria with an aspect ratio of 2.9 generated by the TOQ equilibrium code.
Two model equilibria have been simulated for H-mode plasmas with steep pressure and
current gradients at the edge [16]. The first equilibrium (cbm18 dens8), which we describe
in some detail here, is far from the marginal P-B instability threshold with a pedestal toroidal
pressure βt0 = 1.941× 10−2 and a normalized pedestal width Lped/a = 0.0486. We have also
considered a second equilibrium (cbm18 dens6) that is near the marginal P-B instability
threshold with βt0 = 1.45 × 10−2 and Lped/a = 0.0518. Results for that case are described
in [8], and will not be discussed here. Parameters that are held fixed in the simulations
include a minor radius a = 1.2m, major radius R0 = 3.4m, toroidal field on axis B0 = 2T ,
an edge qa '3, the pedestal pressure 2/3 of the axis pressure, and a pedestal half width 7%
of the poloidal flux.



A series of BOUT++ simulations is conducted to investigate the scaling characteristics of
the P-B mode in the strongly unstable case as a function of two dimensionless quantities
S and SH [8]. One is a S-scan for a fixed SH = 1012, while the other is a SH-scan for a
fixed S = 107 or S = 108. Here the Lundquist number S = µ0R0vA/η is the dimensionless
ratio of an Alfvén wave crossing timescale to a resistive diffusion timescale of magnetic
field, vA is the Alfvén velocity, η resistivity, and R the major radius. Similarly, the hyper-
Lundquist number SH = µ0R

3
0vA/ηH = S/αH is the dimensionless ratio of an Alfvén wave

crossing timescale to a hyper-resistive current diffusion timescale, with a dimensionless hyper-
Lundquist parameter αH = ηH/R

2
0η. For a collisional electron viscosity, αH ' µe/R

2
0νei.

Assuming that the anomalous kinematic electron viscosity µe is comparable to the anomalous
electron thermal diffusivity χe, for edge plasma parameters µe ' χe ' 1m2/s and electron-
ion collision frequency νei ' 105/s, we can estimate the amplitude of the hyper-Lundquist
parameter to be αH ' 10−4 − 10−6.

3.1 Linear Simulations

3.1.1 Linear benchmarking

Linear simulations of P-B mode evolution find good agreement in growth rate and mode
structure with ELITE calculations [2, 11]. Fig. 1 shows the growth rate vs toroidal mode
number n of the strongly unstable equilibrium as calculated by BOUT++ for various cases.
A good agreement for an ideal MHD model is shown between GATO (open circle), ELITE
(open triangle), and BOUT++ (black curve with filled circle). The influence of the E × B
drift, diamagnetic drift, resistivity, and anomalous electron viscosity (hyper-resistivity) on
linear P-B modes has been studied. We find that (1) the diamagnetic drift and ExB drift
stabilize the P-B mode (red and blue filled circle) in a manner consistent with theoretical
expectations [12, 13]; (2) resistivity destabilizes the P-B mode, leading to resistive P-B mode
(green cross) for S = 105 and SH = ∞; (3) anomalous electron viscosity destabilizes the
P-B mode, leading to a viscous P-B mode (purple open square) for a fixed S = 108 and
αH = 10−4. For a fixed S = 108, as αH reduces from 10−4 to 10−6, both resistive and viscous
effects disappear. The BOUT++ reduced-MHD model captures the marginal stability value
n > 3.

3.1.2 The effect of transport coefficients on linear instabilities

In nonlinear simulations, the stability of P-B mode is often evaluated with transport coef-
ficients where plasma profiles are evolving as in real experiments. Therefore the effect of
transport coefficients on linear stability analysis should be assessed. The coefficients under
discussion are only the diagonal elements of the transport matrix, such as viscosities, ther-
mal diffusivity, and hyper-resistivity. The effect of hyper-resistivity is discussed in sect. 3.1.1.
The parallel thermal diffusivity χ‖ is typically in kinetic regime inside the pedestal and in
the collisional regime in the Scrape-Off-Layer. While the ion viscosities are typically caused
by fluctuations, and can be obtained by renormalizing the nonlinear interaction with back-
ground turbulence.

Figure 2 shows the dependence of the growth rate on thermal diffusivity, the perpendicular
and parallel ion viscosities for mode n=15 with the E×B drift and diamagnetic drift, S = 108

and αH = 10−4. The other parameters are the same as in Fig. 1. The general trend is that the



thermal diffusivity and ion perpendicular viscosity stabilize the P-B mode, while the parallel
ion viscosity destabilizes the P-B mode. When the parallel thermal diffusivity χ‖ � 10DA

where DA = R2/τA = 3.3 × 108m2/s and τA = R/VA is the Alfvén time, the growth rate
of peeling-ballooning modes is significantly reduced. With increasing χ‖, the parallel mode
structure becomes more flute-like and the radial mode profile has narrowing finger structures
on top of the usual Gaussian-like shape peaked at the maximum pressure gradient location.
An important consideration when interpreting the results presented in Fig.2a) is theoretical
models used to estimate pedestal parallel heat diffusivity χ‖. In terms of Spitzer-Harm
parallel heat diffusivities, χSHe,‖ ' 3.2vTeλei, while for a heat flux limiting model, χFLe,‖ '
vTeq95R. Here vTe is the electron thermal speed, λei = vTeτei the electron thermal mean free
path and τei ∝ v3

Te the collisional time for electron-ion Coulomb scattering evaluated at the
thermal speed. For typical pedestal plasma parameters, Te,ped=1.0keV, ne,ped = 2×10−19/m3,
q95=4, χFLe,‖ ' 0.55DA, the growth rate is reduced by 26% due to parallel heat conduction.

For the same parameters, χSHe,‖ ' 1.53× 1010m2/s and χSHe,‖ /DA ' 50, the the growth rate is

significantly reduced. For ITER pedestal parameters Te,ped ' 4.5keV, ne,ped ' 5× 10−19/m3,
χSHe,‖ ' 2.62 × 1011m2/s and χSHe,‖ /DA ' 794, while χFLe,‖ ' vTeq95R ' 1.16DA. Similarly, for

typical pedestal plasma parameters, µi⊥ ' (0.1 − 1)m2/s as radial thermal diffusivity with
the assumption that the Prandtl numbers are close to unity, namely, µe,⊥/χe,⊥ ∼ µi,⊥/χi,⊥
and χe,⊥ ' χi,⊥, which yields µi⊥/DA ' (0.3 − 3) × 10−8, the impact of the perpendicular
ion viscosity on the growth rate is negligible small.

3.2 Role of the hyper-resistivity on nonlinear simulations

Nonlinear simulations of P-B modes at the early non-linear stage of development reveal that
the current sheet narrows with increasing Lundquist numbers. For typical pedestal plasma
parameters, the Lundquist number is around S ' 108−1010, the growth rate of the P-B mode

is around γPB ' 0.1ωA, and the width of the resistive current sheet ∆J ' R
√
ωA/γPB/S is

around 10-100 microns, which is comparable to be electron Larmor radius ρe. In the absence
of the hyper-resistivity, the simulation time-step collapses as the radial scale-length of the
current sheet approaches the radial grid spacing ∆x for typical resistive MHD simulations
∆x � ∆J ' ρe . With the hyper-resistivity, the width of the hyper-resistive current sheet
is ∆H ' R(ωA/γPB/SH)1/4. The hyper-resistivity could arise, for example, from small scale
electron turbulence in the H-mode pedestal [17]. For the rest of this paper, we assume
SH = 1012; hence ∆H(' 1.78mm)>∆x(' 1.1mm) � ∆J with ∆H/∆J > 17.8.

The radial pressure profiles at the outer mid-plane at several different time slices and different
Lundquist numbers are shown in Figure 3. It is clearly shown that the pedestal pressure
collapses deeply inside the core plasma at low Lundquist number (S = 105). It is also shown
that for high Lundquist number there are two distinct processes in the evolution of pressure
profiles: a fast collapse greatly flattening the pressure profile near the peak pressure gradient
on the order of tens of Alfvén times after the onset of nonlinear P-B mode, t = 74τA,
and a subsequent slow buildup of pressure gradient. We can characterize the fast collapse
as a magnetic reconnection (triggered by P-B modes) → an island formation → bursting
process, and a slow buildup as a turbulence transport process. The radial-poloidal pressure
profiles clearly show the characteristics of the ballooning mode. As is well known from linear
instability analysis, φ and A‖ have ballooning parity for the P-B mode. In the nonlinear
stage, however, tearing parity component appears due to the nonlinear mode coupling, which



facilitates magnetic reconnection and island formation.

3.3 ELM-size

Defining an ELM size as ∆th
ELM = ∆WPED/WPED = 〈

∫ Rout
Rin

∮
dRdθ (P0 − 〈P 〉ζ)〉t/

∫ Rout
Rin

∮
dRdθP0,

the ratio of the ELM energy loss (∆WPED) to the pedestal stored energy Wped (Wped =
3/2PpedVplasma), the ELM size can be calculated from each nonlinear simulation. Here P
is the pedestal pressure and the symbol 〈〉t means the average over time (∼ 50 − 100τA)
and symbol 〈〉ζ means the average over bi-normal periodic coordinate. The lower integral
limit is the pedestal inner radial boundary Rin, while the upper limit is the radial position
of the peak pressure gradient Rout. Alternatively, the ELM size ∆ELM can be calculated
by radially integrating the pressure profile at the outer mid-plane as done in experiments,
which is about a factor of two larger than that based on the 2D integral with ballooning
characteristics: ∆ELM ' 2∆th

ELM . The ELM size scaling vs. Lundquist number S is given in
Fig. 4, which plots the ELM loss fraction ∆Wped/Wped as a function of the Lundquist number
for a fixed SH = 1012. The size of the ELM eruption varies dramatically between the high
and low resistivity cases. As the Lundquist number S is increased, the loss of thermal energy
during the ELM drops from ∼ 50% to ∼ 10% over a range of S = 104 − 107 and then stays
independent of S. This is due to the transition of dominance over resistance in Ohm’s law,
ηJ → ηH∇2

⊥J and therefore leads to a significant reduction of the inward spreading of the
perturbed magnetic field from the region of the P-B drive (peak gradient region). For better
convergence, a small parallel diffusion term is added to Eq. (2) for S = 1010. A large resistiv-
ity (S ∝ η−1) yields a large ELM size, which is contradictory to experimental observations
in many devices that the relative ELM size scales inversely with pedestal collisionality [18].

However with a fixed hyper-resistivity SH = 1012, when S > Sc =
√
SHωA/γ > 106, which

is relevant to today’s modestly sized tokamaks and ITER, the ELM size is insensitive to the
resistivity.

Furthermore the ELM size is found to be proportional to the hyper-resistivity. If we assume
that the hyper-resistivity scales inversely with pedestal collisionality (ηH ∝ ν−νei , ν > 0), then
the ELM size scales inversely with pedestal collisionality, which is consistent with experi-
ments in the high Lundquist number regime. In this regard, the hyper-resistivity induced
either by dissipative driftwave/electron-temperature-gradient driven modes or electron trans-
port in the presence of stochastic magnetic field in the collisional regime may yield a con-
sistent collisionality.

4. Nonlinear Turbulence Simulations in ITER H-mode Scenarios

To study the physics of nonlinear P-B mode dynamics in x-point divertor geometry, we chose
a toroidal equilibrium with an elongated cross-section and triangularity from one of the
latest designs of the ITER 15 MA inductive H-mode scenario (under the burning condition)
generated by the CORSICA equilibrium code [19]. Parameters are: minor radius a = 2m,
major radius R0 = 6.2m, toroidal field on axis B0 = 5.3T , edge q95 '3.2, poloidal beta
βt0 = 3.4 × 10−3 and Lped/a = 0.0076, edge elongation κ95 = 1.7, and triangularity δ95 =
0.349. Because of the relatively low pedestal height, the P-B mode is stable for this ITER
H-mode plasma. In turn, we investigate current-diffusive ballooning mode (CDBM) [10].
The CDBM is destabilized by the current diffusion (i.e., the anomalous electron viscosity
or hyper-resistivity) and has more impact in the stable α-zones of ideal ballooning mode.



Here α = −q2Rdβ/dr, β = P/2µ0B
2
0 . It is precisely the same physics which limits the radial

spreading of ELMs by facilitating magnetic reconnection when P-B modes are dominantly
unstable. The original three-field CDBM model also includes anomalous perpendicular ion
viscosity µi,⊥ and thermal diffusivity χ⊥, which provide stabilizing effect on the CDBM.
Here we neglect these because nonlinear CDBM itself should provide the thermal transport
to stabilize the CDBM, and the balance between the instability drive from current diffusion
and the sink from self-consistent turbulent transport should determine the pedestal width.

BOUT++ simulations were carried out for CDBM turbulent transport, including the pedestal
region that extends across the separatrix into the scrape-off layer (SOL) and private flux
region. With poloidal flux, ψ, normalized to unity on the separatrix, we take the inner simu-
lation boundary condition to be ψc = 0.85 and the outer boundary at ψw=1.05. The toroidal
segment is typically one fifth of the torus with full poloidal cross section. Radial boundary
conditions used at ψ = ψc and at ψ = ψw are: $ = 0,∇2

⊥A‖ = 0, ∂P/∂ψ = 0, and ∂φ/∂ψ = 0
on the inner radial boundary ψ = ψc; $ = 0,∇2

⊥A‖ = 0, P = 0, and φ = 0 on the outer
radial boundary ψ = ψw. Other boundary conditions are: sheath boundary conditions in y
in the SOL and the private flux regions at the divertor plates, twist-shifted periodic in y
in the closed flux region due to the choice of field-aligned coordinates, and periodic in z.
For simplicity, the insulating divertor plate boundary conditions are used, i.e. all fluctuating
variables are set to zero. In addition, our model used here includes parallel heat conduction
in order to study the end-loss at the divertor plates. The parallel heat diffusivity follows
the electron Braginskii value in the SOL and is set as a constant inside the separatix, a
ceiling for the heat flux at roughly the level of the free streaming flux (χ‖ ' vteq95R) when
kinetic effect is believed to be important. The number of grid cells in each coordinate are
nψ = 256, nθ = 128, and nζ = 64. The small parallel ion viscosity (µ‖i ' 0.01ωAR

2) is used
for numerical convergence and its negligible effect on instability has been checked as shown
in Fig. 2c).

The linear growth rate of CDBM modes vs toroidal mode number n is shown in Figure 5(a)
with diamagnetic drift and ExB drift. The solid curve is the growth rate γ and dot-dashed
curve is the frequency ω. The unstable spectrum is similar to P-B mode with growth rate
peaked at n=20. The mode frequency linearly increases with mode number n. The hyper-
resistivity dependence of the growth rate with mode number n=15 is shown in Fig. 5(b).
The solid curve is the growth rate γ and dashed curve is the frequency ω. The dot-dashed
curve is proportional to α

1/5
H , which is an analytical estimate in strong ballooning limit with

circular cross-section [10].

Nonlinear simulations of the CDBM are shown in Fig. 6 for ITER H-mode plasma. Figure
6(a) shows linear growth and nonlinear saturation of the CDBM. Figure 6(b) shows various
pressure profiles. The black dotted curve is the initial pressure profile P0 while the red dashed
curve is the final pressure profile P = P0 + δpn=0, where δpn=0 means the component of per-
turbed pressure δp with toroidal mode number n=0. The pink curve is the perturbed pressure
〈δp〉rms, where 〈δp〉rms represents the root-mean-square average over bi-normal coordinate
z. The blue curve is the relative pressure fluctuation 〈δp〉rms/P . The initial peak pressure
gradient is located at the normalized ψ̂ = 0.984. From the nonlinear simulations, we observe
the following interesting features. The pressure P gradient drops from initial one P0 by 31%
as a result of CDBM driven radial transport. There is a broad radial profile of perturbed
pressure 〈δp〉rms (red solid curve), indicating more inward turbulent spreading than outward



from its linear instability drive at ψ̂ = 0.984 for H-mode plasma. The relative pressure fluc-
tuation peaks in the SOL due to relatively low pressure there. Figure 7 demonstrates the
pressure perturbation on a poloidal slice (ψ, θ) at a fixed toroidal angle ζ in nonlinear phase,
showing the characteristics of a ballooning mode and highly elongated turbulent structure
away from the outboard midplane due to large x-point shear.

5. Summary

In conclusion, it is found from nonlinear simulations that the P-B modes trigger magnetic
reconnection, which drives the collapse of the pedestal pressure. The anomalous electron
viscosity or hyper-resistivity, is found to limit the radial spreading of the ELMs by facilitating
magnetic reconnection. In addition, current diffusion drives the viscous ballooning modes or
CDBM in the stable α-zones of ideal ballooning mode. The influence of the parallel thermal
diffusivity and ion viscosity on the peak linear growth rate of peeling-ballooning modes is
found within 30% for typical ranges of pedestal plasma parameters. The care must be taken
when using Spitzer-Harm parallel thermal diffusivity for pedestal plasmas since the linear
growth of peeling-ballooning modes can be significantly reduced or suppressed.
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FIG. 1: The influence of the non-ideal physics on the linear growth rate of peeling-ballooning modes vs
toroidal mode number n for the ideal MHD peeling-ballooning mode (black), with diamagnetic drift stabi-
lization (red), with ExB drift stabilization (blue), resistive (green cross) and viscous (purple square) peeling-
ballooning mode.
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FIG. 2: The growth rate of the n = 15 eigenmode vs various transport coefficients with the E × B drift
and diamagnetic drift for S = 108 and αH = 10−4: (a) the parallel diffusivity χ‖, (b) the ion perpendicular
viscosity µi,⊥ and (c) the ion parallel viscosity µi,‖.
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FIG. 3: Reproduced from X.Q.Xu et al, Fig. 2 [1] with courtesy of Physical Review Letter. Radial pres-
sure profiles at several different Lunquist numbers S and 4 time slices (t=0, 74, 160τA). The black dot-
ted line is at t=0; blue dashed group lines for S = 105 at t=74τA and 160τA; red solid group lines for
S = (107, 108, 109, 1010) at t=74τA; yellow dotted-dashed group lines for S ≥ 107 at t=160τA. The vertical
line indicates the position of peak pressure gradient. Here SH = 1012.



FIG. 4: Elm sizes vs Lundquist number S with SH = 1012.



FIG. 5: (a) The linear growth rate of CDBM modes vs toroidal mode number n with diamagnetic drift and
ExB drift. The solid line is growth rate and dashed line is frequency. (b) The linear growth rate of CDBM
modes vs hyper-Lundquist parameter αH with diamagnetic drift and ExB drift. The solid line is growth rate
and dashed line is frequency.



FIG. 6: (a) Time history of perturbed pressure 〈δp〉rms at outside-mid plane at the peak pressure gradient
location. (b) Radial pressure profiles: the black dotted curve is initial pressure P0(×10−2), the red dashed
curve is the final pressure profile P = P0 +δpn=0 with P (×10−2), the pink solid curve for perturbed pressure
〈δp〉rms(×10−3) and blue dotted curve for relative perturbed pressure 〈δp〉rms/P . The vertical dotted line
at ψ = 1 is the separatrix position.



FIG. 7: Poloidal slice through the ITER H-mode plasma in single-null divertor configuration, showing
pressure perturbation δp for dominant toroidal mode number n = 15 with the characteristics of ballooning
mode.


